1
|
Luo C, Ma C, Xu G, Lu C, Ma J, Huang Y, Nie L, Yu C, Xia Y, Liu Z, Zhu Y, Liu S. Hepatitis B surface antigen hijacks TANK-binding kinase 1 to suppress type I interferon and induce early autophagy. Cell Death Dis 2025; 16:304. [PMID: 40234418 PMCID: PMC12000394 DOI: 10.1038/s41419-025-07605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
There are close links between innate immunity and autophagy. However, the crosstalk between innate immunity and autophagy in host cells infected with hepatitis B virus (HBV) remains unclear. Here, we reported that HBsAg suppressed type I interferon production and induced the accumulation of autophagosomes. HBsAg boosted TANK-binding kinase 1 (TBK1) phosphorylation and depressed interferon regulatory factor 3 (IRF3) phosphorylation ex vivo and in vivo. Mechanistic studies showed that HBsAg interaction with the kinase domain (KD) of TBK1 augmented its dimerization but disrupted TBK1-IRF3 complexes. Using the TBK1 inhibitor, BX795, we discovered that HBsAg-enhanced TBK1 dimerization, promoting sequestosome-1 (p62) phosphorylation, was necessary for HBV-induced autophagy and HBV replication. Moreover, HBsAg blocked autophagosome-lysosome fusion by inhibiting the synaptosomal-associated protein 29 (SNAP29) promoter. Notably, liver tissues from HBsAg transgenic mice or chronic HBV patients revealed that IFNβ signaling was inhibited and incomplete autophagy was induced. These findings suggest a novel mechanism by which HBsAg targets TBK1 to inhibit type I interferon and induce early autophagy, possibly leading to persistent HBV infection. Molecular mechanisms of HBsAg suppression of the IFNβ signaling pathway and triggering of early autophagy. HBsAg targets the kinase domain of TBK1, thereby disrupting the TBK1-IRF3 complex and inhibiting type I interferon production. On the other hand, HBsAg enhances TBK1 dimerization and phosphorylation, which upregulates the phosphorylation of p62 to induce p62-mediated autophagy. Furthermore, HBV infection causes the accumulation of autophagosomes. This is achieved by HBsAg suppressing the SNAP29 promoter activity, which blocks autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Chuanjin Luo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Caijiao Ma
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengbo Lu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - June Ma
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Longyu Nie
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yongfang Xia
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiqiang Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Huang YH, Guo XL, Shan MK, Yang GW, Yang HT. Class B scavenger receptor resists WSSV replication by recognizing the viral lipid molecule and promoting phagocytosis. J Virol 2025; 99:e0170024. [PMID: 39907282 PMCID: PMC11915803 DOI: 10.1128/jvi.01700-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025] Open
Abstract
Class B scavenger receptors (SRBs) have been well-studied in bacteria-induced immune responses in invertebrates. However, the status of SRB-defending viruses remains unclear. In this study, we identified a scavenger receptor in Procambarus clarkii (crayfish), which is homologous to mammalian SRBs, and designated it as PcSRB. The expression of PcSRB was upregulated after the WSSV challenge. The survival rate of crayfish was decreased, but the WSSV copy number increased after PcSRB knockdown during virus invasion. In addition, PcSRB bound to WSSV. Furthermore, we detected how PcSRB interacted with WSSV, and we found that PcSRB could bind to cholesta-3,5-diene, (CD3,5), a novel WSSV lipid ligand, rather than dibutyl phthalate (DBP). Besides, PcSRB could bind to VP19, VP26, and VP28, rather than VP24. Mutant-binding experiments demonstrated that the hydrophobic domain (130-180 aa) of PcSRB is important for recognizing WSSV. Furthermore, PcSRB might promote lysosomal eliminating function to degrade WSSV. Altogether, we identified a new mechanism for scavenger receptor recognition and resistance to WSSV.IMPORTANCEPcSRB could bind to WSSV directly. PcSRB could interact with WSSV via binding to lipid molecule CD3,5 and viral envelope proteins. PcSRB could influence lysosomal activation.
Collapse
Affiliation(s)
- Yi-Heng Huang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xin-Lu Guo
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Meng-Ke Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Gui-Wen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui-Ting Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
3
|
Chuang YC, Ou JHJ. Hepatitis B virus entry, assembly, and egress. Microbiol Mol Biol Rev 2024; 88:e0001424. [PMID: 39440957 DOI: 10.1128/mmbr.00014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
SUMMARYHepatitis B virus (HBV) is an important human pathogen that chronically infects approximately 250 million people in the world, resulting in ~1 million deaths annually. This virus is a hepatotropic virus and can cause severe liver diseases including cirrhosis and hepatocellular carcinoma. The entry of HBV into hepatocytes is initiated by the interaction of its envelope proteins with its receptors. This is followed by the delivery of the viral nucleocapsid to the nucleus for the release of its genomic DNA and the transcription of viral RNAs. The assembly of the viral capsid particles may then take place in the nucleus or the cytoplasm and may involve cellular membranes. This is followed by the egress of the virus from infected cells. In recent years, significant research progresses had been made toward understanding the entry, the assembly, and the egress of HBV particles. In this review, we discuss the molecular pathways of these processes and compare them with those used by hepatitis delta virus and hepatitis C virus , two other hepatotropic viruses that are also enveloped. The understanding of these processes will help us to understand how HBV replicates and causes diseases, which will help to improve the treatments for HBV patients.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - J-H James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
4
|
Zhang Y, Han S, Li Y, Zhou Y, Sun M, Hu M, Zhou C, Lin L, Lan J, Lu X, Zhang Q, Liu L, Jin J. Manganese inhibits HBV transcription and promotes HBsAg degradation at non-toxic levels. Int J Biol Macromol 2024; 280:135764. [PMID: 39299429 DOI: 10.1016/j.ijbiomac.2024.135764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Chronic hepatitis B virus (HBV) infection continues to pose a significant global health challenge. However, therapeutic measures for a cure are lacking in clinical practice. Manganese, an essential trace element, has garnered attention due to its potential to activate innate immune pathways and its significant role in antiviral and antitumor immunity. Yet, the specific impact of manganese on chronic hepatitis B has been largely unexplored. Our research reveals that manganese substantially inhibits HBV replication in hepatocellular carcinoma cells at non-toxic levels. This suppression occurs independently of well-known anti-HBV innate immune pathways, such as the cGAS-STING pathway. Mechanistically, manganese decreases HBV transcription by diminishing the levels of liver-specific transcription factors. Furthermore, it activates the mTOR pathway, enhancing HBsAg ubiquitination through the upregulation of the ubiquitin ligase β-TrCP and increasing proteasome activity via the augmentation of its subunits, leading to a ubiquitin-dependent degradation of HBsAg. Significantly, our study also uncovers a notable clinical correlation between manganese levels and chronic hepatitis B infection. These findings position manganese as a critical element in diminishing HBV replication, offering a new direction in the management of chronic hepatitis B.
Collapse
Affiliation(s)
- Yong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| | - Shaowei Han
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yuanyuan Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yuting Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; School of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Mengdan Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Mingna Hu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; School of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Chengcai Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Lu Lin
- Clinical Medical College, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Jianfeng Lan
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Xing Lu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Qinqin Zhang
- Department of Thyroid and Breast Surgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541002, Guangxi, China
| | - Lingyun Liu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Department of Hepatobiliary and Pancreatic Surgery, Laboratory of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| |
Collapse
|
5
|
Mei L, Sun H, Yan Y, Ji H, Su Q, Chang L, Wang L. mTOR Signaling: Roles in Hepatitis B Virus Infection and Hepatocellular Carcinoma. Int J Biol Sci 2024; 20:4178-4189. [PMID: 39247820 PMCID: PMC11379076 DOI: 10.7150/ijbs.95894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Currently, chronic hepatitis B virus infection is still one of the most serious public health problems in the world. Though current strategies are effective in controlling infection and slowing down the disease process, it remains a big challenge to achieve a functional cure for chronic hepatitis B in a majority of patients due to the inability to clear the cccDNA pool. The mammalian target of rapamycin (mTOR) integrates nutrition, energy, growth factors, and other extracellular signals, participating in gene transcription, protein translation, ribosome synthesis, and other biological processes. Additionally, mTOR plays an extremely important role in cell growth, apoptosis, autophagy, and metabolism. More and more evidence show that HBV infection can activate the mTOR pathway, suggesting that HBV uses or hijacks the mTOR pathway to facilitate its own replication. Therefore, mTOR signaling pathway may be a key target for controlling HBV infection. However, the role of the central cytokine mTOR in the pathogenesis of HBV infection has not yet been systematically addressed. Notably, mTOR is commonly activated in hepatocellular carcinoma, which can progress from chronic hepatitis B. This review systematically summarizes the role of mTOR in the life cycle of HBV and its impact on the clinical progression of HBV infection.
Collapse
Affiliation(s)
- Ling Mei
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, 100730, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, 100730, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, 100730, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, 100730, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China
| | - Qian Su
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, 100730, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, 100730, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, 100730, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, 100730, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| |
Collapse
|
6
|
Datta G, Rezagholizadeh N, Hasler WA, Khan N, Chen X. SLC38A9 regulates SARS-CoV-2 viral entry. iScience 2024; 27:110387. [PMID: 39071889 PMCID: PMC11277692 DOI: 10.1016/j.isci.2024.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
SARS-CoV-2 viral entry into host cells depends on the cleavage of spike (S) protein into S1 and S2 proteins. Such proteolytic cleavage by furin results in the exposure of a multibasic motif on S1, which is critical for SARS-CoV-2 viral infection and transmission; however, how such a multibasic motif contributes to the infection of SARS-CoV-2 remains elusive. Here, we demonstrate that the multibasic motif on S1 is critical for its interaction with SLC38A9, an endolysosome-resident arginine sensor. SLC38A9 knockdown prevents S1-induced endolysosome de-acidification and blocks the S protein-mediated entry of pseudo-SARS-CoV-2 in Calu-3, U87MG, Caco-2, and A549 cells. Our findings provide a novel mechanism in regulating SARS-CoV-2 viral entry; S1 present in endolysosome lumen could interact with SLC38A9, which mediates S1-induced endolysosome de-acidification and dysfunction, facilitating the escape of SARS-CoV-2 from endolysosomes and enhancing viral entry.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Neda Rezagholizadeh
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Wendie A. Hasler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
7
|
Jassey A, Jackson WT. Viruses and autophagy: bend, but don't break. Nat Rev Microbiol 2024; 22:309-321. [PMID: 38102460 DOI: 10.1038/s41579-023-00995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Autophagy is a constitutive cellular process of degradation required to maintain homeostasis and turn over spent organelles and aggregated proteins. For some viruses, the process can be antiviral, degrading viral proteins or virions themselves. For many other viruses, the induction of the autophagic process provides a benefit and promotes viral replication. In this Review, we survey the roles that the autophagic pathway plays in the replication of viruses. Most viruses that benefit from autophagic induction block autophagic degradation, which is a 'bend, but don't break' strategy initiating but limiting a potentially antiviral response. In almost all cases, it is other effects of the redirected autophagic machinery that benefit these viruses. This rapid mechanism to generate small double-membraned vesicles can be usurped to shape membranes for viral genome replication and virion maturation. However, data suggest that autophagic maintenance of cellular homeostasis is crucial for the initiation of infection, as viruses have evolved to replicate in normal, healthy cells. Inhibition of autophagic degradation is important once infection has initiated. Although true degradative autophagy is probably a negative for most viruses, initiating nondegradative autophagic membranes benefits a wide variety of viruses.
Collapse
Affiliation(s)
- Alagie Jassey
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William T Jackson
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Leowattana W, Leowattana P, Leowattana T. Quantitative hepatitis B core antibody and quantitative hepatitis B surface antigen: Novel viral biomarkers for chronic hepatitis B management. World J Hepatol 2024; 16:550-565. [PMID: 38689745 PMCID: PMC11056893 DOI: 10.4254/wjh.v16.i4.550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/03/2024] [Accepted: 03/12/2024] [Indexed: 04/24/2024] Open
Abstract
The management of hepatitis B virus (HBV) infection now involves regular and appropriate monitoring of viral activity, disease progression, and treatment response. Traditional HBV infection biomarkers are limited in their ability to predict clinical outcomes or therapeutic effectiveness. Quantitation of HBV core antibodies (qAnti-HBc) is a novel non-invasive biomarker that may help with a variety of diagnostic issues. It was shown to correlate strongly with infection stages, hepatic inflammation and fibrosis, chronic infection exacerbations, and the presence of occult infection. Furthermore, qAnti-HBc levels were shown to be predictive of spontaneous or treatment-induced HBeAg and HBsAg seroclearance, relapse after medication termination, re-infection following liver transplantation, and viral reactivation in the presence of immunosuppression. qAnti-HBc, on the other hand, cannot be relied on as a single diagnostic test to address all problems, and its diagnostic and prognostic potential may be greatly increased when paired with qHBsAg. Commercial qAnti-HBc diagnostic kits are currently not widely available. Because many methodologies are only semi-quantitative, comparing data from various studies and defining universal cut-off values remains difficult. This review focuses on the clinical utility of qAnti-HBc and qHBsAg in chronic hepatitis B management.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand.
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Srinakharinwirot University, Wattana 10110, Bangkok, Thailand
| |
Collapse
|
9
|
Liang Y, Luo X, Schefczyk S, Muungani LT, Deng H, Wang B, Baba HA, Lu M, Wedemeyer H, Schmidt HH, Broering R. Hepatitis B surface antigen expression impairs endoplasmic reticulum stress-related autophagic flux by decreasing LAMP2. JHEP Rep 2024; 6:101012. [PMID: 38425451 PMCID: PMC10899050 DOI: 10.1016/j.jhepr.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 03/02/2024] Open
Abstract
Background & Aims Hepatitis B surface antigen (HBsAg) drives hepatocarcinogenesis. Factors and mechanisms involved in this progression remain poorly defined, hindering the development of effective therapeutic strategies. Therefore, the mechanisms involved in the HBsAg-induced transformation of normal liver into hepatocellular carcinoma (HCC) were investigated. Methods Hemizygous Tg(Alb1HBV)44Bri/J mice were examined for HBsAg-induced carcinogenic events. Gene set-enrichment analysis identified significant signatures in HBsAg-transgenic mice that correlated with endoplasmic reticulum (ER) stress, unfolded protein response, autophagy and proliferation. These events were investigated by western blotting, immunohistochemical and immunocytochemical staining in 2-, 8- and 12-month-old HBsAg-transgenic mice. The results were verified in HBsAg-overexpressing Hepa1-6 cells and validated in human HBV-related HCC samples. Results Increased BiP expression in HBsAg-transgenic mice indicated induction of the unfolded protein response. In addition, early-phase autophagy was enhanced (increased BECN1 and LC3B) and late-phase autophagy blocked (increased p62) in HBsAg-transgenic mice. Finally, HBsAg altered lysosomal acidification via ATF4- and ATF6-mediated downregulation of lysosome-associated membrane protein 2 (LAMP2) expression. In patients, HBV-related HCC and adjacent tissues showed increased BiP, p62 and downregulated LAMP2 compared to uninfected controls. In vitro, the use of ER stress inhibitors reversed the HBsAg-related suppression of LAMP2. Furthermore, HBsAg promoted hepatocellular proliferation as indicated by Ki67, cleaved caspase-3 and AFP staining in paraffin-embedded liver sections from HBsAg-transgenic mice. These results were further verified by colony formation assays in HBsAg-expressing Hepa1-6 cells. Interestingly, inhibition of ER stress in HBsAg-overexpressing Hepa1-6 cells suppressed HBsAg-mediated cell proliferation. Conclusions These data showed that HBsAg directly induces ER stress, impairs autophagy and promotes proliferation, thereby driving hepatocarcinogenesis. In addition, this study expanded the understanding of HBsAg-mediated intracellular events in carcinogenesis. Impact and implications Factors and mechanisms involved in hepatocarcinogenesis driven by hepatitis B surface antigen (HBsAg) are poorly defined, hindering the development of effective therapeutic strategies. This study showed that HBsAg-induced endoplasmic reticulum stress suppressed LAMP2, thereby mediating autophagic injury. The present data suggest that restoring LAMP2 function in chronic HBV infection may have both antiviral and anti-cancer effects. This study has provided insights into the role of HBsAg-mediated intracellular events in carcinogenesis and thereby has relevance for future drug development.
Collapse
Affiliation(s)
- Yaojie Liang
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Xufeng Luo
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Institute for Lymphoma Research, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Stefan Schefczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Lorraine T. Muungani
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Hui Deng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hideo A. Baba
- Institute of Pathology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Mengji Lu
- Institute for Virology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hartmut H. Schmidt
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Dutta S, Ganguly A, Ghosh Roy S. An Overview of the Unfolded Protein Response (UPR) and Autophagy Pathways in Human Viral Oncogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:81-131. [PMID: 38782502 DOI: 10.1016/bs.ircmb.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Autophagy and Unfolded Protein Response (UPR) can be regarded as the safe keepers of cells exposed to intense stress. Autophagy maintains cellular homeostasis, ensuring the removal of foreign particles and misfolded macromolecules from the cytoplasm and facilitating the return of the building blocks into the system. On the other hand, UPR serves as a shock response to prolonged stress, especially Endoplasmic Reticulum Stress (ERS), which also includes the accumulation of misfolded proteins in the ER. Since one of the many effects of viral infection on the host cell machinery is the hijacking of the host translational system, which leaves in its wake a plethora of misfolded proteins in the ER, it is perhaps not surprising that UPR and autophagy are common occurrences in infected cells, tissues, and patient samples. In this book chapter, we try to emphasize how UPR, and autophagy are significant in infections caused by six major oncolytic viruses-Epstein-Barr (EBV), Human Papilloma Virus (HPV), Human Immunodeficiency Virus (HIV), Human Herpesvirus-8 (HHV-8), Human T-cell Lymphotropic Virus (HTLV-1), and Hepatitis B Virus (HBV). Here, we document how whole-virus infection or overexpression of individual viral proteins in vitro and in vivo models can regulate the different branches of UPR and the various stages of macro autophagy. As is true with other viral infections, the relationship is complicated because the same virus (or the viral protein) exerts different effects on UPR and Autophagy. The nature of this response is determined by the cell types, or in some cases, the presence of diverse extracellular stimuli. The vice versa is equally valid, i.e., UPR and autophagy exhibit both anti-tumor and pro-tumor properties based on the cell type and other factors like concentrations of different metabolites. Thus, we have tried to coherently summarize the existing knowledge, the crux of which can hopefully be harnessed to design vaccines and therapies targeted at viral carcinogenesis.
Collapse
Affiliation(s)
- Shovan Dutta
- Center for Immunotherapy & Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| | - Sounak Ghosh Roy
- Henry M Jackson for the Advancement of Military Medicine, Naval Medical Research Command, Silver Spring, MD, United States.
| |
Collapse
|
11
|
Li J, Lin Y, Wang X, Lu M. Interconnection of cellular autophagy and endosomal vesicle trafficking and its role in hepatitis B virus replication and release. Virol Sin 2024; 39:24-30. [PMID: 38211880 PMCID: PMC10877419 DOI: 10.1016/j.virs.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
Hepatitis B virus (HBV) produces and releases various particle types, including complete virions, subviral particles with envelope proteins, and naked capsids. Recent studies demonstrate that HBV exploits distinct intracellular membrane trafficking pathways, including the endosomal vesicle trafficking and autophagy pathway, to assemble and release viral and subviral particles. Herein, we summarize the findings about the distinct roles of autophagy and endosomal membrane trafficking and the interaction of both pathways in HBV replication, assembly, and release.
Collapse
Affiliation(s)
- Jia Li
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xueyu Wang
- The Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany.
| |
Collapse
|
12
|
Cui S, Xia T, Zhao J, Ren X, Wu T, Kameni M, Guo X, He L, Guo J, Duperray-Susini A, Levillayer F, Collard JM, Zhong J, Pan L, Tangy F, Vidalain PO, Zhou D, Jiu Y, Faure M, Wei Y. NDP52 mediates an antiviral response to hepatitis B virus infection through Rab9-dependent lysosomal degradation pathway. Nat Commun 2023; 14:8440. [PMID: 38114531 PMCID: PMC10730550 DOI: 10.1038/s41467-023-44201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Autophagy receptor NDP52 triggers bacterial autophagy against infection. However, the ability of NDP52 to protect against viral infection has not been established. We show that NDP52 binds to envelope proteins of hepatitis B virus (HBV) and triggers a degradation process that promotes HBV clearance. Inactivating NDP52 in hepatocytes results in decreased targeting of viral envelopes in the lysosome and increased levels of viral replication. NDP52 inhibits HBV at both viral entry and late replication stages. In contrast to NDP52-mediated bacterial autophagy, lysosomal degradation of HBV envelopes is independent of galectin 8 and ATG5. NDP52 forms complex with Rab9 and viral envelope proteins and links HBV to Rab9-dependent lysosomal degradation pathway. These findings reveal that NDP52 acts as a sensor for HBV infection, which mediates a unique antiviral response to eliminate the virus. This work also suggests direct roles for autophagy receptors in other lysosomal degradation pathways than canonical autophagy.
Collapse
Affiliation(s)
- Shuzhi Cui
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Tian Xia
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France
| | - Jianjin Zhao
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Xiaoyu Ren
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Tingtao Wu
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Mireille Kameni
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Xiaoju Guo
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Li He
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Jingao Guo
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | | | - Florence Levillayer
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France
| | - Jean-Marc Collard
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France
| | - Jin Zhong
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Lifeng Pan
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Frédéric Tangy
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France
| | - Pierre-Olivier Vidalain
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Yaming Jiu
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Yu Wei
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
13
|
Zhao Z, Wei Z, Zheng J, Li Z, Zou H, Wen X, Li F, Wang X, Huang Q, Zeng H, Fan H, Cai X, Zhang J, Jia B, Huang A, Lu M, Lin Y. Hepatitis B virus promotes its own replication by enhancing RAB5A-mediated dual activation of endosomal and autophagic vesicle pathways. Emerg Microbes Infect 2023; 12:2261556. [PMID: 37725090 PMCID: PMC10614717 DOI: 10.1080/22221751.2023.2261556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023]
Abstract
Chronic hepatitis B virus (HBV) infection remains one of the major global public health concerns, and it develop into liver fibrosis, cirrhosis, and hepatocellular carcinoma. Recent evidence suggests that endosomal and autophagic vesicles are beneficial for HBV replication. However, it has not been well elucidated how HBV exploits such intracellular vesicle systems for its replication. RAB5A, a member of small GTPase family, plays crucial roles in early endosome biogenesis and autophagy initiation. We observed that RAB5A mRNA and protein levels were significantly increased in HBV-expressing hepatoma cell lines as well as in liver tissue samples from chronic HBV-infected patients. Moreover, RAB5A silencing inhibited HBV replication and subviral particle (SVP) expression significantly in HBV-transfected and -infected hepatoma cells, whereas RAB5A overexpression increased them. Mechanistically, RAB5A increases HBV replication through enhancement of early endosome (EE) - late endosome (LE) activation by interacting with EEA1, as well as enhancing autophagy induction by interacting with VPS34. Additionally, HBV infection enhances RAB5A-mediated dual activation of EE-LE system and autophagy. Collectively, our findings highlight that HBV utilizes RAB5A-mediated dual activation of endosomal and autophagic vesicle pathways for its own replication and persistence. Therefore, RAB5A is a potential target for chronic HBV infection treatment.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhen Wei
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jiaxin Zheng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhihong Li
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hecun Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiang Wen
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Fahong Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xueyu Wang
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Qian Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Huaqing Zeng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hui Fan
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Bei Jia
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
14
|
Le TV, Truong NH, Holterman AXL. Autophagy modulates physiologic and adaptive response in the liver. LIVER RESEARCH 2023; 7:304-320. [PMID: 39958781 PMCID: PMC11792069 DOI: 10.1016/j.livres.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/20/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2025]
Abstract
Autophagy is a physiological process that is ubiquitous and essential to the disposal or recycling of damaged cellular organelles and misfolded proteins to maintain organ homeostasis and survival. Its importance in the regulation of liver function in normal and pathological conditions is increasingly recognized. This review summarizes how autophagy regulates epithelial cell- and non-epithelial cell-specific function in the liver and how it differentially participates in hepatic homeostasis, hepatic injury response to stress-induced liver damage such as cholestasis, sepsis, non-alcoholic and alcohol-associated liver disease, viral hepatitis, hepatic fibrosis, hepatocellular and cholangiocellular carcinoma, and aging. Autophagy-based interventional studies for liver diseases that are currently registered in clinicatrials.gov are summarized. Given the broad and multidirectional autophagy response in the liver, a more refined understanding of the liver cell-specific autophagy activities in a context-dependent manner is necessary.
Collapse
Affiliation(s)
- Trinh Van Le
- Laboratory of Stem Cell Research and Application, University of Science-VNUHCM, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nhung Hai Truong
- Faculty of Biology and Biotechnology, University of Science-VNUHCM, Ho Chi Minh City, Vietnam
| | - Ai Xuan L. Holterman
- Department of Pediatrics and Surgery, University of Illinois College of Medicine, Chicago and Peoria, IL, USA
| |
Collapse
|
15
|
Yoon KC, Seo S, Lee KW, Oh SC, Park MY, Hong SK, Choi Y, Yi NJ, Suh KS. Hepatitis B immunoglobulin inhibits the secretion of HBV via antigen-antibody precipitation in the multivesicular body. Am J Transl Res 2023; 15:5908-5920. [PMID: 37854220 PMCID: PMC10579012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/22/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND AND AIMS Although the main action of human hepatitis B immunoglobulin (HBIG) is to neutralize hepatitis B virus surface antigen (HBsAg) in serum, HBIG is known to be localized in the cell. However, the effect of intracellularly located HBIG is poorly understood because of the low purity of conventional plasma-derived HBIG (cHBIG). We attempted to elucidate the mechanism of action of internalized HBIG using recombinant HBIG (lenvervimab). METHODS We used HBsAg producing cell lines, non-HBsAg cell lines and human HBsAg-producing hepatocytes. The autophagosome lysis pathway-related proteins Rab5, calnexin, giantin, and Rab7 were used to localize HBsAg and anti-HBs-IgG in the cytoplasm using Western blotting and confocal microscopy. RESULTS Intracellular anti-HBs-IgG (lenvervimab and cHBIG) transported via Fc receptor-mediated endocytosis increased the number of autophagosomes. However, there was no change in autolysis. HBsAg and anti-HBs-IgG co-localized in the multivesicular body and precipitated in the cytoplasm. HBsAg secretion into culture medium decreased after lenvervimab treatment. Simultaneously, the amount of cellular HBsAg increased in the cell lines but decreased in human hepatocytes. Furthermore, intracellular lenvervimab is not easily removed from HBsAg cell lines. CONCLUSIONS Lenvervimab decreases HBsAg secretion, and HBsAg antibody precipitation in the multivesicular body may play an important role.
Collapse
Affiliation(s)
- Kyung Chul Yoon
- Department of Surgery, Seoul National University College of MedicineSeoul, Republic of Korea
- Department of Surgery, Seoul National University Boramae Medical CenterSeoul, Republic of Korea
| | - Sooin Seo
- Department of Surgery, Seoul National University College of MedicineSeoul, Republic of Korea
| | - Kwang-Woong Lee
- Department of Surgery, Seoul National University College of MedicineSeoul, Republic of Korea
| | - Seung Cheol Oh
- Department of Surgery, Seoul National University College of MedicineSeoul, Republic of Korea
| | - Min Young Park
- Department of Surgery, Seoul National University College of MedicineSeoul, Republic of Korea
| | - Suk Kyun Hong
- Department of Surgery, Seoul National University College of MedicineSeoul, Republic of Korea
| | - YoungRok Choi
- Department of Surgery, Seoul National University College of MedicineSeoul, Republic of Korea
| | - Nam-Joon Yi
- Department of Surgery, Seoul National University College of MedicineSeoul, Republic of Korea
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University College of MedicineSeoul, Republic of Korea
| |
Collapse
|
16
|
Kushch AA, Ivanov AV. [Exosomes in the life cycle of viruses and the pathogenesis of viral infections]. Vopr Virusol 2023; 68:181-197. [PMID: 37436410 DOI: 10.36233/0507-4088-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 07/13/2023]
Abstract
Exosomes are extracellular vesicles of endosomal origin, with a bilayer membrane, 30160 nm in diameter. Exosomes are released from cells of different origins and are detected in various body fluids. They contain nucleic acids, proteins, lipids, metabolites and can transfer the contents to recipient cells. Exosome biogenesis involves cellular proteins of the Rab GTPase family and the ESCRT system, which regulate budding, vesicle transport, molecule sorting, membrane fusion, formation of multivesicular bodies and exosome secretion. Exosomes are released from cells infected with viruses and may contain viral DNA and RNA, as well as mRNA, microRNA, other types of RNA, proteins and virions. Exosomes are capable of transferring viral components into uninfected cells of various organs and tissues. This review analyzes the impact of exosomes on the life cycle of widespread viruses that cause serious human diseases: human immunodeficiency virus (HIV-1), hepatitis B virus, hepatitis C virus, SARS-CoV-2. Viruses are able to enter cells by endocytosis, use molecular and cellular pathways involving Rab and ESCRT proteins to release exosomes and spread viral infections. It has been shown that exosomes can have multidirectional effects on the pathogenesis of viral infections, suppressing or enhancing the course of diseases. Exosomes can potentially be used in noninvasive diagnostics as biomarkers of the stage of infection, and exosomes loaded with biomolecules and drugs - as therapeutic agents. Genetically modified exosomes are promising candidates for new antiviral vaccines.
Collapse
Affiliation(s)
- A A Kushch
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - A V Ivanov
- Institute of Molecular Biology named after V.A. Engelhardt of Russian Academy of Sciences
| |
Collapse
|
17
|
Yu J, Shen Z, Chen S, Liu H, Du Z, Mao R, Wang J, Zhang Y, Zhu H, Yang S, Li J, Wu J, Dong M, Zhu M, Huang Y, Li J, Yuan Z, Xie Y, Lu M, Zhang J. Inhibition of HBV replication by EVA1A via enhancing cellular degradation of HBV components and its potential therapeutic application. Antiviral Res 2023:105643. [PMID: 37236321 DOI: 10.1016/j.antiviral.2023.105643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Hepatitis B virus (HBV) DNA is much higher during HBeAg-positive chronic HBV infection (EP-CBI) than during HBeAg-negative chronic HBV infection (EN-CBI), although the necroinflammation in liver is minimal and the adaptive immune response is similar in both phases. We previously reported that mRNA levels of EVA1A were higher in EN-CBI patients. In this study, we aimed to investigate whether EVA1A inhibits HBV gene expression and examine the underlying mechanisms. The available cell models for HBV replication and model HBV mice were used to investigate how EVA1A regulates HBV replication and the antiviral activity based on gene therapy. The signaling pathway was determined through RNA sequencing analysis. The results demonstrated that EVA1A can inhibit HBV gene expression in vitro and in vivo. In particular, EVA1A overexpression resulted in accelerated HBV RNA degradation and activation of the PI3K-Akt-mTOR pathway, two processes that directly and indirectly inhibiting HBV gene expression. EVA1A is a promising candidate for treating chronic hepatitis B (CHB). In conclusion, EVA1A is a new host restriction factor that regulates the HBV life cycle via a nonimmune process.
Collapse
Affiliation(s)
- Jie Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| | - Shiqi Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyan Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongmei Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Sisi Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Minhui Dong
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengqi Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youhua Xie
- Shanghai Institute of Infectious Diseases and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Infectious Diseases and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Zheng J, Deng Y, Wei Z, Zou H, Wen X, Cai J, Zhang S, Jia B, Lu M, Lu K, Lin Y. Lipid phosphatase SAC1 suppresses hepatitis B virus replication through promoting autophagic degradation of virions. Antiviral Res 2023; 213:105601. [PMID: 37068596 DOI: 10.1016/j.antiviral.2023.105601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/19/2023]
Abstract
Phosphatidylinositol lipids play vital roles in lipid signal transduction, membrane recognition, vesicle transport, and viral replication. Previous studies have revealed that SAC1-like phosphatidylinositol phosphatase (SACM1L/SAC1), which uses phosphatidylinositol-4-phosphate (PI4P) as its substrate, greatly affects the replication of certain bacteria and viruses in vitro. However, it remains unclear whether and how SAC1 modulates hepatitis B virus (HBV) replication in vitro and in vivo. In the present study, we observed that SAC1 silencing significantly increased HBV DNA replication, subviral particle (SVP) expression, and secretion of HBV virions, whereas SAC1 overexpression exerted the opposite effects. Moreover, SAC1 overexpression inhibited HBV DNA replication and SVP expression in a hydrodynamic injection-based HBV-persistent replicating mouse model. Mechanistically, SAC1 silencing increased the number of HBV-containing autophagosomes as well as PI4P levels on the autophagosome membrane. Moreover, SAC1 silencing blocked autophagosome-lysosome fusion by inhibiting the interaction between synaptosomal-associated protein 29 and vesicle-associated membrane protein 8. Collectively, our data indicate that SAC1 significantly inhibits HBV replication by promoting the autophagic degradation of HBV virions. Our findings support that SAC1-mediated phospholipid metabolism greatly modulates certain steps of the HBV life-cycle and provide a new theoretical basis for antiviral therapy.
Collapse
Affiliation(s)
- Jiaxin Zheng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yingying Deng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zhen Wei
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Hecun Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiang Wen
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jia Cai
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shujun Zhang
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bei Jia
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
19
|
Wu Y, Tan HWS, Lin JY, Shen HM, Wang H, Lu G. Molecular mechanisms of autophagy and implications in liver diseases. LIVER RESEARCH 2023; 7:56-70. [PMID: 39959698 PMCID: PMC11792062 DOI: 10.1016/j.livres.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/03/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Autophagy is a highly conserved process in which cytosolic contents are degraded by the lysosome, which plays an important role in energy and nutrient balance, and protein or organelle quality control. The liver is the most important organ for metabolism. Studies to date have revealed a significant role of autophagy in the maintenance of liver homeostasis under basal and stressed conditions, and the impairment of autophagy has been closely linked to various liver diseases. Therefore, a comprehensive understanding of the roles of autophagy in liver diseases may help in the development of therapeutic strategies via targeting autophagy. In this review, we will summarize the latest understanding of the molecular mechanisms of autophagy and systematically discuss its implications in various liver diseases, including alcohol-related liver disease, non-alcoholic fatty liver disease, viral hepatitis, hepatocellular carcinoma, and acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Yuankai Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hayden Weng Siong Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin-Yi Lin
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
RAB7A GTPase Is Involved in Mitophagosome Formation and Autophagosome-Lysosome Fusion in N2a Cells Treated with the Prion Protein Fragment 106-126. Mol Neurobiol 2023; 60:1391-1407. [PMID: 36449254 DOI: 10.1007/s12035-022-03118-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2022]
Abstract
Failed communication between mitochondria and lysosomes causes dysfunctional mitochondria, which may induce mitochondria-related neurodegenerative diseases. Here, we show that RAB7A, a small GTPase of the Rab family, mediates the crosstalk between these two important organelles to maintain homeostasis in N2a cells treated with PrP106-126. Specifically, we demonstrate that mitophagy deficiency in N2a cells caused by PrP106-126 is associated with dysregulated RAB7A localization in mitochondria. Cells lacking RAB7A display decreased mitochondrial colocalization with lysosomes and significantly increased mitochondrial protein expression, resulting in inhibited mitophagy. In contrast, overexpression of GTP-bound RAB7A directly induces lysosome colocalization with mitochondria. Further study revealed that GTP-bound RAB7A protects mitochondrial homeostasis by supporting autophagosome biogenesis. Moreover, we suggest that depletion of RAB7A leads to gross morphological changes in lysosomes, which prevents autophagosome-lysosome fusion and interferes with the breakdown of autophagic cargo within lysosomes. Overexpression of GTP-bound RAB7A can also alleviate PrP106-126-induced morphological damage and dysfunction of mitochondria, reducing neuronal apoptosis. Collectively, our data demonstrate that RAB7A successfully drives mitochondria to the autophagosomal lumen for degradation, suggesting that the communication of proteotoxic stress from mitochondria to lysosomes requires RAB7A, as a signaling molecule, to establish a link between the disturbed mitochondrial network and its remodeling. These findings indicate that small molecules regulating mitophagy have the potential to modulate cellular homeostasis and the clinical course of neurodegenerative diseases. Proposed model of mitophagy regulated by RAB7A. (1) Accumulating PrP106-126 induced mitophagy. (2) RAB7A is recruited to mitochondria. (3) ATG5-12 and ATG9A (5) vesicles are recruited to the autophagosome formation sites in a RAB7A-dependent manner. The ATG5-12 complex recruits and anchors LC3-I to form active LC3-II (4), accelerating mitophagosomal formation. The ATG9A vesicles are thought to be a source of membranes for autophagosome assembly. The recruitment of proteins and lipids induces membrane expansion and subsequent closure to form the mitophagosome. (6) Maintenance of the normal low lysosomal PH depends on active (GTP-bound) RAB7A. (7) RAB7A recruits effector molecules responsible for tight membrane interactions, and directly or indirectly, the subsequent autophagosome merges with the lysosome, and the cargo is completely degraded.
Collapse
|
21
|
Wang ZL, Zheng JR, Yang RF, Huang LX, Chen HS, Feng B. An Ideal Hallmark Closest to Complete Cure of Chronic Hepatitis B Patients: High-sensitivity Quantitative HBsAg Loss. J Clin Transl Hepatol 2023; 11:197-206. [PMID: 36406318 PMCID: PMC9647097 DOI: 10.14218/jcth.2022.00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
In the era of antiviral therapy, the main goal of treatment has shifted from the persistent inhibition of hepatitis B virus (HBV) replication to the pursuit of serological clearance of HBs surface antigen (HBsAg). Based on the life cycle of HBV, HBsAg originates from covalently closed circular DNA (cccDNA) and integrated HBV DNA, thus reflecting their transcriptional activity. Complete HBsAg loss may mean elimination or persistent inactivity of the HBV genome including cccDNA and integrated HBV DNA. HBsAg loss improves the recovery of abnormal immune function, which in turn, may further promote the clearance of residual viruses. Combined with functional cure and the great improvement of clinical outcomes, the continuous seroclearance of high-sensitivity quantitative HBsAg may represent the complete cure of chronic hepatitis B (CHB). For many other risk factors besides HBV itself, patients with HBsAg loss still need regular monitoring. In this review, we summarized the evolution of CHB treatment, the origin of serum HBsAg, the pattern of HBsAg seroclearance, and the effect of HBsAg loss on immune function and disease outcomes. In addition, we discuss the significance of high-sensitivity HBsAg detection and its possibility as a surrogate of complete cure.
Collapse
Affiliation(s)
| | | | - Rui-Feng Yang
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Lin-Xiang Huang
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Hong-Song Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Bo Feng
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| |
Collapse
|
22
|
De Re V, Rossetto A, Rosignoli A, Muraro E, Racanelli V, Tornesello ML, Zompicchiatti A, Uzzau A. Hepatocellular Carcinoma Intrinsic Cell Death Regulates Immune Response and Prognosis. Front Oncol 2022; 12:897703. [PMID: 35875093 PMCID: PMC9303009 DOI: 10.3389/fonc.2022.897703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Ablative and locoregional treatment options, such as radiofrequency, ethanol injection, microwave, and cryoablation, as well as irreversible electroporation, are effective therapies for early-stage hepatocellular carcinoma (HCC). Hepatocyte death caused by ablative procedures is known to increase the release of tumor-associated antigen, thus enhancing tumor immunogenicity. In addition, the heat ablative resection induces pyroptotic cell death accompanied by the release of several inflammatory factors and immune-related proteins, including damage-associated molecular patterns (DAMPs), heat shock proteins (HSPs), ficolin 3, ATP, and DNA/RNA, which potentiate the antitumoral immune response. Surgical approaches that enhance tumor necrosis and reduce hypoxia in the residual liver parenchyma have been shown to increase the disease-free survival rate by reducing the host’s immunosuppressive response. Scalpel devices and targeted surgical approach combined with immune-modulating drugs are an interesting and promising area to maximize therapeutic outcomes after HCC ablation.
Collapse
Affiliation(s)
- Valli De Re
- Immunopatologia e Biomarcatori Oncologici/Bio-proteomics Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
- *Correspondence: Valli De Re, ; Anna Rossetto,
| | - Anna Rossetto
- General Surgery, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), San Daniele del Friuli, Udine, Italy
- *Correspondence: Valli De Re, ; Anna Rossetto,
| | - Alessandro Rosignoli
- Program of Hepatobiliopancreatic Surgery, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), University of Udine, Udine, Italy
| | - Elena Muraro
- Immunopatologia e Biomarcatori Oncologici/Bio-proteomics Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, Medical School, Aldo Moro University of Bari, Bari, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Aron Zompicchiatti
- Program of Hepatobiliopancreatic Surgery, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), University of Udine, Udine, Italy
| | - Alessandro Uzzau
- Program of Hepatobiliopancreatic Surgery, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), University of Udine, Udine, Italy
| |
Collapse
|
23
|
TARDBP Inhibits Porcine Epidemic Diarrhea Virus Replication through Degrading Viral Nucleocapsid Protein and Activating Type I Interferon Signaling. J Virol 2022; 96:e0007022. [DOI: 10.1128/jvi.00070-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PEDV refers to the highly contagious enteric coronavirus that has quickly spread globally and generated substantial financial damage to the global swine industry. During virus infection, the host regulates the innate immunity and autophagy process to inhibit virus infection.
Collapse
|
24
|
Fan RF, Tang KK, Wang ZY, Wang L. Persistent activation of Nrf2 promotes a vicious cycle of oxidative stress and autophagy inhibition in cadmium-induced kidney injury. Toxicology 2021; 464:152999. [PMID: 34695510 DOI: 10.1016/j.tox.2021.152999] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) serves as the master regulator of antioxidant signaling and inhibition or hyperactivation of Nrf2 pathway will result in the redox imbalance to induce tissue injury. Herein, we established cadmium (Cd)-exposed rat kidney injury model by intraperitoneal injection with CdCl2 (1.5 mg/kg body weight) and cytotoxicity model of NRK-52E cells by CdCl2 (5 μM) exposure to reveal the role of Nrf2 hyperactivation in Cd-induced nephrotoxicity. Data from the in vitro and in vivo study showed that Cd caused Nrf2 nuclear retention due to nuclear-cytoplasmic depletion of Kelch-like ECH-associated protein 1 (Keap1) and Sequestosome-1(SQSTM1/p62) accumulation, leading to the persistent activation of Nrf2. Moreover, we established inhibited models of Cd-induced prolonged Nrf2 activation using siRNA-mediated gene silencing in vitro and pharmacological inhibition in vivo for subsequent assays. First, Cd-induced cytotoxicity, renal injury and concomitant oxidative stress were markedly alleviated by Nrf2 inhibition. Second, Cd-induced autophagy inhibition was notably alleviated by Nrf2 inhibition. Further, we revealed underlying molecular mechanisms of the crosstalk between persistent activation of Nrf2 and autophagy inhibition in Cd-induced nephrotoxicity. Data showed that Cd-induced lysosomal dysfunction evidenced by impaired lysosomal biogenesis and degradation capacity was markedly recovered by Nrf2 inhibition. Meanwhile, Cd-impaired autophagosome-lysosome fusion was obviously restored by Nrf2 inhibition. In conclusion, our findings revealed that persistent activation of Nrf2 promoted a vicious cycle of oxidative stress and autophagy inhibition in Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Kou-Kou Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
25
|
Feng Z, Inaba JI, Nagy PD. Tombusviruses Target a Major Crossroad in the Endocytic and Recycling Pathways via Co-opting Rab7 Small GTPase. J Virol 2021; 95:e0107621. [PMID: 34406861 PMCID: PMC8513485 DOI: 10.1128/jvi.01076-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Positive-strand RNA viruses induce the biogenesis of unique membranous organelles called viral replication organelles (VROs), which perform virus replication in infected cells. Tombusviruses have been shown to rewire cellular trafficking and metabolic pathways, remodel host membranes, and recruit multiple host factors to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) usurp Rab7 small GTPase to facilitate building VROs in the surrogate host yeast and in plants. Depletion of Rab7 small GTPase, which is needed for late endosome and retromer biogenesis, strongly inhibits TBSV and CIRV replication in yeast and in planta. The viral p33 replication protein interacts with Rab7 small GTPase, which results in the relocalization of Rab7 into the large VROs. Similar to the depletion of Rab7, the deletion of either MON1 or CCZ1 heterodimeric GEFs (guanine nucleotide exchange factors) of Rab7 inhibited TBSV RNA replication in yeast. This suggests that the activated Rab7 has proviral functions. We show that the proviral function of Rab7 is to facilitate the recruitment of the retromer complex and the endosomal sorting nexin-BAR proteins into VROs. We demonstrate that TBSV p33-driven retargeting of Rab7 into VROs results in the delivery of several retromer cargos with proviral functions. These proteins include lipid enzymes, such as Vps34 PI3K (phosphatidylinositol 3-kinase), PI4Kα-like Stt4 phosphatidylinositol 4-kinase, and Psd2 phosphatidylserine decarboxylase. In summary, based on these and previous findings, we propose that subversion of Rab7 into VROs allows tombusviruses to reroute endocytic and recycling trafficking to support virus replication. IMPORTANCE The replication of positive-strand RNA viruses depends on the biogenesis of viral replication organelles (VROs). However, the formation of membranous VROs is not well understood yet. Using tombusviruses and the model host yeast, we discovered that the endosomal Rab7 small GTPase is critical for the formation of VROs. Interaction between Rab7 and the TBSV p33 replication protein leads to the recruitment of Rab7 into VROs. TBSV-driven usurping of Rab7 has proviral functions through facilitating the delivery of the co-opted retromer complex, sorting nexin-BAR proteins, and lipid enzymes into VROs to create an optimal milieu for virus replication. These results open up the possibility that controlling cellular Rab7 activities in infected cells could be a target for new antiviral strategies.
Collapse
Affiliation(s)
- Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Jun-ichi Inaba
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
26
|
Wang X, Wei Z, Jiang Y, Meng Z, Lu M. mTOR Signaling: The Interface Linking Cellular Metabolism and Hepatitis B Virus Replication. Virol Sin 2021; 36:1303-1314. [PMID: 34580816 PMCID: PMC8692646 DOI: 10.1007/s12250-021-00450-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that includes mTOR complex (mTORC) 1 and mTORC2. The mTOR pathway is activated in viral hepatitis, including hepatitis B virus (HBV) infection-induced hepatitis. Currently, chronic HBV infection remains one of the most serious public health issues worldwide. The unavailability of effective therapeutic strategies for HBV suggests that clarification of the pathogenesis of HBV infection is urgently required. Increasing evidence has shown that HBV infection can activate the mTOR pathway, indicating that HBV utilizes or hijacks the mTOR pathway to benefit its own replication. Therefore, the mTOR signaling pathway might be a crucial target for controlling HBV infection. Here, we summarize and discuss the latest findings from model biology research regarding the interaction between the mTOR signaling pathway and HBV replication.
Collapse
Affiliation(s)
- Xueyu Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Zhiqiang Wei
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhongji Meng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China. .,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
27
|
Li Z, Ma J, Kuang Z, Jiang Y. β-Asarone Attenuates Aβ-Induced Neuronal Damage in PC12 Cells Overexpressing APPswe by Restoring Autophagic Flux. Front Pharmacol 2021; 12:701635. [PMID: 34393783 PMCID: PMC8355419 DOI: 10.3389/fphar.2021.701635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive memory damage and cognitive dysfunction. Studies have shown that defective autophagic flux is associated with neuronal dysfunction. Modulating autophagic activity represents a potential method of combating AD. In Chinese medicine, Acori Tatarinowii Rhizoma is used to treat dementia and amnesia. β-Asarone, an active component of this rhizome can protect PC12 cells from Aβ-induced injury and modulate expression of autophagy factors. However, its cytoprotective mechanisms have yet to be discerned. It is unclear whether β-asarone affects autophagic flux and, if it does, whether this effect can alleviate Aβ cell damage. In the present study, we constructed APPswe-overexpressing PC12 cell line as a cell model of Aβ-induced damage and assessed expression of autophagic flux-related proteins as well as the number and morphology of autophagosomes and autolysosomes. Our results show that β-asarone decreases the expression levels of Beclin-1, p62, LC3-Ⅱ, and Aβ1-42. β-Asarone reduced the number of autophagosomes and increased the number of autolysosomes, as determined by confocal laser scanning microscopy and transmission electron microscopy. Our results suggest that β-asarone can protect PC12 cells from Aβ-induced damage by promoting autophagic flux, which may be achieved by enhancing autophagosome-lysosome fusion and/or lysosome function.
Collapse
Affiliation(s)
- Zhenwan Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin Ma
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongsheng Kuang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
28
|
Wang X, Wei Z, Lan T, He Y, Cheng B, Li R, Chen H, Li F, Liu G, Jiang B, Lin Y, Lu M, Meng Z. CCDC88A/GIV promotes HBV replication and progeny secretion via enhancing endosomal trafficking and blocking autophagic degradation. Autophagy 2021; 18:357-374. [PMID: 34190023 PMCID: PMC8942511 DOI: 10.1080/15548627.2021.1934271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatitis B virus (HBV) particles are thought to be secreted from hepatocytes through multivesicular bodies (MVBs); however, the cellular trafficking mechanisms prior to this process remain elusive. It has been reported that CCDC88A/GIV expression, which is involved in multiple aspects of vesicular trafficking, changes dynamically at different phases of chronic HBV infection. In this study, we focused on the role of CCDC88A/GIV in HBV replication. In the liver tissues of chronically HBV-infected patients, HBV infection significantly enhanced CCDC88A/GIV expression, and increased endoplasmic reticulum (ER) stress and autophagosome formation without changing endosome formation. Additionally, colocalization of SHBsAg with early endosomes (~30.2%) far exceeded that with autophagosomes (~3.2%). In hepatoma cells, CCDC88A/GIV and its downstream proteins, DNM2 (dynamin 2; a CCDC88A/GIV effector), CLTC and RAB5A significantly enhanced HBV replication and endosome formation but inhibited autophagosome formation. Blocking endocytosis disrupted HBsAg trafficking to endosomes and caused its accumulation in the ER lumen, which triggered ER stress to initiate the unfolded protein response (UPR). Therefore, HBsAg trafficking into autophagosomes was increased, and the lysosomal activity and maturation, which was inhibited by HBV infection, were restored. Meanwhile, core particles were prevented from entering MVBs. CCDC88A/GIV and its other effector, GNAI3, decreased autophagic flux by enhancing the insulin-induced AKT-MTOR pathway, thereby inhibiting HBV antigens autophagic degradation. In conclusion, CCDC88A/GIV enhanced HBV replication by increasing endosomal trafficking and reducing autophagic degradation of HBV antigens, suggesting that CCDC88A/GIV-mediated endosomal trafficking plays an important role in HBV replication and progeny secretion.Abbreviations: ACTB: actin beta; AO: acridine orange; ATF6: activating transcription factor 6; CCDC88A/GIV: coiled-coil domain containing 88A; CLTC: clathrin heavy chain; CQ: chloroquine; DAPI: 4ʹ,6-diamidino-2-phenylindole; DNM2: dynamin 2; ER: endoplasmic reticulum; ERN1: endoplasmic reticulum to nucleus signaling 1; EIF2A: eukaryotic translation initiation factor 2A; FBS: fetal bovine serum; GNAI3: G protein subunit alpha i3; HBV: hepatitis B virus; HBV RIs: HBV replication intermediates; HBcAg: HBV core protein; HBsAg: HBV surface antigen; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MVBs: multivesicular bodies; MTOR: mechanistic target of rapamycin kinase; PDI: protein disulfide isomerase; PHH: primary human hepatocyte; pSM2: a HBV replication-competent plasmid; HSPA5/BIP: heat shock protein family A (Hsp70) member 5; SQSTM1/p62: sequestosome 1; siRNA: small interfering RNA; SEM: standard error of the mean; UPR: unfolded protein response
Collapse
Affiliation(s)
- Xueyu Wang
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zhiqiang Wei
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tingyu Lan
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Yulin He
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Bin Cheng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Ruimin Li
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Hongxia Chen
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Fahong Li
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Infectious Diseases,Huashan Hospital, Fudan University, Shanghai, China
| | - Guohua Liu
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Bin Jiang
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Yong Lin
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zhongji Meng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| |
Collapse
|
29
|
Nelson BN, Beakley SG, Posey S, Conn B, Maritz E, Seshu J, Wozniak KL. Antifungal activity of dendritic cell lysosomal proteins against Cryptococcus neoformans. Sci Rep 2021; 11:13619. [PMID: 34193926 PMCID: PMC8245489 DOI: 10.1038/s41598-021-92991-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Cryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.
Collapse
Affiliation(s)
- Benjamin N Nelson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Savannah G Beakley
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Sierra Posey
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Brittney Conn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Emma Maritz
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Janakiram Seshu
- Department of Biology, South Texas Center for Emerging Infectious Diseases, San Antonio, TX, USA
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA.
| |
Collapse
|
30
|
Vaillant A. HBsAg, Subviral Particles, and Their Clearance in Establishing a Functional Cure of Chronic Hepatitis B Virus Infection. ACS Infect Dis 2021; 7:1351-1368. [PMID: 33302622 DOI: 10.1021/acsinfecdis.0c00638] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In diverse viral infections, the production of excess viral particles containing only viral glycoproteins (subviral particles or SVP) is commonly observed and is a commonly evolved mechanism for immune evasion. In hepatitis B virus (HBV) infection, spherical particles contain the hepatitis B surface antigen, outnumber infectious virus 10 000-100 000 to 1, and have diverse inhibitory effects on the innate and adaptive immune response, playing a major role in the chronic nature of HBV infection. The current goal of therapies in development for HBV infection is a clinical outcome called functional cure, which signals a persistent and effective immune control of the infection. Although removal of spherical SVP (and the HBsAg they carry) is an important milestone in achieving functional cure, this outcome is rarely achieved with current therapies due to distinct mechanisms for assembly, secretion, and persistence of SVP, which are poorly targeted by direct acting antivirals or immunotherapies. In this Review, the current understanding of the distinct mechanisms involved in the production and persistence of spherical SVP in chronic HBV infection and their immunoinhibitory activity will be reviewed as well as current therapies in development with the goal of clearing spherical SVP and achieving functional cure.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec H8Y 3E6, Canada
| |
Collapse
|
31
|
Jiang Y, Han Q, Zhao H, Zhang J. The Mechanisms of HBV-Induced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:435-450. [PMID: 34046368 PMCID: PMC8147889 DOI: 10.2147/jhc.s307962] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy, and the hepatitis B virus (HBV) is its major pathogenic factor. Over the past decades, it has been confirmed that HBV infection could promote disease progression through a variety of mechanisms, ultimately leading to the malignant transformation of liver cells. Many factors have been identified in the pathogenesis of HBV-associated HCC (HBV-HCC), including HBV gene integration, genomic instability caused by mutation, and activation of cancer-promoting signaling pathways. As research in the progression of HBV-HCC progresses, the role of many new mechanisms, such as epigenetics, exosomes, autophagy, metabolic regulation, and immune suppression, is also being continuously explored. The occurrence of HBV-HCC is a complex process caused by interactions across multiple genes and multiple steps, where the synergistic effects of various cancer-promoting mechanisms accelerate the process of disease evolution from inflammation to tumorigenesis. In this review, we aim to provide a brief overview of the mechanisms involved in the occurrence and development of HBV-HCC, which may contribute to a better understanding of the role of HBV in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| |
Collapse
|
32
|
Deng F, Xu G, Cheng Z, Huang Y, Ma C, Luo C, Yu C, Wang J, Xu X, Liu S, Zhu Y. Hepatitis B Surface Antigen Suppresses the Activation of Nuclear Factor Kappa B Pathway via Interaction With the TAK1-TAB2 Complex. Front Immunol 2021; 12:618196. [PMID: 33717111 PMCID: PMC7947203 DOI: 10.3389/fimmu.2021.618196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis B is a major health problem worldwide, with more than 250 million chronic carriers. Hepatitis B virus interferes with the host innate immune system so as to evade elimination via almost all of its constituent proteins; nevertheless, the function of HBsAg with respect to immune escape remains unclear. This study aimed to determine the role HBsAg plays in assisting HBV to escape from immune responses. We found that HBsAg suppressed the activation of the nuclear factor kappa B (NF-кB) pathway, leading to downregulation of innate immune responses. HBsAg interacted with TAK1 and TAB2 specifically, inhibiting the phosphorylation and polyubiquitination of TAK1 and the K63-linked polyubiquitination of TAB2. Autophagy is a major catabolic process participating in many cellular processes, including the life cycle of HBV. We found that HBsAg promoted the autophagic degradation of TAK1 and TAB2 via the formation of complexes with TAK1 and TAB2, resulting in suppression of the NF-κB pathway. The expression of TAK1, TAB2, and the translocation of NF-κB inversely correlated with HBsAg levels in clinical liver tissues. Taken together, our findings suggest a novel mechanism by which HBsAg interacts with TAK1-TAB2 complex and suppresses the activation of NF-κB signaling pathway via reduction of the post-translational modifications and autophagic degradation.
Collapse
Affiliation(s)
- Feiyan Deng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhikui Cheng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Caijiao Ma
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chuanjin Luo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiupeng Xu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic, Huangshi, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Host cell glutamine metabolism as a potential antiviral target. Clin Sci (Lond) 2021; 135:305-325. [PMID: 33480424 DOI: 10.1042/cs20201042] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
A virus minimally contains a nucleic acid genome packaged by a protein coat. The genome and capsid together are known as the nucleocapsid, which has an envelope containing a lipid bilayer (mainly phospholipids) originating from host cell membranes. The viral envelope has transmembrane proteins that are usually glycoproteins. The proteins in the envelope bind to host cell receptors, promoting membrane fusion and viral entry into the cell. Virus-infected host cells exhibit marked increases in glutamine utilization and metabolism. Glutamine metabolism generates ATP and precursors for the synthesis of macromolecules to assemble progeny viruses. Some compounds derived from glutamine are used in the synthesis of purines and pyrimidines. These latter compounds are precursors for the synthesis of nucleotides. Inhibitors of glutamine transport and metabolism are potential candidate antiviral drugs. Glutamine is also an essential nutrient for the functions of leukocytes (lymphocyte, macrophage, and neutrophil), including those in virus-infected patients. The increased glutamine requirement for immune cell functions occurs concomitantly with the high glutamine utilization by host cells in virus-infected patients. The development of antiviral drugs that target glutamine metabolism must then be specifically directed at virus-infected host cells to avoid negative effects on immune functions. Therefore, the aim of this review was to describe the landscape of cellular glutamine metabolism to search for potential candidates to inhibit glutamine transport or glutamine metabolism.
Collapse
|
34
|
Fauzyah Y, Ono C, Torii S, Anzai I, Suzuki R, Izumi T, Morioka Y, Maeda Y, Okamoto T, Fukuhara T, Matsuura Y. Ponesimod suppresses hepatitis B virus infection by inhibiting endosome maturation. Antiviral Res 2020; 186:104999. [PMID: 33346055 DOI: 10.1016/j.antiviral.2020.104999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
The discovery of novel antivirals to treat hepatitis B virus (HBV) infection is urgently needed, as the currently available drugs mainly target viral proteins at replication step, whereas host factors also play significant roles in HBV infection. Although numerous studies have reported candidate drugs for HBV treatment, there remains a need to find a new drug that may target other steps of the HBV life cycle. In this study, by drug screening of a 533 G-protein-coupled receptors (GPCRs)-associated compound library, we identified ponesimod, a selective agonist of sphingosine-1-phosphate receptor 1 (S1P1), as a drug candidate for the suppression of HBV infection. However, the anti-HBV effect of ponesimod is independent of S1P1 and other sphingosine-1-phosphate receptors (S1PRs). Treatment with ponesimod at an early step of infection but not at a post-entry step significantly reduced the HBV relaxed circular DNA (rcDNA) level in a dose-dependent manner. Ponesimod treatment did not inhibit attachment, binding, or internalization of HBV particles via endocytosis through an interaction with sodium taurocholate cotransporting polypeptide (NTCP) or epidermal growth factor receptor (EGFR). Importantly, during the transportation of HBV particles to the nucleus, co-localization of HBV with early endosomes but not with late endosomes and lysosomes was induced by the treatment with ponesimod, suggesting that ponesimod interferes with the conversion of early endosomes to late endosomes without significant damage to cellular growth. Conclusion: Ponesimod is a promising anti-HBV drug targeting the endosome maturation of HBV. This finding can be applied to the development of novel antivirals that target the trafficking pathway of HBV particles.
Collapse
Affiliation(s)
- Yuzy Fauzyah
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Shiho Torii
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Itsuki Anzai
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Rigel Suzuki
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Takuma Izumi
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Yuhei Morioka
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Yusuke Maeda
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
35
|
Lin Y, Zhao Z, Huang A, Lu M. Interplay between Cellular Autophagy and Hepatitis B Virus Replication: A Systematic Review. Cells 2020; 9:2101. [PMID: 32942717 PMCID: PMC7563265 DOI: 10.3390/cells9092101] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy, a conserved process in which cells break down and destroy old, damaged, or abnormal proteins and other substances in the cytoplasm through lysosomal degradation, occurs via autophagosome formation and aids in the maintenance of intracellular homeostasis. Autophagy is closely associated with hepatitis B virus (HBV) replication and assembly. Currently, HBV infection is still one of the most serious public health issues worldwide. The unavailability of satisfactory therapeutic strategies for chronic HBV infection indicates an urgent need to elucidate the mechanisms underlying the pathogenesis of HBV infection. Increasing evidence has shown that HBV not only possesses the ability to induce incomplete autophagy but also evades autophagic degradation, indicating that HBV utilizes or hijacks the autophagy machinery for its own replication. Therefore, autophagy might be a crucial target pathway for controlling HBV infection. The definite molecular mechanisms underlying the association between cellular autophagy and HBV replication require further clarification. In this review, we have summarized and discussed the latest findings on the interplay between autophagy and HBV replication.
Collapse
Affiliation(s)
- Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
36
|
Wang X, Lin Y, Liu S, Zhu Y, Lu K, Broering R, Lu M. O-GlcNAcylation modulates HBV replication through regulating cellular autophagy at multiple levels. FASEB J 2020; 34:14473-14489. [PMID: 32892442 DOI: 10.1096/fj.202001168rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 02/05/2023]
Abstract
O-GlcNAcylation is a form of posttranslational modification, and serves various functions, including modulation of location, stability, and activity for the modified proteins. O-linked-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential cellular enzyme that posttranslationally modifies the cellular proteins with O-GlcNAc moiety. Early studies reported that the decreased O-GlcNAcylation regulates cellular autophagy, a process relevant for hepatitis B virus replication (HBV) and assembly. Therefore, we addressed the question how O-GlcNAcylation regulates cellular autophagy and HBV replication. Inhibition of OGT activity with a small molecule inhibitor OSMI-1 or silencing OGT significantly enhanced HBV replication and HBsAg production in hepatoma cells and primary human hepatocytes (PHHs). Western blotting analysis showed that inhibition of O-GlcNAcylation-induced endoplasmic reticulum (ER) stress and cellular autophagy, two processes subsequently leading to enhanced HBV replication. Importantly, the numbers of autophagosomes and the levels of autophagic markers LC3-II and SQSTM1/p62 in hepatoma cells were elevated after inhibition of O-GlcNAcylation. Further analysis revealed that inhibition of O-GlcNAcylation blocked autophagosome-lysosome fusion and thereby prevented autophagic degradation of HBV virions and proteins. Moreover, OSMI-1 further promoted HBV replication by inducing autophagosome formation via inhibiting the O-GlcNAcylation of Akt and mTOR. In conclusion, decreased O-GlcNAcylation enhanced HBV replication through increasing autophagosome formation at multiple levels, including triggering ER-stress, Akt/mTOR inhibition, and blockade of autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Xueyu Wang
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong Lin
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Shi Liu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
37
|
Modulation of hepatitis B virus infection by epidermal growth factor secreted from liver sinusoidal endothelial cells. Sci Rep 2020; 10:14349. [PMID: 32873852 PMCID: PMC7462976 DOI: 10.1038/s41598-020-71453-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/17/2020] [Indexed: 01/05/2023] Open
Abstract
Hepatocytes derived from human iPSCs are useful to study hepatitis B virus (HBV) infection, however infection efficiency is rather poor. In order to improve the efficiency of HBV infection to iPSC-derived hepatocytes, we set a co-culture of hepatocytes with liver non-parenchymal cells and found that liver sinusoidal endothelial cells (LSECs) enhanced HBV infection by secreting epidermal growth factor (EGF). While EGF receptor (EGFR) is known as a co-receptor for HBV, we found that EGF enhanced HBV infection at a low dose of EGF, whereas EGF at a high dose suppressed HBV infection. EGFR is internalized by clathrin-mediated endocytosis (CME) and clathrin-independent endocytosis (CIE) pathways depending on the dose of EGF. At a high dose of EGF, the endocytosed EGFR via CIE is degraded in the lysosome. This study is the first to provide evidence that HBV is endocytosed via CME and CIE pathways at a low and high dose of EGF, respectively. In conclusion, we developed an in vitro system of HBV infection using iPSC-derived liver cells, and show that EGF secreted from LSECs modulates HBV infection in a dose dependent manner.
Collapse
|
38
|
Hepatitis B Virus Exploits ERGIC-53 in Conjunction with COPII to Exit Cells. Cells 2020; 9:cells9081889. [PMID: 32806600 PMCID: PMC7464876 DOI: 10.3390/cells9081889] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Several decades after its discovery, the hepatitis B virus (HBV) still displays one of the most successful pathogens in human populations worldwide. The identification and characterization of interactions between cellular and pathogenic components are essential for the development of antiviral treatments. Due to its small-sized genome, HBV highly depends on cellular functions to produce and export progeny particles. Deploying biochemical-silencing methods and molecular interaction studies in HBV-expressing liver cells, we herein identified the cellular ERGIC-53, a high-mannose-specific lectin, and distinct components of the endoplasmic reticulum (ER) export machinery COPII as crucial factors of viral trafficking and egress. Whereas the COPII subunits Sec24A, Sec23B and Sar1 are needed for both viral and subviral HBV particle exit, ERGIC-53 appears as an exclusive element of viral particle propagation, therefore interacting with the N146-glycan of the HBV envelope in a productive manner. Cell-imaging studies pointed to ER-derived, subcellular compartments where HBV assembly initiates. Moreover, our findings provide evidence that HBV exploits the functions of ERGIC-53 and Sec24A after the envelopment of nucleocapsids at these compartments in conjunction with endosomal sorting complexes required for transport (ESCRT) components. These data reveal novel insights into HBV assembly and trafficking, illustrating therapeutic prospects for intervening with the viral life cycle.
Collapse
|
39
|
Siddiqui AA, Saha D, Iqbal MS, Saha SJ, Sarkar S, Banerjee C, Nag S, Mazumder S, De R, Pramanik S, Debsharma S, Bandyopadhyay U. Rab7 of Plasmodium falciparum is involved in its retromer complex assembly near the digestive vacuole. Biochim Biophys Acta Gen Subj 2020; 1864:129656. [PMID: 32512169 DOI: 10.1016/j.bbagen.2020.129656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Intracellular protein trafficking is crucial for survival of cell and proper functioning of the organelles; however, these pathways are not well studied in the malaria parasite. Its unique cellular architecture and organellar composition raise an interesting question to investigate. METHODS The interaction of Plasmodium falciparum Rab7 (PfRab7) with vacuolar protein sorting-associated protein 26 (PfVPS26) of retromer complex was shown by coimmunoprecipitation (co-IP). Confocal microscopy was used to show the localization of the complex in the parasite with respect to different organelles. Further chemical tools were employed to explore the role of digestive vacuole (DV) in retromer trafficking in parasite and GTPase activity of PfRab7 was examined. RESULTS PfRab7 was found to be interacting with retromer complex that assembled mostly near DV and the Golgi in trophozoites. Chemical disruption of DV by chloroquine (CQ) led to its disassembly that was further validated by using compound 5f, a heme polymerization inhibitor in the DV. PfRab7 exhibited Mg2+ dependent weak GTPase activity that was inhibited by a specific Rab7 GTPase inhibitor, CID 1067700, which prevented the assembly of retromer complex in P. falciparum and inhibited its growth suggesting the role of GTPase activity of PfRab7 in retromer assembly. CONCLUSION Retromer complex was found to be interacting with PfRab7 and the functional integrity of the DV was found to be important for retromer assembly in P. falciparum. GENERAL SIGNIFICANCE This study explores the retromer trafficking in P. falciparum and describes amechanism to validate DV targeting antiplasmodial molecules.
Collapse
Affiliation(s)
- Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Mohd Shameel Iqbal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Souvik Sarkar
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rudranil De
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
40
|
Lin Y, Wu C, Wang X, Liu S, Zhao K, Kemper T, Yu H, Li M, Zhang J, Chen M, Zhu Y, Chen X, Lu M. Glucosamine promotes hepatitis B virus replication through its dual effects in suppressing autophagic degradation and inhibiting MTORC1 signaling. Autophagy 2020; 16:548-561. [PMID: 31204557 PMCID: PMC6999643 DOI: 10.1080/15548627.2019.1632104] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/27/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022] Open
Abstract
Glucosamine (GlcN), a dietary supplement widely utilized to promote joint health and effective in the treatment of osteoarthritis, is an effective macroautophagy/autophagy activator in vitro and in vivo. Previous studies have shown that autophagy is required for hepatitis B virus (HBV) replication and envelopment. The objective of this study was to determine whether and how GlcN affects HBV replication, using in vitro and in vivo experiments. Our data demonstrated that HBsAg production and HBV replication were significantly increased by GlcN treatment. Confocal microscopy and western blot analysis showed that the amount of autophagosomes and the levels of autophagic markers MAP1LC3/LC3-II and SQSTM1 were clearly elevated by GlcN treatment. GlcN strongly blocked autophagic degradation of HBV virions and proteins by inhibiting lysosomal acidification through its amino group. Moreover, GlcN further promoted HBV replication by inducing autophagosome formation via feedback inhibition of mechanistic target of rapamycin kinase complex 1 (MTORC1) signaling in an RRAGA (Ras related GTP binding A) GTPase-dependent manner. In vivo, GlcN application promoted HBV replication and blocked autophagic degradation in an HBV hydrodynamic injection mouse model. In addition, GlcN promoted influenza A virus, enterovirus 71, and vesicular stomatitis virus replication in vitro. In conclusion, GlcN efficiently promotes virus replication by inducing autophagic stress through its dual effects in suppressing autophagic degradation and inhibiting MTORC1 signaling. Thus, there is a potential risk of enhanced viral replication by oral GlcN intake in chronically virally infected patients.Abbreviations: ACTB: actin beta; ATG: autophagy-related; CMIA: chemiluminescence immunoassay; ConA: concanavalin A; CQ: chloroquine; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; EV71: enterovirus 71; GalN: galactosamine; GFP: green fluorescence protein; GlcN: glucosamine; GNPNAT1: glucosamine-phosphate N-acetyltransferase 1; HBP: hexosamine biosynthesis pathway; HBV: hepatitis B virus; HBcAg: hepatitis B core antigen; HBsAg: hepatitis B surface antigen; HBeAg: hepatitis B e antigen; HBV RI: hepatitis B replicative intermediate; IAV: influenza A virus; LAMP1: lysosomal associated membrane protein 1; LAMTOR: late endosomal/lysosomal adaptor, MAPK and MTOR activator; ManN: mannosamine; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; PHH: primary human hepatocyte; RAB7: RAB7A, member RAS oncogene family; RPS6KB1: ribosomal protein S6 kinase B1; RRAGA: Ras related GTP binding A; RT-PCR: reverse transcriptase polymerase chain reaction; SEM: standard error of the mean; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; UAP1: UDP-N-acetylglucosamine pyrophosphorylase 1; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Yong Lin
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, China
| | - Xueyu Wang
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Shi Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kaitao Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, China
| | - Thekla Kemper
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Haisheng Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mengqi Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingzhou Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
41
|
Wang MJ, Yang CH, Jin Y, Wan CB, Qian WH, Xing F, Li X, Liu YY. Baicalin Inhibits Coxsackievirus B3 Replication by Reducing Cellular Lipid Synthesis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:143-160. [PMID: 31903780 DOI: 10.1142/s0192415x20500081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Baicalin is a flavonoid extracted from Scutellariae Radix and shows a variety of biological activities as reducing lipids, diminishing inflammation, and inhibiting bacterial infection. However, there is no report of baicalin against CVB3 infection. In this study, we found that baicalin can reduce viral titer in a dose-dependent manner in vitro at a dose with no direct virucidal effect. Moreover, we revealed that baicalin can also improve survival rate, reduce heart weight/body weight ratio, prevent virus replication, and relieve myocardial inflammation in the acute viral myocarditis mouse model induced by CVB3. Then, in order to explore the mechanism of baicalin inhibiting CVB3 replication, we respectively examined the expression of autophagosome marker LC3-II by Western blot, tested the concentration of free fatty acid (FFA) and cholesterol (CHO) by commercial kits, detected the mRNA levels of fatty acid synthase (Fasn) and acetyl coenzyme a carboxylase (ACC) by RT-PCR, and observed the lipid content of cells by fluorescence staining. The results showed that CVB3 infection increased autophagosome formation and lipid content in HeLa cells, but these changes were significantly blocked by baicalin. Finally, in order to confirm that baicalin inhibits viral replication and reduces autophagosome formation by reducing cellular lipids, we added exogenous palmitate to cell culture supernatants to promote intracellular lipid synthesis and found that palmitate did not alter LC3-II and CVB3/VP1 expression in HeLa cells with or without CVB3 infection. Interestingly, palmitate can reverse the inhibitory effect of baicalin on autophagosome formation and viral replication. In conclusion, our results indicated that lipids play an important role in CVB3 replication, and the effect of baicalin against CVB3 was associated with its ability to reduce cellular lipid synthesis to limit autophagosome formation.
Collapse
Affiliation(s)
- Meng-Jie Wang
- Department of Clinical Laboratory, Lian'shui County People's Hospital, 6 East of Hongri Avenue, Huai'an, Jiangsu 223400, P. R. China
| | - Chun-Hua Yang
- Department of Clinical Laboratory, Huai'an Hospital of Huaian District, 14 Yuemiao East Street, Huai'an, Jiangsu 223200, P. R. China
| | - Yue Jin
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University, 62 Huaihai South Road, Huaian, Jiangsu 223002, P. R. China
| | - Chang-Biao Wan
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University, 62 Huaihai South Road, Huaian, Jiangsu 223002, P. R. China
| | - Wei-He Qian
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University, 62 Huaihai South Road, Huaian, Jiangsu 223002, P. R. China
| | - Fei Xing
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University, 62 Huaihai South Road, Huaian, Jiangsu 223002, P. R. China
| | - Xiang Li
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University, 62 Huaihai South Road, Huaian, Jiangsu 223002, P. R. China
| | - Yuan-Yuan Liu
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, 188 Shizhi Street, Suzhou, Jiangsu 215006, P. R. China.,Department of Endocrinology, Huai'an First Affiliated Hospital of Nanjing Medical University, 6 Beijing West Road, Huaian, Jiangsu 223300, P. R. China
| |
Collapse
|
42
|
Wang J, Li J, Wu J, Dong M, Shen Z, Lin Y, Li F, Zhang Y, Mao R, Lu M, Zhang J. Host Gene SEL1L Involved in Endoplasmic Reticulum-Associated Degradation Pathway Could Inhibit Hepatitis B Virus at RNA, DNA, and Protein Levels. Front Microbiol 2019; 10:2869. [PMID: 31921048 PMCID: PMC6923250 DOI: 10.3389/fmicb.2019.02869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/27/2019] [Indexed: 01/09/2023] Open
Abstract
Hepatitis B virus (HBV) belongs to the Hepadnaviridae family of enveloped DNA viruses. Recent studies have found that host factors can suppress HBV replication. HBV envelope proteins are reported to be degraded by the endoplasmic reticulum-associated degradation (ERAD) pathway. As a component of the ERAD pathway, suppressor of lin-12-like 1 (SEL1L) was earlier found to be upregulated in the inactive carrier phase of chronic HBV infection relative to that in the immune tolerant phase. However, the role of SEL1L in regulating HBV replication remains largely unknown. In this study, we found the levels of HBV RNA, DNA, and core and envelope proteins to be significantly downregulated by SEL1L overexpression and upregulated by SEL1L silencing in Huh7 cells transiently transfected with an overlength HBV genome. Similar upregulation was observed in HepG2.2.15 cells as well. SEL1L co-localized with HBV surface antigen (HBsAg), which changed its staining pattern. Treatment with an inhibitor of ERAD pathway remarkably increased intracellular S protein. Surprisingly, silencing SEL1L to block the ERAD pathway activated an alternative ER quality control (ERQC)-autophagy pathway, which might account for the increased HBV RNAs and core protein. Together, our results demonstrate that SEL1L is a host restriction factor that exerts anti-HBV effect through ERAD and alternative ERQC-autophagy pathway.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Minhui Dong
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong Lin
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Fahong Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongmei Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology of the Ministry of Education (MOE) and Ministry of Health (MOH), Fudan University, Shanghai, China
| |
Collapse
|
43
|
Zhang Z, Wang C, Liu Z, Zou G, Li J, Lu M. Host Genetic Determinants of Hepatitis B Virus Infection. Front Genet 2019; 10:696. [PMID: 31475028 PMCID: PMC6702792 DOI: 10.3389/fgene.2019.00696] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is still a major health problem worldwide. Recently, a great number of genetic studies based on single nucleotide polymorphisms (SNPs) and genome-wide association studies have been performed to search for host determinants of the development of chronic HBV infection, clinical outcomes, therapeutic efficacy, and responses to hepatitis B vaccines, with a focus on human leukocyte antigens (HLA), cytokine genes, and toll-like receptors. In addition to SNPs, gene insertions/deletions and copy number variants are associated with infection. However, conflicting results have been obtained. In the present review, we summarize the current state of research on host genetic factors and chronic HBV infection, its clinical type, therapies, and hepatitis B vaccine responses and classify published results according to their reliability. The potential roles of host genetic determinants of chronic HBV infection identified in these studies and their clinical significance are discussed. In particular, HLAs were relevant for HBV infection and pathogenesis. Finally, we highlight the need for additional studies with large sample sizes, well-matched study designs, appropriate statistical methods, and validation in multiple populations to improve the treatment of HBV infection.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Department of Infectious Diseases, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- College of Pharmacy, Anhui Medical University, Hefei, China
| | - Changtai Wang
- Department of Infectious Diseases, the Affiliated Anqing Hospital of Anhui Medical University, Anqing, China
| | - Zhongping Liu
- Department of Infectious Diseases, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guizhou Zou
- Department of Infectious Diseases, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- College of Pharmacy, Anhui Medical University, Hefei, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Duisburg-Essen, Essen, Germany
| |
Collapse
|
44
|
Yang L, Liu F, Tong X, Hoffmann D, Zuo J, Lu M. Treatment of Chronic Hepatitis B Virus Infection Using Small Molecule Modulators of Nucleocapsid Assembly: Recent Advances and Perspectives. ACS Infect Dis 2019; 5:713-724. [PMID: 30896149 DOI: 10.1021/acsinfecdis.8b00337] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
On the basis of the recent advance of basic research on molecular biology of hepatitis B virus (HBV) infection, novel antiviral drugs targeting various steps of the HBV life cycle have been developed in recent years. HBV nucleocapsid assembly is now recognized as a hot target for anti-HBV drug development. Structural and functional analysis of HBV nucleocapsid allowed rational design and improvement of small molecules with the ability to interact with the components of HBV nucleocapsid and modulate the viral nucleocapsid assembly process. Prototypes of small molecule modulators targeting HBV nucleocapsid assembly are being preclinically tested or have moved forward in clinical trials, with promising results. This Review summarizes the recent advances in the approach to develop antiviral drugs based on the modulation of HBV nucleocapsid assembly. The antiviral mechanisms of small molecule modulators beyond the capsid formation and the potential implications will be discussed.
Collapse
Affiliation(s)
- Li Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech
Park, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Feifei Liu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech
Park, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiankun Tong
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech
Park, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Daniel Hoffmann
- Institute of Bioinformatics, University Duisburg Essen, Universitätsstraße 1, Essen 45117, Germany
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech
Park, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University Duisburg Essen, Hufelandstrasse 55, Essen 45122, Germany
| |
Collapse
|
45
|
Lin Y, Wu C, Wang X, Liu S, Kemper T, Li F, Squire A, Zhu Y, Zhang J, Chen X, Lu M. Synaptosomal‐associated protein 29 is required for the autophagic degradation of hepatitis B virus. FASEB J 2019; 33:6023-6034. [PMID: 30742775 DOI: 10.1096/fj.201801995rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yong Lin
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg‐Essen Essen Germany
| | - Chunchen Wu
- State Key Laboratory of VirologyWuhan Institute of VirologyChinese Academy of Sciences Wuhan China
| | - Xueyu Wang
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg‐Essen Essen Germany
| | - Shi Liu
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg‐Essen Essen Germany
- State Key Laboratory of VirologyCollege of Life SciencesWuhan University Wuhan China
| | - Thekla Kemper
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg‐Essen Essen Germany
| | - Fahong Li
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg‐Essen Essen Germany
- Department of Infectious DiseasesHuashan HospitalFudan University Shanghai China
| | - Anthony Squire
- Institute for Experimental Immunology and ImagingUniversity Hospital EssenUniversity of Duisburg‐Essen Essen Germany
| | - Ying Zhu
- State Key Laboratory of VirologyCollege of Life SciencesWuhan University Wuhan China
| | - Jiming Zhang
- Department of Infectious DiseasesHuashan HospitalFudan University Shanghai China
| | - Xinwen Chen
- State Key Laboratory of VirologyWuhan Institute of VirologyChinese Academy of Sciences Wuhan China
| | - Mengji Lu
- Institute of VirologyUniversity Hospital EssenUniversity of Duisburg‐Essen Essen Germany
| |
Collapse
|
46
|
Zeyen L, Prange R. Host Cell Rab GTPases in Hepatitis B Virus Infection. Front Cell Dev Biol 2018; 6:154. [PMID: 30510928 PMCID: PMC6252318 DOI: 10.3389/fcell.2018.00154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) is a leading cause of liver disease and is presently estimated to infect more than 250 million humans. The extremely successful spread of this virus among the human population is explained by its effective transmission strategies and its manifold particle types, including virions, empty envelopes and naked capsids. Due to its tiny genome, HBV depends on cellular machineries to thrive in infected hepatocytes. To enter, traverse and exit the cell, HBV exploits host membrane trafficking pathways, including intracellular highways directed by Rab GTPases. Here, we review recent discoveries focused on how HBV co-opts and perturbs host Rab GTPase functions with an emphasis on Rab7A- and Rab33B-mediated trafficking pathways. Rab7A plays bidirectional roles in the viral life cycle, as it promotes the endocytic uptake of HBV in early stages, but restricts exocytic virion release in late stages. In intermediate stages of HBV propagation, Rab33B is needed to guide the assembly of replicative progeny nucleocapsids. Rab33B acts together with its Atg5-12/16L1 effector, a protein complex required for autophagosome formation, suggesting the concept that HBV exploits this Rab/effector complex as an assembly scaffold and machine. We also discuss whether Rab-directed trafficking pathways engaged by HBV may be applicable to other virus families. Identification of overlapping Rab functions may offer new chances to develop broad-spectrum host-targeted antiviral strategies.
Collapse
Affiliation(s)
- Lisa Zeyen
- Department of Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Reinhild Prange
- Department of Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|