1
|
Bray IE, Clarke SE, Casey KM, Nuyujukian P. Neuroelectrophysiology-compatible electrolytic lesioning. eLife 2024; 12:RP84385. [PMID: 39259198 PMCID: PMC11390112 DOI: 10.7554/elife.84385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Lesion studies have historically been instrumental for establishing causal connections between brain and behavior. They stand to provide additional insight if integrated with multielectrode techniques common in systems neuroscience. Here, we present and test a platform for creating electrolytic lesions through chronically implanted, intracortical multielectrode probes without compromising the ability to acquire neuroelectrophysiology. A custom-built current source provides stable current and allows for controlled, repeatable lesions in awake-behaving animals. Performance of this novel lesioning technique was validated using histology from ex vivo and in vivo testing, current and voltage traces from the device, and measurements of spiking activity before and after lesioning. This electrolytic lesioning method avoids disruptive procedures, provides millimeter precision over the extent and submillimeter precision over the location of the injury, and permits electrophysiological recording of single-unit activity from the remaining neuronal population after lesioning. This technique can be used in many areas of cortex, in several species, and theoretically with any multielectrode probe. The low-cost, external lesioning device can also easily be adopted into an existing electrophysiology recording setup. This technique is expected to enable future causal investigations of the recorded neuronal population's role in neuronal circuit function, while simultaneously providing new insight into local reorganization after neuron loss.
Collapse
Affiliation(s)
- Iliana E Bray
- Department of Electrical Engineering, Stanford UniversityStanfordUnited States
| | - Stephen E Clarke
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford UniversityStanfordUnited States
| | - Paul Nuyujukian
- Department of Electrical Engineering, Stanford UniversityStanfordUnited States
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Department of Neurosurgery, Stanford UniversityStanfordUnited States
- Wu Tsai Neuroscience Institute, Stanford UniversityStanfordUnited States
- Bio-X, Stanford UniversityStanfordUnited States
| |
Collapse
|
2
|
Salari Z, Ashabi G, Fartoosi A, Fartoosi A, Shariatpanahi M, Aghsami M, Montazeri H, Kheradmand A. Sericin alleviates motor dysfunction by modulating inflammation and TrkB/BDNF signaling pathway in the rotenone-induced Parkinson's disease model. BMC Pharmacol Toxicol 2023; 24:60. [PMID: 37936189 PMCID: PMC10631121 DOI: 10.1186/s40360-023-00703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the degeneration of nigrostriatal dopaminergic neurons and movement impairment. Based on theories, neuroinflammatory processes may be vital in the etiology of PD and other neurodegenerative diseases. Reports show that rotenone has neurotoxic, inflammatory, and motor impairment effects in PD. Sericin is a natural polymer with effective properties, such as neuroprotective and anti-inflammatory. Therefore, this study aimed to examine the effects of sericin administration on motor dysfunction by modulating inflammation and tyrosine kinase B/brain-derived neurotrophic factor (TrkB/BDNF) pathway in the rotenone-induced PD model. METHODS Wistar male rats (3-months-old) were treated with rotenone (2 mg/kg every 48 h for 30 days) to induce a rotenone-induced PD model. Also, sericin was administered orally at dose of 200 mg/kg every 48 h for 30 days. Rotarod and bar tests were performed for motor dysfunction. The protein levels of BDNF, c-fos, TrkB, tumor necrosis factor- α (TNF-α), interleukin-6 (IL-6) and catalase activity were evaluated in the striatum area. RESULTS Results showed that sericin increased latent time in the rotarod test and decreased the time staying on the pole in the bar test compared to the PD group (P < 0.001 for both tests). Moreover, sericin treatments decreased TNF-α (P < 0.001) and IL-6 (P < 0.001) concentration levels and enhanced the levels of BDNF (P < 0.001), c-fos (P < 0.001), TrkB (P < 0.001) proteins and catalase activity (P < 0.05) in the striatum area compared to the PD group. CONCLUSION These results support a protective benefit of sericin therapy in a rotenone-induced PD paradigm by reducing motor impairment, inflammatory response, and disruption of the TrkB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Zahra Salari
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, P.O. box: 1475886671, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Fartoosi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, P.O. box: 1475886671, Tehran, Iran
| | - Ahmad Fartoosi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, P.O. box: 1475886671, Tehran, Iran
| | - Marjan Shariatpanahi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, P.O. box: 1475886671, Tehran, Iran
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, P.O. box: 1475886671, Tehran, Iran
| | - Hamed Montazeri
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Kheradmand
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, P.O. box: 1475886671, Tehran, Iran.
| |
Collapse
|
3
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Pamies D, Wiersma D, Katt ME, Zhong L, Burtscher J, Harris G, Smirnova L, Searson PC, Hartung T, Hogberg HT. Human organotypic brain model as a tool to study chemical-induced dopaminergic neuronal toxicity. Neurobiol Dis 2022; 169:105719. [PMID: 35398340 PMCID: PMC9298686 DOI: 10.1016/j.nbd.2022.105719] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is caused by an imbalance between the generation and detoxification of reactive oxygen and nitrogen species (ROS/RNS). This imbalance plays an important role in brain aging and age-related neurodegenerative diseases. In the context of Parkinson’s disease (PD), the sensitivity of dopaminergic neurons in the substantia nigra pars compacta to oxidative stress is considered a key factor of PD pathogenesis. Here we study the effect of different oxidative stress-inducing compounds (6-OHDA, MPTP or MPP+) on the population of dopaminergic neurons in an iPSC-derived human brain 3D model (aka BrainSpheres). Treatment with 6-OHDA, MPTP or MPP+ at 4 weeks of differentiation disrupted the dopaminergic neuronal phenotype in BrainSpheres at (50, 5000, 1000 μM respectively). 6-OHDA increased ROS production and decreased mitochondrial function most efficiently. It further induced the greatest changes in gene expression and metabolites related to oxidative stress and mitochondrial dysfunction. Co-culturing BrainSpheres with an endothelial barrier using a transwell system allowed the assessment of differential penetration capacities of the tested compounds and the damage they caused in the dopaminergic neurons within the BrainSpheres In conclusion, treatment with compounds known to induce PD-like phenotypes in vivo caused molecular deficits and loss of dopaminergic neurons in the BrainSphere model. This approach therefore recapitulates common animal models of neurodegenerative processes in PD at similarly high doses. The relevance as tool for drug discovery is discussed.
Collapse
|
5
|
Application of neurotoxin- and pesticide-induced animal models of Parkinson's disease in the evaluation of new drug delivery systems. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:35-58. [PMID: 36651528 DOI: 10.2478/acph-2022-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 01/20/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neuro-degenerative disease after Alzheimer´s disease. It is characterized by motor symptoms such as akinesia, bradykinesia, tremor, rigidity, and postural abnormalities, due to the loss of nigral dopaminergic neurons and a decrease in the dopa-mine contents of the caudate-putamen structures. To this date, there is no cure for the disease and available treatments are aimed at controlling the symptoms. Therefore, there is an unmet need for new treatments for PD. In the past decades, animal models of PD have been proven to be valuable tools in elucidating the nature of the pathogenic processes involved in the disease, and in designing new pharmacological approaches. Here, we review the use of neurotoxin-induced and pesticide-induced animal models of PD, specifically those induced by rotenone, paraquat, maneb, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and 6-OHDA (6-hydroxydopamine), and their application in the development of new drug delivery systems for PD.
Collapse
|
6
|
Novak G, Kyriakis D, Grzyb K, Bernini M, Rodius S, Dittmar G, Finkbeiner S, Skupin A. Single-cell transcriptomics of human iPSC differentiation dynamics reveal a core molecular network of Parkinson's disease. Commun Biol 2022; 5:49. [PMID: 35027645 PMCID: PMC8758783 DOI: 10.1038/s42003-021-02973-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/14/2021] [Indexed: 01/02/2023] Open
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disorder, characterized by the loss of dopaminergic neurons (mDA) in the midbrain. The underlying mechanisms are only partly understood and there is no treatment to reverse PD progression. Here, we investigated the disease mechanism using mDA neurons differentiated from human induced pluripotent stem cells (hiPSCs) carrying the ILE368ASN mutation within the PINK1 gene, which is strongly associated with PD. Single-cell RNA sequencing (RNAseq) and gene expression analysis of a PINK1-ILE368ASN and a control cell line identified genes differentially expressed during mDA neuron differentiation. Network analysis revealed that these genes form a core network, members of which interact with all known 19 protein-coding Parkinson's disease-associated genes. This core network encompasses key PD-associated pathways, including ubiquitination, mitochondrial function, protein processing, RNA metabolism, and vesicular transport. Proteomics analysis showed a consistent alteration in proteins of dopamine metabolism, indicating a defect of dopaminergic metabolism in PINK1-ILE368ASN neurons. Our findings suggest the existence of a network onto which pathways associated with PD pathology converge, and offers an inclusive interpretation of the phenotypic heterogeneity of PD.
Collapse
Affiliation(s)
- Gabriela Novak
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Dimitrios Kyriakis
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michela Bernini
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sophie Rodius
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Alexander Skupin
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
7
|
Wang M, Wan C, He T, Han C, Zhu K, Waddington JL, Zhen X. Sigma-1 receptor regulates mitophagy in dopaminergic neurons and contributes to dopaminergic protection. Neuropharmacology 2021; 196:108360. [PMID: 33122030 DOI: 10.1016/j.neuropharm.2020.108360] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria are essential for neuronal survival and function, and mitochondrial dysfunction plays a critical role in the pathological development of Parkinson's disease (PD). Mitochondrial quality control is known to contribute to the survival of dopaminergic (DA) neurons, with mitophagy being a key regulator of the quality control system. In this study, we show that mitophagy is impaired in the substantia nigra pars compacta (SNc) of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Treatment with the sigma-1 receptor (Sig 1R) agonist 2-morpholin-4-ylethyl 1-phenylcyclohexane-1-carboxylate (PRE-084) reduced loss of DA neurons, restored motor ability and MPTP-induced damage to mitophagy activity in the SNc of PD-like mice. Additionally, knockdown of Sig 1R in SH-SY5Y DA cells inhibited mitophagy and enhanced 1-methyl-4-phenylpyridinium ion (MPP+) neurotoxicity, whereas application of the Sig 1R selective agonist SKF10047 promoted clearance of damaged mitochondria. Moreover, knockdown of Sig 1R in SH-SY5Y cells resulted in decreased levels of p-ULK1 (Unc-51 Like Autophagy Activating Kinase 1) (Ser555), p-TBK1 (TANK Binding Kinase 1) (Ser172), p-ubiquitin (Ub) (Ser65), Parkin recruitment, and stabilization of PTEN-induced putative kinase 1 (PINK1) in mitochondria. The present data provide the first evidence for potential roles of PINK1/Parkin in Sig 1R-modulated mitophagy in DA neurons.
Collapse
Affiliation(s)
- Mingmei Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Chunlei Wan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Tao He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Chaojun Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Kailian Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - John L Waddington
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Singh S, Khayachi A, Milnerwood AJ, DeMarco ML. Quantitative Profiling of Synuclein Species: Application to Transgenic Mouse Models of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 10:613-621. [PMID: 32083592 DOI: 10.3233/jpd-191835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Improved analytical tools for detailed characterization of synucleins in pre-clinical models of Parkinson's disease (PD) and related synucleinopathies are needed. OBJECTIVE Develop a multiple reaction monitoring (MRM) liquid chromatography tandem mass spectrometry (LC-MS/MS) assay to quantify species-specific sequences and structural heterogeneity in soluble α- and β-synucleins in brain tissue. METHODS Using a proteolytic digestion workflow, the MRM LC-MS/MS method assayed six proteotypic peptides from the α-synuclein sequence; three unique to mouse or human α-synuclein and three conserved in α- and β-synuclein. For quantification, we used labeled α-synuclein as the internal standard and an external calibration curve. As proof of concept, the synuclein LC-MS/MS method was applied to brain tissue specimens from M83 transgenic PD mice, which overexpresses human α-synuclein, relative to wild-type littermate controls. RESULTS The synuclein MRM assay was linear over a wide concentration range (at least one order of magnitude). The assay had several advantages over ligand binding analytical methods, such as western blotting and enzyme-linked immunosorbent assays. These advantages included the ability to: quantify 1) total α-synuclein, 2) combined α- and β-synucleins, 3) species-specific contributions to total α-synuclein (e.g., in mice expressing both mouse and human α-synuclein), and 4) identify peptide-specific profile differences that may reflect post-translational modifications, all within a single analysis. CONCLUSION With improved and expanded analytical characteristics coupled with a streamlined sample preparation workflow, the quantitative synuclein profiling LC-MS/MS assay provides a versatile and efficient platform to characterize synuclein biology in pre-clinical models and the potential for application to human tissues and fluids.
Collapse
Affiliation(s)
- Serena Singh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Anouar Khayachi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Austen J Milnerwood
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mari L DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, Vancouver, Canada
| |
Collapse
|
9
|
Liu Y, Niu L, Liu X, Cheng C, Le W. Recent Progress in Non-motor Features of Parkinson's Disease with a Focus on Circadian Rhythm Dysregulation. Neurosci Bull 2021; 37:1010-1024. [PMID: 34128188 DOI: 10.1007/s12264-021-00711-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, which manifests with both motor and non-motor symptoms. Circadian rhythm dysregulation, as one of the most challenging non-motor features of PD, usually appears long before obvious motor symptoms. Moreover, the dysregulated circadian rhythm has recently been reported to play pivotal roles in PD pathogenesis, and it has emerged as a hot topic in PD research. In this review, we briefly introduce the circadian rhythm and circadian rhythm-related genes, and then summarize recent research progress on the altered circadian rhythm in PD, ranging from clinical features to the possible causes of PD-related circadian disorders. We believe that future comprehensive studies on the topic may not only help us to explore the mechanisms of PD, but also shed light on the better management of PD.
Collapse
Affiliation(s)
- Yufei Liu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Long Niu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Xinyao Liu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Cheng Cheng
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Academy of Medical Science-Sichuan Provincial Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
10
|
El-Gamal M, Salama M, Collins-Praino LE, Baetu I, Fathalla AM, Soliman AM, Mohamed W, Moustafa AA. Neurotoxin-Induced Rodent Models of Parkinson's Disease: Benefits and Drawbacks. Neurotox Res 2021; 39:897-923. [PMID: 33765237 DOI: 10.1007/s12640-021-00356-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by cardinal motor impairments, including akinesia and tremor, as well as by a host of non-motor symptoms, including both autonomic and cognitive dysfunction. PD is associated with a death of nigral dopaminergic neurons, as well as the pathological spread of Lewy bodies, consisting predominantly of the misfolded protein alpha-synuclein. To date, only symptomatic treatments, such as levodopa, are available, and trials aiming to cure the disease, or at least halt its progression, have not been successful. Wong et al. (2019) suggested that the lack of effective therapy against neurodegeneration in PD might be attributed to the fact that the molecular mechanisms standing behind the dopaminergic neuronal vulnerability are still a major scientific challenge. Understanding these molecular mechanisms is critical for developing effective therapy. Thirty-five years ago, Calne and William Langston (1983) raised the question of whether biological or environmental factors precipitate the development of PD. In spite of great advances in technology and medicine, this question still lacks a clear answer. Only 5-15% of PD cases are attributed to a genetic mutation, with the majority of cases classified as idiopathic, which could be linked to exposure to environmental contaminants. Rodent models play a crucial role in understanding the risk factors and pathogenesis of PD. Additionally, well-validated rodent models are critical for driving the preclinical development of clinically translatable treatment options. In this review, we discuss the mechanisms, similarities and differences, as well as advantages and limitations of different neurotoxin-induced rat models of PD. In the second part of this review, we will discuss the potential future of neurotoxin-induced models of PD. Finally, we will briefly demonstrate the crucial role of gene-environment interactions in PD and discuss fusion or dual PD models. We argue that these models have the potential to significantly further our understanding of PD.
Collapse
Affiliation(s)
- Mohamed El-Gamal
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt. .,Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Mohamed Salama
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Ireland
| | | | | | - Ahmed M Fathalla
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amira M Soliman
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Wael Mohamed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Mansoura, Egypt.,Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University, Kuantan, Pahang, Malaysia
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology and Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, NSW, Australia.,Department of Human Anatomy and Physiology, the Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
11
|
MacDougall G, Brown LY, Kantor B, Chiba-Falek O. The Path to Progress Preclinical Studies of Age-Related Neurodegenerative Diseases: A Perspective on Rodent and hiPSC-Derived Models. Mol Ther 2021; 29:949-972. [PMID: 33429080 PMCID: PMC7934639 DOI: 10.1016/j.ymthe.2021.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/03/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most prevalent age-related neurodegenerative diseases, and currently no effective clinical treatments exist for either, despite decades of clinical trials. The failure to translate preclinical findings into effective treatments is indicative of a problem in the current evaluation pipeline for potential therapeutics. At present, there are no useful animal models for AD and PD research that reflect the entire biology of the diseases, specifically, the more common non-Mendelian forms. Whereas the field continues to seek suitable rodent models for investigating potential therapeutics for these diseases, rodent models have still been used primarily for preclinical studies. Here, we advocate for a paradigm shift toward the application of human-induced pluripotent stem cell (hiPSC)-derived systems for PD and AD modeling and the development of improved human-based models in a dish for drug discovery and preclinical assessment of therapeutic targets.
Collapse
Affiliation(s)
- Gabriella MacDougall
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Logan Y Brown
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA; Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA; Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA.
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Fiametti LO, Correa CN, Castro LMD. Peptide Profile of Zebrafish Brain in a 6-OHDA-Induced Parkinson Model. Zebrafish 2021; 18:55-65. [PMID: 33570475 DOI: 10.1089/zeb.2020.1945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder mainly attributed to the progressive loss of dopaminergic neurons in the substantia nigra, which leads to uncontrolled voluntary movements causing tremors, postural instability, joint stiffness, and speech and locomotion difficulties, among other symptoms. Previous studies have shown the participation of specific peptides in neurodegenerative diseases. In this context, the present work analyzed changes in the peptide profile in zebrafish brain induced to parkinsonian conditions with 6-hydroxydopamine, using isotopic labeling techniques plus mass spectrometry. These analyses allowed the relative quantitation and identification of 118 peptides. Of these, nine peptides showed significant changes, one peptide was increased and eight decreased. The most altered sequences were fragment of cytosolic and extracellular proteins related to lipid metabolism and dynamic cytoskeleton. These results open new perspectives of study about the function of peptides in PD.
Collapse
Affiliation(s)
| | - Claudia Neves Correa
- Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente, Brazil.,Biodiversity of Coastal Environments Postgraduate Program, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente, Brazil
| | - Leandro Mantovani de Castro
- Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente, Brazil.,Biodiversity of Coastal Environments Postgraduate Program, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente, Brazil
| |
Collapse
|
13
|
Badawi HM, Abdelsalam RM, Abdel-Salam OM, Youness ER, Shaffie NM, Eldenshary EEDS. Bee venom attenuates neurodegeneration and motor impairment and modulates the response to L-dopa or rasagiline in a mice model of Parkinson's disease. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 23:1628-1638. [PMID: 33489038 PMCID: PMC7811814 DOI: 10.22038/ijbms.2020.46469.10731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objectives This study aimed to investigate the effect of bee venom, a form of alternative therapy, on rotenone-induced Parkinson's disease (PD) in mice. Moreover, the possible modulation by bee venom of the effect of L-dopa/carbidopa or rasagiline was examined. Materials and Methods Rotenone (1.5 mg/kg, subcutaneously; SC) was administered every other day for two weeks and at the same time mice received the vehicle (DMSO, SC), bee venom (0.065, 0.13, and 0.26 mg/kg; intradermal; ID), L-dopa/carbidopa (25 mg/kg, intraperitoneal; IP), L-dopa/carbidopa+bee venom (0.13 mg/kg, ID), rasagiline (1 mg/kg, IP) or rasagiline+bee venom (0.13 mg/kg, ID). Then, wire hanging and staircase tests were performed and mice were euthanized and brains' striata separated. Oxidative stress biomarkers namely, malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), paraoxonase-1 (PON-1), and total antioxidant capacity (TAC) were measured. Additionally, butyrylcholinesterase (BuChE), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), and dopamine (DA) were evaluated. Brain histopathological changes and caspase-3- expression were done. Results Bee venom significantly enhanced motor performance and inhibited rotenone-induced oxidative/nitrosative stress, observed as a reduction in both MDA and NO along with increasing GSH, PON-1, and TAC. Besides, bee venom decreased MCP-1, TNF-α, and caspase-3 expression together with an increase in BuChE activity and DA content. Conclusion Bee venom alone or in combination with L-dopa/carbidopa or rasagiline alleviated neuronal degeneration compared with L-dopa/carbidopa or rasagiline treatment only. Bee venom via its antioxidant and cytokine reducing potentials might be of value either alone or as adjunctive therapy in the management of PD.
Collapse
Affiliation(s)
- Hanaa Mm Badawi
- Holding Company for Biological Products, Vaccines and Drugs (VACSERA), Cairo, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Omar Me Abdel-Salam
- Department of Toxicology and Narcotics, National Research Centre, Cairo, Egypt
| | - Eman R Youness
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| | | | - Ezz-El Din S Eldenshary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Ayikobua ET, Kasolo J, Kasozi KI, Eze ED, Safiriyu A, Ninsiima HI, Kiyimba K, Namulema J, Jjesero E, Ssempijja F, Semuyaba I, Mwandah DC, Kimanje KR, Kalange M, Okpanachi AO, Nansunga M. Synergistic action of propolis with levodopa in the management of Parkinsonism in Drosophila melanogaster. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 17:jcim-2019-0136. [PMID: 32386191 DOI: 10.1515/jcim-2019-0136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/13/2019] [Indexed: 06/11/2023]
Abstract
Background The Phosphatase and tensin-induced putative kinase 1 (PINK1B9) mutant for Drosophila melanogaster is a key tool that has been used in assessing the pathology of Parkinsonism and its possible remedy. This research was targeted toward determining the effects of ethanolic extract of propolis, with levodopa therapy in the management of Parkinsonism. Method The PINK1B9 flies were divided into groups and fed with the different treatment doses of ethanoic extract of propolis. The treatment groups were subjected to 21 days of administration of propolis and the levodopa at different doses after which percentage climbing index, antioxidant activity and lifespan studies were done. Results Propolis alone improved motor activity, antioxidant and lifespan in Drosophila melanogaster than in PINK1 flies. Propolis in combination with levodopa significantly (P<0.05) improved physiological parameters at higher than lower concentrations in Parkinsonism Drosophila melanogaster demonstrating its importance in managing side effects associated with levodopa. Conclusion Propolis is a novel candidate as an alternative and integrative medicinal option to use in the management of Parkinsonism in both animals and humans at higher concentrations.
Collapse
Affiliation(s)
- Emmanuel Tiyo Ayikobua
- Department of Physiology, School of Health Sciences, Soroti University, 211Soroti, Uganda
- Department of Physiology, Faculty of Health Sciences, Busitema University Mbale Campus, Box 203Mbale, Uganda
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
- Institute of Biomedical Research Laboratory, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda
| | - Josephine Kasolo
- Department of Physiology, Makerere University College of health Science, Box 7072, KampalaUganda
| | - Keneth Iceland Kasozi
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
- Institute of Biomedical Research Laboratory, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Box 203Soroti, Uganda
| | - Ejike Daniel Eze
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
| | - Abass Safiriyu
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
- Institute of Biomedical Research Laboratory, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda
| | - Herbert Izo Ninsiima
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
- Department of Physiology, School of Medicine, Kabale University, Box 317Kabale, Uganda
| | - Kennedy Kiyimba
- Department of Pharmacology, Faculty of Pharmacy, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
| | - Jackline Namulema
- Department of Physiology, School of Health Sciences, Uzima University College - CUEA, P.O Box 2502-40100, Kisumu, Kenya
| | - Edward Jjesero
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
- Institute of Biomedical Research Laboratory, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda
| | - Fred Ssempijja
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University estern Campus, Box 71, Bushenyi, Uganda
| | - Ibrahim Semuyaba
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
| | - Daniel Chans Mwandah
- Department of Pharmacology, Faculty of Pharmacy, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
| | - Kyobe Ronald Kimanje
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
| | - Muhamudu Kalange
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
| | - Alfred Omachonu Okpanachi
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
- Institute of Biomedical Research Laboratory, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda
| | - Miriam Nansunga
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
- Department of Physiology, Faculty of Biomedical Sciences, St. Augustine International University, P.O Box 88, Kampala, Uganda
| |
Collapse
|
15
|
Tavitian A, Cressatti M, Song W, Turk AZ, Galindez C, Smart A, Liberman A, Schipper HM. Strategic Timing of Glial HMOX1 Expression Results in Either Schizophrenia-Like or Parkinsonian Behavior in Mice. Antioxid Redox Signal 2020; 32:1259-1272. [PMID: 31847534 DOI: 10.1089/ars.2019.7937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aims: In this original research communication, we assess the impact of shifting the window of glial HMOX1 overexpression in mice from early-to-midlife to mid-to-late life, resulting in two disparate conditions modeling schizophrenia (SCZ) and Parkinson's disease (PD). Mesolimbic hyperdopaminergia is a widely accepted feature of SCZ, while nigrostriatal hypodopaminergia is the sine qua non of idiopathic PD. Although the advent of parkinsonian features in SCZ patients after treatment with antidopaminergic agents is intuitive, subtle features of parkinsonism commonly observed in young, drug-naïve schizophrenics are not. Similarly, emergent psychosis in PD subjects receiving levodopa replacement is not unusual, whereas spontaneous hallucinosis in nonmedicated persons with idiopathic PD is enigmatic. Investigations using GFAP.HMOX1 mice may shed light on these clinical paradoxes. Results: Astroglial heme oxygenase-1 (HO-1) overexpression in mice throughout embryogenesis until 6 or 12 months of age resulted in hyperdopaminergia, hyperkinesia/stereotypy ameliorated with clozapine, deficient prepulse inhibition of the acoustic startle response, reduced preference for social novelty, impaired nest building, and cognitive dysfunction reminiscent of SCZ. On the contrary, astroglial HO-1 overexpression between 8.5 and 19 months of age yielded a PD-like behavioral phenotype with hypodopaminergia, altered gait, locomotor incoordination, and reduced olfaction. Innovation: We conjecture that region-specific disparities in the susceptibility of dopaminergic and other circuitry to the trophic and degenerative influences of glial HMOX1 induction may permit the concomitant expression of mixed SCZ and PD traits within affected individuals. Conclusion: Elucidation of these converging mechanisms may (i) help better understand disease pathogenesis and (ii) identify HO-1 as a potential therapeutic target in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ayda Tavitian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Marisa Cressatti
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Wei Song
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Ariana Z Turk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Carmela Galindez
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Adam Smart
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Adrienne Liberman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Hyman M Schipper
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
16
|
Chen X, Wang Y, Wu H, Cheng C, Le W. Research advances on L-DOPA-induced dyskinesia: from animal models to human disease. Neurol Sci 2020; 41:2055-2065. [DOI: 10.1007/s10072-020-04333-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/07/2020] [Indexed: 02/06/2023]
|
17
|
Sasaoka M, Ota T, Kageyama M. Rotenone-induced inner retinal degeneration via presynaptic activation of voltage-dependent sodium and L-type calcium channels in rats. Sci Rep 2020; 10:969. [PMID: 31969611 PMCID: PMC6976703 DOI: 10.1038/s41598-020-57638-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/31/2019] [Indexed: 01/11/2023] Open
Abstract
Rotenone, a mitochondrial complex I inhibitor, causes retinal degeneration via unknown mechanisms. To elucidate the molecular mechanisms of its action, we further characterized a rat model of rotenone-induced retinal degeneration. Intravitreal injection of rotenone (2 nmol/eye) damaged mainly the inner retinal layers, including cell loss in the ganglion cell and inner nuclear layers, which were very similar to those induced by 10 nmol/eye N-methyl-D-aspartate (NMDA). These morphological changes were accompanied by the reduced b-wave amplitude of electroretinogram, and increased immunostaining of 2,4-dinitrophenyl, an oxidative stress marker. Rotenone also downregulated expression of neurofilament light-chain gene (Nfl) as a retinal ganglion cell (RGC) marker. This effect was prevented by simultaneous injection of rotenone with antioxidants or NMDA receptor antagonists. More importantly, voltage-dependent sodium and L-type calcium channel blockers and intracellular calcium signaling modulators remarkably suppressed rotenone-induced Nfl downregulation, whereas none of these agents modified NMDA-induced Nfl downregulation. These results suggest that rotenone-induced inner retinal degeneration stems from indirect postsynaptic NMDA stimulation that is triggered by oxidative stress-mediated presynaptic intracellular calcium signaling via activation of voltage-dependent sodium and L-type calcium channels.
Collapse
Affiliation(s)
- Masaaki Sasaoka
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, 630-0101, Japan
| | - Takashi Ota
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, 630-0101, Japan
| | - Masaaki Kageyama
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, 630-0101, Japan.
| |
Collapse
|
18
|
Bhurtel S, Katila N, Srivastav S, Neupane S, Choi DY. Mechanistic comparison between MPTP and rotenone neurotoxicity in mice. Neurotoxicology 2019; 71:113-121. [DOI: 10.1016/j.neuro.2018.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 01/02/2023]
|
19
|
Martínez-Pinilla E, Aguinaga D, Navarro G, Rico AJ, Oyarzábal J, Sánchez-Arias JA, Lanciego JL, Franco R. Targeting CB 1 and GPR55 Endocannabinoid Receptors as a Potential Neuroprotective Approach for Parkinson's Disease. Mol Neurobiol 2019; 56:5900-5910. [PMID: 30687889 DOI: 10.1007/s12035-019-1495-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/11/2019] [Indexed: 12/29/2022]
Abstract
Cannabinoid CB1 receptors (CB1R) and the GPR55 receptor are expressed in striatum and are potential targets in the therapy of Parkinson's disease (PD), one of the most prevalent neurodegenerative diseases in developed countries. The aim of this paper was to address the potential of ligands acting on those receptors to prevent the action of a neurotoxic agent, MPP+, that specifically affects neurons of the substantia nigra due to uptake via the dopamine DAT transporter. The SH-SY5Y cell line model was used as it expresses DAT and, therefore, is able to uptake MPP+ that inhibits complex I of the respiratory mitochondrial chain and leads to cell death. Cells were transfected with cDNAs coding for either or both receptors. Receptors in cotransfected cells formed heteromers as indicated by the in situ proximity ligation assays. Cell viability was assayed by oxygen rate consumption and by the bromide-based MTT method. Assays of neuroprotection using two concentrations of MPP+ showed that cells expressing receptor heteromers were more resistant to the toxic effect. After correction by effects on cell proliferation, the CB1R antagonist, SR141716, afforded an almost full neuroprotection in CB1R-expressing cells even when a selective agonist, ACEA, was present. In contrast, SR141716 was not effective in cells expressing CB1/GPR55 heteromeric complexes. In addition, an agonist of GPR55, CID1792197, did not enhance neuroprotection in GPR55-expressing cells. These results show that neurons expressing heteromers are more resistant to cell death but question the real usefulness of CB1R, GPR55, and their heteromers as targets to afford PD-related neuroprotection.
Collapse
Affiliation(s)
- Eva Martínez-Pinilla
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Julián Clavería s/n, 33006, Oviedo, Asturias, Spain.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Asturias, Spain.
- Instituto de Salud del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| | - David Aguinaga
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Diagonal 643, Prevosti Building, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona. IBUB, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Navarro
- Institut de Biomedicina de la Universitat de Barcelona. IBUB, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Alberto J Rico
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Neurosciences Division, Centre for Applied Medical Research, CIMA, University of Navarra, Avenida Pío XII, 55, 31008, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Julen Oyarzábal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Juan A Sánchez-Arias
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - José Luis Lanciego
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Neurosciences Division, Centre for Applied Medical Research, CIMA, University of Navarra, Avenida Pío XII, 55, 31008, Pamplona, Spain.
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain.
| | - Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Diagonal 643, Prevosti Building, 08028, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona. IBUB, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
20
|
Chen Y, Hou Y, Ge R, Han J, Xu J, Chen J, Wang H. Protective effect of roscovitine against rotenone-induced parkinsonism. Restor Neurol Neurosci 2018; 36:629-638. [PMID: 30056439 DOI: 10.3233/rnn-180817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Protective effect of roscovitine and deregulation of the p-RB/E2F1 have not been well studied in PD models generated by repeated oral administration of rotenone. OBJECTIVE These experiments evaluated the effects of repeated oral gavage of rotenone on the activation of p-RB/E2F1 and the effects of roscovitine on the regulation of dopaminergic neuronal injury and the behavior of PD in mice. METHODS Using 2.5% carboxymethylcellulose and 1.25% chloroform as a vehicle solution, rotenone (30 mg/kg) was administered via oral gavage once daily for 30 days in C57 mice. Behavioral profiles (pole test and traction test) were assessed in these PD models, and oxidative stress levels were evaluated in the midbrain. The immunoreactivities of TH, α-synuclein (α-syn), p-RB, E2F1 and cleaved caspase-3 in the substantia nigra were examined with a laser confocal microscope. Pharmacological inhibition of cyclin-dependent kinase with roscovitine was achieved by intraperitoneal (IP) injection at a dose of 50 mg/kg daily. RESULTS All rotenone-administered C57 mice showed the typical behavioral features of PD: stiffness, bradykinesia, or hypokinesia. Behavioral testing with the pole test and traction test indicated that the rotenone group, but not the vehicle group, was affected. Spectrophotometric analysis demonstrated that glutathione (GSH) and superoxide dismutase (SOD) activity was decreased, and the generation of malondialdehyde (MDA) was elevated in the midbrain of the rotenone-treated group. After oral administration of rotenone, a loss of nigral tyrosine hydroxylase (TH)-positive neurons was observed. The immune response of α-syn was enhanced in the cytoplasm of dopaminergic neurons from the rotenone-induced neurotoxicity. Rb phosphorylation at serine 780, which affected Rb binding to E2F, was induced after rotenone treatment. The activation of E2F1, which is involved in the regulation of the cell cycle, was also induced from chronic exposure to rotenone. Moreover, administration of the cell cycle inhibitor roscovitine protected against rotenone-induced nigral dopaminergic neuronal injury and inhibited cleaved caspase-3 activation. Roscovitine also markedly ameliorated the behavior of PD mice. CONCLUSIONS Mouse models of Parkinson's disease were established by oral rotenone administration and reproduced some of the features of dopaminergic neuronal degeneration. Roscovitine protects against rotenone-induced parkinsonism.
Collapse
Affiliation(s)
- Yan Chen
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical University, Shandong Province, China
| | - Yiwei Hou
- Department of Neurology, Affiliated Hospital of Binzhou Medical University, Shandong Province, China
| | - Ruli Ge
- Department of Neurology, Affiliated Hospital of Binzhou Medical University, Shandong Province, China
| | - Jianmei Han
- Department of Neurology, Yangxin County People's Hospital, Shandong Province, China
| | - Jing Xu
- Department of Neurology, Affiliated Hospital of Binzhou Medical University, Shandong Province, China
| | - Jinbo Chen
- Department of Neurology, Affiliated Hospital of Binzhou Medical University, Shandong Province, China
| | - Hongcai Wang
- Department of Neurology, Affiliated Hospital of Binzhou Medical University, Shandong Province, China
| |
Collapse
|
21
|
Aymerich MS, Aso E, Abellanas MA, Tolon RM, Ramos JA, Ferrer I, Romero J, Fernández-Ruiz J. Cannabinoid pharmacology/therapeutics in chronic degenerative disorders affecting the central nervous system. Biochem Pharmacol 2018; 157:67-84. [PMID: 30121249 DOI: 10.1016/j.bcp.2018.08.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) exerts a modulatory effect of important functions such as neurotransmission, glial activation, oxidative stress, or protein homeostasis. Dysregulation of these cellular processes is a common neuropathological hallmark in aging and in neurodegenerative diseases of the central nervous system (CNS). The broad spectrum of actions of cannabinoids allows targeting different aspects of these multifactorial diseases. In this review, we examine the therapeutic potential of the ECS for the treatment of chronic neurodegenerative diseases of the CNS focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. First, we describe the localization of the molecular components of the ECS and how they are altered under neurodegenerative conditions, either contributing to or protecting cells from degeneration. Second, we address recent advances in the modulation of the ECS using experimental models through different strategies including the direct targeting of cannabinoid receptors with agonists or antagonists, increasing the endocannabinoid tone by the inhibition of endocannabinoid hydrolysis, and activation of cannabinoid receptor-independent effects. Preclinical evidence indicates that cannabinoid pharmacology is complex but supports the therapeutic potential of targeting the ECS. Third, we review the clinical evidence and discuss the future perspectives on how to bridge human and animal studies to develop cannabinoid-based therapies for each neurodegenerative disorder. Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to each disease and the multiple unexplored pathways in cannabinoid pharmacology that could be useful for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria S Aymerich
- Universidad de Navarra, Facultad de Ciencias, Departamento de Bioquímica y Genética, Pamplona, Spain; Universidad de Navarra, CIMA, Programa de Neurociencias, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Spain.
| | - Ester Aso
- Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, L'Hospitalet de Llobregat, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain
| | - Miguel A Abellanas
- Universidad de Navarra, Facultad de Ciencias, Departamento de Bioquímica y Genética, Pamplona, Spain; Universidad de Navarra, CIMA, Programa de Neurociencias, Pamplona, Spain
| | - Rosa M Tolon
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Jose A Ramos
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Isidre Ferrer
- Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, L'Hospitalet de Llobregat, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain
| | - Julian Romero
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Javier Fernández-Ruiz
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
22
|
Cobb MM, Ravisankar A, Skibinski G, Finkbeiner S. iPS cells in the study of PD molecular pathogenesis. Cell Tissue Res 2018; 373:61-77. [PMID: 29234887 PMCID: PMC5997490 DOI: 10.1007/s00441-017-2749-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and its pathogenic mechanisms are poorly understood. The majority of PD cases are sporadic but a number of genes are associated with familial PD. Sporadic and familial PD have many molecular and cellular features in common, suggesting some shared pathogenic mechanisms. Induced pluripotent stem cells (iPSCs) have been derived from patients harboring a range of different mutations of PD-associated genes. PD patient-derived iPSCs have been differentiated into relevant cell types, in particular dopaminergic neurons and used as a model to study PD. In this review, we describe how iPSCs have been used to improve our understanding of the pathogenesis of PD. We describe what cellular and molecular phenotypes have been observed in neurons derived from iPSCs harboring known PD-associated mutations and what common pathways may be involved.
Collapse
Affiliation(s)
- Melanie M Cobb
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA
| | - Abinaya Ravisankar
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA
| | - Gaia Skibinski
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA
| | - Steven Finkbeiner
- Gladstone Institutes, the Taube/Koret Center for Neurodegenerative Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94143, USA.
- Department Physiology, University of California, San Francisco, CA, 94143, USA.
- Graduate Programs in Neuroscience and Biomedical Sciences, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
23
|
Dallé E, Mabandla MV. Early Life Stress, Depression And Parkinson's Disease: A New Approach. Mol Brain 2018; 11:18. [PMID: 29551090 PMCID: PMC5858138 DOI: 10.1186/s13041-018-0356-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
This review aims to shed light on the relationship that involves exposure to early life stress, depression and Parkinson's disease (PD). A systematic literature search was conducted in Pubmed, MEDLINE, EBSCOHost and Google Scholar and relevant data were submitted to a meta-analysis . Early life stress may contribute to the development of depression and patients with depression are at risk of developing PD later in life. Depression is a common non-motor symptom preceding motor symptoms in PD. Stimulation of regions contiguous to the substantia nigra as well as dopamine (DA) agonists have been shown to be able to attenuate depression. Therefore, since PD causes depletion of dopaminergic neurons in the substantia nigra, depression, rather than being just a simple mood disorder, may be part of the pathophysiological process that leads to PD. It is plausible that the mesocortical and mesolimbic dopaminergic pathways that mediate mood, emotion, and/or cognitive function may also play a key role in depression associated with PD. Here, we propose that a medication designed to address a deficiency in serotonin is more likely to influence motor symptoms of PD associated with depression. This review highlights the effects of an antidepressant, Fluvoxamine maleate, in an animal model that combines depressive-like symptoms and Parkinsonism.
Collapse
Affiliation(s)
- Ernest Dallé
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000 South Africa
| | - Musa V. Mabandla
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000 South Africa
| |
Collapse
|
24
|
He X, Yuan W, Li Z, Hou Y, Liu F, Feng J. 6-Hydroxydopamine induces autophagic flux dysfunction by impairing transcription factor EB activation and lysosomal function in dopaminergic neurons and SH-SY5Y cells. Toxicol Lett 2018; 283:58-68. [PMID: 29170033 DOI: 10.1016/j.toxlet.2017.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022]
Abstract
Autophagy deregulation has been implicated in Parkinson's disease (PD), yet the role of autophagy in neuronal survival remains controversial. In this study, we comprehensively investigated the time-course of autophagy-related markers in 6-OHDA-induced Parkinsonian rat models and assessed its effect on the state of autophagic flux both in vivo and in vitro. We observed an early activation of autophagy followed by autophagic flux impairment, which was confirmed with autophagy inhibitor chloroquine in vivo and Ad-GFP-mCherry-LC3-infected SH-SY5Y cells in vitro. In addition, 6-OHDA not only remarkably reduced the expression level of lysosome-associated membrane protein 1 (Lamp1), but also impaired the hydrolase activities of lysosomal proteases. Transcription factor EB (TFEB), a key transcription factor controlling lysosome biogenesis, was also significantly downregulated by 6-OHDA and its nuclear translocation was inhibited as well, which could account for the impaired lysosomal function. Promoting lysosome biogenesis through TFEB overexpression could protect SH-SY5Y cells against 6-OHDA-induced neurotoxicity. The above findings demonstrated that autophagic flux dysfunction was closely associated with 6-OHDA-induced neurotoxicity and highlighted the importance of functional lysosomes and homeostatic autophagic flux in developing therapeutic agents for PD.
Collapse
Affiliation(s)
- Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Wei Yuan
- Department of Spine Surgery, First Hospital of China Medical University, 155# Nanjingbei Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Zijian Li
- Department of Neurology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Yang Hou
- Department of Neurology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Fei Liu
- Department of Neurology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
25
|
Chinta SJ, Woods G, Demaria M, Rane A, Zou Y, McQuade A, Rajagopalan S, Limbad C, Madden DT, Campisi J, Andersen JK. Cellular Senescence Is Induced by the Environmental Neurotoxin Paraquat and Contributes to Neuropathology Linked to Parkinson's Disease. Cell Rep 2018; 22:930-940. [PMID: 29386135 PMCID: PMC5806534 DOI: 10.1016/j.celrep.2017.12.092] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/06/2017] [Accepted: 12/24/2017] [Indexed: 12/16/2022] Open
Abstract
Exposure to the herbicide paraquat (PQ) is associated with an increased risk of idiopathic Parkinson's disease (PD). Therapies based on PQ's presumed mechanisms of action have not, however, yielded effective disease therapies. Cellular senescence is an anticancer mechanism that arrests proliferation of replication-competent cells and results in a pro-inflammatory senescence-associated secretory phenotype (SASP) capable of damaging neighboring tissues. Here, we demonstrate that senescent cell markers are preferentially present within astrocytes in PD brain tissues. Additionally, PQ was found to induce astrocytic senescence and an SASP in vitro and in vivo, and senescent cell depletion in the latter protects against PQ-induced neuropathology. Our data suggest that exposure to certain environmental toxins promotes accumulation of senescent cells in the aging brain, which can contribute to dopaminergic neurodegeneration. Therapies that target senescent cells may constitute a strategy for treatment of sporadic PD, for which environmental exposure is a major risk factor.
Collapse
Affiliation(s)
- Shankar J Chinta
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Touro University California, College of Pharmacy, 1310 Club Dr., Vallejo, CA 94592, USA
| | - Georgia Woods
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Marco Demaria
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Anand Rane
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Ying Zou
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Amanda McQuade
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | | | - Chandani Limbad
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Comparative Biochemistry Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David T Madden
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Touro University California, College of Pharmacy, 1310 Club Dr., Vallejo, CA 94592, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Julie K Andersen
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA.
| |
Collapse
|
26
|
Lin L, Ye J, Zhang H, Han ZF, Zheng ZH. Degree of dopaminergic degeneration measured by 99mTc-TRODAT-1 SPECT/CT imaging. Neural Regen Res 2018; 13:1281-1287. [PMID: 30028339 PMCID: PMC6065227 DOI: 10.4103/1673-5374.235077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To prevent and treat Parkinson’s disease in its early stages, it is essential to be able to detect the degree of early dopaminergic neuron degeneration. Dopamine transporters (DAT) in the striatum regulate synaptic dopamine levels, and striatal 99mTc-TRODAT-1 single-photon emission computed tomography (-SPECT) imaging is a marker for presynaptic neuronal degeneration. However, the association between the degree of dopaminergic degeneration and in vivo99mTc-TRODAT-1 SPECT imaging is unknown. Therefore, this study investigated the association between the degree of 6-hydroxydopamine (6-OHDA)-induced dopaminergic degeneration and DAT imaging using 99mTc-TRODAT-1 SPECT in rats. Different degrees of nigrostriatal dopamine depletion were generated by injecting different doses of 6-OHDA (2, 4, and 8 μg) into the right medial forebrain bundle. The degree of nigrostriatal dopaminergic neuron degeneration was assessed by rotational behavior and immunohistochemical staining. The results showed that striatal 99mTc-TRODAT-1 binding was significantly diminished both in the ipsilateral and the contralateral sides in the 4 and 8 μg 6-OHDA groups, and that DAT 99mTc-TRODAT-1 binding in the ipsilateral striatum showed a high correlation to apomorphine-induced rotations at 8 weeks post-lesion (r = –0.887, P < 0.01). There were significant correlations between DAT 99mTc-TRODAT-1 binding in the ipsilateral striatum and the amount of tyrosine hydroxylase immunoreactive neurons in the ipsilateral substantia nigra in the 2, 4, and 8 μg 6-OHDA groups at 8 weeks post-lesion (r = 0.899, P < 0.01). These findings indicate that striatal DAT imaging using 99mTc-TRODAT-1 is a useful technique for evaluating the severity of dopaminergic degeneration.
Collapse
Affiliation(s)
- Ling Lin
- Fujian Provincial Key Laboratory of Neuroglia and Disease, Fujian Medical University; Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jing Ye
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Han Zhang
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhong-Fu Han
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhi-Hong Zheng
- Fujian Provincial Key Laboratory of Neuroglia and Disease, Fujian Medical University; Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
27
|
Chen H, Ritz B. The Search for Environmental Causes of Parkinson's Disease: Moving Forward. JOURNAL OF PARKINSON'S DISEASE 2018; 8:S9-S17. [PMID: 30584168 PMCID: PMC6311360 DOI: 10.3233/jpd-181493] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/15/2018] [Indexed: 12/12/2022]
Abstract
It is widely believed that environmental exposures contribute to the vast majority of late-onset sporadic Parkinson's disease (PD), alone or via interactions with genetic factors. The search for environmental causes of PD has however been hampered by lack of understanding the prodromal phase of PD development and the difficulties in exposure assessment during this prolonged period. On the other hand, the existence of this prodromal period, along with an increasingly better understanding of PD prodromal symptoms, provides an exciting opportunity to identify environmental factors that initiate PD pathogenesis and/or modify its progression. For prevention efforts, this prodromal stage is of a major interest. Targeting factors that enter the body via the nose or gut has become even more important since the discovery of α-synuclein aggregates in the enteric and olfactory nervous systems. In this paper, we speculate about novel research hypotheses and approaches that may help us better define the role of environment in PD etiology, especially during its extended and complex prodromal phase.
Collapse
Affiliation(s)
- Honglei Chen
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Beate Ritz
- Department of Epidemiology and Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
28
|
Gleixner AM, Hutchison DF, Sannino S, Bhatia TN, Leak LC, Flaherty PT, Wipf P, Brodsky JL, Leak RK. N-Acetyl-l-Cysteine Protects Astrocytes against Proteotoxicity without Recourse to Glutathione. Mol Pharmacol 2017; 92:564-575. [PMID: 28830914 DOI: 10.1124/mol.117.109926] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
N-acetyl-l-cysteine (NAC) exhibits protective properties in brain injury models and has undergone a number of clinical trials. Most studies of NAC have focused on neurons. However, neuroprotection may be complemented by the protection of astrocytes because healthier astrocytes can better support the viability of neurons. Here, we show that NAC can protect astrocytes against protein misfolding stress (proteotoxicity), the hallmark of neurodegenerative disorders. Although NAC is thought to be a glutathione precursor, NAC protected primary astrocytes from the toxicity of the proteasome inhibitor MG132 without eliciting any increase in glutathione. Furthermore, glutathione depletion failed to attenuate the protective effects of NAC. MG132 elicited a robust increase in the folding chaperone heat shock protein 70 (Hsp70), and NAC mitigated this effect. Nevertheless, three independent inhibitors of Hsp70 function ablated the protective effects of NAC, suggesting that NAC may help preserve Hsp70 chaperone activity and improve protein quality control without need for Hsp70 induction. Consistent with this view, NAC abolished an increase in ubiquitinated proteins in MG132-treated astrocytes. However, NAC did not affect the loss of proteasome activity in response to MG132, demonstrating that it boosted protein homeostasis and cell viability without directly interfering with the efficacy of this proteasome inhibitor. The thiol-containing molecules l-cysteine and d-cysteine both mimicked the protective effects of NAC, whereas the thiol-lacking molecule N-acetyl-S-methyl-l-cysteine failed to exert protection or blunt the rise in ubiquitinated proteins. Collectively, these findings suggest that the thiol group in NAC is required for its effects on glial viability and protein quality control.
Collapse
Affiliation(s)
- Amanda M Gleixner
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Daniel F Hutchison
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Sara Sannino
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Tarun N Bhatia
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Lillian C Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Patrick T Flaherty
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Peter Wipf
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Jeffrey L Brodsky
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| |
Collapse
|
29
|
Raina R, Sen D. Can crosstalk between DOR and PARP reduce oxidative stress mediated neurodegeneration? Neurochem Int 2017; 112:206-218. [PMID: 28739183 DOI: 10.1016/j.neuint.2017.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/15/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
The progressive loss of structure and function of neurons leads to neurodegenerative processes which become the causative reason for various neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD) etc. These diseases are multifactorial in nature but they have been seen to possess similar causative agents to a certain extent. Oxidative Stress (OS) has been identified as a major stressor and a mediator in most of these diseases. OS not only leads to the generation of free radical species but if persistent, can possibly lead to lipid peroxidation, protein damage, DNA damage, and cell death. Anti-oxidants are endogenously present in our body to tackle oxygen metabolites but their levels reduce greatly under continuous OS conditions. In such a case, dietary supplements to replenish the anti-oxidant levels in our body is a good way of treatment but it is very slow and may not be as effective in chronic stress conditions. Thus, there is a need for more effective mechanisms to attenuate OS. Two such mechanisms which can be considered are the activation of Delta opioid receptor (DOR) and Inhibition of Poly (ADP-ribose)-polymerase1 (PARP1), which have been suggested to protect neurons and increase neuronal cell survivability in both in-vitro and in-vivo disease models. Various signaling pathways have been highlighted to probably play a significant role in attenuating OS by the activation of DOR. It would be an interesting topic of investigation to see if one of the probable mechanisms by which DOR attenuates OS could be by modulation of PARP through a cascade of intracellular signaling reactions.
Collapse
Affiliation(s)
- Rutika Raina
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, Tamil Nadu, India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
30
|
Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases. Neurochem Int 2017; 112:187-196. [PMID: 28732771 DOI: 10.1016/j.neuint.2017.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/12/2017] [Accepted: 07/16/2017] [Indexed: 12/26/2022]
Abstract
Increased accumulation of transcribed protein from the damaged DNA and reduced DNA repair capability contributes to numerous neurological diseases for which effective treatments are lacking. Gene editing techniques provide new hope for replacing defective genes and DNA associated with neurological diseases. With advancements in using such editing tools as zinc finger nucleases (ZFNs), meganucleases, and transcription activator-like effector nucleases (TALENs), etc., scientists are able to design DNA-binding proteins, which can make precise double-strand breaks (DSBs) at the target DNA. Recent developments with the CRISPR-Cas9 gene-editing technology has proven to be more precise and efficient when compared to most other gene-editing techniques. Two methods, non-homologous end joining (NHEJ) and homology-direct repair (HDR), are used in CRISPR-Cas9 system to efficiently excise the defective genes and incorporate exogenous DNA at the target site. In this review article, we provide an overview of the CRISPR-Cas9 methodology, including its molecular mechanism, with a focus on how in this gene-editing tool can be used to counteract certain genetic defects associated with neurological diseases. Detailed understanding of this new tool could help researchers design specific gene editing strategies to repair genetic disorders in selective neurological diseases.
Collapse
|
31
|
Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease. Toxicol Lett 2017; 276:108-114. [DOI: 10.1016/j.toxlet.2017.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022]
|
32
|
Wang L, Wang Z, Zhu R, Bi J, Feng X, Liu W, Wu J, Zhang H, Wu H, Kong W, Yu B, Yu X. Therapeutic efficacy of AAV8-mediated intrastriatal delivery of human cerebral dopamine neurotrophic factor in 6-OHDA-induced parkinsonian rat models with different disease progression. PLoS One 2017. [PMID: 28622392 PMCID: PMC5473573 DOI: 10.1371/journal.pone.0179476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive and age-associated neurodegenerative disorder. Patients at different stages of the disease course have distinguished features, mainly in the number of dopaminergic neurons. Cerebral dopamine neurotrophic factor (CDNF) is a recently discovered neurotrophic factor, being deemed as a hopeful candidate for PD treatment. Here, we evaluated the efficacy of CDNF in protecting dopaminergic function using the 6-OHDA-induced PD rat model suffering from different levels of neuronal loss and the recombinant adeno-associated virus 8 (AAV8) as a carrier for the CDNF gene. The results showed that AAV8-CDNF administration significantly improved the motor function and increased the tyrosine hydroxylase (TH) levels in PD rats with mild lesions (2 weeks post lesion), but it had limited therapeutic effects in rats with severe lesions (5 weeks post lesion). To better improve the recovery of motor function in severely lesioned PD rats, we employed a strategy using the CDNF gene along with the aromatic amino acid decarboxylase (AADC) gene. This combination therapeutic strategy indeed showed an enhanced benefit in restoring the motor function of severely lesioned PD rats by providing the neuroprotective effect of CDNF and dopamine enhancing effect of AADC as expected. This study may provide a basis for future clinical application of CDNF in PD patients at different stages and offer a new alternative strategy of joint use of CDNF and AADC for advanced PD patients in clinical trials.
Collapse
Affiliation(s)
- Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Zixuan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Rui Zhu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jinpeng Bi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Xinyao Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Wenmo Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
- * E-mail: (BY); (XY)
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
- * E-mail: (BY); (XY)
| |
Collapse
|
33
|
Robledo I, Jankovic J. Media hype: Patient and scientific perspectives on misleading medical news. Mov Disord 2017; 32:1319-1323. [PMID: 28370445 DOI: 10.1002/mds.26993] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/13/2017] [Accepted: 02/25/2017] [Indexed: 12/28/2022] Open
Abstract
In this age of digital technology, Internet, and social media we are increasingly subjected to an information and disinformation overload. This includes not only political and economic information but also medical news, which is often presented as a "new discovery", "miracle cure" or some other press hyperbole. In this viewpoint article we present patient and scientific perspectives some recent episodes of medical hype related to Parkinson's disease research, including proposed therapies such as nilotinib, marijuana, stem cells and other controversial therapies that have attracted the mainstream and social media. We conclude by emphasizing the importance of vigilance on the part of patients and physicians when interpreting these often exaggerated and/or unfounded health claims. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Israel Robledo
- Michael J. Fox Foundation Patient Council, New York, New York
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
34
|
N-Propargyl Caffeamide (PACA) Ameliorates Dopaminergic Neuronal Loss and Motor Dysfunctions in MPTP Mouse Model of Parkinson's Disease and in MPP +-Induced Neurons via Promoting the Conversion of proNGF to NGF. Mol Neurobiol 2017; 55:2258-2267. [PMID: 28321769 DOI: 10.1007/s12035-017-0486-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
Insufficient production of nerve growth factor (NGF) is implicated in Parkinson's disease (PD). We recently discovered that caffeic acid derivative N-propargyl caffeamide (PACA) not only potentiated NGF-induced neurite outgrowth but also attenuated 6-hydroxydopamine neurotoxicity in neuronal culture. The aim of the present study was to investigate whether PACA could increase NGF levels against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) neurotoxicity in a mouse PD model. We induced parkinsonism in mice by intraperitoneal injection of MPTP for seven consecutive days. Animal motor functions were assessed by rotarod test and pole test. Our results showed that PACA ameliorated motor impairments in MPTP-challenged mice. Based on Western blot analysis and/or immunofluorescence staining of NGF and tyrosine hydroxylase (TH), PACA preserved TH levels in the midbrain substantia nigra pars compacta. PACA also increased NGF expression while it decreased proNGF accumulation. Interestingly, NGF was widely induced in the midbrains including astrocytes. To elucidate the mechanisms by which PACA induces NGF, we focused on the effects of PACA on two neurotrophic signaling pathways, the PI3K and MEK pathways. We found that PACA induced the phosphorylation of Akt, ERK, and CREB against MPTP-mediated alterations. Importantly, PACA increased NGF levels and subsequently induced TrkA activation in MPTP-treated mice. Consistently, PACA also increased NGF levels in dopaminergic PC12 cells and primary rat midbrain neurons against N-methyl-4-phenylpyridinium iodide (MPP+) toxicity. ERK and PI3K inhibitors attenuated the effects of PACA on NGF levels. Collectively, our results suggest that PACA may rescue NGF insufficiency via sequential activation of PI3K/Akt, ERK1/2, and CREB signaling pathways. Graphical Abstract ᅟ.
Collapse
|
35
|
Müller TE, Nunes ME, Menezes CC, Marins AT, Leitemperger J, Gressler ACL, Carvalho FB, de Freitas CM, Quadros VA, Fachinetto R, Rosemberg DB, Loro VL. Sodium Selenite Prevents Paraquat-Induced Neurotoxicity in Zebrafish. Mol Neurobiol 2017; 55:1928-1941. [PMID: 28244005 DOI: 10.1007/s12035-017-0441-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022]
Abstract
Considering the antioxidant properties of sodium selenite (Na2SeO3) and the involvement of oxidative stress events in paraquat-induced neurotoxicity, this study investigated the protective effect of dietary Na2SeO3 on biochemical and behavioral parameters of zebrafish exposed to paraquat (PQ). Fish were pretreated with a Na2SeO3 diet for 21 days and then PQ (20 mg/kg) was administered intraperitoneally with six injections for 16 days. In the novel tank test, the Na2SeO3 diet prevented the locomotor impairments, as well as the increase in the time spent in the top area of the tank, and the exacerbation of freezing episodes. In the preference for conspecifics and in the mirror-induced aggression (MIA) tasks, Na2SeO3 prevented the increase in the latency to enter the area closer to conspecifics and the agonistic behavior of PQ-treated animals, respectively. Na2SeO3 prevented the increase of carbonylated protein (CP), reactive oxygen species (ROS), and nitrite/nitrate (NOx) levels, as well as the decrease in non-protein thiols (NPSH) levels. Regarding the antioxidant enzymatic defenses, Na2SeO3 prevented the increase in catalase (CAT) and glutathione peroxidase (GPx) activities caused by PQ. Altogether, dietary Na2SeO3 improves behavioral and biochemical function impaired by PQ treatment in zebrafish, by modulating not only redox parameters, but also anxiety- and aggressive-like phenotypes in zebrafish.
Collapse
Affiliation(s)
- Talise E Müller
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Mauro E Nunes
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Charlene C Menezes
- Graduate Program in Animal Biodiversity, Department of Molecular Biology and Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Aline T Marins
- Graduate Program in Animal Biodiversity, Department of Molecular Biology and Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Jossiele Leitemperger
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Ana Carolina Lopes Gressler
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Fabiano B Carvalho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Catiuscia Molz de Freitas
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Vanessa A Quadros
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Roselei Fachinetto
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Denis B Rosemberg
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA
| | - Vania L Loro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
- Graduate Program in Animal Biodiversity, Department of Molecular Biology and Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
36
|
Lister J, Andreazza AC, Navaid B, Wilson VS, Teo C, Nesarajah Y, Wilson AA, Nobrega JN, Fletcher PJ, Remington G. Lipoic acid and haloperidol-induced vacuous chewing movements: Implications for prophylactic antioxidant use in tardive dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:23-29. [PMID: 27565433 DOI: 10.1016/j.pnpbp.2016.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/03/2016] [Accepted: 08/20/2016] [Indexed: 01/30/2023]
Abstract
Tardive dyskinesia (TD), a potentially irreversible antipsychotic (AP)-related movement disorder, is a risk with all currently available antipsychotics. AP-induced vacuous chewing movements (VCMs) in rats, a preclinical model of TD, can be attenuated by antioxidant-based treatments although there is a shortage of well-designed studies. Lipoic acid (LA) represents a candidate antioxidant for the treatment of oxidative stress-related nervous system disorders; accordingly, its effects on AP-induced VCMs and striatal oxidative stress were examined. Rats treated with haloperidol decanoate (HAL; 21mg/kg every 3weeks, IM) for 12weeks were concurrently treated with LA (10 or 20mg/kg, PO). VCMs were assessed weekly by a blinded rater, and locomotor activity was evaluated as were striatal lipid peroxidation markers and serum HAL levels. VCMs were decreased by the lower dose (nonsignificant), whereas a significant increase was recorded with the higher dose of LA. HAL decreased locomotor activity and this was unaffected by LA. Striatal malondialdehyde (MDA) levels in HAL-treated rats were reduced by both LA doses, while 4-hydroxynonenal (4-HNE) levels were predictive of final VCM scores (averaged across weeks 10-12). Study limitations include differences between antipsychotics in terms of oxidative stress, LA dosing, choice of biomarkers for lipid peroxidation, and generalizability to TD in humans. Collectively, current preclinical evidence does not support a "protective" role for antioxidants in preventing TD or its progression, although clinical evidence offers limited evidence supporting such an approach.
Collapse
Affiliation(s)
- Joshua Lister
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ana C Andreazza
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Bushra Navaid
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Celine Teo
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Alan A Wilson
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - José N Nobrega
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Gary Remington
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
37
|
Chaudhuri KR, Bhidayasiri R, van Laar T. Unmet needs in Parkinson's disease: New horizons in a changing landscape. Parkinsonism Relat Disord 2016; 33 Suppl 1:S2-S8. [PMID: 27932224 DOI: 10.1016/j.parkreldis.2016.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 11/15/2022]
Abstract
The success of levodopa and other classes of drugs have meant that most people with Parkinson's disease enjoy a good quality of life for many years. However, despite the availability of several drugs and formulations that can be used as monotherapy and in combination, there are a number of disease features that the current therapies are unable to address. The disease continues to progress despite treatment, patients suffer from a myriad of motor and non-motor symptoms, and a neuroprotective therapy is urgently required. To move forward with medical and surgical management, it is important to consider new insights that recent research offers and in this review we examine how a better understanding of the disease pathology and progression might improve and enrich our daily clinical practice. It is also timely to consider the service provision changes that will increasingly be needed to effectively manage the needs of the aging population.
Collapse
Affiliation(s)
- K Ray Chaudhuri
- The Maurice Wohl Clinical Neuroscience Institute, King's College London and National Parkinson Foundation Centre of Excellence, King's College Hospital London, UK
| | - Roongroj Bhidayasiri
- Chulalongkorn Center of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Rehabilitation Medicine, Juntendo University, Tokyo, Japan.
| | - Teus van Laar
- Department of Neurology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Herraiz T. N-methyltetrahydropyridines and pyridinium cations as toxins and comparison with naturally-occurring alkaloids. Food Chem Toxicol 2016; 97:23-39. [DOI: 10.1016/j.fct.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/22/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
|
39
|
Kim D, Jeon H, Ryu S, Koo S, Ha KT, Kim S. Proteomic Analysis of the Effect of Korean Red Ginseng in the Striatum of a Parkinson's Disease Mouse Model. PLoS One 2016; 11:e0164906. [PMID: 27788166 PMCID: PMC5082921 DOI: 10.1371/journal.pone.0164906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/21/2016] [Indexed: 01/13/2023] Open
Abstract
Recent studies have shown that Korean Red Ginseng (KRG) suppresses dopaminergic neuronal death in the brain of a Parkinson's disease (PD) mouse model, but the mechanism is still elusive. Using a 2-dimensional electrophoresis technique, we investigated whether KRG can restore the changes in protein expressions in the striatum (ST) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-injected mice. Male C57BL/6 mice (9 weeks old) were injected with 20 mg/kg MPTP intraperitoneally four times at 2-h intervals. KRG (100 mg/kg) was orally administered once a day for 3 days from one hour after the first MPTP injection. Two hours after the third KRG administration a pole test was performed to evaluate motor function, after which the brains were immediately harvested. Survival of dopaminergic neurons in the nigrostriatal pathway and protein expression in the ST were measured by immunohistochemistry and 2-dimensional electrophoresis. KRG suppressed MPTP-induced behavioral dysfunction and neuronal death in the nigrostriatal pathway. Moreover, 30 proteins changed by MPTP and KRG in the ST were identified and shown to be related to glycolysis/gluconeogenesis and neurodegenerative diseases including Alzheimer's disease and PD. KRG has neuroprotective effects against MPTP toxicity and alleviates protein expression profiles related to enhancing energy metabolism in the ST of MPTP-treated mice.
Collapse
Affiliation(s)
- Dongsoo Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hyongjun Jeon
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sun Ryu
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sungtae Koo
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Seungtae Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- * E-mail:
| |
Collapse
|
40
|
Hutson PH, Clark JA, Cross AJ. CNS Target Identification and Validation: Avoiding the Valley of Death or Naive Optimism? Annu Rev Pharmacol Toxicol 2016; 57:171-187. [PMID: 27575715 DOI: 10.1146/annurev-pharmtox-010716-104624] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There are many challenges along the path to the approval of new drugs to treat CNS disorders, one of the greatest areas of unmet medical need with a large societal burden and health-care impact. Unfortunately, over the past two decades, few CNS drug approvals have succeeded, leading many pharmaceutical companies to deprioritize this therapeutic area. The reasons for the failures in CNS drug discovery are likely to be multifactorial. However, selecting the most biologically plausible molecular targets that are relevant to the disorder is a critical first step to improve the probability of success. In this review, we outline previous methods for identifying and validating novel targets for CNS drug discovery, and, cognizant of previous failures, we discuss potential new strategies that may improve the probability of success of developing novel treatments for CNS disorders.
Collapse
Affiliation(s)
- P H Hutson
- Neurobiology, CNS Discovery, Teva Pharmaceuticals, West Chester, Pennsylvania 19380;
| | - J A Clark
- Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland 20892;
| | - A J Cross
- Neuroscience Innovative Medicines, AstraZeneca, Cambridge, Massachusetts 01239;
| |
Collapse
|
41
|
Seo J, Singh NN, Ottesen EW, Sivanesan S, Shishimorova M, Singh RN. Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene. PLoS One 2016; 11:e0154390. [PMID: 27111068 PMCID: PMC4844106 DOI: 10.1371/journal.pone.0154390] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/12/2016] [Indexed: 12/18/2022] Open
Abstract
Humans carry two nearly identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Loss of SMN1 leads to spinal muscular atrophy (SMA), the most frequent genetic cause of infant mortality. While SMN2 cannot compensate for the loss of SMN1 due to predominant skipping of exon 7, correction of SMN2 exon 7 splicing holds the promise of a cure for SMA. Previously, we used cell-based models coupled with a multi-exon-skipping detection assay (MESDA) to demonstrate the vulnerability of SMN2 exons to aberrant splicing under the conditions of oxidative stress (OS). Here we employ a transgenic mouse model and MESDA to examine the OS-induced splicing regulation of SMN2 exons. We induced OS using paraquat that is known to trigger production of reactive oxygen species and cause mitochondrial dysfunction. We show an overwhelming co-skipping of SMN2 exon 5 and exon 7 under OS in all tissues except testis. We also show that OS increases skipping of SMN2 exon 3 in all tissues except testis. We uncover several new SMN2 splice isoforms expressed at elevated levels under the conditions of OS. We analyze cis-elements and transacting factors to demonstrate the diversity of mechanisms for splicing misregulation under OS. Our results of proteome analysis reveal downregulation of hnRNP H as one of the potential consequences of OS in brain. Our findings suggest SMN2 as a sensor of OS with implications to SMA and other diseases impacted by low levels of SMN protein.
Collapse
Affiliation(s)
- Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States of America
| | - Natalia N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States of America
| | - Eric W. Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States of America
| | - Senthilkumar Sivanesan
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States of America
| | - Maria Shishimorova
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States of America
| | - Ravindra N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States of America
- * E-mail:
| |
Collapse
|
42
|
Association between Parkinson's Disease and Cigarette Smoking, Rural Living, Well-Water Consumption, Farming and Pesticide Use: Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0151841. [PMID: 27055126 PMCID: PMC4824443 DOI: 10.1371/journal.pone.0151841] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/05/2016] [Indexed: 12/19/2022] Open
Abstract
Objective Bradford Hill’s viewpoints were used to conduct a weight-of-the-evidence assessment of the association between Parkinson’s disease (PD) and rural living, farming and pesticide use. The results were compared with an assessment based upon meta-analysis. For comparison, we also evaluated the association between PD and cigarette smoking as a “positive control” because a strong inverse association has been described consistently in the literature. Methods PubMed was searched systematically to identify all published epidemiological studies that evaluated associations between Parkinson’s disease (PD) and cigarette smoking, rural living, well-water consumption, farming and the use of pesticides, herbicides, insecticides, fungicides or paraquat. Studies were categorized into two study quality groups (Tier 1 or Tier 2); data were abstracted and a forest plot of relative risks (RRs) was developed for each risk factor. In addition, when available, RRs were tabulated for more highly exposed individuals compared with the unexposed. Summary RRs for each risk factor were calculated by meta-analysis of Tier 1, Tier 2 and all studies combined, with sensitivity analyses stratified by other study characteristics. Indices of between-study heterogeneity and evidence of reporting bias were assessed. Bradford Hill’s viewpoints were used to determine if a causal relationship between PD and each risk factor was supported by the weight of the evidence. Findings There was a consistent inverse (negative) association between current cigarette smoking and PD risk. In contrast, associations between PD and rural living, well-water consumption, farming and the use of pesticides, herbicides, insecticides, fungicides or paraquat were less consistent when assessed quantitatively or qualitatively. Conclusion The weight of the evidence and meta-analysis support the conclusion that there is a causal relationship between PD risk and cigarette smoking, or some unknown factor correlated with cigarette smoking. There may be risk factors associated with rural living, farming, pesticide use or well-water consumption that are causally related to PD, but the studies to date have not identified such factors. To overcome the limitations of research in this area, future studies will have to better characterize the onset of PD and its relationship to rural living, farming and exposure to pesticides.
Collapse
|
43
|
Asakawa T, Fang H, Sugiyama K, Nozaki T, Hong Z, Yang Y, Hua F, Ding G, Chao D, Fenoy AJ, Villarreal SJ, Onoe H, Suzuki K, Mori N, Namba H, Xia Y. Animal behavioral assessments in current research of Parkinson's disease. Neurosci Biobehav Rev 2016; 65:63-94. [PMID: 27026638 DOI: 10.1016/j.neubiorev.2016.03.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is traditionally classified as a movement disorder. Patients typically suffer from many motor dysfunctions. Presently, clinicians and scientists recognize that many non-motor symptoms are associated with PD. There is an increasing interest in both motor and non-motor symptoms in clinical studies on PD patients and laboratory research on animal models that imitate the pathophysiologic features and symptoms of PD patients. Therefore, appropriate behavioral assessments are extremely crucial for correctly understanding the mechanisms of PD and accurately evaluating the efficacy and safety of novel therapies. This article systematically reviews the behavioral assessments, for both motor and non-motor symptoms, in various animal models involved in current PD research. We addressed the strengths and weaknesses of these behavioral tests and their appropriate applications. Moreover, we discussed potential mechanisms behind these behavioral tests and cautioned readers against potential experimental bias. Since most of the behavioral assessments currently used for non-motor symptoms are not particularly designed for animals with PD, it is of the utmost importance to greatly improve experimental design and evaluation in PD research with animal models. Indeed, it is essential to develop specific assessments for non-motor symptoms in PD animals based on their characteristics. We concluded with a prospective view for behavioral assessments with real-time assessment with mobile internet and wearable device in future PD research.
Collapse
Affiliation(s)
- Tetsuya Asakawa
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan; Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan.
| | - Huan Fang
- Department of Pharmacy, Jinshan Hospital of Fudan University, Shanghai, China
| | - Kenji Sugiyama
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Takao Nozaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Zhen Hong
- Department of Neurology, Huashan Hospital of Fudan University, Shanghai, China
| | - Yilin Yang
- The First People's Hospital of Changzhou, Soochow University School of Medicine, Changzhou, China
| | - Fei Hua
- The First People's Hospital of Changzhou, Soochow University School of Medicine, Changzhou, China
| | - Guanghong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Dongman Chao
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Sebastian J Villarreal
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Hirotaka Onoe
- Functional Probe Research Laboratory, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Katsuaki Suzuki
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Norio Mori
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Ying Xia
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA.
| |
Collapse
|
44
|
Gaballah HH, Zakaria SS, Elbatsh MM, Tahoon NM. Modulatory effects of resveratrol on endoplasmic reticulum stress-associated apoptosis and oxido-inflammatory markers in a rat model of rotenone-induced Parkinson's disease. Chem Biol Interact 2016; 251:10-6. [PMID: 27016191 DOI: 10.1016/j.cbi.2016.03.023] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022]
Abstract
The mechanisms leading to neuronal death in Parkinson's disease (PD) are not fully elucidated; however, mounting evidence implicates endoplasmic reticulum (ER) stress, oxidative damage, and inflammatory changes are the crucial factors in its pathogenesis. This study was undertaken to investigate the modulatory effects of resveratrol on ER stress-mediated apoptosis, inflammatory and oxidative stress markers in a rat model of rotenone-induced PD. mRNA expression levels of ER stress markers; C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), were estimated in the rat brain using quantitative real-time PCR. Caspase-3 activity, IL-1β levels and Nuclear Factor Erythroid 2-related factor (Nrf2) DNA-binding activity were estimated by ELISA, while glutathione peroxidase and Xanthine oxidase activities, as well as protein carbonyl contents in the rat brain were evaluated spectrophotometrically. Our data revealed that Resveratrol ameliorated rotenone-induced ER stress by downregulating CHOP and GRP78 genes expression and hampered caspase-3 activity in the brain of rotenone exposed rats. It also restored redox balance as evident by suppressing Xanthine oxidase activity and protein carbonyls formation; in addition to preservation of intracellular antioxidants status via activating glutathione peroxidase and Nrf2 signaling pathway. In conclusion; our study launched promising avenues for the potential use of resveratrol as a neuroprotective therapeutic agent in Parkinson's disease.
Collapse
Affiliation(s)
| | - Soha Said Zakaria
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Maha M Elbatsh
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Nahid M Tahoon
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
45
|
Tagliafierro L, Chiba-Falek O. Up-regulation of SNCA gene expression: implications to synucleinopathies. Neurogenetics 2016; 17:145-57. [PMID: 26948950 DOI: 10.1007/s10048-016-0478-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/27/2016] [Indexed: 01/06/2023]
Abstract
Synucleinopathies are a group of neurodegenerative diseases that share a common pathological lesion of intracellular protein inclusions largely composed by aggregates of alpha-synuclein protein. Accumulating evidence, including genome wide association studies, has implicated alpha-synuclein (SNCA) gene in the etiology of synucleinopathies. However, the precise variants within SNCA gene that contribute to the sporadic forms of Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and other synucleinopathies and their molecular mechanisms of action remain elusive. It has been suggested that SNCA expression levels are critical for the development of these diseases. Here, we review several model systems that have been developed to advance the understanding of the role of SNCA expression levels in the etiology of synucleinopathies. We also describe different molecular mechanisms that regulate SNCA gene expression and discuss possible strategies for SNCA down-regulation as means for therapeutic approaches. Finally, we highlight some examples that underscore the relationships between the genetic association findings and the regulatory mechanisms of SNCA expression, which suggest that genetic variability in SNCA locus is directly responsible, at least in part, to the changes in gene expression and explain the reported associations of SNCA with synucleinopathies. Future studies utilizing induced pluripotent stem cells (iPSCs)-derived neuronal lines and genome editing by CRISPR/Cas9, will allow us to validate, characterize, and manipulate the effects of particular cis-genetic variants on SNCA expression. Moreover, this model system will enable us to compare different neuronal and glial lineages involved in synucleinopathies representing an attractive strategy to elucidate-common and specific-SNCA-genetic variants, regulatory mechanisms, and vulnerable expression levels underlying synucleinopathy spectrum disorders. This forthcoming knowledge will support the development of precision medicine for synucleinopathies.
Collapse
Affiliation(s)
- L Tagliafierro
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - O Chiba-Falek
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
46
|
Vera E, Studer L. When rejuvenation is a problem: challenges of modeling late-onset neurodegenerative disease. Development 2016; 142:3085-9. [PMID: 26395137 DOI: 10.1242/dev.120667] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In contrast to the successful modeling of early-onset disorders using patient-specific cells, modeling of late-onset neurodegenerative diseases such as Parkinson's disease remains a challenge. This might be related to the often ignored fact that current induced pluripotent stem cell (iPSC) differentiation protocols yield cells that typically show the behavior of fetal stage cells. Acknowledging aging as a contributing factor in late-onset neurodegenerative disorders represents an important step on the road towards faithfully recreating these diseases in vitro. Here, we summarize progress in the field and review the strategies and challenges for triggering late-onset disease phenotypes.
Collapse
Affiliation(s)
- Elsa Vera
- Developmental Biology, Center of Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lorenz Studer
- Developmental Biology, Center of Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
47
|
Basit A, Pontis S, Piomelli D, Armirotti A. Ion mobility mass spectrometry enhances low-abundance species detection in untargeted lipidomics. Metabolomics 2016; 12:50. [PMID: 26900387 PMCID: PMC4744830 DOI: 10.1007/s11306-016-0971-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Abstract
We describe a simple method for the detection of low intensity lipid signals in complex tissue samples, based on a combination of liquid chromatography/mass spectrometry and ion mobility mass spectrometry. The method relies on visual and software-assisted analysis of overlapped mobilograms (diagrams of mass-to-charge ratio, m/z, vs drift time, DT) and was successfully applied in untargeted lipidomics analyses of mouse brain tissue to detect relatively small variations in a scarce class of phospholipids (N-acyl phosphatidylethanolamines) generated during neural tissue damage, against a background of hundreds of lipid species. Standard analytical tools, including Principal Component Analysis, failed to detect such changes.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Silvia Pontis
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Daniele Piomelli
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA 92697 USA
| | - Andrea Armirotti
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
48
|
Yun JW, Ahn JB, Kwon E, Ahn JH, Park HW, Heo H, Park JS, Kim H, Paek SH, Kang BC. Behavior, PET and histology in novel regimen of MPTP marmoset model of Parkinson's disease for long-term stem cell therapy. Tissue Eng Regen Med 2015; 13:100-109. [PMID: 30603390 DOI: 10.1007/s13770-015-0106-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022] Open
Abstract
Stem cell technologies are particularly attractive in Parkinson's disease (PD) research although they occasionally need long-term treatment for anti-parkinsonian activity. Unfortunately, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) widely used as a model for PD has several limitations, including the risk of dose-dependent mortality and the difficulty of maintenance of PD symptoms during the whole experiment period. Therefore, we tested if our novel MPTP regimen protocol (2 mg/kg for 2 consecutive days and 1 mg/kg for next 3 consecutive days) can be maintained stable parkinsonism without mortality for long-term stem cell therapy. For this, we used small-bodied common marmoset monkeys (Callithrix jacchus) among several nonhuman primates showing high anatomical, functional, and behavioral similarities to humans. Along with no mortality, the behavioral changes involved in PD symptoms were maintained for 32 weeks. Also, the loss of jumping ability of the MPTP-treated marmosets in the Tower test was not recovered by 32 weeks. Positron emission tomography (PET) analysis revealed that remarkable decreases of bindings of 18F-FP-CIT were observed at the striatum of the brains of the marmosets received MPTP during the full period of the experiment for 32 weeks. In the substantia nigra of the marmosets, the loss of tyrosine hydroxylase (TH) immunoreactivity was also observed at 32 weeks following the MPTP treatment. In conclusion, our low-dose MPTP regimen protocol was found to be stable parkinsonism without mortality as evidenced by behavior, PET, and TH immunohistochemistry. This result will be useful for evaluation of possible long-term stem cell therapy for anti-parkinsonian activity.
Collapse
Affiliation(s)
- Jun-Won Yun
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jae-Bum Ahn
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,2Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Euna Kwon
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jae Hun Ahn
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,2Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung Woo Park
- 3Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hwon Heo
- 4Department of Biomedical Sciences, Seoul National University, Seoul, Korea
| | - Jin-Sung Park
- 5Department of Neurogenetics, Kolling Institute of Medical Research, Royal North Shore Hospital and the University of Sydney, St. Leonards, New South Wales, Australia
| | - Hyeonjin Kim
- 4Department of Biomedical Sciences, Seoul National University, Seoul, Korea.,6Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Sun Ha Paek
- 3Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong-Cheol Kang
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,2Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,7Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang, Korea
| |
Collapse
|
49
|
Yun JW, Ahn JB, Kang BC. Modeling Parkinson's disease in the common marmoset (Callithrix jacchus): overview of models, methods, and animal care. Lab Anim Res 2015; 31:155-65. [PMID: 26755918 PMCID: PMC4707143 DOI: 10.5625/lar.2015.31.4.155] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/04/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is a small-bodied, popular New World monkey and is used widely in reproductive biology, neuroscience, and drug development, due to its comparative ease of handling, high reproductive efficiency, and its unique behavioral characters. In this review, we discuss the marmoset models in Parkinson's disease (PD), which is a neurological movement disorder primarily resulting from a degeneration of dopaminergic neurons with clinical features of tremor, rigidity, postural instability, and akinesia. The most common PD models involve the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine to study the pathogenesis and to evaluate novel therapies. Following the systemic or local administration of these neurotoxins, the marmosets with very severe Parkinson's symptoms are recommended to be placed in an intensive care unit with artificial feeding to increase survival rate. All procedures with MPTP should be conducted in a special room with enclosed cages under negative-pressure by trained researchers with personal protection. Behavioral tests are conducted to provide an external measure of the brain pathology. Along with several biomarkers, including α-synuclein and DJ-1, non-invasive neuroimaging techniques such as positron emission tomography and magnetic resonance imaging are used to evaluate the functional changes associated with PD. With the recent growing interest in potential and novel therapies such as stem cell and gene therapy for PD in Korea, the marmoset can be considered as a suitable non-human primate model in PD research to bridge the gap between rodent studies and clinical applications.
Collapse
Affiliation(s)
- Jun-Won Yun
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jae-Bum Ahn
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Designed Animal Research Center, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang-gun, Gangwon, Korea
| |
Collapse
|
50
|
Lentz L, Zhao Y, Kelly MT, Schindeldecker W, Goetz S, Nelson DE, Raike RS. Motor behaviors in the sheep evoked by electrical stimulation of the subthalamic nucleus. Exp Neurol 2015; 273:69-82. [DOI: 10.1016/j.expneurol.2015.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/22/2015] [Accepted: 07/25/2015] [Indexed: 12/25/2022]
|