1
|
Peng M, Heng Z, Ma D, Hou B, Yang K, Liu Q, Gu Z, Liu W, Chen S. Iontophoresis-Integrated Smart Microneedle Delivery Platform for Efficient Transdermal Delivery and On-Demand Insulin Release. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39668130 DOI: 10.1021/acsami.4c18381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Transdermal insulin delivery in a painless, convenient, and on-demand way remains a long-standing challenge. A variety of smart microneedles (MNs) fabricated by glucose-responsive phenylboronic acid hydrogels have been previously developed to provide painless and autonomous insulin release in response to a glucose level change. However, like the majority of MNs, their transdermal delivery efficiency was still relatively low compared to that with subcutaneous injection. Herein, we report an iontophoresis (ITP)-integrated smart MNs delivery platform with enhanced transdermal delivery efficiency and delivery depth. Carbon nanotubes (CNTs) were induced in the boronate-containing hydrogel to develop a semi-interpenetrating network hydrogel with enhanced stiffness and conductivity. Remarkably, ITP not only facilitated efficient and deeper transdermal delivery of insulin via electroosmosis and electrophoresis but also well-maintained glucose responsiveness. This ITP-combined smart MNs delivery platform, which could provide on-demand insulin delivery in a painless, convenient, and safe way, is promising to achieve persistent glycemic control. Furthermore, transdermal delivery of payloads with a wide size range was achieved by this delivery platform and thus shed light on the development of an efficient transdermal delivery platform with deep skin penetration in a minimally invasive way.
Collapse
Affiliation(s)
- Mingwei Peng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Ziwen Heng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Dewei Ma
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Bo Hou
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Keke Yang
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Qinglong Liu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Wei Liu
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
2
|
Han J, Choi Y, Kang S. Synergistic Strategies of Biomolecular Transport Technologies in Transdermal Healthcare Systems. Adv Healthc Mater 2024; 13:e2401753. [PMID: 39087395 PMCID: PMC11616266 DOI: 10.1002/adhm.202401753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Transdermal healthcare systems have gained significant attention for their painless and convenient drug administration, as well as their ability to detect biomarkers promptly. However, the skin barrier limits the candidates of biomolecules that can be transported, and reliance on simple diffusion poses a bottleneck for personalized diagnosis and treatment. Consequently, recent advancements in transdermal transport technologies have evolved toward active methods based on external energy sources. Multiple combinations of these technologies have also shown promise for increasing therapeutic effectiveness and diagnostic accuracy as delivery efficiency is maximized. Furthermore, wearable healthcare platforms are being developed in diverse aspects for patient convenience, safety, and on-demand treatment. Herein, a comprehensive overview of active transdermal delivery technologies is provided, highlighting the combination-based diagnostics, therapeutics, and theragnostics, along with the latest trends in platform advancements. This offers insights into the potential applications of next-generation wearable transdermal medical devices for personalized autonomous healthcare.
Collapse
Affiliation(s)
- Jieun Han
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Yi‐Jeong Choi
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seung‐Kyun Kang
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Interdisciplinary Program of BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Research Institute of Advanced Materials (RIAM)Seoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Nano Systems Institute SOFT FoundrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| |
Collapse
|
3
|
Wang Z, Tong S, Niu J, Cao C, Gao A, Jiao Y, Fu Y, Li D, Pan X, Cui D, Sheng N, Yan L, Cui S, Lin S, Liu Y. Microneedles: multifunctional devices for drug delivery, body fluid extraction, and bio-sensing. NANOSCALE 2024. [PMID: 39606819 DOI: 10.1039/d4nr03538k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Microneedles represent a miniaturized mechanical structure with versatile applications, including transdermal drug delivery, vaccination, body-fluid extraction, and bio-sensing. Over the past two decades, microneedle-based devices have garnered considerable attention in the biomedicine field, exhibiting the potential for mitigating patient discomfort, enhancing treatment adherence, avoiding first-pass effects, and facilitating precise therapeutic interventions. As an application-oriented technology, the innovation of microneedles is generally carried out in response to a specific demand. Currently, three most common applications of microneedles are drug delivery, fluid extraction, and bio-sensing. This review focuses on the progress in the materials, fabrication techniques, and design of microneedles in recent years. On this basis, the progress and innovation of microneedles in the current research stage are introduced in terms of their three main applications.
Collapse
Affiliation(s)
- Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Siyu Tong
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Cheng Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ang Gao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yingao Jiao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yanfei Fu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Dongxia Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nengquan Sheng
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Li Yan
- Department of Geriatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
4
|
Jiang Z, Liu S, Zhang H, Li Y, Yuan S. Contribution of chemical permeation enhancers to the process of transdermal drug delivery: Adsorption, microscopic interactions, and mechanism. Colloids Surf B Biointerfaces 2024; 243:114138. [PMID: 39126889 DOI: 10.1016/j.colsurfb.2024.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Transdermal drug delivery (TDD) has attracted widespread attention because of the advantage of its non-invasive nature, easy self-administration, and low side effects. The key to this pathway of drug delivery is how to overcome the barrier of the lipid matrix in the stratum corneum (SC). In this work, molecular dynamics (MD) were employed to investigate the adsorption of thyrotropin-releasing hormone (TRH) on the SC, and the effects of three different chemical permeation enhancers (ethanol (ETOH), carveol (CAV), and borneol (BOR)) on the SC were analyzed. The results showed that ETOH hardly altered the order of lipids in the SC, while CAV and BOR disrupted the morphology of the SC. The primary target of CAV was the CHOL in SC, which not only disrupted the ordered arrangement of CHOL, but also "extracted" CHOL from SC. The thickness distribution of SC became more inhomogeneous in the presence of CAV and BOR, which facilitated the penetration of drug molecules. Compared to no chemical permeation enhancers, the free energy of permeation in the presence of chemical permeation enhancers was less than 4-10 kcal mol-1, which suggested that chemical permeation enhancers were more favorable for the permeation of drugs from viewpoints of thermodynamics. All the results provided theoretical insights into the effect of chemical permeation enhancers on the transdermal permeation of drugs.
Collapse
Affiliation(s)
- Zhaoli Jiang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, PR China; Department of Dermatology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong 250012, PR China
| | - Shasha Liu
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250013, PR China
| | - Heng Zhang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, PR China
| | - Ying Li
- Department of Dermatology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong 250012, PR China.
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, PR China.
| |
Collapse
|
5
|
Gao S, Cheng X, Zhang M, Dai Q, Liu C, Lu Y. Design Principles and Applications of Ionic Liquids for Transdermal Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405983. [PMID: 39342651 PMCID: PMC11578336 DOI: 10.1002/advs.202405983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Indexed: 10/01/2024]
Abstract
Ionic liquids (ILs) are salts with melting points typically <100 °C, composed of specific anions and cations. Recently, IL application has expanded into material engineering and biomedicine. Due to their unique properties, ILs have garnered significant interest in pharmacological research as solubilizers, transdermal absorption enhancers, antibacterial agents, and stabilizers of insoluble pharmaceutical active ingredients. The improvement of skin permeability by ILs is closely associated with their specific physicochemical characteristics, which are identified by their ionic composition. However, the existing literature on transdermal medication administration is insufficient in terms of a comprehensive knowledge base. This review provides a comprehensive assessment of the design principles involved in IL synthesis. Additionally, it discusses the methods utilized to assess skin permeability and provides a focused outline of IL application in transdermal drug administration.
Collapse
Affiliation(s)
- Sai Gao
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xueqing Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Ming Zhang
- Department of PathologyPeking University International HospitalBeijing102206P. R. China
| | - Qiong Dai
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yunfeng Lu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| |
Collapse
|
6
|
Najm A, Moldoveanu ET, Niculescu AG, Grumezescu AM, Beuran M, Gaspar BS. Advancements in Drug Delivery Systems for the Treatment of Sarcopenia: An Updated Overview. Int J Mol Sci 2024; 25:10766. [PMID: 39409095 PMCID: PMC11476378 DOI: 10.3390/ijms251910766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Since sarcopenia is a progressive condition that leads to decreased muscle mass and function, especially in elderly people, it is a public health problem that requires attention from researchers. This review aims to highlight drug delivery systems that have a high and efficient therapeutic potential for sarcopenia. Current as well as future research needs to consider the barriers encountered in the realization of delivery systems, such as the route of administration, the interaction of the systems with the aggressive environment of the human body, the efficient delivery and loading of the systems with therapeutic agents, and the targeted delivery of therapeutic agents into the muscle tissue without creating undesirable adverse effects. Thus, this paper sets the framework of existing drug delivery possibilities for the treatment of sarcopenia, serving as an inception point for future interdisciplinary studies.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Elena-Theodora Moldoveanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Romania Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Romania Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
7
|
Eslami S, Tahmasbi F, Rahimi-Mamaghani A, Sanaie S, Bettocchi C, Sedigh O, Soleimanzadeh F. Investigating iontophoresis as a therapeutic approach for Peyronie's disease: a systematic review. Sex Med Rev 2024:qeae058. [PMID: 39186947 DOI: 10.1093/sxmrev/qeae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Iontophoresis therapy (IPT) is a noninvasive technique that uses electrical impulses to deliver charged molecules into the skin for controlled and targeted drug delivery. IPT has been explored as a noninvasive treatment option for Peyronie's disease (PD), but the current literature in this regard is still scarce. OBJECTIVE We aimed to systematically review the current literature on the application of IPT in the management of PD to provide a comprehensive evaluation and holistic outlook on the subject. METHOD A comprehensive search strategy was implemented in the following databases to retrieve research articles: PubMed (MEDLINE), Scopus, and Web of Science. Google Scholar was also manually searched. The search results were imported into Rayyan reference management for assessment based on the predefined inclusion criteria. The quality of the articles was evaluated by the proper JBI checklist (ie, per the study design), and the JBI grades of recommendation were used for grading the evidence. RESULTS A systematic search yielded 451 publications, 11 of which met the criteria to be included in this systematic review. The results demonstrated that IPT, usually with verapamil and dexamethasone, has shown promising results in treating PD. These methods can reduce pain, plaque size, and penile curvature while improving sexual function and quality of life with no serious adverse events. However, most studies had moderate to low quality, indicating a weak recommendation for a certain health management strategy. CONCLUSION Based on the extant literature, there is currently insufficient evidence to support the use of IPT for the management of PD. Placing it in the forefront of research can facilitate the management choices for PD even further, given its therapeutic potential.
Collapse
Affiliation(s)
- Sahand Eslami
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Tahmasbi
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Rahimi-Mamaghani
- Clinical Research Development Unit of Tabriz Valiasr Hospital, University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Carlo Bettocchi
- Department of Andrology and Male Genitalia Reconstructive Surgery, University of Foggia, Foggia, Italy
| | - Omid Sedigh
- Urology and Reconstructive Andrology Department, Humanitas Gradenigo Hospital, Torino, 10125410158, Italy
| | - Farzin Soleimanzadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Firdous SO, Sagor MMH, Arafat MT. Advances in Transdermal Delivery of Antimicrobial Peptides for Wound Management: Biomaterial-Based Approaches and Future Perspectives. ACS APPLIED BIO MATERIALS 2024; 7:4923-4943. [PMID: 37976446 DOI: 10.1021/acsabm.3c00731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Antimicrobial peptides (AMPs), distinguished by their cationic and amphiphilic nature, represent a critical frontier in the battle against antimicrobial resistance due to their potent antimicrobial activity and a broad spectrum of action. However, the clinical translation of AMPs faces hurdles, including their susceptibility to degradation, limited bioavailability, and the need for targeted delivery. Transdermal delivery has immense potential for optimizing AMP administration for wound management. Leveraging the skin's accessibility and barrier properties, transdermal delivery offers a noninvasive approach that can circumvent systemic side effects and ensure sustained release. Biomaterial-based delivery systems, encompassing nanofibers, hydrogels, nanoparticles, and liposomes, have emerged as key players in enhancing the efficacy of transdermal AMP delivery. These biomaterial carriers not only shield AMPs from enzymatic degradation but also provide controlled release mechanisms, thereby elevating stability and bioavailability. The synergistic interaction between the transdermal approach and biomaterial-facilitated formulations presents a promising strategy to overcome the multifaceted challenges associated with AMP delivery. Integrating advanced technologies and personalized medicine, this convergence allows the reimagining of wound care. This review amalgamates insights to propose a pathway where AMPs, transdermal delivery, and biomaterial innovation harmonize for effective wound management.
Collapse
Affiliation(s)
- Syeda Omara Firdous
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Md Mehadi Hassan Sagor
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| |
Collapse
|
9
|
Subramanian G, Kalidasan K, Quah S, Han QCG, Chan J, Wacker MG, Sampath P. Breaking barriers: Innovative approaches for skin delivery of RNA therapeutics. Int J Pharm 2024; 661:124435. [PMID: 38986965 DOI: 10.1016/j.ijpharm.2024.124435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
RNA therapeutics represent a rapidly expanding platform with game-changing prospects in personalized medicine. The disruptive potential of this technology will overhaul the standard of care with reference to both primary and specialty care. To date, RNA therapeutics have mostly been delivered parenterally via injection, but topical administration followed by intradermal or transdermal delivery represents an attractive method that is convenient to patients and minimally invasive. The skin barrier, particularly the lipid-rich stratum corneum, presents a significant hurdle to the uptake of large, charged oligonucleotide drugs. Therapeutic oligonucleotides need to be engineered for stability and specificity and formulated with state-of-the-art delivery strategies for efficient uptake. This review will cover various passive and active strategies deployed to enhance permeation through the stratum corneum and achieve effective delivery of RNA therapeutics to treat both local skin disorders and systemic diseases. Some strategies to achieve selectivity between local and systemic administration will also be discussed.
Collapse
Affiliation(s)
- Gowtham Subramanian
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Kamaladasan Kalidasan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Shan Quah
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Qi Chou Gavin Han
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore (NUS), 4 Science Drive 2, Singapore 117544, Singapore
| | - Justin Chan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Matthias G Wacker
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore (NUS), 4 Science Drive 2, Singapore 117544, Singapore.
| | - Prabha Sampath
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore; Skin Research Institute of Singapore (SRIS), 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore 138672, Singapore; Program in Cancer & Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
10
|
Prabhu A, Baliga V, Shenoy R, Dessai AD, Nayak UY. 3D printed microneedles: revamping transdermal drug delivery systems. Drug Deliv Transl Res 2024:10.1007/s13346-024-01679-7. [PMID: 39103595 DOI: 10.1007/s13346-024-01679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/07/2024]
Abstract
One of the advancements of the transdermal drug delivery system (TDDS) is the development of microneedles (MNs). These micron-sized needles are used for delivering various types of drugs to address the disadvantage of other transdermal techniques as well as oral drug delivery systems. MNs have high patient acceptance due to self-administration with minimally invasive and pain compared to the parenteral drug delivery. Over the years, various methods have been adopted to evolve the MNs and make them more cost-effective, accurate, and suitable for multiple applications. One such method is the 3D printing of MNs. The development of MN platforms using 3D printing has been made possible by improved features like precision, printing resolution, and the feasibility of using low-cost raw materials. In this review, we have tried to explain various types of MNs, fabrication methods, materials used in the formulation of MNs, and the recent applications that utilize 3D-printed MNs.
Collapse
Affiliation(s)
- Ashlesh Prabhu
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vishal Baliga
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raghavendra Shenoy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Akanksha D Dessai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
11
|
Lee SW, Goo BL. High-Intensity Focused Ultrasound Enhances Drug Penetration into the Human Skin in the Franz Diffusion Cell. Clin Cosmet Investig Dermatol 2024; 17:1711-1721. [PMID: 39071845 PMCID: PMC11283244 DOI: 10.2147/ccid.s457145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/23/2024] [Indexed: 07/30/2024]
Abstract
Purpose High-intensity focused ultrasound (HIFU)-assisted drug delivery is a non-invasive tool to deliver drugs to targeted areas, currently used mainly for treating cancer and cardiovascular diseases. However, in terms of transdermal drug delivery, HIFU technology is still poorly understood. Accordingly, this study sought to investigate the effectiveness of HIFU on drug penetration into the skin using human skin tissues. Methods Gel-type drugs whose ingredient is glutathione were labelled with fluorescein isothiocyanate, in turn the drugs were allowed to penetrate to the human skin tissue in the Franz diffusion cell for 24 hours in control and HIFU treatment groups, and their fluorescence intensity was measured using a multiple microplate reader at one, two, six, and 24 hours after drug application. In addition, tissue slice analysis was performed in each tissue slice at 24 hours post-drug application. The % area, fluorescence intensity per area, and penetration depth of the drug were measured using a fluorescence microscope. Results The fluorescence intensity increased with time in all groups. Specifically, at 24 hours after drug application, the fluorescence intensity (a.u). of the 10-shot HIFU treatment group was significantly enhanced compared to that of the control group (p < 0.05). The tissue slice analysis demonstrated that the % area of fluorescent drug and the fluorescence intensity per area (a.u.) were all significantly increased in both HIFU treatment groups compared to the control group (p < 0.05, p < 0.001). In addition, the penetration depth (μm) also markedly rose in both HIFU treatment groups compared to the control group (p < 0.01, p < 0.05). Conclusion It was demonstrated for the first time that HIFU significantly facilitated topical drug penetration into the human skin, strongly implying that HIFU can be a useful option for transdermal drug delivery.
Collapse
Affiliation(s)
- Seung-Won Lee
- Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| | - Boncheol Leo Goo
- Skin Rehabilitation Center, Naeum Dermatology and Aesthetics Clinic, Seoul, Korea
- Clinical Trial Center, Corederm Inc, Seoul, Korea
| |
Collapse
|
12
|
Marathe D, Bhuvanashree VS, Mehta CH, T. A, Nayak UY. Low-Frequency Sonophoresis: A Promising Strategy for Enhanced Transdermal Delivery. Adv Pharmacol Pharm Sci 2024; 2024:1247450. [PMID: 38938593 PMCID: PMC11208788 DOI: 10.1155/2024/1247450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024] Open
Abstract
Sonophoresis is the most approachable mode of transdermal drug delivery system, wherein low-frequency sonophoresis penetrates the drug molecules into the skin. It is an alternative method for an oral system of drug delivery and hypodermal injections. The cavitation effect is thought to be the main mechanism used in sonophoresis. The cavitation process involves forming a gaseous bubble and its rupture, induced in the coupled medium. Other mechanisms used are thermal effects, convectional effects, and mechanical effects. It mainly applies to transporting hydrophilic drugs, macromolecules, gene delivery, and vaccine delivery. It is also used in carrier-mediated delivery in the form of micelles, liposomes, and dendrimers. Some synergistic effects of sonophoresis, along with some permeation enhancers, such as chemical enhancers, iontophoresis, electroporation, and microneedles, increased the effectiveness of drug penetration. Sonophoresis-mediated ocular drug delivery, nail drug delivery, gene delivery to the brain, sports medicine, and sonothrombolysis are also widely used. In conclusion, while sonophoresis offers promising applications in diverse fields, further research is essential to comprehensively elucidate the biophysical mechanisms governing ultrasound-tissue interactions. Addressing these gaps in understanding will enable the refinement and optimization of sonophoresis-based therapeutic strategies for enhanced clinical efficacy.
Collapse
Affiliation(s)
- Divya Marathe
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Vasudeva Sampriya Bhuvanashree
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ashwini T.
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
13
|
Shi S, Zhang J, Quan S, Yang Y, Yao L, Xiao J. A highly biocompatible and bioactive transdermal nano collagen for enhanced healing of UV-damaged skin. Int J Biol Macromol 2024; 272:132857. [PMID: 38834124 DOI: 10.1016/j.ijbiomac.2024.132857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Skin damage caused by excessive UV radiation has gradually become one of the most prevalent skin diseases. Collagen has gradually found applications in the treatment of UV-damaged skin; however, their high molecular weight greatly limits their capacity to permeate the skin barrier and repair the damaged skin. Nano collagen has garnered growing attentions in the mimicking of collagen; while the investigation of its skin permeability and wound-healing capability remains vacancies. Herein, we have for the first time created a highly biocompatible and bioactive transdermal nano collagen demonstrating remarkable transdermal capacity and repair efficacy for UV-damaged skin. The transdermal nano collagen exhibited a stable triple-helix structure, effectively promoting the adhesion and proliferation of fibroblasts. Notably, the transdermal nano collagen displayed exceptional penetration capabilities, permeating fibroblast and healthy skin. Combo evaluations revealed that the transdermal nano collagen contributed to recovering the intensity and TEWL values of UV-damaged skin to normal level. Histological analysis further indicated that transdermal nano collagen significantly accelerated the repair of damaged skin by promoting the collagen regeneration and fibroblasts activation. This highly biocompatible and bioactive transdermal nano collagen provides a novel substituted strategy for the transdermal absorption of collagen, indicating great potential applications in cosmetics and dermatology.
Collapse
Affiliation(s)
- Shuangni Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Jingting Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Siqi Quan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Yi Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; School of Life Science, Lanzhou University, Lanzhou 730000, PR China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China.
| |
Collapse
|
14
|
Arshad MS, Hussain S, Zafar S, Rana SJ, Chohan TA, Hamza M, Nazari K, Ahmad Z. Transcutaneous Delivery of Dexamethasone Sodium Phosphate Via Microneedle-Assisted Iontophoretic Enhancement - A Potential Therapeutic Option for Inflammatory Disorders. Pharm Res 2024; 41:1183-1199. [PMID: 38849712 DOI: 10.1007/s11095-024-03719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/19/2024] [Indexed: 06/09/2024]
Abstract
AIM This study aimed to fabricate dexamethasone sodium phosphate loaded microneedle arrays (MNA) and investigate their efficiency in combination with iontophoresis for the treatment of hind paw oedema in rats. METHODS Drug loaded polyvinyl alcohol, polyvinyl pyrrolidone and D-sorbitol-based MNA11 were fabricated by vacuum micromolding. Physicochemical, morphological, thermal, in-silico, in-vitro insertion ability (on parafilm) and drug release studies were performed. Ex-vivo permeation, in-vivo insertion and anti-inflammatory studies were performed in combination with iontophoresis. RESULTS MNA11 displayed sharp-tipped projections and acceptable physicochemical features. Differential scanning calorimetry results indicated that drug loaded MNA11 were amorphous solids. Drug interacted with PVP and PVA predominately via hydrogen bonding. Parafilm displayed conspicuously engraved complementary structure of MNA11. Within 60 min, 91.50 ± 3.1% drug released from MNA11. A significantly higher i.e., 95.06 ± 2.5% permeation of drug was observed rapidly (within 60 min) from MNA11-iontophoresis combination than MNA11 i.e., 84.07 ± 3.5% within 240 min. Rat skin treated using MNA11 and MNA11-iontophoresis showed disruptions / microchannels in the epidermis without any damage to underlying anatomical structures. MNA11-iontophoresis combination led to significant reduction (83.02 ± 3.9%) in paw oedema as compared to MNA11 alone (72.55 ± 4.1%). CONCLUSION MNA11-iontophoresis combination can act as a promising candidate to deliver drugs transcutaneously for treating inflammatory diseases.
Collapse
Affiliation(s)
| | - Saad Hussain
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Hamza
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
15
|
Duman G, Gucu E, Utku FS, Uner B, Macit M, Sarialtin S, Ozilgen M. Kinetic assessment of iontophoretic delivery efficiency of niosomal tetracycline hydrochloride incorporated in electroconductive gel. Drug Deliv Transl Res 2024; 14:1206-1217. [PMID: 37867180 DOI: 10.1007/s13346-023-01452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
The purpose of this study was to conduct the kinetic assessment of iontophoretic delivery of niosomal tetracycline-HCl formulated in an electroconductive gel. Tween-80 and Span-80 were used to obtain tetracycline-HCl niosomes with an average diameter of 101.9 ± 3.3 nm, a polydispersity index of 0.247 ± 0.004, a zeta potential of - 34.1 mV, and an entrapment efficiency of 70.08 ± 0.16%. Four different gel preparations, two of which contained niosomal tetracycline-HCl, were transdermally delivered using Franz diffusion cells under the trigger effect of iontophoresis, applied at 0.2, 0.5, and 1 mA/cm2 current density. The control group was the passive diffusion results of the preparation made using a tetracycline-HCl-based drug marketed in Turkey. The control group was compared with the groups that contained (a) tetracycline-HCl in an electroconductive gel, (b) the niosomal tetracycline-HCl formulation in water, and (c) the niosomal tetracycline-HCl formulation in the electroconductive gel. The group with the niosomal formulation in the electroconductive gel displayed the highest increase in iontophoretic transdermal delivery relative to the control group, displaying a 2-, 2.1-, and 2.2-fold increase, respectively, by current density. The experimental results of transdermal delivery using the synergistic effect of niosomal formulation in electroconductive gel and the trigger effect of iontophoresis appeared to divert slightly from zero-order kinetics, demonstrating a statistically significant increase in the rate of controlled transdermal drug delivery. Considering that about 20% of the formulation is transdermally delivered in the first half-hour, the iontophoretic transdermal delivery of niosomal tetracycline-HCl can be efficiently used in local iontophoretic therapy.
Collapse
Affiliation(s)
- Gulengul Duman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Ecem Gucu
- Department of Biomedical Engineering, Yeditepe University, Istanbul, Turkey
| | - Feride Sermin Utku
- Department of Biomedical Engineering, Yeditepe University, Istanbul, Turkey
| | - Burcu Uner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey.
- Department of Pharmaceutical and Administrative Sciences, Faculty of Pharmacy, University of Health Science and Pharmacy in St. Louis, St. Louis, MO, USA.
| | - Meltem Macit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Sevval Sarialtin
- Department of Biomedical Engineering, Yeditepe University, Istanbul, Turkey
| | - Mustafa Ozilgen
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
16
|
Abd El-Kaream SA, Hussein NGA, El-Kholey SM, Elhelbawy AMAEI. Microneedle combined with iontophoresis and electroporation for assisted transdermal delivery of goniothalamus macrophyllus for enhancement sonophotodynamic activated cancer therapy. Sci Rep 2024; 14:7962. [PMID: 38575628 PMCID: PMC10994924 DOI: 10.1038/s41598-024-58033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
The underlying study was carried out aiming at transdermal drug delivery (TDD) of Goniothalamus macrophyllus as sono-photo-sensitizer (SPS) using microneedle (MN) arrays with iontophoresis (MN-IP), electroporation (MN-EP) in conjunction with applying photodynamic therapy (PDT), sonodynamic therapy (SDT) and sono-photodynamic therapy (SPDT) as an up-to-date activated cancer treatment modality. Study was conducted on 120 male Swiss Albino mice, inoculated with Ehrlich ascites carcinoma (EAC) divided into 9 groups. We employed three different arrays of MN electrodes were used (parallel, triangular, and circular), EP, IP with different volts (6, 9, 12 V), an infrared laser and an ultrasound (pulsed and continuous wave) as our two energy sources. Results revealed that parallel 6 V TDD@MN@IP@EP can be used as effective delivery system for G. macrophyllus from skin directly to target EAC cells. In addition MN@IP@EP@TDD G. macrophyllus is a potential SPS for SPDT treatment of EAC. With respect to normal control mice and as opposed to the EAC untreated control mice, MN@EP@IP TDD G. macrophyllus in the laser, ultrasound, and combination activated groups showed a significant increase in the antioxidant markers TAC level and the GST, GR, Catalase, and SOD activities, while decrease in lipid peroxidation oxidative stress parameter MDA levels. In addition significantly increased apoptotic genes expressions (p53, caspase (3, 9), Bax, and TNF alpha) and on the other hand decreased anti- apoptotic (Bcl-2) and angiogenic (VEGF) genes expressions. Moreover significantly ameliorate liver and kidney function decreasing ALT, AST, urea and creatinine respectively. Furthermore MN@IP@EP@TDD G. macrophyllus combined with SPDT was very effective at reducing the growth of tumors and even causing cell death according to microscopic H&E stain results. This process may be related to a sono- and/or photochemical activation mechanism. According to the findings, MN@IP@EP@TDD G. macrophyllus has a lot of potential as a novel, efficient delivery method that in combination with infrared laser and ultrasound activation SPDT demonstrated promising anticancer impact for treating cancer.
Collapse
Affiliation(s)
- Samir Ali Abd El-Kaream
- Applied Medical Chemistry Department, Affiliated Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Nabila Gaber Ali Hussein
- Applied Medical Chemistry Department, Affiliated Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sohier Mahmoud El-Kholey
- Medical Biophysics Department, Affiliated Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
17
|
Gaikwad SS, Zanje AL, Somwanshi JD. Advancements in transdermal drug delivery: A comprehensive review of physical penetration enhancement techniques. Int J Pharm 2024; 652:123856. [PMID: 38281692 DOI: 10.1016/j.ijpharm.2024.123856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Transdermal drug administration has grown in popularity in the pharmaceutical research community due to its potential to improve drug bioavailability, compliance among patients, and therapeutic effectiveness. To overcome the substantial barrier posed by the stratum corneum (SC) and promote drug absorption within the skin, various physical penetration augmentation approaches have been devised. This review article delves into popular physical penetration augmentation techniques, which include sonophoresis, iontophoresis, magnetophoresis, thermophoresis, needle-free injection, and microneedles (MNs) Sonophoresis is a technique that uses low-frequency ultrasonic waves to break the skin's barrier characteristics, therefore improving drug transport and distribution. In contrast, iontophoresis uses an applied electric current to push charged molecules of drugs inside the skin, effectively enhancing medication absorption. Magnetophoresis uses magnetic fields to drive drug carriers into the dermis, a technology that has shown promise in aiding targeted medication delivery. Thermophoresis is the regulated heating of the skin in order to improve drug absorption, particularly with thermally sensitive drug carriers. Needle-free injection technologies, such as jet injectors (JIs) and microprojection arrays, offer another option by producing temporary small pore sizes in the skin, facilitating painless and effective drug delivery. MNs are a painless, minimally invasive method, easy to self-administration, as well as high drug bioavailability. This study focuses on the underlying processes, current breakthroughs, and limitations connected with all of these approaches, with an emphasis on their applicability in diverse therapeutic areas. Finally, a thorough knowledge of these physical enhancement approaches and their incorporation into pharmaceutical research has the potential to revolutionize drug delivery, providing more efficient and secure treatment choices for a wide range of health-related diseases.
Collapse
Affiliation(s)
- Sachin S Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Abhijit L Zanje
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Jeevan D Somwanshi
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| |
Collapse
|
18
|
Zhang H, Pan Y, Hou Y, Li M, Deng J, Wang B, Hao S. Smart Physical-Based Transdermal Drug Delivery System:Towards Intelligence and Controlled Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306944. [PMID: 37852939 DOI: 10.1002/smll.202306944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/05/2023] [Indexed: 10/20/2023]
Abstract
Transdermal drug delivery systems based on physical principles have provided a stable, efficient, and safe strategy for disease therapy. However, the intelligent device with real-time control and precise drug release is required to enhance treatment efficacy and improve patient compliance. This review summarizes the recent developments, application scenarios, and drug release characteristics of smart transdermal drug delivery systems fabricated with physical principle. Special attention is paid to the progress of intelligent design and concepts in of physical-based transdermal drug delivery technologies for real-time monitoring and precise drug release. In addition, facing with the needs of clinical treatment and personalized medicine, the recent progress and trend of physical enhancement are further highlighted for transdermal drug delivery systems in combination with pharmaceutical dosage forms to achieve better transdermal effects and facilitate the development of smart medical devices. Finally, the next generation and future application scenarios of smart physical-based transdermal drug delivery systems are discussed, a particular focus in vaccine delivery and tumor treatment.
Collapse
Affiliation(s)
- Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yao Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
19
|
Vaseem RS, D’cruz A, Shetty S, - H, Vardhan A, R SS, Marques SM, Kumar L, Verma R. Transdermal Drug Delivery Systems: A Focused Review of the Physical Methods of Permeation Enhancement. Adv Pharm Bull 2024; 14:67-85. [PMID: 38585458 PMCID: PMC10997930 DOI: 10.34172/apb.2024.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/07/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
The skin is the body's largest organ and serves as a site of administration for various medications. Transdermal drug delivery systems have several advantages over traditional delivery systems. It has both local and systemic therapeutic properties. Controlled plasma drug levels, reduced dosing frequency, and avoidance of hepatic first-pass metabolism are just a few of these systems' advantages. To achieve maximum efficacy, it is critical to understand the kinetics, physiochemical properties of the drug moiety, and drug transport route. This manuscript focused on the principles of various physical means to facilitate transdermal drug delivery. Some examples are iontophoresis, electrophoresis, photomechanical waves, ultrasound, needleless injections, and microneedles. Mechanical, chemical, magnetic, and electrical energy are all used in physical methods. A major advantage of physical methods is their capability to abbreviate pain, which can be used for effective disease management. Further investigation should be carried out at the clinical level to understand these methods for effective drug delivery.
Collapse
Affiliation(s)
- Rifath Sheikh Vaseem
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| | - Alison D’cruz
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| | - Srishti Shetty
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| | - Hafsa -
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| | - Aditya Vardhan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| | - Shreya Shenoy R
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| | - Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur 844 102, Vaishali, Bihar, India
| | - Ruchi Verma
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Udupi, Karnataka, India
| |
Collapse
|
20
|
Wang C, He G, Zhao H, Lu Y, Jiang P, Li W. Enhancing Deep-Seated Melanoma Therapy through Wearable Self-Powered Microneedle Patch. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311246. [PMID: 38123765 DOI: 10.1002/adma.202311246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Effective treatment of deep-seated tumors relies on enhanced drug penetration in transdermal drug delivery systems. While microneedles (MNs) and iontophoresis techniques have shown improved transdermal drug delivery efficiency, challenges such as skin elasticity, high electrical resistance of the stratum corneum, and external power supply requirements hinder their efficacy in treating deep-seated tumors. In this study, a wearable, self-powered MN patch that integrates a flexible triboelectric nanogenerator (F-TENG) is presented, aimed at advancing deep-seated tumor therapy. MNs are composed of water-soluble materials mixed with negatively charged pH-responsive nanoparticles (NPs) loaded with therapeutic drugs. The F-TENG harnesses personal mechanical movements generate electrical energy. Leveraging the advantages of both MNs and F-TENG, therapeutic NPs can penetrate deep skin locations upon MN patch insertion, releasing drugs rapidly in acidic tumor tissues. Owing to these features, a single administration of the integrated MN-patch in a mouse model with deep-seated melanoma exhibits superior therapeutic efficacy in inhibiting deep-located tumor compared to using the MN-patch alone, indicating promising potential for treating tumors at deep sites.
Collapse
Affiliation(s)
- Chenyuan Wang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guangqin He
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, 430071, China
| | - Huanhuan Zhao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yun Lu
- Department of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Peng Jiang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, 430071, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| | - Wei Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
21
|
Lee DH, Lim S, Kwak SS, Kim J. Advancements in Skin-Mediated Drug Delivery: Mechanisms, Techniques, and Applications. Adv Healthc Mater 2024; 13:e2302375. [PMID: 38009520 PMCID: PMC11468599 DOI: 10.1002/adhm.202302375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Indexed: 11/29/2023]
Abstract
Skin-mediated drug delivery methods currently are receiving significant attention as a promising approach for the enhanced delivery of drugs through the skin. Skin-mediated drug delivery offers the potential to overcome the limitations of traditional drug delivery methods, including oral administration and intravenous injection. The challenges associated with drug permeation through layers of skin, which act as a major barrier, are explored, and strategies to overcome these limitations are discussed in detail. This review categorizes skin-mediated drug delivery methods based on the means of increasing drug permeation, and it provides a comprehensive overview of the mechanisms and techniques associated with these methods. In addition, recent advancements in the application of skin-mediated drug delivery are presented. The review also outlines the limitations of ongoing research and suggests future perspectives of studies regarding the skin-mediated delivery of drugs.
Collapse
Affiliation(s)
- Dong Ha Lee
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sunyoung Lim
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sung Soo Kwak
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Joohee Kim
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
22
|
Li N, Fan Z, Peng X. Analysis of the effect of calcium ions on promoting the penetrability of riboflavin into the corneal stroma by iontophoresis. Int Ophthalmol 2024; 44:89. [PMID: 38366000 DOI: 10.1007/s10792-024-03031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE To investigate the effect of calcium ions on promoting the penetrability of riboflavin into the corneal stroma by iontophoresis and to analyse the possible mechanism. METHODS Forty rabbits were divided into five groups randomly: 0.1% riboflavin-balanced salt solution (BSS) by iontophoresis group, 0.1% riboflavin-saline solution by iontophoresis group, 0.1% riboflavin-zinc gluconate solution by iontophoresis group, 0.1% riboflavin-calcium gluconate solution by iontophoresis group and classical riboflavin instillation after corneal de-epithelialization as the control group. The riboflavin concentrations in corneal stroma were determined and compared by high-performance liquid chromatography (HPLC) after removing epithelium and endothelium. RESULTS Iontophoretic delivery of a 0.1% riboflavin-calcium gluconate solution was the closest to the effect of classical de-epithelialization. The other solvents were unsufficient at enhancing the permeability of the riboflavin. CONCLUSION Calcium ions can promote the penetrability of riboflavin into the corneal stroma by iontophoresis.
Collapse
Affiliation(s)
- Na Li
- Department of Ophthalmology, The Third Medical Center of Chinese, PLA General Hospital, Yongding Road 69, Beijing, 100039, China.
| | - Zhengjun Fan
- Department of Ophthalmology, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China
| | - Xiujun Peng
- Department of Ophthalmology, The Sixth Medical Center of Chinese, PLA General Hospital, Beijing, 100048, China
| |
Collapse
|
23
|
Fernandes NB, Velagacherla V, Spandana KJ, N B, Mehta CH, Gadag S, Sabhahit JN, Nayak UY. Co-delivery of lapatinib and 5-fluorouracil transfersomes using transpapillary iontophoresis for breast cancer therapy. Int J Pharm 2024; 650:123686. [PMID: 38070658 DOI: 10.1016/j.ijpharm.2023.123686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Combination chemotherapy, involving the intervention of two or more anti-neoplastic agents has been the cornerstone in breast cancer treatment, owing to the applications it holds in contrast to the mono-therapy approach. This research predominantly focussed on proving the synergy between Lapatinib (LPT) and 5-Fluorouracil (5-FU) and further enhancing its localized permeation via transfersome-loaded delivery and iontophoresis to treat breast tumors. The IC50 values for LPT and 5-FU were found to be 19.38 µg/ml and 5.7 µg/ml respectively and their synergistic effect was proven by the Chou-Talalay assay using CompuSyn software. Furthermore, LPT and 5-FU were encapsulated within transfersomes and administered via the transpapillary route. The drug-loaded carriers were characterized for their particle size, polydispersity index, zeta potential, and entrapment efficiency. The ex vivo rat skin permeation studies indicated that when compared to LPT dispersion and 5-FU solution, drug-loaded transfersomes exhibited better permeability and their transpapillary permeation was enhanced on using iontophoresis. Moreover, both LPT and 5-FU transfersomes were found to be stable for 3 months when stored at a temperature of 5 ± 3 °C. The results indicated that this treatment strategy could be an effective approach in contrast to some of the conventional treatments employed to date.
Collapse
Affiliation(s)
- Neha B Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - K J Spandana
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Bhagya N
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayalakshmi N Sabhahit
- Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
24
|
Limenh LW. Advances in the transdermal delivery of antiretroviral drugs. SAGE Open Med 2024; 12:20503121231223600. [PMID: 38249942 PMCID: PMC10798114 DOI: 10.1177/20503121231223600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Antiretroviral therapy regimens are successful in stopping the advancement of human immunodeficiency virus infection to acquired immunodeficiency syndrome, and other opportunistic infections. However, they do have significant disadvantages, including long-term treatment, limited oral bioavailability, inaccessibility to organs, non-adherence by patients, and the development of medication resistance. Because of the listed drawbacks of available routes and the availability of curative medicines for human immunodeficiency virus/acquired immunodeficiency syndrome, advanced solutions are required. Antiretroviral therapy transdermal delivery is one of the current strategies that have attracted much attention from many researchers. In this narrative review, various in vitro, in vivo, and ex vivo transdermal antiretroviral therapy delivery strategies were reviewed, such as transdermal patches and films, lipid-based nano-delivery systems, microneedles, chemical penetration enhancers, and iontophoresis, which showed promising results. Although the majority of studies on Antiretroviral transdermal delivery have produced hopeful findings, additional in-depth research on passive and physical enhancement techniques, both existing and new, is necessary to fully understand the potential of this route and to make it accessible to human immunodeficiency virus patients.
Collapse
Affiliation(s)
- Liknaw Workie Limenh
- Department of Pharmaceutics, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
25
|
Wang Y, Chen Z, Davis B, Lipman W, Xing S, Zhang L, Wang T, Hafiz P, Xie W, Yan Z, Huang Z, Song J, Bai W. Digital automation of transdermal drug delivery with high spatiotemporal resolution. Nat Commun 2024; 15:511. [PMID: 38218967 PMCID: PMC10787768 DOI: 10.1038/s41467-023-44532-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024] Open
Abstract
Transdermal drug delivery is of vital importance for medical treatments. However, user adherence to long-term repetitive drug delivery poses a grand challenge. Furthermore, the dynamic and unpredictable disease progression demands a pharmaceutical treatment that can be actively controlled in real-time to ensure medical precision and personalization. Here, we report a spatiotemporal on-demand patch (SOP) that integrates drug-loaded microneedles with biocompatible metallic membranes to enable electrically triggered active control of drug release. Precise control of drug release to targeted locations (<1 mm2), rapid drug release response to electrical triggers (<30 s), and multi-modal operation involving both drug release and electrical stimulation highlight the novelty. Solution-based fabrication ensures high customizability and scalability to tailor the SOP for various pharmaceutical needs. The wireless-powered and digital-controlled SOP demonstrates great promise in achieving full automation of drug delivery, improving user adherence while ensuring medical precision. Based on these characteristics, we utilized SOPs in sleep studies. We revealed that programmed release of exogenous melatonin from SOPs improve sleep of mice, indicating potential values for basic research and clinical treatments.
Collapse
Affiliation(s)
- Yihang Wang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zeka Chen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brayden Davis
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Will Lipman
- Department of Psychology and Neuroscience, University of North Carolina at chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sicheng Xing
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tian Wang
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Priyash Hafiz
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Wanrong Xie
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zijie Yan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhili Huang
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
26
|
Kim TH, Kim NY, Lee HU, Choi JW, Kang T, Chung BG. Smartphone-based iontophoresis transdermal drug delivery system for cancer treatment. J Control Release 2023; 364:383-392. [PMID: 37914000 DOI: 10.1016/j.jconrel.2023.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Cancer is a leading cause of the death worldwide. However, the conventional cancer therapy still suffers from several limitations, such as systemic side effects, poor efficacy, and patient compliance due to limited accessibility to the tumor site. To address these issues, the localized drug delivery system has emerged as a promising approach. In this study, we developed an iontophoresis-based transdermal drug delivery system (TDDS) controlled by a smartphone application for cancer treatment. Iontophoresis, a low-intensity electric current-based TDDS, enhances drug permeation across the skin to provide potential for localized drug delivery and minimize systemic side effects. The fundamental mechanism of our system was modeled using finite element analysis and its performance was corroborated through the flow-through skin permeation tests using a plastic-based microfluidic chip. The results of in vitro cell experiments and skin deposition tests successfully demonstrated that our smartphone-controlled iontophoresis system significantly enhanced the drug permeation for cancer treatment. Therefore, this hand-held smartphone-based iontophoresis TDDS could be a powerful tool for self-administrated anticancer drug delivery applications.
Collapse
Affiliation(s)
- Tae Hyeon Kim
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Na Yeon Kim
- Department of Biomedical Engineering, Sogang University, Seoul, Republic of Korea
| | - Hee Uk Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea; Institute of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea; Department of Biomedical Engineering, Sogang University, Seoul, Republic of Korea; Institute of Smart Biosensor, Sogang University, Seoul, Republic of Korea; Institute of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Hasan M, Khatun A, Kogure K. Intradermal Delivery of Naked mRNA Vaccines via Iontophoresis. Pharmaceutics 2023; 15:2678. [PMID: 38140019 PMCID: PMC10747697 DOI: 10.3390/pharmaceutics15122678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Messenger RNA (mRNA) vaccines against infectious diseases and for anticancer immunotherapy have garnered considerable attention. Currently, mRNA vaccines encapsulated in lipid nanoparticles are administrated via intramuscular injection using a needle. However, such administration is associated with pain, needle phobia, and lack of patient compliance. Furthermore, side effects such as fever and anaphylaxis associated with the lipid nanoparticle components are also serious problems. Therefore, noninvasive, painless administration of mRNA vaccines that do not contain other problematic components is highly desirable. Antigen-presenting cells reside in the epidermis and dermis, making the skin an attractive vaccination site. Iontophoresis (ItP) uses weak electric current applied to the skin surface and offers a noninvasive permeation technology that enables intradermal delivery of hydrophilic and ionic substances. ItP-mediated intradermal delivery of biological macromolecules has also been studied. Herein, we review the literature on the use of ItP technology for intradermal delivery of naked mRNA vaccines which is expected to overcome the challenges associated with mRNA vaccination. In addition to the physical mechanism, we discuss novel biological mechanisms of iontophoresis, particularly ItP-mediated opening of the skin barriers and the intracellular uptake pathway, and how the combined mechanisms can allow for effective intradermal delivery of mRNA vaccines.
Collapse
Affiliation(s)
- Mahadi Hasan
- Department of Animal Disease Model, Research Center for Experimental Modeling Human Disease, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (A.K.)
| | - Anowara Khatun
- Department of Animal Disease Model, Research Center for Experimental Modeling Human Disease, Kanazawa University, Kanazawa 920-8640, Japan; (M.H.); (A.K.)
| | - Kentaro Kogure
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| |
Collapse
|
28
|
Demartis S, Rassu G, Mazzarello V, Larrañeta E, Hutton A, Donnelly RF, Dalpiaz A, Roldo M, Guillot AJ, Melero A, Giunchedi P, Gavini E. Delivering hydrosoluble compounds through the skin: what are the chances? Int J Pharm 2023; 646:123457. [PMID: 37788729 DOI: 10.1016/j.ijpharm.2023.123457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Affiliation(s)
- S Demartis
- Department of Chemical, Mathematical, Natural and Physical Sciences, University of Sassari, Sassari 07100, Italy
| | - G Rassu
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| | - V Mazzarello
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| | - E Larrañeta
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, UK
| | - A Hutton
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, UK
| | - R F Donnelly
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, UK
| | - A Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy
| | - M Roldo
- School of Pharmacy and Biomedical Sciences, St Michael's Building, White Swan Road, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - A J Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - A Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - P Giunchedi
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| | - E Gavini
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy.
| |
Collapse
|
29
|
Ahmad Z, Zafar N, Mahmood A, Sarfraz RM, Latif R, Gad HA. Fast dissolving microneedle patch for pronounced systemic delivery of an antihyperlipidemic drug. Pharm Dev Technol 2023; 28:896-906. [PMID: 37873604 DOI: 10.1080/10837450.2023.2272863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Fast dissolving microneedles (F-dMN) are quite a novel approach delivering specific drug molecules directly into the bloodstream, bypassing the first-pass effect. The present study reported an F-dMN patch to enhance systemic delivery of simvastatin in a patient-friendly manner. The F-dMN patch was developed using polyvinyl pyrrolidone and polyvinyl alcohol and characterized using light microscopy, SEM, XRD, FTIR, mechanical strength, drug content (%), an ex-vivo penetration study, an ex-vivo drug release study, a skin irritation test, and a pharmacokinetics study. The optimized F-dMN patch exhibited excellent elongation of 35.17%, good tensile strength of 9.68 MPa, an appropriate moisture content of 5.65%, and good penetrability up to 560 µm. Moreover, it showed 93.4% of the drug content within the needles and 81.75% in-vitro release. Histopathological findings and a skin irritation study proved that the F-dMN patch was biocompatible and did not cause any sort of irritation on animal skin. Pharmacokinetic parameters of F-dMN patches were improved (Cmax 6.974 µg/ml, tmax 1 hr and AUC 19. 518 µg.h/ml) as compared to tablet Simva 20 mg solution (Cmax 2.485 µg/ml, tmax 1.4 hr and AUC 11.199 µg.h/ml), thus confirming bioavailability enhancement. Moreover, stability studies confirmed the stability of the developed F-dMN patch, as investigated by axial needle fracture force and drug content.
Collapse
Affiliation(s)
- Zulcaif Ahmad
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore, Pakistan
| | - Nadiah Zafar
- Department of Pharmaceutics, Universiti Teknologi MARA Selangor, Bandar Puncak Alam, Malaysia
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal, Pakistan
| | | | - Riffat Latif
- Avera Health and Science, Department of Pharmaceutical Sciences, South Dakota State University, USA
| | - Heba A Gad
- Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Xu Y, Zhao M, Cao J, Fang T, Zhang J, Zhen Y, Wu F, Yu X, Liu Y, Li J, Wang D. Applications and recent advances in transdermal drug delivery systems for the treatment of rheumatoid arthritis. Acta Pharm Sin B 2023; 13:4417-4441. [PMID: 37969725 PMCID: PMC10638506 DOI: 10.1016/j.apsb.2023.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 11/17/2023] Open
Abstract
Rheumatoid arthritis is a chronic, systemic autoimmune disease predominantly based on joint lesions with an extremely high disability and deformity rate. Several drugs have been used for the treatment of rheumatoid arthritis, but their use is limited by suboptimal bioavailability, serious adverse effects, and nonnegligible first-pass effects. In contrast, transdermal drug delivery systems (TDDSs) can avoid these drawbacks and improve patient compliance, making them a promising option for the treatment of rheumatoid arthritis (RA). Of course, TDDSs also face unique challenges, as the physiological barrier of the skin makes drug delivery somewhat limited. To overcome this barrier and maximize drug delivery efficiency, TDDSs have evolved in terms of the principle of transdermal facilitation and transdermal facilitation technology, and different generations of TDDSs have been derived, which have significantly improved transdermal efficiency and even achieved individualized controlled drug delivery. In this review, we summarize the different generations of transdermal drug delivery systems, the corresponding transdermal strategies, and their applications in the treatment of RA.
Collapse
Affiliation(s)
| | | | - Jinxue Cao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ting Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanli Zhen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fangling Wu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohui Yu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaming Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
31
|
He C, He X, Zhang Y, Han X, Yang Y, Shen Y, Wang T, Wu Q, Yang Y, Xu W, Bai J, Wang Z. Development of a Microfluidic Formatted Ultrasound-Controlled Monodisperse Lipid Vesicles' Hydrogel Dressing Combined with Ultrasound for Transdermal Drug Delivery System. Macromol Biosci 2023; 23:e2300049. [PMID: 37178331 DOI: 10.1002/mabi.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Transdermal drug delivery system (TDDS) has attracted much attention in the pharmaceutical technology area. However, the current methods are difficult to ensure penetration efficiency, controllability, and safety in the dermis, so its widespread clinical use has been limited. This work proposes an ultrasound-controlled monodisperse lipid vesicles (U-CMLVs) hydrogel dressing, which combines with ultrasound to form TDDS. Using microfluidic technology, prepare size controllable U-CMLVs with high drug encapsulation efficiency and quantitative encapsulation of ultrasonic response materials, and even uniform mix them with hydrogel to prepare the required thickness of dressings. The high encapsulation efficiency can ensure sufficient dosage of the drugs and further realize the control of ultrasonic response through quantitative encapsulation of ultrasound-responsive materials. Using high frequency (5 MHz, 0.4 W cm-2 ) and low frequency (60 kHz, 1 W cm-2 ) ultrasound to control the movement and rupture of U-CMLVs, the contents not only penetrate the stratum corneum into the epidermis but also break through the bottleneck of penetration efficiency, and deep into the dermis. These findings provide the groundwork for deep, controllable, efficient, and safe drug delivery through TDDS and lay a foundation for further expanding its application.
Collapse
Affiliation(s)
- Chengdian He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xiong He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaofeng Han
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center Chongqing Medical University, Chongqing, 400016, China
| | - Yong Shen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Teng Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Qing Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yukun Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Xu
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Jin Bai
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhenyu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
32
|
Cheng T, Tai Z, Shen M, Li Y, Yu J, Wang J, Zhu Q, Chen Z. Advance and Challenges in the Treatment of Skin Diseases with the Transdermal Drug Delivery System. Pharmaceutics 2023; 15:2165. [PMID: 37631379 PMCID: PMC10458513 DOI: 10.3390/pharmaceutics15082165] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Skin diseases are among the most prevalent non-fatal conditions worldwide. The transdermal drug delivery system (TDDS) has emerged as a promising approach for treating skin diseases, owing to its numerous advantages such as high bioavailability, low systemic toxicity, and improved patient compliance. However, the effectiveness of the TDDS is hindered by several factors, including the barrier properties of the stratum corneum, the nature of the drug and carrier, and delivery conditions. In this paper, we provide an overview of the development of the TDDS from first-generation to fourth-generation systems, highlighting the characteristics of each carrier in terms of mechanism composition, penetration method, mechanism of action, and recent preclinical studies. We further investigated the significant challenges encountered in the development of the TDDS and the crucial significance of clinical trials.
Collapse
Affiliation(s)
- Tingting Cheng
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Min Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Ying Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Junxia Yu
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Jiandong Wang
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Zhongjian Chen
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| |
Collapse
|
33
|
Arshad MS, Hussain S, Zafar S, Rana SJ, Ahmad N, Jalil NA, Ahmad Z. Improved Transdermal Delivery of Rabies Vaccine using Iontophoresis Coupled Microneedle Approach. Pharm Res 2023; 40:2039-2049. [PMID: 37186072 DOI: 10.1007/s11095-023-03521-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
AIM This study was aimed to develop rabies vaccine incorporated microneedle (MN) patches and evaluate the immunogenicity of prepared formulations in combination with iontophoresis. METHODS Patches comprising of polyvinyl pyrrolidone, hyaluronic acid and polyethylene glycol 400 were engineered by vacuum micromolding technique. Physical evaluation of patches included determination of folding endurance, % swelling and morphological features. In vitro release study was performed in skin simulant agarose gel using model drug (methylene blue) loaded patches. In vitro insertion ability was assessed using stratum corneum simulant parafilm. In vivo insertion study was performed in rats. Immunogenicity was evaluated in dogs by determining immunoglobulin G (IgG) and rabies virus neutralizing antibodies (RVNA) titer. RESULTS Patches displayed uniformly distributed microprojections with pointed tips and smooth surface, ~ 70% swelling, remained intact for ~ 200 foldings and successfully penetrated the parafilm. The area covered by model drug across agarose gel was almost double following treatment with MN-iontophoresis combination (MNdi) compared to MN alone (MNdo). Histological examination of rat skin treated with vaccine laden MN (MNvo) and MN-iontophoresis combination (MNvi) confirmed the formation of grooves in epidermis without any damage to the deep vasculature. A ~ 73% and ~ 206% increase (compared to untreated counterpart) was observed in the IgG titer of MNvo and MNvi treated dogs, respectively. The RVNA titer was increased by ~ 1.2 and ~ 2.2 times (compared to threshold value) after MNvo and MNvi treatment, respectively. CONCLUSION MN-iontophoresis combination provided relatively potent immunogenic response over the conventional intramuscular injection, hence, can be used for administering vaccines transcutaneously.
Collapse
Affiliation(s)
| | - Saad Hussain
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Nadia Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
34
|
Gopan G, Jose J, Khot KB, Bandiwadekar A. The use of cellulose, chitosan and hyaluronic acid in transdermal therapeutic management of obesity: A review. Int J Biol Macromol 2023:125374. [PMID: 37330096 DOI: 10.1016/j.ijbiomac.2023.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Obesity is a clinical condition with rising popularity and detrimental impacts on human health. According to the World Health Organization, obesity is the sixth most common cause of death worldwide. It is challenging to combat obesity because medications that are successful in the clinical investigation have harmful side effects when administered orally. The conventional approaches for treating obesity primarily entail synthetic compounds and surgical techniques but possess severe adverse effects and recurrences. As a result, a safe and effective strategy to combat obesity must be initiated. Recent studies have shown that biological macromolecules of the carbohydrate class, such as cellulose, hyaluronic acid, and chitosan, can enhance the release and efficacy of medications for obesity but due to their short biological half-lives and poor oral bioavailability, their distribution rate is affected. This helps to comprehend the need for an effective therapeutic approach via a transdermal drug delivery system. This review focuses on the transdermal administration, utilizing cellulose, chitosan, and hyaluronic acid via microneedles, as it offers a promising solution to overcome existing therapy limitations in managing obesity and it also highlights how microneedles can effectively deliver therapeutic substances through the skin's outer layer, bypassing pain receptors and specifically targeting adipose tissue.
Collapse
Affiliation(s)
- Gopika Gopan
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| | - Kartik Bhairu Khot
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Akshay Bandiwadekar
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| |
Collapse
|
35
|
Nair AB, Aldhubiab B, Shah J, Jacob S, Attimarad M, Sreeharsha N, Venugopala KN, Joseph A, Morsy MA. Design, Development, and Evaluation of Constant Voltage Iontophoresis for the Transungual Delivery of Efinaconazole. Pharmaceutics 2023; 15:pharmaceutics15051422. [PMID: 37242664 DOI: 10.3390/pharmaceutics15051422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
The efficacy of topical antifungal therapy in onychomycosis has been hindered by the failure of the antimycotic to permeate the nail plate. This research aims to design and develop a transungual system for the effective delivery of efinaconazole utilizing constant voltage iontophoresis. Seven prototype drug-loaded hydrogel formulations (E1-E7) were prepared to assess the influence of solvent (ethanol) and cosolvent (Labrasol®) on transungual delivery. Optimization was performed to evaluate the effect of three independent variables; voltage, solvent-to-cosolvent ratio, and penetration enhancer (PEG 400) concentration on critical quality attributes (CQAs), such as drug permeation and loading into the nail. The selected hydrogel product was characterized for pharmaceutical properties, efinaconazole release from the nail, and antifungal activity. Preliminary data indicates ethanol, Labrasol®, and voltage influence the transungual delivery of efinaconazole. Optimization design indicates a significant impact by applied voltage (p-0.0001) and enhancer concentration (p-0.0004) on the CQAs. Excellent correlation between selected independent variables and CQAs was confirmed by the high desirability value (0.9427). A significant (p < 0.0001) enhancement in the permeation (~78.59 µg/cm2) and drug loading (3.24 µg/mg) was noticed in the optimized transungual delivery with 10.5 V. FTIR spectral data indicates no interaction between the drug and excipients, while the DSC thermograms confirmed the amorphous state of the drug in the formulation. Iontophoresis produces a drug depot in the nail that releases above the minimum inhibitory concentration level for an extended period, potentially reducing the need for frequent topical treatment. Antifungal studies further substantiate the release data and have shown remarkable inhibition of Trichophyton mentagrophyte. Overall, the promising results obtained here demonstrate the prospective of this non-invasive method for the effective transungual delivery of efinaconazole, which could improve the treatment of onychomycosis.
Collapse
Affiliation(s)
- Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4000, South Africa
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
36
|
Detamornrat U, Parrilla M, Domínguez-Robles J, Anjani QK, Larrañeta E, De Wael K, Donnelly RF. Transdermal on-demand drug delivery based on an iontophoretic hollow microneedle array system. LAB ON A CHIP 2023; 23:2304-2315. [PMID: 37073607 DOI: 10.1039/d3lc00160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transdermal drug delivery has emerged as an alternative administration route for therapeutic drugs, overcoming current issues in oral and parenteral administration. However, this technology is hindered by the low permeability of the stratum corneum of the skin. In this work, we develop a synergic combination of two enhancing technologies to contribute to an improved and on-demand drug delivery through an iontophoretic system coupled with hollow microneedles (HMNs). For the first time, a polymeric HMN array coupled with integrated iontophoresis for the delivery of charged molecules and macromolecules (e.g. proteins) is devised. To prove the concept, methylene blue, fluorescein sodium, lidocaine hydrochloride, and bovine serum albumin-fluorescein isothiocyanate conjugate (BSA-FITC) were first tested in an in vitro setup using 1.5% agarose gel model. Subsequently, the ex vivo drug permeation study using a Franz diffusion cell was conducted, exhibiting a 61-fold, 43-fold, 54-fold, and 17-fold increment of the permeation of methylene blue, fluorescein sodium, lidocaine hydrochloride, and BSA-FITC, respectively, during the application of 1 mA cm-2 current for 6 h. Moreover, the total amount of drug delivered (i.e. in the skin and receptor compartment) was analysed to untangle the different delivery profiles according to the types of molecule. Finally, the integration of the anode and cathode into an iontophoretic hollow microneedle array system (IHMAS) offers the full miniaturisation of the concept. Overall, the IHMAS device provides a versatile wearable technology for transdermal on-demand drug delivery that can improve the administration of personalised doses, and potentially enhance precision medicine.
Collapse
Affiliation(s)
- Usanee Detamornrat
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Marc Parrilla
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Juan Domínguez-Robles
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Eneko Larrañeta
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
37
|
Baryakova TH, Pogostin BH, Langer R, McHugh KJ. Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems. Nat Rev Drug Discov 2023; 22:387-409. [PMID: 36973491 PMCID: PMC10041531 DOI: 10.1038/s41573-023-00670-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/29/2023]
Abstract
Poor medication adherence is a pervasive issue with considerable health and socioeconomic consequences. Although the underlying reasons are generally understood, traditional intervention strategies rooted in patient-centric education and empowerment have proved to be prohibitively complex and/or ineffective. Formulating a pharmaceutical in a drug delivery system (DDS) is a promising alternative that can directly mitigate many common impediments to adherence, including frequent dosing, adverse effects and a delayed onset of action. Existing DDSs have already positively influenced patient acceptability and improved rates of adherence across various disease and intervention types. The next generation of systems have the potential to instate an even more radical paradigm shift by, for example, permitting oral delivery of biomacromolecules, allowing for autonomous dose regulation and enabling several doses to be mimicked with a single administration. Their success, however, is contingent on their ability to address the problems that have made DDSs unsuccessful in the past.
Collapse
Affiliation(s)
| | | | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
38
|
Zheng Y, Ye R, Gong X, Yang J, Liu B, Xu Y, Nie G, Xie X, Jiang L. Iontophoresis-driven microneedle patch for the active transdermal delivery of vaccine macromolecules. MICROSYSTEMS & NANOENGINEERING 2023; 9:35. [PMID: 36987502 PMCID: PMC10040928 DOI: 10.1038/s41378-023-00515-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 05/28/2023]
Abstract
COVID-19 has seriously threatened public health, and transdermal vaccination is an effective way to prevent pathogen infection. Microneedles (MNs) can damage the stratum corneum to allow passive diffusion of vaccine macromolecules, but the delivery efficiency is low, while iontophoresis can actively promote transdermal delivery but fails to transport vaccine macromolecules due to the barrier of the stratum corneum. Herein, we developed a wearable iontophoresis-driven MN patch and its iontophoresis-driven device for active and efficient transdermal vaccine macromolecule delivery. Polyacrylamide/chitosan hydrogels with good biocompatibility, excellent conductivity, high elasticity, and a large loading capacity were prepared as the key component for vaccine storage and active iontophoresis. The transdermal vaccine delivery strategy of the iontophoresis-driven MN patch is "press and poke, iontophoresis-driven delivery, and immune response". We demonstrated that the synergistic effect of MN puncture and iontophoresis significantly promoted transdermal vaccine delivery efficiency. In vitro experiments showed that the amount of ovalbumin delivered transdermally using the iontophoresis-driven MN patch could be controlled by the iontophoresis current. In vivo immunization studies in BALB/c mice demonstrated that transdermal inoculation of ovalbumin using an iontophoresis-driven MN patch induced an effective immune response that was even stronger than that of traditional intramuscular injection. Moreover, there was little concern about the biosafety of the iontophoresis-driven MN patch. This delivery system has a low cost, is user-friendly, and displays active delivery, showing great potential for vaccine self-administration at home.
Collapse
Affiliation(s)
- Ying Zheng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107 PR China
| | - Rui Ye
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107 PR China
| | - Xia Gong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107 PR China
| | - Jingbo Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107 PR China
| | - Bin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107 PR China
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 PR China
| | - Gang Nie
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 PR China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006 PR China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107 PR China
| |
Collapse
|
39
|
Han W, Liu F, Liu G, Li H, Xu Y, Sun S. Research progress of physical transdermal enhancement techniques in tumor therapy. Chem Commun (Camb) 2023; 59:3339-3359. [PMID: 36815500 DOI: 10.1039/d2cc06219d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The advancement and popularity of transdermal drug delivery (TDD) based on the physical transdermal enhancement technique (PTET) has opened a new paradigm for local tumor treatment. The drug can be directly delivered to the tumor site through the skin, thus avoiding the toxic side effects caused by the first-pass effect and achieving high patient compliance. Further development of PTETs has provided many options for antitumor drugs and laid the foundation for future applications of wearable closed-loop targeting drug delivery systems. In this highlight, the different types of PTETs and related mechanisms, and applications of PTET-related tumor detection and therapy are highlighted. According to their type and characteristics, PTETs are categorized as follows: (1) iontophoresis, (2) electroporation, (3) ultrasound, (4) thermal ablation, and (5) microneedles. PTET-related applications in the local treatment of tumors are categorized as follows: (1) melanoma, (2) breast tumor, (3) squamous cell carcinoma, (4) cervical tumor, and (5) others. The challenges and future prospects of existing PTETs are also discussed. This highlight will provide guidance for the design of PTET-based wearable closed-loop targeting drug delivery systems and personalized therapy for tumors.
Collapse
Affiliation(s)
- Weiqiang Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116023, P. R. China.
| | - Guoxin Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
40
|
Yang Y, Zhou R, Wang Y, Zhang Y, Yu J, Gu Z. Recent Advances in Oral and Transdermal Protein Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202214795. [PMID: 36478123 DOI: 10.1002/anie.202214795] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Protein and peptide drugs are predominantly administered by injection to achieve high bioavailability, but this greatly compromises patient compliance. Oral and transdermal drug delivery with minimal invasiveness and high adherence represent attractive alternatives to injection administration. However, oral and transdermal administration of bioactive proteins must overcome biological barriers, namely the gastrointestinal and skin barriers, respectively. The rapid development of new materials and technologies promises to address these physiological obstacles. This review provides an overview of the latest advances in oral and transdermal protein delivery, including chemical strategies, synthetic nanoparticles, medical microdevices, and biomimetic systems for oral administration, as well as chemical enhancers, physical approaches, and microneedles in transdermal delivery. We also discuss challenges and future perspectives of the field with a focus on innovation and translation.
Collapse
Affiliation(s)
- Yinxian Yang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruyi Zhou
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanfang Wang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.,Jinhua Institute of Zhejiang University, Jinhua, 321299, China.,Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.,Jinhua Institute of Zhejiang University, Jinhua, 321299, China.,Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
41
|
Versaci M, Morabito FC. Numerical Approaches for Recovering the Deformable Membrane Profile of Electrostatic Microdevices for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:1688. [PMID: 36772726 PMCID: PMC9920444 DOI: 10.3390/s23031688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Recently, a circular symmetrical nonlinear stationary 2D differential model for biomedical micropumps, where the amplitude of the electrostatic field is locally proportional to the curvature of the membrane, was studied in detail. Starting from this, in this work, we first introduce a positive and limited function to model the dielectric properties of the material constituting the membrane according to experimental evidence which highlights that electrostatic capacitance variation occurs when the membrane deforms. Therefore, we present and discuss algebraic conditions of existence, uniqueness, and stability, even with the fringing field formulated according to the Pelesko-Driskoll theory, which is known to take these effects into account with terms characterized by reduced computational loads. These conditions, using "gold standard" numerical approaches, allow the optimal numerical recovery of the membrane profile to be achieved under different load conditions and also provide an important criterion for choosing the intended use of the device starting from the choice of the material constituting the membrane and vice versa. Finally, important insights are discussed regarding the pull-in voltage and electrostatic pressure.
Collapse
Affiliation(s)
- Mario Versaci
- DICEAM Department, "Mediterranea" University, 89124 Reggio Calabria, Italy
| | | |
Collapse
|
42
|
Wang T, Gao H, Wang D, Zhang C, Hu K, Zhang H, Lin J, Chen X. Stem cell-derived exosomes in the treatment of melasma and its percutaneous penetration. Lasers Surg Med 2023; 55:178-189. [PMID: 36573453 DOI: 10.1002/lsm.23628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Melasma is a refractory skin disease due to its complex pathogenesis and difficult treatment. Studies have found that human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exos) could serve as a novel cell-free therapeutic strategy in regenerative and esthetic medicine. It could potentially treat melasma, but the skin barrier is a challenge. In this study, we aim to explore the safety and efficacy of hUCMSC-Exos in the treatment of melasma and the means to promote its percutaneous penetration. MATERIALS AND METHODS In the animal study about the effect of penetration, percutaneous penetration of PKH67-labeled hUCMSC-Exos was studied under microneedles, 1565 nm nonablative fractional laser (NAFL), and a plasma named Peninsula Blue Aurora Shumin Master (PBASM) treatments, observed by confocal laser scanning microscopy. In the clinical application study, 60 patients with melasma treated in our department were divided into four groups. NAFL combined with normal saline treatment was used for Group A. Microneedles, NAFL, and PBASM combined with hUCMSC-Exos treatments were used for Groups B, C, and D, respectively. Each patient received four treatments at 1-month intervals. Assessments were done using the degree of pain posttreatment, melasma area and severity score, improvement rate, physician global assessment score, satisfaction, and complications. RESULTS In the animal study about the effect of penetration, hUCMSC-Exos can penetrate the deep dermis under microneedles, NAFL, and PBASM treatments. In the clinical application study, compared with Group A, Groups B, C, and D showed significantly improved therapeutic effect and patient satisfaction (p < 0.05), and there was no significant difference among Groups B, C, and D.(p > 0.05). Patients in Group B reported higher pain levels than those in the other three groups (p < 0.05); the treatment experience of patients in Group D was better. CONCLUSION hUCMSC-Exos can improve the symptoms of melasma safely and effectively. Compared with microneedles, NAFL and PBASM can also achieve a good effect toward promoting penetration. These findings are worthy of exploration and clinical application.
Collapse
Affiliation(s)
- Ting Wang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hangqi Gao
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dezhi Wang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaoyu Zhang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Kailun Hu
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haoruo Zhang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jian Lin
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaosong Chen
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
43
|
Mendes C, Thirupathi A, Zaccaron RP, Corrêa MEAB, Bittencourt JVS, Casagrande LDR, de Lima ACS, de Oliveira LL, de Andrade TAM, Gu Y, Feuser PE, Machado-de-Ávila RA, Silveira PCL. Microcurrent and Gold Nanoparticles Combined with Hyaluronic Acid Accelerates Wound Healing. Antioxidants (Basel) 2022; 11:2257. [PMID: 36421443 PMCID: PMC9686715 DOI: 10.3390/antiox11112257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 01/30/2024] Open
Abstract
This study aimed to investigate the effects of iontophoresis and hyaluronic acid (HA) combined with a gold nanoparticle (GNP) solution in an excisional wound model. Fifty Wistar rats (n = 10/group) were randomly assigned to the following groups: excisional wound (EW); EW + MC; EW + MC + HA; EW + MC + GNPs; and EW + MC + HA + GNPs. The animals were induced to a circular excision, and treatment started 24 h after injury with microcurrents (300 µA) containing gel with HA (0.9%) and/or GNPs (30 mg/L) in the electrodes (1 mL) for 7 days. The animals were euthanized 12 h after the last treatment application. The results demonstrate a reduction in the levels of pro-inflammatory cytokines (IFNϒ, IL-1β, TNFα, and IL-6) in the group in which the therapies were combined, and they show increased levels of anti-inflammatory cytokines (IL-4 and IL-10) and growth factors (FGF and TGF-β) in the EW + MC + HA and EW + MC + HA + GNPs groups. As for the levels of dichlorofluorescein (DCF) and nitrite, as well as oxidative damage (carbonyl and sulfhydryl), they decreased in the combined therapy group when compared to the control group. Regarding antioxidant defense, there was an increase in glutathione (GSH) and a decrease in superoxide dismutase (SOD) in the combined therapy group. A histological analysis showed reduced inflammatory infiltrate in the MC-treated groups and in the combination therapy group. There was an increase in the wound contraction rate in all treated groups when compared to the control group, proving that the proposed therapies are effective in the epithelial healing process. The results of this study demonstrate that the therapies in combination favor the tissue repair process more significantly than the therapies in isolation.
Collapse
Affiliation(s)
- Carolini Mendes
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Anand Thirupathi
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Maria Eduarda Anastácio Borges Corrêa
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - João V. S. Bittencourt
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Anadhelly C. S. de Lima
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Lara L. de Oliveira
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Thiago A. M. de Andrade
- Graduate Program of Biomedical Science, Herminio Ometto Foundation, Araras 13607-339, Brazil
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Paulo Emílio Feuser
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Ricardo A. Machado-de-Ávila
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Paulo Cesar Lock Silveira
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| |
Collapse
|
44
|
Liatsopoulou A, Varvaresou A, Mellou F, Protopapa E. Iontophoresis in dermal delivery: A review of applications in dermato-cosmetic and aesthetic sciences. Int J Cosmet Sci 2022; 45:117-132. [PMID: 36326063 DOI: 10.1111/ics.12824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Iontophoresis is defined as the use of electric current to drive molecules across cell membranes through an electrolyte solution. In therapeutic context, it is used to facilitate the administration of bioactive substances, either systemically or locally. The technique presents various advantages and that is why it has been successfully used by a plethora of medical sciences. The constantly developing field of dermato-cosmetic science has also taken advantage of the possibilities offered by iontophoresis, aiming to enhance the delivery of the applied active ingredients and, thus, induce the desired cosmetic effects. METHODS The available literature was examined for evidence-based reports of safe and successful iontophoresis of pharmaceutical and cosmetic substances, in order to explore different iontophoretic applications in the field of dermato-cosmetic and dermato-aesthetic sciences. CONCLUSION Iontophoresis can be safely and successfully used in the treatment of ageing, photoageing, hyperpigmentation, oxidative stress, hair loss, hair removal, acne, acne sequelae and cellulite, providing many possibilities for enhanced treatment results.
Collapse
Affiliation(s)
- Aikaterini Liatsopoulou
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| | - Athanasia Varvaresou
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| | - Fotini Mellou
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| | - Evangelia Protopapa
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
45
|
Shukla S, Huston RH, Cox BD, Satoskar AR, Narayan RJ. Transdermal delivery via medical device technologies. Expert Opin Drug Deliv 2022; 19:1505-1519. [PMID: 36222232 DOI: 10.1080/17425247.2022.2135503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite their effectiveness and indispensability, many drugs are poorly solvated in aqueous solutions. Over recent decades, the need for targeted drug delivery has led to the development of pharmaceutical formulations with enhanced lipid solubility to improve their delivery properties. Therefore, a dependable approach for administering lipid-soluble drugs needs to be developed. AREAS COVERED The advent of 3D printing or additive manufacturing (AM) has revolutionized the development of medical devices, which can effectively enable the delivery of lipophilic drugs to the targeted tissues. This review focuses on the use of microneedles and iontophoresis for transdermal drug delivery. Microneedle arrays, inkjet printing, and fused deposition modeling have emerged as valuable approaches for delivering several classes of drugs. In addition, iontophoresis has been successfully employed for the effective delivery of macromolecular drugs. EXPERT OPINION Microneedle arrays, inkjet printing, and fused deposition are potentially useful for many drug delivery applications; however, the clinical and commercial adoption rates of these technologies are relatively low. Additional efforts is needed to enable the pharmaceutical community to fully realize the benefits of these technologies.
Collapse
Affiliation(s)
- Shubhangi Shukla
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Ryan H Huston
- Department of Microbiology, The Ohio State University, 484 W. 12 Ave, Columbus, OH 43210, USA
| | - Blake D Cox
- Division of Anatomy, The Ohio State University, 370 W. 9th Avenue, Columbus, OH 43210, USA
| | - Abhay R Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, USA
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| |
Collapse
|
46
|
Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J Control Release 2022; 351:361-380. [PMID: 36169040 DOI: 10.1016/j.jconrel.2022.09.025] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Upon exhaustive research, the transdermal drug delivery system (TDDS) has appeared as a potential, well-accepted, and popular approach to a novel drug delivery system. Ease of administration, easy handling, minimum systemic exposure, least discomfort, broad flexibility and tunability, controlled release, prolonged therapeutic effect, and many more perks make it a promising approach for effective drug delivery. Although, the primary challenge associated is poor skin permeability. Skin is an intact barrier that serves as a primary defense mechanism to preclude any foreign particle's entry into the body. Owing to the unique anatomical framework, i.e., compact packing of stratum corneum with tight junction and fast anti-inflammatory responses, etc., emerged as a critical physiological barrier for TDDS. Fusion with other novel approaches like nanocarriers, specially designed transdermal delivery devices, permeation enhancers, etc., can overcome the limitations. Utilizing such strategies, some of the products are under clinical trials, and many are under investigation. This review explores all dimensions that overcome poor permeability and allows the drug to attain maximum potential. The article initially compiles fundamental features, components, and design of TDDS, followed by critical aspects and various methods, including in vitro, ex vivo, and in vivo methods of assessing skin permeability. The work primarily aimed to highlight the recent advancement in novel strategies for effective transdermal drug delivery utilizing active methods like iontophoresis, electroporation, sonophoresis, microneedle, needleless jet injection, etc., and passive methods such as the use of liposomes, SLN, NLC, micro/nanoemulsions, dendrimers, transferosomes, and many more nanocarriers. In all, this compilation will provide a recent insight on the novel updates along with basic concepts, the current status of clinical development, and challenges for the clinical translation of TDDS.
Collapse
Affiliation(s)
- Vivek Phatale
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Shikha Jha
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Dnyaneshwar Patil
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Mukta Agrawal
- SVKM's Narsee Monjee Institute of Management Studies (NMIMS), School of Pharmacy & Technology Management, Hyderabad 509301, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India.
| |
Collapse
|
47
|
Kuznetsov DM, Kuznetsova DA, Zakharova LY. Liposomes modified with borneol-containing surfactants for transdermal delivery of hydrophilic substrates. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3606-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
48
|
Chaudon MJ, Hulea O, Yakoub A, Monnier P, Saadaoui M. Wearable device for iontophoretic treatment and monitoring of pressure ulcers: Proof-of-concept. Med Eng Phys 2022; 107:103861. [DOI: 10.1016/j.medengphy.2022.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
|
49
|
Alkilani AZ, Nasereddin J, Hamed R, Nimrawi S, Hussein G, Abo-Zour H, Donnelly RF. Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems. Pharmaceutics 2022; 14:1152. [PMID: 35745725 PMCID: PMC9231212 DOI: 10.3390/pharmaceutics14061152] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ideal drug delivery system has a bioavailability comparable to parenteral dosage forms but is as convenient and easy to use for the patient as oral solid dosage forms. In recent years, there has been increased interest in transdermal drug delivery (TDD) as a non-invasive delivery approach that is generally regarded as being easy to administer to more vulnerable age groups, such as paediatric and geriatric patients, while avoiding certain bioavailability concerns that arise from oral drug delivery due to poor absorbability and metabolism concerns. However, despite its many merits, TDD remains restricted to a select few drugs. The physiology of the skin poses a barrier against the feasible delivery of many drugs, limiting its applicability to only those drugs that possess physicochemical properties allowing them to be successfully delivered transdermally. Several techniques have been developed to enhance the transdermal permeability of drugs. Both chemical (e.g., thermal and mechanical) and passive (vesicle, nanoparticle, nanoemulsion, solid dispersion, and nanocrystal) techniques have been investigated to enhance the permeability of drug substances across the skin. Furthermore, hybrid approaches combining chemical penetration enhancement technologies with physical technologies are being intensively researched to improve the skin permeation of drug substances. This review aims to summarize recent trends in TDD approaches and discuss the merits and drawbacks of the various chemical, physical, and hybrid approaches currently being investigated for improving drug permeability across the skin.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Jehad Nasereddin
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Sukaina Nimrawi
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Ghaid Hussein
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Hadeel Abo-Zour
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan; (J.N.); (S.N.); (G.H.); (H.A.-Z.)
| | - Ryan F. Donnelly
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK;
| |
Collapse
|
50
|
Henricson J, Sjöberg F, Iredahl F, Strömberg T, Wilhelms D. In vivo dose-response analysis to acetylcholine: pharmacodynamic assessment by polarized reflectance spectroscopy. Sci Rep 2022; 12:6594. [PMID: 35449189 PMCID: PMC9023454 DOI: 10.1038/s41598-022-10617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Transdermal iontophoresis offers an in vivo alternative to the strain-gauge model for measurement of vascular function but is limited due to lack of technical solutions for outcome assessment. The aims of this study were to, after measurement by polarized reflectance spectroscopy (PRS), use pharmacodynamic dose–response analysis on responses to different concentrations of acetylcholine (ACh); and to examine the effect of three consecutively administered iontophoretic current pulses. The vascular responses in 15 healthy volunteers to iontophorised ACh (5 concentrations, range 0.0001% to 1%, three consecutive pulses of 0.02 mA for 10 min each) were recorded using PRS. Data were fitted to a four-parameter logistic dose response model and compared. Vascular responses were quantifiable by PRS. Similar pharmacodynamic dose response curves could be generated irrespectively of the ACh concentration. Linearly increasing maximum vasodilatory responses were registered with increasing concentration of ACh. A limited linear dose effect of the concentration of ACh was seen between pulses. Polarized reflectance spectroscopy is well suited for measuring vascular responses to iontophoretically administrated ACh. The results of this study support further development of iontophoresis as a method to study vascular function and pharmacological responses in vivo.
Collapse
Affiliation(s)
- Joakim Henricson
- Department of Emergency Medicine, Local Health Care Services in Central Östergötland, 58182, Linköping, Sweden. .,Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | - Folke Sjöberg
- Department of Hand, Plastic Surgery, Burns and Intensive Care, Linköping University Hospital, 58182, Linköping, Sweden.,Department of Health, Medicine and Caring Sciences, Division of Community Medicine, Linköping University, Linköping, Sweden
| | - Fredrik Iredahl
- Department of Primary Health Care, Region Östergötland, 58182, Linköping, Sweden.,Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Tomas Strömberg
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Daniel Wilhelms
- Department of Emergency Medicine, Local Health Care Services in Central Östergötland, 58182, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|