1
|
Cárdenas-León CG, Klaas M, Mäemets-Allas K, Arak T, Eller M, Jaks V. Olfactomedin 4 regulates migration and proliferation of immortalized non-transformed keratinocytes through modulation of the cell cycle machinery and actin cytoskeleton remodelling. Exp Cell Res 2022; 415:113111. [PMID: 35337817 DOI: 10.1016/j.yexcr.2022.113111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 12/22/2022]
Abstract
Olfactomedin 4 (OLFM4), a multifunctional matricellular protein, is involved in regulation of angiogenesis, innate immunity, inflammation, tumorigenesis and metastasis formation via modulation of important cellular processes like adhesion, proliferation, differentiation as well as apoptosis. In our previous work we demonstrated the upregulation of OLFM4 during liver regeneration and cutaneous wound healing. Here we studied the outcomes of OLFM4 downregulation in human immortalized keratinocytes - the HaCaT cells. The suppression of OLFM4 inhibited migration but enhanced the proliferation of these cells. By using proteomic, and phosphoproteomic analysis, we found that OLFM4 downregulation induced changes in the levels of 184 proteins and 348 phosphosites. An integrated pathway analysis suggested that the increased phosphorylation of CDK7 at Ser164 and Thr170 may serve as the key event in the activation of CDK2 and consequent activation of cell cycle progression. Furthermore, the decrease in GIT1 and WAVE2 protein levels were connected to the disorganization of the actin cytoskeleton, reduction of lamellipodia formation at the leading edge of HaCaT cells, and decrease in their migration capacity.
Collapse
Affiliation(s)
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Terje Arak
- Tartu University Hospital, Surgery Clinic, Puusepa 8, 50406, Tartu, Estonia
| | - Mart Eller
- Tartu University Hospital, Surgery Clinic, Puusepa 8, 50406, Tartu, Estonia
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia; Dermatology Clinic, Tartu University Clinics, Tartu, Estonia.
| |
Collapse
|
2
|
Hussein H, Kishen A. Application of Proteomics in Apical Periodontitis. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.814603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Apical periodontitis is an inflammatory reaction of the periradicular tissues as a consequence of multispecies microbial communities organized as biofilms within the root canal system. Periradicular tissue changes at the molecular level initiate and orchestrate the inflammatory process and precede the presentation of clinical symptoms. Inflammatory mediators have been studied at either the proteomic, metabolomic, or transcriptomic levels. Analysis at the protein level is the most common approach used to identify and quantify analytes from diseased periradicular tissues during root canal treatment, since it is more representative of definitive and active periradicular inflammatory mediator than its transcript expression level. In disease, proteins expressed in an altered manner could be utilized as biomarkers. Biomarker proteins in periradicular tissues have been qualitatively and quantitatively assessed using antibodies (immunoassays and immunostaining) or mass spectrometry-based approaches. Herein, we aim to provide a comprehensive understanding of biomarker proteins identified in clinical studies investigating periradicular lesions and pulp tissue associated with apical periodontitis using proteomics. The high throughput mass spectrometry-based proteomics has the potential to improve the current methods of monitoring inflammation while distinguishing between progressive, stable, and healing lesions for the identification of new diagnostic and therapeutic targets. This method would provide more objective tools to (a) discover biomarkers related to biological processes for better clinical case selection, and (b) determine tissue response to novel therapeutic interventions for more predictable outcomes in endodontic treatment.
Collapse
|
3
|
Phosphorylation-dependent proteome of Marcks in ependyma during aging and behavioral homeostasis in the mouse forebrain. GeroScience 2022; 44:2077-2094. [DOI: 10.1007/s11357-022-00517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022] Open
|
4
|
Kwon HK, Choi H, Park SG, Park WJ, Kim, DH, Park ZY. Integrated Quantitative Phosphoproteomics and Cell-based Functional Screening Reveals Specific Pathological Cardiac Hypertrophy-related Phosphorylation Sites. Mol Cells 2021; 44:500-516. [PMID: 34158421 PMCID: PMC8334354 DOI: 10.14348/molcells.2021.4002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
Cardiac hypertrophic signaling cascades resulting in heart failure diseases are mediated by protein phosphorylation. Recent developments in mass spectrometry-based phosphoproteomics have led to the identification of thousands of differentially phosphorylated proteins and their phosphorylation sites. However, functional studies of these differentially phosphorylated proteins have not been conducted in a large-scale or high-throughput manner due to a lack of methods capable of revealing the functional relevance of each phosphorylation site. In this study, an integrated approach combining quantitative phosphoproteomics and cell-based functional screening using phosphorylation competition peptides was developed. A pathological cardiac hypertrophy model, junctate-1 transgenic mice and control mice, were analyzed using label-free quantitative phosphoproteomics to identify differentially phosphorylated proteins and sites. A cell-based functional assay system measuring hypertrophic cell growth of neonatal rat ventricle cardiomyocytes (NRVMs) following phenylephrine treatment was applied, and changes in phosphorylation of individual differentially phosphorylated sites were induced by incorporation of phosphorylation competition peptides conjugated with cell-penetrating peptides. Cell-based functional screening against 18 selected phosphorylation sites identified three phosphorylation sites (Ser-98, Ser-179 of Ldb3, and Ser-1146 of palladin) displaying near-complete inhibition of cardiac hypertrophic growth of NRVMs. Changes in phosphorylation levels of Ser-98 and Ser-179 in Ldb3 were further confirmed in NRVMs and other pathological/physiological hypertrophy models, including transverse aortic constriction and swimming models, using site-specific phospho-antibodies. Our integrated approach can be used to identify functionally important phosphorylation sites among differentially phosphorylated sites, and unlike conventional approaches, it is easily applicable for large-scale and/or high-throughput analyses.
Collapse
Affiliation(s)
- Hye Kyeong Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Hyunwoo Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Woo Jin Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Do Han Kim,
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
5
|
Konno R, Matsui T, Ito H, Kawashima Y, Itakura M, Kodera Y. Highly accurate and precise quantification strategy using stable isotope dimethyl labeling coupled with GeLC-MS/MS. Biochem Biophys Res Commun 2021; 550:37-42. [PMID: 33684618 DOI: 10.1016/j.bbrc.2021.02.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/22/2021] [Indexed: 02/08/2023]
Abstract
Shotgun proteomics is a powerful method for comprehensively identifying and quantifying tryptic peptides, but it is difficult to analyze proteolytic events. One-dimensional gel and liquid chromatography-tandem mass spectrometry (GeLC-MS/MS) enables the separation of proteolytic fragments using SDS-PAGE followed by identification using LC-MS/MS. GeLC-MS/MS is thus an excellent method for identifying fragmentation. However, the lower reproducibility of gel extraction and nano flow LC-MS/MS can produce inaccurate results in comparative analyses of protein quantification among samples. In this study, a novel GeLC-MS/MS method coupled with stable isotope dimethyl labeling was developed. In the method, a mixture of light- and heavy-labeled samples is loaded onto an SDS-PAGE gel, and proteins with different isotopes in one extracted band are quantitatively analyzed by one-shot injection. This procedure enables accurate determination of the abundance ratio of peptides between two samples, even in cases of low peptide abundance, and it is not affected by the reproducibility of the gel extraction or LC-MS procedures. Therefore, our new GeLC-MS/MS method coupled with stable isotope dimethyl labeling provides high accuracy and comprehensive peptide comparisons, enabling the detection of proteolysis events caused by disease or physiological processes.
Collapse
Affiliation(s)
- Ryo Konno
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Takashi Matsui
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan; Center for Disease Proteomics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Hiroaki Ito
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Makoto Itakura
- Center for Disease Proteomics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan; Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yoshio Kodera
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan; Center for Disease Proteomics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
6
|
Salvato F, Hettich RL, Kleiner M. Five key aspects of metaproteomics as a tool to understand functional interactions in host-associated microbiomes. PLoS Pathog 2021; 17:e1009245. [PMID: 33630960 PMCID: PMC7906368 DOI: 10.1371/journal.ppat.1009245] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Fernanda Salvato
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (FS); (MK)
| | - Robert L. Hettich
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, Tennessee, United States of America
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (FS); (MK)
| |
Collapse
|
7
|
Gunnarsson S, Prabakaran S. In silico identification of novel open reading frames in Plasmodium falciparum oocyte and salivary gland sporozoites using proteogenomics framework. Malar J 2021; 20:71. [PMID: 33546698 PMCID: PMC7866754 DOI: 10.1186/s12936-021-03598-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/16/2021] [Indexed: 11/25/2022] Open
Abstract
Background Plasmodium falciparum causes the deadliest form of malaria, which remains one of the most prevalent infectious diseases. Unfortunately, the only licensed vaccine showed limited protection and resistance to anti-malarial drug is increasing, which can be largely attributed to the biological complexity of the parasite’s life cycle. The progression from one developmental stage to another in P. falciparum involves drastic changes in gene expressions, where its infectivity to human hosts varies greatly depending on the stage. Approaches to identify candidate genes that are responsible for the development of infectivity to human hosts typically involve differential gene expression analysis between stages. However, the detection may be limited to annotated proteins and open reading frames (ORFs) predicted using restrictive criteria. Methods The above problem is particularly relevant for P. falciparum; whose genome annotation is relatively incomplete given its clinical significance. In this work, systems proteogenomics approach was used to address this challenge, as it allows computational detection of unannotated, novel Open Reading Frames (nORFs), which are neglected by conventional analyses. Two pairs of transcriptome/proteome were obtained from a previous study where one was collected in the mosquito-infectious oocyst sporozoite stage, and the other in the salivary gland sporozoite stage with human infectivity. They were then re-analysed using the proteogenomics framework to identify nORFs in each stage. Results Translational products of nORFs that map to antisense, intergenic, intronic, 3′ UTR and 5′ UTR regions, as well as alternative reading frames of canonical proteins were detected. Some of these nORFs also showed differential expression between the two life cycle stages studied. Their regulatory roles were explored through further bioinformatics analyses including the expression regulation on the parent reference genes, in silico structure prediction, and gene ontology term enrichment analysis. Conclusion The identification of nORFs in P. falciparum sporozoites highlights the biological complexity of the parasite. Although the analyses are solely computational, these results provide a starting point for further experimental validation of the existence and functional roles of these nORFs,
Collapse
Affiliation(s)
- Sophie Gunnarsson
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Sudhakaran Prabakaran
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK.
| |
Collapse
|
8
|
Meyfour A, Pahlavan S, Mirzaei M, Krijgsveld J, Baharvand H, Salekdeh GH. The quest of cell surface markers for stem cell therapy. Cell Mol Life Sci 2021; 78:469-495. [PMID: 32710154 PMCID: PMC11073434 DOI: 10.1007/s00018-020-03602-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Stem cells and their derivatives are novel pharmaceutics that have the potential for use as tissue replacement therapies. However, the heterogeneous characteristics of stem cell cultures have hindered their biomedical applications. In theory and practice, when cell type-specific or stage-specific cell surface proteins are targeted by unique antibodies, they become highly efficient in detecting and isolating specific cell populations. There is a growing demand to identify reliable and actionable cell surface markers that facilitate purification of particular cell types at specific developmental stages for use in research and clinical applications. The identification of these markers as very important members of plasma membrane proteins, ion channels, transporters, and signaling molecules has directly benefited from proteomics and tools for proteomics-derived data analyses. Here, we review the methodologies that have played a role in the discovery of cell surface markers and introduce cutting edge single cell proteomics as an advanced tool. We also discuss currently available specific cell surface markers for stem cells and their lineages, with emphasis on the nervous system, heart, pancreas, and liver. The remaining gaps that pertain to the discovery of these markers and how single cell proteomics and identification of surface markers associated with the progenitor stages of certain terminally differentiated cells may pave the way for their use in regenerative medicine are also discussed.
Collapse
Affiliation(s)
- Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, Heidelberg, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem St, P.O. Box: 16635-148, 1665659911, Tehran, Iran.
| |
Collapse
|
9
|
Frankenfield AM, Fernandopulle MS, Hasan S, Ward ME, Hao L. Development and Comparative Evaluation of Endolysosomal Proximity Labeling-Based Proteomic Methods in Human iPSC-Derived Neurons. Anal Chem 2020; 92:15437-15444. [DOI: 10.1021/acs.analchem.0c03107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ashley M. Frankenfield
- Department of Chemistry, The George Washington University, Science and Engineering Hall, Suite 4000, 800 22nd Street, NW, Washington, District of Columbia 20052, United States
| | - Michael S. Fernandopulle
- National Institute of Neurological Disorders and Stroke, NIH, Building 35-2A, 35 Convent Drive, Bethesda, Maryland 20892, United States
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Hills Road, CB2 0XY, UK
| | - Saadia Hasan
- National Institute of Neurological Disorders and Stroke, NIH, Building 35-2A, 35 Convent Drive, Bethesda, Maryland 20892, United States
| | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke, NIH, Building 35-2A, 35 Convent Drive, Bethesda, Maryland 20892, United States
| | - Ling Hao
- Department of Chemistry, The George Washington University, Science and Engineering Hall, Suite 4000, 800 22nd Street, NW, Washington, District of Columbia 20052, United States
| |
Collapse
|
10
|
Kalmar JG, Oh Y, Dean RA, Muddiman DC. Comparative Proteomic Analysis of Wild Type and Mutant Lacking an SCF E3 Ligase F-Box Protein in Magnaporthe oryzae. J Proteome Res 2020; 19:3761-3768. [PMID: 32692924 DOI: 10.1021/acs.jproteome.0c00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnaporthe oryzae (M. oryzae) is a pathogenic, filamentous fungus that is a primary cause of rice blast disease. The M. oryzae protein MGG_13065, SCF E3 ubiquitin ligase complex F-box protein, has been identified as playing a crucial role in the infection process, specifically, as part of the ubiquitin mediated proteolysis pathway. Proteins targeted by MGG_13065 E3 ligase are first phosphorylated and then ubiquitinated by E3 ligase. In this study, we used a label-free quantitative global proteomics technique to probe the role of ubiquitination and phosphorylation in the mechanism of how E3 ligase regulates change in virulence of M. oryzae. To do this, we compared the WT M. oryzae 70-15 strain with a gene knock out (E3 ligase KO) strain. After applying a ≥ 5 normalized spectral count cutoff, a total of 4432 unique proteins were identified comprised of 4360 and 4372 in the WT and E3 ligase KO samples, respectively. Eighty proteins drastically increased in abundance, while 65 proteins decreased in abundance in the E3 ligase KO strain. Proteins (59) were identified only in the WT strain; 13 of these proteins had both phosphorylation and ubiquitination post-translational modifications. Proteins (71) were revealed to be only in the E3 ligase KO strain; 23 of the proteins have both phosphorylation and ubiquitination post-translational modifications. Several of these proteins were associated with key biological processes. These data greatly assist in the selection of future genes for functional studies and enable mechanistic insight related to virulence.
Collapse
|
11
|
Cozzolino F, Landolfi A, Iacobucci I, Monaco V, Caterino M, Celentano S, Zuccato C, Cattaneo E, Monti M. New label-free methods for protein relative quantification applied to the investigation of an animal model of Huntington Disease. PLoS One 2020; 15:e0238037. [PMID: 32886703 PMCID: PMC7473538 DOI: 10.1371/journal.pone.0238037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022] Open
Abstract
Spectral Counts approaches (SpCs) are largely employed for the comparison of protein expression profiles in label-free (LF) differential proteomics applications. Similarly, to other comparative methods, also SpCs based approaches require a normalization procedure before Fold Changes (FC) calculation. Here, we propose new Complexity Based Normalization (CBN) methods that introduced a variable adjustment factor (f), related to the complexity of the sample, both in terms of total number of identified proteins (CBN(P)) and as total number of spectral counts (CBN(S)). Both these new methods were compared with the Normalized Spectral Abundance Factor (NSAF) and the Spectral Counts log Ratio (Rsc), by using standard protein mixtures. Finally, to test the robustness and the effectiveness of the CBNs methods, they were employed for the comparative analysis of cortical protein extract from zQ175 mouse brains, model of Huntington Disease (HD), and control animals (raw data available via ProteomeXchange with identifier PXD017471). LF data were also validated by western blot and MRM based experiments. On standard mixtures, both CBN methods showed an excellent behavior in terms of reproducibility and coefficients of variation (CVs) in comparison to the other SpCs approaches. Overall, the CBN(P) method was demonstrated to be the most reliable and sensitive in detecting small differences in protein amounts when applied to biological samples.
Collapse
Affiliation(s)
- Flora Cozzolino
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Alfredo Landolfi
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | | | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | | | - Chiara Zuccato
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
- * E-mail:
| |
Collapse
|
12
|
Saadeldin IM, Swelum AAA, Elsafadi M, Mahmood A, Osama A, Shikshaky H, Alfayez M, Alowaimer AN, Magdeldin S. Thermotolerance and plasticity of camel somatic cells exposed to acute and chronic heat stress. J Adv Res 2019; 22:105-118. [PMID: 31969994 PMCID: PMC6965514 DOI: 10.1016/j.jare.2019.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
The Arabian camel is the largest known mammal that can survive in severe hot climatic conditions. We provide the molecular explanation for the thermotolerance of camel granulosa somatic cells after exposure to 45 °C for 2 (acute heat shock) or 20 h (chronic heat shock). The common features of the cellular responses to acute heat stress were the increase of heat shock proteins and DNA repair enzymes expression. Actin polymerization and Rho signaling were critically activated as a cellular defense against heat shock. Cells exposed to chronic heat shock showed altered cell architecture with a decrease in total detected proteins, metabolic enzymes, and cytoskeletal protein expression. Treatment with transforming growth factor beta (TGFβ) pathway inhibitor SB-431542 suppressed the morphological alterations of cells exposed to chronic heat shock. Moreover, during the recovery stage at 38 °C for 24 h, proteomic changes were partially restored with an exponential increase in HSP70 expression, and the cells restored their normal cellular morphology on the 9th day of recovery. Full proteomics data are available via ProteomeXchange with identifier PXD012159. The strategies of cellular defense and tolerance to both thermal conditions reflect the flexible adaptability of camel somatic cells to conserve life under extremely hot conditions.
Collapse
Key Words
- Actin
- Anastasis
- CB, Cytochalasin B
- Camel
- GSH, reduced glutathione
- HSPs
- HSPs, heat shock proteins
- IDA, information dependent acquisition
- MDA, malondialdehyde
- Proteomics
- RI, ROCK-inhibitor
- ROCK
- ROCKs, Rho-associated protein kinases
- TGFβ
- TGFβ, transforming growth factor beta
- TIC, total ion chromatography
- Y-27632, ROCK-inhibitor Y-27632
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia.,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Mona Elsafadi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Aya Osama
- Proteomics and Metabolomics Unit, 57357 Children's Cancer Hospital, Cairo, Egypt
| | - Hassan Shikshaky
- Proteomics and Metabolomics Unit, 57357 Children's Cancer Hospital, Cairo, Egypt
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Saudi Society for Camel Research, King Saud University, Saudi Arabia
| | - Abdullah N Alowaimer
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, 57357 Children's Cancer Hospital, Cairo, Egypt.,Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
13
|
Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites. Nat Commun 2019; 10:4964. [PMID: 31673027 PMCID: PMC6823429 DOI: 10.1038/s41467-019-12936-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023] Open
Abstract
Plasmodium sporozoites are transmitted from infected mosquitoes to mammals, and must navigate the host skin and vasculature to infect the liver. This journey requires distinct proteomes. Here, we report the dynamic transcriptomes and proteomes of both oocyst sporozoites and salivary gland sporozoites in both rodent-infectious Plasmodium yoelii parasites and human-infectious Plasmodium falciparum parasites. The data robustly define mRNAs and proteins that are upregulated in oocyst sporozoites (UOS) or upregulated in infectious sporozoites (UIS) within the salivary glands, including many that are essential for sporozoite functions in the vector and host. Moreover, we find that malaria parasites use two overlapping, extensive, and independent programs of translational repression across sporozoite maturation to temporally regulate protein expression. Together with gene-specific validation experiments, these data indicate that two waves of translational repression are implemented and relieved at different times during sporozoite maturation, migration and infection, thus promoting their successful development and vector-to-host transition. Here, the authors report transcriptomes and proteomes of oocyst sporozoite and salivary gland sporozoite stages in rodent-infectious Plasmodium yoelii parasites and human infectious Plasmodium falciparum parasites and define two waves of translational repression during sporozoite maturation.
Collapse
|
14
|
Lambertucci S, Orman KM, Das Gupta S, Fisher JP, Gazal S, Williamson RJ, Cramer R, Bindschedler LV. Analysis of Barley Leaf Epidermis and Extrahaustorial Proteomes During Powdery Mildew Infection Reveals That the PR5 Thaumatin-Like Protein TLP5 Is Required for Susceptibility Towards Blumeria graminis f. sp. hordei. FRONTIERS IN PLANT SCIENCE 2019; 10:1138. [PMID: 31736984 PMCID: PMC6831746 DOI: 10.3389/fpls.2019.01138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/20/2019] [Indexed: 05/18/2023]
Abstract
Powdery mildews are biotrophic pathogens causing fungal diseases in many economically important crops, including cereals, which are affected by Blumeria graminis. Powdery mildews only invade the epidermal cell layer of leaf tissues, in which they form haustorial structures. Haustoria are at the center of the biotrophic interaction by taking up nutrients from the host and by delivering effectors in the invaded cells to jeopardize plant immunity. Haustoria are composed of a fungal core delimited by a haustorial plasma membrane and cell wall. Surrounding these is the extrahaustorial complex, of which the extrahaustorial membrane is of plant origin. Although haustoria transcriptomes and proteomes have been investigated for Blumeria, the proteomes of barley epidermis upon infection and the barley components of the extrahaustorial complex remains unexplored. When comparing proteomes of infected and non-infected epidermis, several classical pathogenesis-related (PR) proteins were more abundant in infected epidermis. These included peroxidases, chitinases, cysteine-rich venom secreted proteins/PR1 and two thaumatin-like PR5 protein isoforms, of which TLP5 was previously shown to interact with the Blumeria effector BEC1054 (CSEP0064). Against expectations, transient TLP5 gene silencing suggested that TLP5 does not contribute to resistance but modulates susceptibility towards B. graminis. In a second proteomics comparison, haustorial structures were enriched from infected epidermal strips to identify plant proteins closely associated with the extrahaustorial complex. In these haustoria-enriched samples, relative abundances were higher for several V-type ATP synthase/ATPase subunits, suggesting the generation of proton gradients in the extrahaustorial space. Other haustoria-associated proteins included secreted or membrane proteins such as a PIP2 aquaporin, an early nodulin-like protein 9, an aspartate protease and other proteases, a lipase, and a lipid transfer protein, all of which are potential modulators of immunity, or the targets of pathogen effectors. Moreover, the ER BIP-like HSP70, may link ER stress responses and the idea of ER-like properties previously attributed to the extrahaustorial membrane. This initial investigation exploring the barley proteomes of Blumeria-infected tissues and haustoria, associated with a transient gene silencing approach, is invaluable to gain first insight of key players of resistance and susceptibility.
Collapse
Affiliation(s)
- Sebastien Lambertucci
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Kate Mary Orman
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Shaoli Das Gupta
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - James Paul Fisher
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Snehi Gazal
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | | | - Rainer Cramer
- Department of Chemistry, University of Reading, Reading, United Kingdom
| | | |
Collapse
|
15
|
Escudero S, Zaganjor E, Lee S, Mill CP, Morgan AM, Crawford EB, Chen J, Wales TE, Mourtada R, Luccarelli J, Bird GH, Steidl U, Engen JR, Haigis MC, Opferman JT, Walensky LD. Dynamic Regulation of Long-Chain Fatty Acid Oxidation by a Noncanonical Interaction between the MCL-1 BH3 Helix and VLCAD. Mol Cell 2019; 69:729-743.e7. [PMID: 29499131 DOI: 10.1016/j.molcel.2018.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/21/2017] [Accepted: 02/01/2018] [Indexed: 01/08/2023]
Abstract
MCL-1 is a BCL-2 family protein implicated in the development and chemoresistance of human cancer. Unlike its anti-apoptotic homologs, Mcl-1 deletion has profound physiologic consequences, indicative of a broader role in homeostasis. We report that the BCL-2 homology 3 (BH3) α helix of MCL-1 can directly engage very long-chain acyl-CoA dehydrogenase (VLCAD), a key enzyme of the mitochondrial fatty acid β-oxidation (FAO) pathway. Proteomic analysis confirmed that the mitochondrial matrix isoform of MCL-1 (MCL-1Matrix) interacts with VLCAD. Mcl-1 deletion, or eliminating MCL-1Matrix alone, selectively deregulated long-chain FAO, causing increased flux through the pathway in response to nutrient deprivation. Transient elevation in MCL-1 upon serum withdrawal, a striking increase in MCL-1 BH3/VLCAD interaction upon palmitic acid titration, and direct modulation of enzymatic activity by the MCL-1 BH3 α helix are consistent with dynamic regulation. Thus, the MCL-1 BH3 interaction with VLCAD revealed a separable, gain-of-function role for MCL-1 in the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Silvia Escudero
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Elma Zaganjor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Susan Lee
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Christopher P Mill
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ann M Morgan
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Emily B Crawford
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jiahao Chen
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Rida Mourtada
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James Luccarelli
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gregory H Bird
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ulrich Steidl
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Loren D Walensky
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
16
|
Di Silvestre D, Bergamaschi A, Bellini E, Mauri P. Large Scale Proteomic Data and Network-Based Systems Biology Approaches to Explore the Plant World. Proteomes 2018; 6:proteomes6020027. [PMID: 29865292 PMCID: PMC6027444 DOI: 10.3390/proteomes6020027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/26/2022] Open
Abstract
The investigation of plant organisms by means of data-derived systems biology approaches based on network modeling is mainly characterized by genomic data, while the potential of proteomics is largely unexplored. This delay is mainly caused by the paucity of plant genomic/proteomic sequences and annotations which are fundamental to perform mass-spectrometry (MS) data interpretation. However, Next Generation Sequencing (NGS) techniques are contributing to filling this gap and an increasing number of studies are focusing on plant proteome profiling and protein-protein interactions (PPIs) identification. Interesting results were obtained by evaluating the topology of PPI networks in the context of organ-associated biological processes as well as plant-pathogen relationships. These examples foreshadow well the benefits that these approaches may provide to plant research. Thus, in addition to providing an overview of the main-omic technologies recently used on plant organisms, we will focus on studies that rely on concepts of module, hub and shortest path, and how they can contribute to the plant discovery processes. In this scenario, we will also consider gene co-expression networks, and some examples of integration with metabolomic data and genome-wide association studies (GWAS) to select candidate genes will be mentioned.
Collapse
Affiliation(s)
- Dario Di Silvestre
- Institute for Biomedical Technologies-National Research Council; F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| | - Andrea Bergamaschi
- Institute for Biomedical Technologies-National Research Council; F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| | - Edoardo Bellini
- Institute for Biomedical Technologies-National Research Council; F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| | - PierLuigi Mauri
- Institute for Biomedical Technologies-National Research Council; F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| |
Collapse
|
17
|
Heringer AS, Santa-Catarina C, Silveira V. Insights from Proteomic Studies into Plant Somatic Embryogenesis. Proteomics 2018; 18:e1700265. [DOI: 10.1002/pmic.201700265] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/08/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Angelo Schuabb Heringer
- Laboratório de Biotecnologia; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
- Unidade de Biologia Integrativa; Setor de Genômica e Proteômica; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
- Unidade de Biologia Integrativa; Setor de Genômica e Proteômica; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| |
Collapse
|
18
|
Wu CC, Lin JD, Chen JT, Chang CM, Weng HF, Hsueh C, Chien HP, Yu JS. Integrated analysis of fine-needle-aspiration cystic fluid proteome, cancer cell secretome, and public transcriptome datasets for papillary thyroid cancer biomarker discovery. Oncotarget 2018; 9:12079-12100. [PMID: 29552294 PMCID: PMC5844730 DOI: 10.18632/oncotarget.23951] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/15/2017] [Indexed: 01/08/2023] Open
Abstract
Thyroid ultrasound and ultrasound-guided fine-needle aspiration (USG/FNA) biopsy are currently used for diagnosing papillary thyroid carcinoma (PTC), but their detection limit could be improved by combining other biomarkers. To discover novel PTC biomarkers, we herein applied a GeLC-MS/MS strategy to analyze the proteome profiles of serum-abundant-protein-depleted FNA cystic fluid from benign and PTC patients, as well as two PTC cell line secretomes. From them, we identified 346, 488, and 2105 proteins, respectively. Comparative analysis revealed that 191 proteins were detected in the PTC but not the benign cystic fluid samples, and thus may represent potential PTC biomarkers. Among these proteins, 101 were detected in the PTC cell line secretomes, and seven of them (NPC2, CTSC, AGRN, GPNMB, DPP4, ERAP2, and SH3BGRL3) were reported in public PTC transcriptome datasets as having 4681 elevated mRNA expression in PTC. Immunoblot analysis confirmed the elevated expression levels of five proteins (NPC2, CTSC, GPNMB, DPP4, and ERAP2) in PTC versus benign cystic fluids. Immunohistochemical studies from near 100 pairs of PTC tissue and their adjacent non-tumor counterparts further showed that AGRN (n = 98), CTSC (n = 99), ERAP2 (n = 98) and GPNMB (n = 100) were significantly (p < 0.05) overexpressed in PTC and higher expression levels of AGRN and CTSC were also significantly associated with metastasis and poor prognosis of PTC patients. Collectively, our results indicate that an integrated analysis of FNA cystic fluid proteome, cancer cell secretome and tissue transcriptome datasets represents a useful strategy for efficiently discovering novel PTC biomarker candidates.
Collapse
Affiliation(s)
- Chia-Chun Wu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Der Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jeng-Ting Chen
- Department of Surgery, Department of Medical Research and Development Linkou Branch, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chih-Min Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Fen Weng
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chuen Hsueh
- Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hui-Ping Chien
- Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
19
|
Soria J, Acera A, Merayo-LLoves J, Durán JA, González N, Rodriguez S, Bistolas N, Schumacher S, Bier FF, Peter H, Stöcklein W, Suárez T. Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 2017. [PMID: 29234088 PMCID: PMC5727318 DOI: 10.1038/s41598-017-17536-2 10.1038/s41598-017-17536-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We analyzed the tear film proteome of patients with dry eye (DE), meibomian gland dysfunction (MGD), and normal volunteers (CT). Tear samples were collected from 70 individuals. Of these, 37 samples were analyzed using spectral-counting-based LC-MS/MS label-free quantitation, and 33 samples were evaluated in the validation of candidate biomarkers employing customized antibody microarray assays. Comparative analysis of tear protein profiles revealed differences in the expression levels of 26 proteins, including protein S100A6, annexin A1, cystatin-S, thioredoxin, phospholipase A2, antileukoproteinase, and lactoperoxidase. Antibody microarray validation of CST4, S100A6, and MMP9 confirmed the accuracy of previously reported ELISA assays, with an area under ROC curve (AUC) of 87.5%. Clinical endpoint analysis showed a good correlation between biomarker concentrations and clinical parameters. In conclusion, different sets of proteins differentiate between the groups. Apolipoprotein D, S100A6, S100A8, and ceruloplasmin discriminate best between the DE and CT groups. The differences between antileukoproteinase, phospholipase A2, and lactoperoxidase levels allow the distinction between MGD and DE, and the changes in the levels of annexin A1, clusterin, and alpha-1-acid glycoprotein 1, between MGD and CT groups. The functional network analysis revealed the main biological processes that should be examined to identify new candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Javier Soria
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Arantxa Acera
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Jesús Merayo-LLoves
- Instituto Universitario Fernández-Vega, Avda Dres Fernández-Vega num 34, Oviedo, E-33012, Principado de Asturias, Spain
| | - Juan A Durán
- Instituto Clínico Quirúrgico de Oftalmología (ICQO), Virgen de Begoña N° 34, E-48006, Bilbao, Bizkaia, Spain.,Department of Ophthalmology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Nerea González
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Sandra Rodriguez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Nikitas Bistolas
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Soeren Schumacher
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Frank F Bier
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Harald Peter
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Walter Stöcklein
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Tatiana Suárez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain.
| |
Collapse
|
20
|
Soria J, Acera A, Merayo-LLoves J, Durán JA, González N, Rodriguez S, Bistolas N, Schumacher S, Bier FF, Peter H, Stöcklein W, Suárez T. Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 2017; 7:17478. [PMID: 29234088 PMCID: PMC5727318 DOI: 10.1038/s41598-017-17536-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/20/2017] [Indexed: 12/02/2022] Open
Abstract
We analyzed the tear film proteome of patients with dry eye (DE), meibomian gland dysfunction (MGD), and normal volunteers (CT). Tear samples were collected from 70 individuals. Of these, 37 samples were analyzed using spectral-counting-based LC-MS/MS label-free quantitation, and 33 samples were evaluated in the validation of candidate biomarkers employing customized antibody microarray assays. Comparative analysis of tear protein profiles revealed differences in the expression levels of 26 proteins, including protein S100A6, annexin A1, cystatin-S, thioredoxin, phospholipase A2, antileukoproteinase, and lactoperoxidase. Antibody microarray validation of CST4, S100A6, and MMP9 confirmed the accuracy of previously reported ELISA assays, with an area under ROC curve (AUC) of 87.5%. Clinical endpoint analysis showed a good correlation between biomarker concentrations and clinical parameters. In conclusion, different sets of proteins differentiate between the groups. Apolipoprotein D, S100A6, S100A8, and ceruloplasmin discriminate best between the DE and CT groups. The differences between antileukoproteinase, phospholipase A2, and lactoperoxidase levels allow the distinction between MGD and DE, and the changes in the levels of annexin A1, clusterin, and alpha-1-acid glycoprotein 1, between MGD and CT groups. The functional network analysis revealed the main biological processes that should be examined to identify new candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Javier Soria
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Arantxa Acera
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Jesús Merayo-LLoves
- Instituto Universitario Fernández-Vega, Avda Dres Fernández-Vega num 34, Oviedo, E-33012, Principado de Asturias, Spain
| | - Juan A Durán
- Instituto Clínico Quirúrgico de Oftalmología (ICQO), Virgen de Begoña N° 34, E-48006, Bilbao, Bizkaia, Spain.,Department of Ophthalmology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Nerea González
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Sandra Rodriguez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Nikitas Bistolas
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Soeren Schumacher
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Frank F Bier
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Harald Peter
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Walter Stöcklein
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Tatiana Suárez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain.
| |
Collapse
|
21
|
Intasqui P, Agarwal A, Sharma R, Samanta L, Bertolla RP. Towards the identification of reliable sperm biomarkers for male infertility: A sperm proteomic approach. Andrologia 2017; 50. [DOI: 10.1111/and.12919] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 01/20/2023] Open
Affiliation(s)
- P. Intasqui
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland OH USA
- Department of Surgery; Division of Urology; Human Reproduction Section; Sao Paulo Federal University - Sao Paulo Hospital; Sao Paulo Brazil
| | - A. Agarwal
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland OH USA
| | - R. Sharma
- American Center for Reproductive Medicine; Cleveland Clinic; Cleveland OH USA
| | - L. Samanta
- Department of Zoology; Ravenshaw University; Cuttack India
| | - R. P. Bertolla
- Department of Surgery; Division of Urology; Human Reproduction Section; Sao Paulo Federal University - Sao Paulo Hospital; Sao Paulo Brazil
| |
Collapse
|
22
|
Oh Y, Robertson SL, Parker J, Muddiman DC, Dean RA. Comparative proteomic analysis between nitrogen supplemented and starved conditions in Magnaporthe oryzae. Proteome Sci 2017; 15:20. [PMID: 29158724 PMCID: PMC5684745 DOI: 10.1186/s12953-017-0128-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fungi are constantly exposed to nitrogen limiting environments, and thus the efficient regulation of nitrogen metabolism is essential for their survival, growth, development and pathogenicity. To understand how the rice blast pathogen Magnaporthe oryzae copes with limited nitrogen availability, a global proteome analysis under nitrogen supplemented and nitrogen starved conditions was completed. METHODS M. oryzae strain 70-15 was cultivated in liquid minimal media and transferred to media with nitrate or without a nitrogen source. Proteins were isolated and subjected to unfractionated gel-free based liquid chromatography-tandem mass spectrometry (LC-MS/MS). The subcellular localization and function of the identified proteins were predicted using bioinformatics tools. RESULTS A total of 5498 M. oryzae proteins were identified. Comparative analysis of protein expression showed 363 proteins and 266 proteins significantly induced or uniquely expressed under nitrogen starved or nitrogen supplemented conditions, respectively. A functional analysis of differentially expressed proteins revealed that during nitrogen starvation nitrogen catabolite repression, melanin biosynthesis, protein degradation and protein translation pathways underwent extensive alterations. In addition, nitrogen starvation induced accumulation of various extracellular proteins including small extracellular proteins consistent with observations of a link between nitrogen starvation and the development of pathogenicity in M. oryzae. CONCLUSION The results from this study provide a comprehensive understanding of fungal responses to nitrogen availability.
Collapse
Affiliation(s)
- Yeonyee Oh
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695 USA
| | - Suzanne L. Robertson
- W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695 USA
| | - Jennifer Parker
- W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695 USA
| | - David C. Muddiman
- W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695 USA
| | - Ralph A. Dean
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
23
|
Guo J, Wang P, Cheng Q, Sun L, Wang H, Wang Y, Kao L, Li Y, Qiu T, Yang W, Shen H. Proteomic analysis reveals strong mitochondrial involvement in cytoplasmic male sterility of pepper (Capsicum annuum L.). J Proteomics 2017; 168:15-27. [PMID: 28847649 DOI: 10.1016/j.jprot.2017.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/12/2017] [Accepted: 08/18/2017] [Indexed: 01/05/2023]
Abstract
Although cytoplasmic male sterility (CMS) is widely used for developing pepper hybrids, its molecular mechanism remains unclear. In this study, we used a high-throughput proteomics method called label-free to compare protein abundance across a pepper CMS line (A-line) and its isogenic maintainer line (B-line). Data are available via ProteomeXchange with identifier PXD006104. Approximately 324 differentially abundant protein species were identified and quantified; among which, 47 were up-accumulated and 140 were down-accumulated in the A-line; additionally, 75 and 62 protein species were specifically accumulated in the A-line and B-line, respectively. Protein species involved in pollen exine formation, pyruvate metabolic processes, the tricarboxylic acid cycle, the mitochondrial electron transport chain, and oxidative stress response were observed to be differentially accumulated between A-line and B-line, suggesting their potential roles in the regulation of pepper pollen abortion. Based on our data, we proposed a potential regulatory network for pepper CMS that unifies these processes. BIOLOGICAL SIGNIFICANCE Artificial emasculation is a major obstacle in pepper hybrid breeding for its high labor cost and poor seed purity. While the use of cytoplasmic male sterility (CMS) in hybrid system is seriously frustrated because a long time is needed to cultivate male sterility line and its isogenic restore line. Transgenic technology is an effective and rapid method to obtain male sterility lines and its widely application has very important significance in speeding up breeding process in pepper. Although numerous studies have been conducted to select the genes related to male sterility, the molecular mechanism of cytoplasmic male sterility in pepper remains unknown. In this study, we used the high-throughput proteomic method called "label-free", coupled with liquid chromatography-quadrupole mass spectrometry (LC-MS/MS), to perform a novel comparison of expression profiles in a CMS pepper line and its maintainer line. Based on our results, we proposed a potential regulated protein network involved in pollen development as a novel mechanism of pepper CMS.
Collapse
Affiliation(s)
- Jinju Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Peng Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Qing Cheng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Limin Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Hongyu Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Yutong Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Lina Kao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Yanan Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Tuoyu Qiu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Wencai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
24
|
Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary gland sporozoites. PLoS Negl Trop Dis 2017; 11:e0005791. [PMID: 28759593 PMCID: PMC5552340 DOI: 10.1371/journal.pntd.0005791] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/10/2017] [Accepted: 07/10/2017] [Indexed: 12/29/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax cause the majority of human malaria cases. Research efforts predominantly focus on P. falciparum because of the clinical severity of infection and associated mortality rates. However, P. vivax malaria affects more people in a wider global range. Furthermore, unlike P. falciparum, P. vivax can persist in the liver as dormant hypnozoites that can be activated weeks to years after primary infection, causing relapse of symptomatic blood stages. This feature makes P. vivax unique and difficult to eliminate with the standard tools of vector control and treatment of symptomatic blood stage infection with antimalarial drugs. Infection by Plasmodium is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver. The most advanced malaria vaccine for P. falciparum (RTS,S, a subunit vaccine containing of a portion of the major sporozoite surface protein) conferred limited protection in Phase III trials, falling short of WHO-established vaccine efficacy goals. However, blocking the sporozoite stage of infection in P. vivax, before the establishment of the chronic liver infection, might be an effective malaria vaccine strategy to reduce the occurrence of relapsing blood stages. It is also thought that a multivalent vaccine comprising multiple sporozoite surface antigens will provide better protection, but a comprehensive analysis of proteins in P. vivax sporozoites is not available. To inform sporozoite-based vaccine development, we employed mass spectrometry-based proteomics to identify nearly 2,000 proteins present in P. vivax salivary gland sporozoites. Analysis of protein post-translational modifications revealed extensive phosphorylation of glideosome proteins as well as regulators of transcription and translation. Additionally, the sporozoite surface proteins CSP and TRAP, which were recently discovered to be glycosylated in P. falciparum salivary gland sporozoites, were also observed to be similarly modified in P. vivax sporozoites. Quantitative comparison of the P. vivax and P. falciparum salivary gland sporozoite proteomes revealed a high degree of similarity in protein expression levels, including among invasion-related proteins. Nevertheless, orthologs with significantly different expression levels between the two species could be identified, as well as highly abundant, species-specific proteins with no known orthologs. Finally, we employed chemical labeling of live sporozoites to isolate and identify 36 proteins that are putatively surface-exposed on P. vivax salivary gland sporozoites. In addition to identifying conserved sporozoite surface proteins identified by similar analyses of other Plasmodium species, our analysis identified several as-yet uncharacterized proteins, including a putative 6-Cys protein with no known ortholog in P. falciparum. Malaria is one of the most important infectious diseases in the world with hundreds of millions of new cases every year. Malaria is caused by parasites of the genus Plasmodium which have a complex life cycle, alternating between mosquito and mammalian hosts. Human infections are initiated with a sporozoite inoculum deposited into the skin by parasite-infected mosquitoes as they probe for blood. Sporozoites must locate blood vessels and enter the circulation to reach the liver where they invade and grow in hepatocytes. In the case of Plasmodium vivax, one of the two Plasmodium species responsible for the majority of the disease burden in the world, the parasite has the ability to persist for months in the liver after the initial infection and its activation causes the recurring appearance of the parasite in the blood. Though all clinical symptoms are attributable to the blood stages, it is only by attacking the transmission stages before the formation of hypnozoites (the persisting parasites in the liver) that an impact on the burden of vivax malaria can be achieved. We used state-of-the-art mass spectrometry-based proteomics tools to identify the total protein make-up of P. vivax sporozoites. By analyzing which proteins are exposed to the parasite surface and determining the degree of protein’s post-translational modifications, our investigation will aid the understanding of the novel biology of sporozoites and importantly, advise the development of potential vaccine candidates targeting this parasite stage.
Collapse
|
25
|
Cui Z, Sharma R, Agarwal A. Proteomic analysis of mature and immature ejaculated spermatozoa from fertile men. Asian J Androl 2017; 18:735-46. [PMID: 26510506 PMCID: PMC5000797 DOI: 10.4103/1008-682x.164924] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dysfunctional spermatozoa maturation is the main reason for the decrease in sperm motility and morphology in infertile men. Ejaculated spermatozoa from healthy fertile men were separated into four fractions using three-layer density gradient. Proteins were extracted and bands were digested on a LTQ-Orbitrap Elite hybrid mass spectrometer system. Functional annotations of proteins were obtained using bioinformatics tools and pathway databases. Western blotting was performed to verify the expression levels of the proteins of interest. 1469 proteins were identified in four fractions of spermatozoa. The number of detected proteins decreased according to the maturation level of spermatozoa. During spermatozoa maturation, proteins involved in gamete generation, cell motility, energy metabolism and oxidative phosphorylation processes showed increasing expression levels and those involved in protein biosynthesis, protein transport, protein ubiquitination, and response to oxidative stress processes showed decreasing expression levels. We validated four proteins (HSP 70 1A, clusterin, tektin 2 and tektin 3) by Western blotting. The study shows protein markers that may provide insight into the ejaculated spermatozoa proteins in different stages of sperm maturation that may be altered or modified in infertile men.
Collapse
Affiliation(s)
- Zhihong Cui
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; Institute of Toxicology, Third Military Medical University, Chongqing 400038, PR China,
| | - Rakesh Sharma
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
26
|
Enk VM, Baumann C, Thoß M, Luzynski KC, Razzazi-Fazeli E, Penn DJ. Regulation of highly homologous major urinary proteins in house mice quantified with label-free proteomic methods. MOLECULAR BIOSYSTEMS 2016; 12:3005-16. [PMID: 27464909 PMCID: PMC5166567 DOI: 10.1039/c6mb00278a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/15/2016] [Indexed: 01/16/2023]
Abstract
Major urinary proteins (MUPs) are highly homologous proteoforms that function in binding, transporting and releasing pheromones in house mice. The main analytical challenge for studying variation in MUPs, even for state-of-the-art proteomics techniques, is their high degree of amino acid sequence homology. In this study we used unique peptides for proteoform-specific identification. We applied different search engines (ProteinPilot™vs. PEAKS®) and protein databases (MUP database vs. SwissProt + unreviewed MUPs), and found that proteoform identification is influenced by addressing background proteins (unregulated urinary proteins, non-MUPs) during the database search. High resolution Q-TOF mass spectrometry was used to identify and precisely quantify the regulation of MUP proteoforms in male mice that were reared in standard housing and then transferred to semi-natural enclosures (within-subject design). By using a designated MUP database we were able to distinguish 19 MUP proteoforms, with A2CEK6 (a Mup11 gene product) being the most abundant based on spectral intensities. We compared three different quantification strategies based on MS1- (from IDA and SWATH™ spectra) and MS2 (SWATH™) data, and the results of these methods were correlated. Furthermore, three data normalization methods were compared and we found that increased statistical significance of fold-changes can be achieved by normalization based on urinary protein concentrations. We show that male mice living in semi-natural enclosures significantly up-regulated some but not all MUPs (differential regulation), e.g., A2ANT6, a Mup6 gene product, was upregulated between 9-fold (MS1) and 13-fold (MS2) using the designated MUP database. Finally, we show that 85 ± 7% of total MS intensity can be attributed to MUP-derived peptides, which supports the assumption that MUPs are the primary proteins in mouse urine. Our results provide new tools for assessing qualitative and quantitative variation of MUPs and suggest that male mice regulate the expression of specific MUP proteoforms, depending upon social conditions.
Collapse
Affiliation(s)
- Viktoria M. Enk
- VetCore-Facility for Research , University of Veterinary Medicine Vienna , Veterinärplatz 1 , A-1210-Vienna , Austria
| | - Christian Baumann
- SCIEX Germany GmbH , Landwehrstraße 54 , D-64293 Darmstadt , Germany
| | - Michaela Thoß
- Department of Integrative Biology and Evolution , Konrad Lorenz Institute of Ethology , University of Veterinary Medicine Vienna , Savoyenstraße 1 , A-1160-Vienna , Austria .
| | - Kenneth C. Luzynski
- Department of Integrative Biology and Evolution , Konrad Lorenz Institute of Ethology , University of Veterinary Medicine Vienna , Savoyenstraße 1 , A-1160-Vienna , Austria .
| | - Ebrahim Razzazi-Fazeli
- VetCore-Facility for Research , University of Veterinary Medicine Vienna , Veterinärplatz 1 , A-1210-Vienna , Austria
| | - Dustin J. Penn
- Department of Integrative Biology and Evolution , Konrad Lorenz Institute of Ethology , University of Veterinary Medicine Vienna , Savoyenstraße 1 , A-1160-Vienna , Austria .
| |
Collapse
|
27
|
Agarwal A, Sharma R, Durairajanayagam D, Cui Z, Ayaz A, Gupta S, Willard B, Gopalan B, Sabanegh E. Spermatozoa protein alterations in infertile men with bilateral varicocele. Asian J Androl 2016; 18:43-53. [PMID: 25999357 PMCID: PMC4736356 DOI: 10.4103/1008-682x.153848] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Among infertile men, a diagnosis of unilateral varicocele is made in 90% of varicocele cases and bilateral in the remaining varicocele cases. However, there are reports of under-diagnosis of bilateral varicocele among infertile men and that its prevalence is greater than 10%. In this prospective study, we aimed to examine the differentially expressed proteins (DEP) extracted from spermatozoa cells of patients with bilateral varicocele and fertile donors. Subjects consisted of 17 men diagnosed with bilateral varicocele and 10 proven fertile men as healthy controls. Using the LTQ-orbitrap elite hybrid mass spectrometry system, proteomic analysis was done on pooled samples from 3 patients with bilateral varicocele and 5 fertile men. From these samples, 73 DEP were identified of which 58 proteins were differentially expressed, with 7 proteins unique to the bilateral varicocele group and 8 proteins to the fertile control group. Majority of the DEPs were observed to be associated with metabolic processes, stress responses, oxidoreductase activity, enzyme regulation, and immune system processes. Seven DEP were involved in sperm function such as capacitation, motility, and sperm-zona binding. Proteins TEKT3 and TCP11 were validated by Western blot analysis and may serve as potential biomarkers for bilateral varicocele. In this study, we have demonstrated for the first time the presence of DEP and identified proteins with distinct reproductive functions which are altered in infertile men with bilateral varicocele. Functional proteomic profiling provides insight into the mechanistic implications of bilateral varicocele-associated male infertility.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
A Simplified Workflow for Protein Quantitation of Rat Brain Tissues Using Label-Free Proteomics and Spectral Counting. Methods Mol Biol 2016. [PMID: 27604744 DOI: 10.1007/978-1-4939-3816-2_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mass spectrometry-based proteomics is an increasingly valuable tool for determining relative or quantitative protein abundance in brain tissues. A plethora of technical and analytical methods are available, but straightforward and practical approaches are often needed to facilitate reproducibility. This aspect is particularly important as an increasing number of studies focus on models of traumatic brain injury or brain trauma, for which brain tissue proteomes have not yet been fully described. This text provides suggested techniques for robust identification and quantitation of brain proteins by using molecular weight fractionation prior to mass spectrometry-based proteomics. Detailed sample preparation and generalized protocols for chromatography, mass spectrometry, spectral counting, and normalization are described. The rat cerebral cortex isolated from a model of blast-overpressure was used as an exemplary source of brain tissue. However, these techniques may be adapted for lysates generated from several types of cells or tissues and adapted by the end user.
Collapse
|
29
|
Singec I, Crain AM, Hou J, Tobe BTD, Talantova M, Winquist AA, Doctor KS, Choy J, Huang X, La Monaca E, Horn DM, Wolf DA, Lipton SA, Gutierrez GJ, Brill LM, Snyder EY. Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (Phospho)Proteomic Profiling. Stem Cell Reports 2016; 7:527-542. [PMID: 27569059 PMCID: PMC5032292 DOI: 10.1016/j.stemcr.2016.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 10/27/2022] Open
Abstract
Controlled differentiation of human embryonic stem cells (hESCs) can be utilized for precise analysis of cell type identities during early development. We established a highly efficient neural induction strategy and an improved analytical platform, and determined proteomic and phosphoproteomic profiles of hESCs and their specified multipotent neural stem cell derivatives (hNSCs). This quantitative dataset (nearly 13,000 proteins and 60,000 phosphorylation sites) provides unique molecular insights into pluripotency and neural lineage entry. Systems-level comparative analysis of proteins (e.g., transcription factors, epigenetic regulators, kinase families), phosphorylation sites, and numerous biological pathways allowed the identification of distinct signatures in pluripotent and multipotent cells. Furthermore, as predicted by the dataset, we functionally validated an autocrine/paracrine mechanism by demonstrating that the secreted protein midkine is a regulator of neural specification. This resource is freely available to the scientific community, including a searchable website, PluriProt.
Collapse
Affiliation(s)
- Ilyas Singec
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Andrew M Crain
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Junjie Hou
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Brian T D Tobe
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Maria Talantova
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alicia A Winquist
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kutbuddin S Doctor
- Informatics and Data Management, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jennifer Choy
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Xiayu Huang
- Informatics and Data Management, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Esther La Monaca
- Department of Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - David M Horn
- Thermo Fisher Scientific Inc., San Jose, CA 95134, USA
| | - Dieter A Wolf
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Stuart A Lipton
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gustavo J Gutierrez
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Department of Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Laurence M Brill
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Evan Y Snyder
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
30
|
Boheler KR, Gundry RL. Concise Review: Cell Surface N-Linked Glycoproteins as Potential Stem Cell Markers and Drug Targets. Stem Cells Transl Med 2016; 6:131-138. [PMID: 28170199 PMCID: PMC5442750 DOI: 10.5966/sctm.2016-0109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022] Open
Abstract
Stem cells and their derivatives hold great promise to advance regenerative medicine. Critical to the progression of this field is the identification and utilization of antibody‐accessible cell‐surface proteins for immunophenotyping and cell sorting—techniques essential for assessment and isolation of defined cell populations with known functional and therapeutic properties. Beyond their utility for cell identification and selection, cell‐surface proteins are also major targets for pharmacological intervention. Although comprehensive cell‐surface protein maps are highly valuable, they have been difficult to define until recently. In this review, we discuss the application of a contemporary targeted chemoproteomic‐based technique for defining the cell‐surface proteomes of stem and progenitor cells. In applying this approach to pluripotent stem cells (PSCs), these studies have improved the biological understanding of these cells, led to the enhanced use and development of antibodies suitable for immunophenotyping and sorting, and contributed to the repurposing of existing drugs without the need for high‐throughput screening. The utility of this latter approach was first demonstrated with human PSCs (hPSCs) through the identification of small molecules that are selectively toxic to hPSCs and have the potential for eliminating confounding and tumorigenic cells in hPSC‐derived progeny destined for research and transplantation. Overall, the cutting‐edge technologies reviewed here will accelerate the development of novel cell‐surface protein targets for immunophenotyping, new reagents to improve the isolation of therapeutically qualified cells, and pharmacological studies to advance the treatment of intractable diseases amenable to cell‐replacement therapies. Stem Cells Translational Medicine2017;6:131–138
Collapse
Affiliation(s)
- Kenneth R. Boheler
- Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Rebekah L. Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
31
|
Bundy JL, Inouye BD, Mercer RS, Nowakowski RS. Fractionation-dependent improvements in proteome resolution in the mouse hippocampus by IEF LC-MS/MS. Electrophoresis 2016; 37:2054-62. [DOI: 10.1002/elps.201600076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/03/2016] [Accepted: 04/20/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Joseph L. Bundy
- Department of Biomedical Sciences, College of Medicine; Florida State University; Tallahassee FL USA
| | - Brian D. Inouye
- Department of Biological Science; Florida State University; Tallahassee FL USA
| | - Roger S. Mercer
- Translational Science Laboratory; College of Medicine Florida State University; Tallahassee FL USA
| | - Richard S. Nowakowski
- Department of Biomedical Sciences, College of Medicine; Florida State University; Tallahassee FL USA
| |
Collapse
|
32
|
Carruthers NJ, Parker GC, Gratsch T, Caruso JA, Stemmer PM. Protein Mobility Shifts Contribute to Gel Electrophoresis Liquid Chromatography Analysis. J Biomol Tech 2016; 26:103-12. [PMID: 26229520 DOI: 10.7171/jbt.15-2603-003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Profiling of cellular and subcellular proteomes by liquid chromatography with tandem mass spectrometry (MS) after fractionation by SDS-PAGE is referred to as GeLC (gel electrophoresis liquid chromatography)-MS. The GeLC approach decreases complexity within individual MS analyses by size fractionation with SDS-PAGE. SDS-PAGE is considered an excellent fractionation technique for intact proteins because of good resolution for proteins of all sizes, isoelectric points, and hydrophobicities. Additional information derived from the mobility of the intact proteins is available after an SDS-PAGE fractionation, but that information is usually not incorporated into the proteomic analysis. Any chemical or proteolytic modification of a protein that changes the mobility of that protein in the gel can be detected. The ability of SDS-PAGE to resolve proteins with chemical modifications has not been widely utilized within profiling experiments. In this work, we examined the ability of the GeLC-MS approach to help identify proteins that were modified after a small hairpin RNA-dependent knockdown in an experiment using stable isotope labeling by amino acids in cell culture-based quantitation.
Collapse
Affiliation(s)
- Nicholas J Carruthers
- 1 Institute of Environmental Health Sciences and 2 Carman and Ann Adam Department of Pediatrics, Wayne State University, Detroit, Michigan 48201, USA
| | - Graham C Parker
- 1 Institute of Environmental Health Sciences and 2 Carman and Ann Adam Department of Pediatrics, Wayne State University, Detroit, Michigan 48201, USA
| | - Theresa Gratsch
- 1 Institute of Environmental Health Sciences and 2 Carman and Ann Adam Department of Pediatrics, Wayne State University, Detroit, Michigan 48201, USA
| | - Joseph A Caruso
- 1 Institute of Environmental Health Sciences and 2 Carman and Ann Adam Department of Pediatrics, Wayne State University, Detroit, Michigan 48201, USA
| | - Paul M Stemmer
- 1 Institute of Environmental Health Sciences and 2 Carman and Ann Adam Department of Pediatrics, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
33
|
Saafan H, Foerster S, Parra-Guillen ZP, Hammer E, Michaelis M, Cinatl J, Völker U, Fröhlich H, Kloft C, Ritter CA. Utilising the EGFR interactome to identify mechanisms of drug resistance in non-small cell lung cancer - Proof of concept towards a systems pharmacology approach. Eur J Pharm Sci 2016; 94:20-32. [PMID: 27112992 DOI: 10.1016/j.ejps.2016.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/26/2016] [Accepted: 04/22/2016] [Indexed: 11/17/2022]
Abstract
Drug treatment of epidermal growth factor receptor (EGFR) positive non-small cell lung cancer has improved substantially by targeting activating mutations within the receptor tyrosine kinase domain. However, the development of drug resistance still limits this approach. As root causes, large heterogeneity between tumour entities but also within tumour cells have been suggested. Therefore, approaches to identify these multitude and complex mechanisms are urgently required. Affinity purification coupled with high resolution mass spectrometry was applied to isolate and characterise the EGFR interactome from HCC4006 non-small cell lung cancer cells and their variant HCC4006rERLO0.5 adapted to grow in the presence of therapeutically relevant concentrations of erlotinib. Bioinformatics analyses were carried out to identify proteins and their related molecular functions that interact differentially with EGFR in the untreated state or when incubated with erlotinib prior to EGFR activation. Across all experimental conditions 375 proteins were detected to participate in the EGFR interactome, 90% of which constituted a complex protein interaction network that was bioinformatically reconstructed from literature data. Treatment of HCC4006rERLO0.5 cells carrying a resistance phenotype to erlotinib was associated with an increase of protein levels of members of the clathrin-associated adaptor protein family AP2 (AP2A1, AP2A2, AP2B1), structural proteins of cytoskeleton rearrangement as well as signalling molecules such as Shc. Validation experiments confirmed activation of the Ras-Raf-Mek-Erk (MAPK)-pathway, of which Shc is an initiating adaptor molecule, in HCC4006rERLO0.5 cells. Taken together, differential proteins in the EGFR interactome of HCC4006rERLO0.5 cells were identified that could be related to multiple resistance mechanisms including alterations in growth factor receptor expression, cellular remodelling processes suggesting epithelial-to-mesenchymal transition as well as alterations in downstream signalling. Knowledge of these mechanisms is a pivotal step to build an integrative model of drug resistance in a systems pharmacology manner and to be able to investigate the interplay of these mechanisms and ultimately recommend combinatorial treatment strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Hisham Saafan
- Insitute of Pharmacy, Clinical Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Sarah Foerster
- Insitute of Pharmacy, Clinical Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Zinnia P Parra-Guillen
- Institute of Pharmacy, Department of Clinical Pharmacy and Biochemistry, Freie Universitaet Berlin, Germany
| | - Elke Hammer
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine, Ernst-Moritz-Arndt-University of Greifswald, Germany
| | - Martin Michaelis
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, UK
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt/Main, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine, Ernst-Moritz-Arndt-University of Greifswald, Germany
| | | | - Charlotte Kloft
- Institute of Pharmacy, Department of Clinical Pharmacy and Biochemistry, Freie Universitaet Berlin, Germany.
| | - Christoph A Ritter
- Insitute of Pharmacy, Clinical Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany.
| |
Collapse
|
34
|
Li X, Jackson A, Xie M, Wu D, Tsai WC, Zhang S. Proteomic insights into floral biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1050-60. [PMID: 26945514 DOI: 10.1016/j.bbapap.2016.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/25/2016] [Accepted: 02/24/2016] [Indexed: 12/17/2022]
Abstract
The flower is the most important biological structure for ensuring angiosperms reproductive success. Not only does the flower contain critical reproductive organs, but the wide variation in morphology, color, and scent has evolved to entice specialized pollinators, and arguably mankind in many cases, to ensure the successful propagation of its species. Recent proteomic approaches have identified protein candidates related to these flower traits, which has shed light on a number of previously unknown mechanisms underlying these traits. This review article provides a comprehensive overview of the latest advances in proteomic research in floral biology according to the order of flower structure, from corolla to male and female reproductive organs. It summarizes mainstream proteomic methods for plant research and recent improvements on two dimensional gel electrophoresis and gel-free workflows for both peptide level and protein level analysis. The recent advances in sequencing technologies provide a new paradigm for the ever-increasing genome and transcriptome information on many organisms. It is now possible to integrate genomic and transcriptomic data with proteomic results for large-scale protein characterization, so that a global understanding of the complex molecular networks in flower biology can be readily achieved. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Xiaobai Li
- Zhejiang Academy of Agricultural Sciences, Shiqiao Road 139, Hangzhou 310021, PR China; International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou 310029, PR China.
| | | | - Ming Xie
- Zhejiang Academy of Agricultural Sciences, Shiqiao Road 139, Hangzhou 310021, PR China.
| | - Dianxing Wu
- International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou 310029, PR China
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Sheng Zhang
- Proteomics and Mass Spectrometry Facility, Cornell University, New York 14853, USA
| |
Collapse
|
35
|
Swearingen KE, Winget JM, Hoopmann MR, Kusebauch U, Moritz RL. Decreased Gap Width in a Cylindrical High-Field Asymmetric Waveform Ion Mobility Spectrometry Device Improves Protein Discovery. Anal Chem 2015; 87:12230-7. [PMID: 26560994 PMCID: PMC4777518 DOI: 10.1021/acs.analchem.5b03199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas phase ions according to their characteristic dependence of ion mobility on electric field strength. FAIMS can be implemented as a means of automated gas-phase fractionation in liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments. We modified a commercially available cylindrical FAIMS device by enlarging the inner electrode, thereby narrowing the gap and increasing the effective field strength. This modification provided a nearly 4-fold increase in FAIMS peak capacity over the optimally configured unmodified device. We employed the modified FAIMS device for on-line fractionation in a proteomic analysis of a complex sample and observed major increases in protein discovery. NanoLC-FAIMS-MS/MS of an unfractionated yeast tryptic digest using the modified FAIMS device identified 53% more proteins than were identified using an unmodified FAIMS device and 98% more proteins than were identified with unaided nanoLC-MS/MS. We describe here the development of a nanoLC-FAIMS-MS/MS protocol that provides automated gas-phase fractionation for proteomic analysis of complex protein digests. We compare this protocol against prefractionation of peptides with isoelectric focusing and demonstrate that FAIMS fractionation yields comparable protein recovery while significantly reducing the amount of sample required and eliminating the need for additional sample handling.
Collapse
Affiliation(s)
| | | | | | | | - Robert L. Moritz
- To whom correspondence should be addressed: Dr. Robert L. Moritz, Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA, , Phone: +1-206-732-1200
| |
Collapse
|
36
|
Tirupula KC, Zhang D, Osbourne A, Chatterjee A, Desnoyer R, Willard B, Karnik SS. MAS C-Terminal Tail Interacting Proteins Identified by Mass Spectrometry- Based Proteomic Approach. PLoS One 2015; 10:e0140872. [PMID: 26484771 PMCID: PMC4618059 DOI: 10.1371/journal.pone.0140872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A ‘cardiac-specific finger print’ of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a ‘MAS-signalosome’ model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of ‘signalosome’ components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor.
Collapse
Affiliation(s)
- Kalyan C. Tirupula
- Department of Molecular Cardiology, Cleveland Clinic, Ohio, United States of America
| | - Dongmei Zhang
- Proteomics Laboratory, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| | - Appledene Osbourne
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, Ohio, United States of America
| | - Arunachal Chatterjee
- Department of Molecular Cardiology, Cleveland Clinic, Ohio, United States of America
| | - Russ Desnoyer
- Department of Molecular Cardiology, Cleveland Clinic, Ohio, United States of America
| | - Belinda Willard
- Proteomics Laboratory, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| | - Sadashiva S. Karnik
- Department of Molecular Cardiology, Cleveland Clinic, Ohio, United States of America
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, Ohio, United States of America
- * E-mail:
| |
Collapse
|
37
|
Collins MA, An J, Hood BL, Conrads TP, Bowser RP. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis. J Proteome Res 2015; 14:4486-501. [PMID: 26401960 DOI: 10.1021/acs.jproteome.5b00804] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.
Collapse
Affiliation(s)
- Mahlon A Collins
- Department of Neurobiology, University of Pittsburgh , E1448 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, Pennsylvania 15261, United States.,Departments of Neurology and Neurobiology, Barrow Neurological Institute , NRC427, 350 West Thomas Road, Phoenix, Arizona 85013, United States
| | - Jiyan An
- Departments of Neurology and Neurobiology, Barrow Neurological Institute , NRC427, 350 West Thomas Road, Phoenix, Arizona 85013, United States
| | - Brian L Hood
- Women's Health Integrated Research Center , 3289 Woodburn Road, Annandale, Virginia 22003, United States
| | - Thomas P Conrads
- Women's Health Integrated Research Center , 3289 Woodburn Road, Annandale, Virginia 22003, United States
| | - Robert P Bowser
- Departments of Neurology and Neurobiology, Barrow Neurological Institute , NRC427, 350 West Thomas Road, Phoenix, Arizona 85013, United States
| |
Collapse
|
38
|
Agarwal A, Ayaz A, Samanta L, Sharma R, Assidi M, Abuzenadah AM, Sabanegh E. Comparative proteomic network signatures in seminal plasma of infertile men as a function of reactive oxygen species. Clin Proteomics 2015; 12:23. [PMID: 26321892 PMCID: PMC4552280 DOI: 10.1186/s12014-015-9094-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/12/2015] [Indexed: 11/24/2022] Open
Abstract
Background Reactive oxygen species (ROS) plays a major role in the pathology of male infertility. It is an independent biomarker of sperm function. Seminal plasma is a natural reservoir of antioxidants responsible for the nourishment, protection, capacitation, and motility of sperm within the female reproductive tract resulting in successful fertilization and implantation of the embryo. A comparative proteomic analysis of seminal plasma proteins from fertile men and infertile men with varying levels of ROS was carried out to identify signature proteins involved in ROS-mediated reproductive dysfunction. Methods A total of 42 infertile men presenting with infertility and 17 proven fertile donors were enrolled in the study. ROS levels were measured in the seminal ejaculates by chemiluminescence assay. Infertile men were subdivided into Low ROS (0–<93 RLU/s/106 sperm; n = 11), Medium ROS (>93–500 RLU/s/106 sperm; n = 17) and High ROS (>500 RLU/s/106 sperm; n = 14) groups and compared with fertile men (4–50 RLU/s/106 sperm). 4 subjects from fertile group and 4 each from the Low, Medium and High ROS were pooled. 1D gel electrophoresis followed by in-gel digestion and LC/MS–MS in a LTQ-Orbitrap Elite hybrid mass spectrometer system was used for proteome analysis. Identification of differentially expressed proteins (DEPs), their cellular localization and involvement in different pathways were examined utilizing bioinformatics tools. Results The results indicate that proteins involved in biomolecule metabolism, protein folding and protein degradation are differentially modulated in all three infertile patient groups in comparison to fertile controls. Membrane metallo-endopeptidase (MME) was uniformly overexpressed (>2 fold) in all infertile groups. Pathway involving 35 focus proteins in post-translational modification of proteins, protein folding (heat shock proteins, molecular chaperones) and developmental disorder was overexpressed in the High ROS group compared with fertile control group. MME was one of the key proteins in the pathway. FAM3D was uniquely expressed in fertile group. Conclusion We have for the first time demonstrated the presence of 35 DEPs of a single pathway that may lead to impairment of sperm function in men with Low, Medium or High ROS levels by altering protein turn over. MME and FAM3D along with ROS levels in the seminal plasma may serve as good markers for diagnosis of male infertility. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9094-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Department of Urology, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Ahmet Ayaz
- American Center for Reproductive Medicine, Department of Urology, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Luna Samanta
- American Center for Reproductive Medicine, Department of Urology, Cleveland Clinic, Cleveland, OH 44195 USA ; Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Odisha 751003 India
| | - Rakesh Sharma
- American Center for Reproductive Medicine, Department of Urology, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King AbdulAziz University, Jeddah, Saudi Arabia ; KACST Technology Innovation Center in Personalized Medicine at King AbdulAziz University, Jeddah, Saudi Arabia
| | - Adel M Abuzenadah
- Center of Excellence in Genomic Medicine Research, King AbdulAziz University, Jeddah, Saudi Arabia ; KACST Technology Innovation Center in Personalized Medicine at King AbdulAziz University, Jeddah, Saudi Arabia
| | - Edmund Sabanegh
- Department of Urology, Cleveland Clinic, Cleveland, OH 44195 USA
| |
Collapse
|
39
|
Schilling J, Nepomuceno AI, Planchart A, Yoder JA, Kelly RM, Muddiman DC, Daniels HV, Hiramatsu N, Reading BJ. Machine learning reveals sex-specific 17β-estradiol-responsive expression patterns in white perch (Morone americana) plasma proteins. Proteomics 2015; 15:2678-90. [PMID: 25900664 PMCID: PMC5765861 DOI: 10.1002/pmic.201400606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/03/2015] [Accepted: 04/17/2015] [Indexed: 12/29/2022]
Abstract
With growing abundance and awareness of endocrine disrupting compounds (EDCs) in the environment, there is a need for accurate and reliable detection of EDC exposure. Our objective in the present study was to observe differences within and between the global plasma proteomes of sexually mature male and female white perch (Morone americana) before (Initial Control, IC) and after 17β-estradiol (E2 ) induction. Semiquantitative nanoLC-MS/MS data were analyzed by machine learning support vector machines (SVMs) and by two-way ANOVA. By ANOVA, the expression levels of 44, 77, and 57 proteins varied significantly by gender, treatment, and the interaction of gender and treatment, respectively. SVMs perfectly classified male and female perch IC and E2 -induced plasma samples using the protein expression data. E2 -induced male and female perch plasma proteomes contained significantly higher levels of the yolk precursors vitellogenin Aa and Ab (VtgAa, VtgAb), as well as latrophilin and seven transmembrane domain-containing protein 1 (Eltd1) and kininogen 1 (Kng1). This is the first report that Eltd1 and Kng1 may be E2 -responsive proteins in fishes and therefore may be useful indicators of estrogen induction.
Collapse
Affiliation(s)
- Justin Schilling
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Angelito I. Nepomuceno
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey A. Yoder
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - David C. Muddiman
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA
| | - Harry V. Daniels
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Naoshi Hiramatsu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Benjamin J. Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
40
|
Nepomuceno AI, Shao H, Jing K, Ma Y, Petitte JN, Idowu MO, Muddiman DC, Fang X, Hawkridge AM. In-depth LC-MS/MS analysis of the chicken ovarian cancer proteome reveals conserved and novel differentially regulated proteins in humans. Anal Bioanal Chem 2015; 407:6851-63. [PMID: 26159569 DOI: 10.1007/s00216-015-8862-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022]
Abstract
Ovarian cancer (OVC) remains the most lethal gynecological malignancy in the world due to the combined lack of early-stage diagnostics and effective therapeutic strategies. The development and application of advanced proteomics technology and new experimental models has created unique opportunities for translational studies. In this study, we investigated the ovarian cancer proteome of the chicken, an emerging experimental model of OVC that develops ovarian tumors spontaneously. Matched plasma, ovary, and oviduct tissue biospecimens derived from healthy, early-stage OVC, and late-stage OVC birds were quantitatively characterized by label-free proteomics. Over 2600 proteins were identified in this study, 348 of which were differentially expressed by more than twofold (p ≤ 0.05) in early- and late-stage ovarian tumor tissue specimens relative to healthy ovarian tissues. Several of the 348 proteins are known to be differentially regulated in human cancers including B2M, CLDN3, EPCAM, PIGR, S100A6, S100A9, S100A11, and TPD52. Of particular interest was ovostatin 2 (OVOS2), a novel 165-kDa protease inhibitor found to be strongly upregulated in chicken ovarian tumors (p = 0.0005) and matched plasma (p = 0.003). Indeed, RT-quantitative PCR and Western blot analysis demonstrated that OVOS2 mRNA and protein were also upregulated in multiple human OVC cell lines compared to normal ovarian epithelia (NOE) cells and immunohistochemical staining confirmed overexpression of OVOS2 in primary human ovarian cancers relative to non-cancerous tissues. Collectively, these data provide the first evidence for involvement of OVOS2 in the pathogenesis of both chicken and human ovarian cancer.
Collapse
Affiliation(s)
- Angelito I Nepomuceno
- W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Box 8204, Raleigh, NC, 27695, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Navaneethan U, Lourdusamy V, Gk Venkatesh P, Willard B, Sanaka MR, Parsi MA. Bile proteomics for differentiation of malignant from benign biliary strictures: a pilot study. Gastroenterol Rep (Oxf) 2015; 3:136-43. [PMID: 25304323 PMCID: PMC4423458 DOI: 10.1093/gastro/gou066] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Determining the etiology of biliary strictures is challenging, and the sensitivities of the current tests to diagnose them are low. Protein biomarkers in bile, in combination with other tests, may improve sensitivity in diagnosing biliary strictures. OBJECTIVE To analyse the differential abundance of proteins in benign and malignant biliary strictures through proteomic analysis of bile. METHODS In this prospective, cross-sectional study, bile was aspirated in 24 patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) including six patients with primary sclerosing cholangitis (PSC), three with cholangiocarcinoma (CCA), ten with pancreatic cancer, and five with benign biliary conditions. Liquid chromatography/mass spectrometry was used to examine the bile for differential abundance of protein biomarkers. The relative abundance of various proteins was compared in the malignant vs. benign groups and in CCA vs. PSC. RESULTS The majority of the proteins identified in bile were similar to those of the plasma (plasma proteins) and certain proteins were differentially expressed among the different groups (CCA, pancreatic cancer, PSC or benign). A total of 18 proteins were identified as being more abundant in the malignant group (CCA and pancreatic cancer) than in the benign strictures group, including myeloperoxidase, complement C3, inter-alpha-trypsin inhibitor heavy chain H4, apolipoprotein B-100, and kininogen-1 isoform 2. A total of 30 proteins were identified to be less abundant in the malignant group than in the benign group, including trefoil factor 2, superoxide dismutase [Cu-Zn], kallikrein-1, carboxypeptidase B and trefoil factor 1. CONCLUSIONS Protein biomarkers in bile may differentiate malignant from benign biliary strictures. Larger studies are warranted to validate these observations.
Collapse
Affiliation(s)
- Udayakumar Navaneethan
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA and Proteomics Core Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vennisvasanth Lourdusamy
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA and Proteomics Core Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Preethi Gk Venkatesh
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA and Proteomics Core Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA and Proteomics Core Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Madhusudhan R Sanaka
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA and Proteomics Core Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mansour A Parsi
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA and Proteomics Core Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
42
|
Tsolis KC, Bei ES, Papathanasiou I, Kostopoulou F, Gkretsi V, Kalantzaki K, Malizos K, Zervakis M, Tsezou A, Economou A. Comparative proteomic analysis of hypertrophic chondrocytes in osteoarthritis. Clin Proteomics 2015; 12:12. [PMID: 25945082 PMCID: PMC4415313 DOI: 10.1186/s12014-015-9085-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/15/2015] [Indexed: 02/07/2023] Open
Abstract
Background Osteoarthritis (OA) is a multi-factorial disease leading progressively to loss of articular cartilage and subsequently to loss of joint function. While hypertrophy of chondrocytes is a physiological process implicated in the longitudinal growth of long bones, hypertrophy-like alterations in chondrocytes play a major role in OA. We performed a quantitative proteomic analysis in osteoarthritic and normal chondrocytes followed by functional analyses to investigate proteome changes and molecular pathways involved in OA pathogenesis. Methods Chondrocytes were isolated from articular cartilage of ten patients with primary OA undergoing knee replacement surgery and six normal donors undergoing fracture repair surgery without history of joint disease and no OA clinical manifestations. We analyzed the proteome of chondrocytes using high resolution mass spectrometry and quantified it by label-free quantification and western blot analysis. We also used WebGestalt, a web-based enrichment tool for the functional annotation and pathway analysis of the differentially synthesized proteins, using the Wikipathways database. ClueGO, a Cytoscape plug-in, is also used to compare groups of proteins and to visualize the functionally organized Gene Ontology (GO) terms and pathways in the form of dynamical network structures. Results The proteomic analysis led to the identification of a total of ~2400 proteins. 269 of them showed differential synthesis levels between the two groups. Using functional annotation, we found that proteins belonging to pathways associated with regulation of the actin cytoskeleton, EGF/EGFR, TGF-β, MAPK signaling, integrin-mediated cell adhesion, and lipid metabolism were significantly enriched in the OA samples (p ≤10−5). We also observed that the proteins GSTP1, PLS3, MYOF, HSD17B12, PRDX2, APCS, PLA2G2A SERPINH1/HSP47 and MVP, show distinct synthesis levels, characteristic for OA or control chondrocytes. Conclusion In this study we compared the quantitative changes in proteins synthesized in osteoarthritic compared to normal chondrocytes. We identified several pathways and proteins to be associated with OA chondrocytes. This study provides evidence for further testing on the molecular mechanism of the disease and also propose proteins as candidate markers of OA chondrocyte phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9085-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konstantinos C Tsolis
- Institute of Molecular Biology and Biotechnology - FoRTH, Iraklio, Greece ; Department of Microbiology and Immunology, Rega Institute for Medical Research, KULeuven, Leuven, Belgium
| | - Ekaterini S Bei
- School of Electronic and Computer Engineering, Technical Univ. of Crete, Chania, Greece
| | - Ioanna Papathanasiou
- Department of Biology, University of Thessaly, Faculty of Medicine, Larissa, Greece ; Institute for Research & Technology-Thessaly/Centre for Research & Technology-Hellas (CE.R.T.H), Larissa, Greece
| | - Fotini Kostopoulou
- Department of Biology, University of Thessaly, Faculty of Medicine, Larissa, Greece ; Institute for Research & Technology-Thessaly/Centre for Research & Technology-Hellas (CE.R.T.H), Larissa, Greece
| | - Vassiliki Gkretsi
- Institute for Research & Technology-Thessaly/Centre for Research & Technology-Hellas (CE.R.T.H), Larissa, Greece
| | - Kalliopi Kalantzaki
- School of Electronic and Computer Engineering, Technical Univ. of Crete, Chania, Greece
| | - Konstantinos Malizos
- Department of Orthopedics, University of Thessaly, Faculty of Medicine, Larissa, Greece
| | - Michalis Zervakis
- School of Electronic and Computer Engineering, Technical Univ. of Crete, Chania, Greece
| | - Aspasia Tsezou
- Department of Biology, University of Thessaly, Faculty of Medicine, Larissa, Greece ; Institute for Research & Technology-Thessaly/Centre for Research & Technology-Hellas (CE.R.T.H), Larissa, Greece
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology - FoRTH, Iraklio, Greece ; Department of Microbiology and Immunology, Rega Institute for Medical Research, KULeuven, Leuven, Belgium
| |
Collapse
|
43
|
Zhang Y, Wen Z, Washburn MP, Florens L. Improving label-free quantitative proteomics strategies by distributing shared peptides and stabilizing variance. Anal Chem 2015; 87:4749-56. [PMID: 25839423 DOI: 10.1021/ac504740p] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In a previous study, we demonstrated that spectral counts-based label-free proteomic quantitation could be improved by distributing peptides shared between multiple proteins. Here, we compare four quantitative proteomic approaches, namely, the normalized spectral abundance factor (NSAF), the normalized area abundance factor (NAAF), normalized parent ion intensity abundance factor (NIAF), and the normalized fragment ion intensity abundance factor (NFAF). We demonstrate that label-free proteomic quantitation methods based on chromatographic peak area (NAAF), parent ion intensity in MS1 (NIAF), and fragment ion intensity (NFAF) are also improved when shared peptides are distributed on the basis of peptides unique to each isoform. To stabilize the variance inherent to label-free proteomic quantitation data sets, we use cyclic-locally weighted scatter plot smoothing (LOWESS) and linear regression normalization (LRN). Again, all four methods are improved when cyclic-LOWESS and LRN are applied to reduce variation. Finally, we demonstrate that absolute quantitative values may be derived from label-free parameters such as spectral counts, chromatographic peak area, and ion intensity when using spiked-in proteins of known amounts to generate standard curves.
Collapse
Affiliation(s)
- Ying Zhang
- †Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, United States
| | - Zhihui Wen
- †Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, United States
| | - Michael P Washburn
- †Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, United States.,∥Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Laurence Florens
- †Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, United States
| |
Collapse
|
44
|
Agarwal A, Sharma R, Durairajanayagam D, Cui Z, Ayaz A, Gupta S, Willard B, Gopalan B, Sabanegh E. Differential Proteomic Profiling of Spermatozoal Proteins of Infertile Men With Unilateral or Bilateral Varicocele. Urology 2015; 85:580-8. [DOI: 10.1016/j.urology.2014.11.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 11/27/2022]
|
45
|
Agarwal A, Sharma R, Durairajanayagam D, Ayaz A, Cui Z, Willard B, Gopalan B, Sabanegh E. Major protein alterations in spermatozoa from infertile men with unilateral varicocele. Reprod Biol Endocrinol 2015; 13:8. [PMID: 25890347 PMCID: PMC4383193 DOI: 10.1186/s12958-015-0007-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/11/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The etiology of varicocele, a common cause of male factor infertility, remains unclear. Proteomic changes responsible for the underlying pathology of unilateral varicocele have not been evaluated. The objective of this prospective study was to employ proteomic techniques and bioinformatic tools to identify and analyze proteins of interest in infertile men with unilateral varicocele. METHODS Spermatozoa from infertile men with unilateral varicocele (n=5) and from fertile men (control; n=5) were pooled in two groups respectively. Proteins were extracted and separated by 1-D SDS-PAGE. Bands were digested and identified on a LTQ-Orbitrap Elite hybrid mass spectrometer system. Bioinformatic analysis identified the pathways and functions of the differentially expressed proteins (DEP). RESULTS Sperm concentration, motility and morphology were lower, and reactive oxygen species levels were higher in unilateral varicocele patients compared to healthy controls. The total number of proteins identified were 1055, 1010 and 1042 in the fertile group, and 795, 713 and 763 proteins in the unilateral varicocele group. Of the 369 DEP between both groups, 120 proteins were unique to the fertile group and 38 proteins were unique to the unilateral varicocele group. Compared to the control group, 114 proteins were overexpressed while 97 proteins were underexpressed in the unilateral varicocele group. We have identified 29 proteins of interest that are involved in spermatogenesis and other fundamental reproductive events such as sperm maturation, acquisition of sperm motility, hyperactivation, capacitation, acrosome reaction and fertilization. The major functional pathways of the 359 DEP related to the unilateral varicocele group involve metabolism, disease, immune system, gene expression, signal transduction and apoptosis. Functional annotations showed that unilateral varicocele mostly affected small molecule biochemistry and post-translational modification proteins. Proteins expressed uniquely in the unilateral varicocele group were cysteine-rich secretory protein 2 precursor (CRISP2) and arginase-2 (ARG2). CONCLUSIONS The expression of these proteins of interest are altered and possibly functionally compromised in infertile men with unilateral varicocele. If validated, these proteins may lead to potential biomarker(s) and help better understand the mechanism involved in the pathophysiology of unilateral varicocele in infertile men.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| | - Rakesh Sharma
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| | - Damayanthi Durairajanayagam
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| | - Ahmet Ayaz
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| | - Zhihong Cui
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| | - Belinda Willard
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Banu Gopalan
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Edmund Sabanegh
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
46
|
Ayaz A, Agarwal A, Sharma R, Arafa M, Elbardisi H, Cui Z. Impact of precise modulation of reactive oxygen species levels on spermatozoa proteins in infertile men. Clin Proteomics 2015; 12:4. [PMID: 25972767 PMCID: PMC4429661 DOI: 10.1186/1559-0275-12-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/15/2015] [Indexed: 11/17/2022] Open
Abstract
Background Elevated levels of reactive oxygen species (ROS) are detected in 25% to 80% of infertile men. They are involved in the pathology of male infertility. Understanding the effect of increasing levels of ROS on the differential expression of sperm proteins is important to understand the cellular processes and or/pathways that may be implicated in male infertility. The aim of this study was to examine differentially expressed proteins (DEPs) in spermatozoa from patients with low, medium and high ROS levels. Methods A total of 42 infertile men presenting for infertility and 17 proven fertile men were enrolled in the study. ROS levels were measured by chemiluminescence assay. Infertile men were divided into Low (0- < 93 RLU/s/106 sperm) (n = 11), Medium (>93-500 RLU/s/106 sperm) (n = 17) and High ROS (>500 RLU/s/106 sperm) group (n = 14). All fertile men had ROS levels between 4-50 RLU/s/106 sperm. 4 subjects from fertile group and 4 each from the Low, Medium and High ROS were pooled. Protein extraction, protein estimation, gel separation of the proteins, in-gel digestion, LTQ-orbitrap elite hybrid mass spectrometry system was conducted. The DEPs, the cellular localization and pathways of DEPs involved were examined utilizing bioinformatics tools. Results 1035 proteins were identified in the 3 groups by global proteomic analysis. Of these, 305 were DEPs. 51 were unique to the Low ROS group, 47 Medium ROS group and 104 were unique to the High ROS group. 6 DEPs were identified by Uniprot and DAVID that had distinct reproductive functions and they were expressed only in 3 ROS groups but not in the control. Conclusions We have for the first time demonstrated the presence of 6 DEPs with distinct reproductive functions only in men with low, medium or high ROS levels. These DEPs can serve as potential biomarkers of oxidative stress induced male infertility. Electronic supplementary material The online version of this article (doi:10.1186/1559-0275-12-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ahmet Ayaz
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Rakesh Sharma
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Mohamed Arafa
- Male Infertility Unit, Department of Urology, Hamad Hospital, Doha, Qatar
| | - Haitham Elbardisi
- Male Infertility Unit, Department of Urology, Hamad Hospital, Doha, Qatar
| | - Zhihong Cui
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| |
Collapse
|
47
|
Valdenegro-Vega VA, Crosbie P, Bridle A, Leef M, Wilson R, Nowak BF. Differentially expressed proteins in gill and skin mucus of Atlantic salmon (Salmo salar) affected by amoebic gill disease. FISH & SHELLFISH IMMUNOLOGY 2014; 40:69-77. [PMID: 24979223 DOI: 10.1016/j.fsi.2014.06.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/16/2014] [Accepted: 06/20/2014] [Indexed: 05/25/2023]
Abstract
The external surfaces of fish, such as gill and skin, are covered by mucus, which forms a thin interface between the organism and water. Amoebic gill disease (AGD) is a parasitic condition caused by Neoparamoeba perurans that affects salmonids worldwide. This disease induces excessive mucus production in the gills. The host immune response to AGD is not fully understood, and research tools such as genomics and proteomics could be useful in providing further insight. Gill and skin mucus samples were obtained from Atlantic salmon (Salmo salar) which were infected with N. perurans on four successive occasions. NanoLC tandem mass spectrometry (MS/MS) was used to identify proteins in gill and skin mucus of Atlantic salmon affected by AGD. A total of 186 and 322 non-redundant proteins were identified in gill and skin mucus respectively, based on stringent filtration criteria, and statistics demonstrated that 52 gill and 42 skin mucus proteins were differentially expressed in mucus samples from AGD-affected fish. By generating protein-protein interaction networks, some of these proteins formed part of cell to cell signalling and inflammation pathways, such as C-reactive protein, apolipoprotein 1, granulin, cathepsin, angiogenin-1. In addition to proteins that were entirely novel in the context in the host response to N. perurans, our results have confirmed the presence of protein markers in mucus that have been previously predicted on the basis of modified mRNA expression, such as anterior gradient-2 protein, annexin A-1 and complement C3 factor. This first proteomic analysis of AGD-affected salmon provides new information on the effect of AGD on protein composition of gill and skin mucus. Future research should focus on better understanding of the role these components play in the response against infection with N. perurans.
Collapse
Affiliation(s)
| | - Phil Crosbie
- NCMCRS, Locked Bag 1370, University of Tasmania, Launceston, TAS 7250, Australia
| | - Andrew Bridle
- NCMCRS, Locked Bag 1370, University of Tasmania, Launceston, TAS 7250, Australia
| | - Melanie Leef
- NCMCRS, Locked Bag 1370, University of Tasmania, Launceston, TAS 7250, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia
| | - Barbara F Nowak
- NCMCRS, Locked Bag 1370, University of Tasmania, Launceston, TAS 7250, Australia
| |
Collapse
|
48
|
Hérissant L, Moehle EA, Bertaccini D, Van Dorsselaer A, Schaeffer-Reiss C, Guthrie C, Dargemont C. H2B ubiquitylation modulates spliceosome assembly and function in budding yeast. Biol Cell 2014; 106:126-38. [PMID: 24476359 DOI: 10.1111/boc.201400003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/24/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Commitment to splicing occurs co-transcriptionally, but a major unanswered question is the extent to which various modifications of chromatin, the template for transcription in vivo, contribute to the regulation of splicing. RESULTS Here, we perform genome-wide analyses showing that inhibition of specific marks - H2B ubiquitylation, H3K4 methylation and H3K36 methylation - perturbs splicing in budding yeast, with each modification exerting gene-specific effects. Furthermore, semi-quantitative mass spectrometry on purified nuclear mRNPs and chromatin immunoprecipitation analysis on intron-containing genes indicated that H2B ubiquitylation, but not Set1-, Set2- or Dot1-dependent H3 methylation, stimulates recruitment of the early splicing factors, namely U1 and U2 snRNPs, onto nascent RNAs. CONCLUSIONS These results suggest that histone modifications impact splicing of distinct subsets of genes using distinct pathways.
Collapse
Affiliation(s)
- Lucas Hérissant
- Pathologie Cellulaire, University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, Hôpital Saint Louis, Paris, Cedex 10, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Schilling J, Nepomuceno A, Schaff JE, Muddiman DC, Daniels HV, Reading BJ. Compartment Proteomics Analysis of White Perch (Morone americana) Ovary Using Support Vector Machines. J Proteome Res 2014; 13:1515-26. [DOI: 10.1021/pr401067g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Justin Schilling
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Angelito Nepomuceno
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Jennifer E. Schaff
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - David C. Muddiman
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Harry V. Daniels
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Benjamin J. Reading
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| |
Collapse
|
50
|
Balbuena TS, Demartini DR, Thelen JJ. Global quantitative proteomics using spectral counting: an inexpensive experimental and bioinformatics workflow for deep proteome coverage. Methods Mol Biol 2014; 1072:171-83. [PMID: 24136522 DOI: 10.1007/978-1-62703-631-3_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As the field of proteomics shifts from qualitative identification of protein "subfractions" to quantitative comparison of proteins from complex biological samples, it is apparent that the number of approaches for quantitation can be daunting for the result-oriented biologist. There have been many recent reviews on quantitative proteomic approaches, discussing the strengths and limitations of each. Unfortunately, there are few detailed methodological descriptions of any one of these quantitative approaches. Here we present a detailed bioinformatics workflow for one of the simplest, most pervasive quantitative approach-spectral counting. The informatics and statistical workflow detailed here includes newly available freeware, such as SePro and PatternLab which post-process data according to false discovery rate parameters, and statistically model the data to detect differences and trends.
Collapse
Affiliation(s)
- Tiago S Balbuena
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | | |
Collapse
|