1
|
Torres M, Gruer L, Valsaraj S, Reece S, Prokop J, Zeczycki T, Taylor C, Byers T, Cruz W, Kew K, de Castro Braz L, Virag J. Relative Quantitation of EFNA1 Expression in Mouse Heart Tissue Histologic Sections Using MALDI-MSI. Int J Mol Sci 2025; 26:1398. [PMID: 40003866 PMCID: PMC11855005 DOI: 10.3390/ijms26041398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
EFNA1 (ephrinA1), a highly expressed tyrosine kinase receptor-ligand in healthy cardiomyocytes, is reduced following myocardial infarction (MI). A single intramyocardial injection of chimeric EFNA1-Fc at the time of ischemia mitigates the injury in both reperfused and non-reperfused mouse myocardium by reducing apoptosis, necrosis, and inflammation. Recently, we have successfully imaged and qualitatively identified endogenous EFNA1 pre- and post-MI using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) coupled with a time-of-flight mass spectrometer (MALDI/TOF MS). Building on our previous work, we are currently focused on understanding and characterizing EFNA1's role in cardiac tissue by developing an integrated quantitative method to determine endogenous levels of EFNA1 using MALDI-MSI technologies. Herein, we have optimized a method for the relative quantitation of endogenous tryptic EFNA1 peptides detected in the murine heart as compared with routine western blotting. In healthy myocardium, there was approximately 50 ng of endogenous EFNA1 per section of 9.43 mm3 tissue, or roughly 12 pg/µg of homogenized tissue. MALDI-MSI thus provides a tool for determining the anatomical distribution and relative quantitation of endogenous EFNA1 in cardiac tissue. Future applications of these tools will allow us to investigate the dynamic changes in EFNA1 expression profile that occur in pathological states such as myocardial infarction and upon therapeutic treatments.
Collapse
Affiliation(s)
- Maria Torres
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Laura Gruer
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Smrithi Valsaraj
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Shaun Reece
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Jeremy Prokop
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Tonya Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Cameron Taylor
- Department of Chemistry, East Carolina University, Greenville, NC 27834, USA
| | - Taylor Byers
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - William Cruz
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kim Kew
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisandra de Castro Braz
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Jitka Virag
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
2
|
Yang J, Bowman AP, Buck WR, Kohnken R, Good CJ, Wagner DS. Mass Spectrometry Imaging Distinguishes Biliary Toxicants on the Basis of Cellular Distribution. Toxicol Pathol 2025; 53:55-64. [PMID: 39665321 DOI: 10.1177/01926233241303890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Mass spectrometry imaging (MSI) was used to investigate and provide insights into observed biliary pathology found in dogs and rats after administration of two different compounds. Both compounds were associated with peribiliary inflammatory infiltrates and proliferation of the bile duct epithelium. However, MSI revealed very different spatial distribution profiles for the two compounds: Compound A showed significant accumulation within the bile duct epithelium with a much higher concentration than in the parenchymal hepatocytes, while Compound T exhibited only a slight increase in the bile duct epithelium compared to parenchymal hepatocytes. These findings implicate cholangiocyte uptake and accumulation as a key step in the mechanism of biliary toxicity. In both cases, compounds are shown at the site of toxicity in support of a direct mechanism of toxicity on the biliary epithelium. MSI is a powerful tool for localizing small molecules within tissue sections and improvements in sensitivity have enabled localization down to the cellular level in some cases. MSI was also able to identify biomarker candidates of toxicity by differential analysis of ion profiles comparing treated and control cholangiocytes from tissue sections.
Collapse
|
3
|
Scoggins TR, Specker JT, Prentice BM. Multiple ion isolation and accumulation events for selective chemical noise reduction and dynamic range enhancement in MALDI imaging mass spectrometry. Analyst 2024; 149:2459-2468. [PMID: 38525787 PMCID: PMC11149414 DOI: 10.1039/d4an00160e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Abundant chemical noise in MALDI imaging mass spectrometry experiments can impede the detection of less abundant compounds of interest. This chemical noise commonly originates from the MALDI matrix as well as other endogenous compounds present in high concentrations and/or with high ionization efficiencies. MALDI imaging mass spectrometry of biological tissues measures numerous biomolecular compounds that exist in a wide range of concentrations in vivo. When ion trapping instruments are used, highly abundant ions can dominate the charge capacity and lead to space charge effects that hinder the dynamic range and detection of lowly abundant compounds of interest. Gas-phase fractionation has been previously utilized in mass spectrometry to isolate and enrich target analytes. Herein, we have characterized the use of multiple continuous accumulations of selected ions (Multi CASI) to reduce the abundance of chemical noise and diminish the effects of space charge in MALDI imaging mass spectrometry experiments. Multi CASI utilizes the mass-resolving capability of a quadrupole mass filter to perform multiple sequential ion isolation events prior to a single mass analysis of the combined ion population. Multi CASI was used to improve metabolite and lipid detection in the MALDI imaging mass spectrometry analysis of rat brain tissue.
Collapse
Affiliation(s)
- Troy R Scoggins
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| | | | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Macdonald JK, Clift CL, Saunders J, Zambrzycki SC, Mehta AS, Drake RR, Angel PM. Differential Protease Specificity by Collagenase as a Novel Approach to Serum Proteomics That Includes Identification of Extracellular Matrix Proteins without Enrichment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:487-497. [PMID: 38329320 PMCID: PMC10921462 DOI: 10.1021/jasms.3c00366] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Circulating extracellular matrix (ECM) proteins are serological biomarkers of interest due to their association with pathologies involving disease processes such as fibrosis and cancers. In this study, we investigate the potential for serum biomarker research using differential protease specificity (DPS), leveraging alternate protease specificity as a targeting mechanism to selectively digest circulating ECM protein serum proteins. A proof-of-concept study is presented using serum from patients with cirrhotic liver or hepatocellular carcinoma. The approach uses collagenase DPS for digestion of deglycosylated serum and liquid-chromatography-trapped ion mobility-tandem mass spectrometry (LC-TIMS-MS/MS) to enhance the detection of ECM proteins in serum. It requires no sample enrichment and minimizes the albumin average precursor intensity readout to less than 1.2%. We further demonstrate the capabilities for using the method as a high-throughput matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS) assay coupled with reference library searching. A goal is to improve the depth and breadth of biofluid proteomics for noninvasive assays.
Collapse
Affiliation(s)
- Jade K. Macdonald
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | | | | | - Stephen C. Zambrzycki
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Anand S. Mehta
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R. Drake
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Peggi M. Angel
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
5
|
Jiang LX, Hernly E, Hu H, Hilger RT, Neuweger H, Yang M, Laskin J. Nanospray Desorption Electrospray Ionization (Nano-DESI) Mass Spectrometry Imaging with High Ion Mobility Resolution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1798-1804. [PMID: 37463098 PMCID: PMC10513741 DOI: 10.1021/jasms.3c00199] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Untargeted separation of isomeric and isobaric species in mass spectrometry imaging (MSI) is challenging. The combination of ion mobility spectrometry (IMS) with MSI has emerged as an effective strategy for differentiating isomeric and isobaric species, which substantially enhances the molecular coverage and specificity of MSI experiments. In this study, we have implemented nanospray desorption electrospray ionization (nano-DESI) MSI on a trapped ion mobility spectrometry (TIMS) mass spectrometer. A new nano-DESI source was constructed, and a specially designed inlet extension was fabricated to accommodate the new source. The nano-DESI-TIMS-MSI platform was evaluated by imaging mouse brain tissue sections. We achieved high ion mobility resolution by utilizing three narrow mobility scan windows that covered the majority of the lipid molecules. Notably, the mobility resolution reaching up to 300 in this study is much higher than the resolution obtained in our previous study using drift tube IMS. High-resolution TIMS successfully separated lipid isomers and isobars, revealing their distinct localizations in tissue samples. Our results further demonstrate the power of high-mobility-resolution IMS for unraveling the complexity of biomolecular mixtures analyzed in MSI experiments.
Collapse
Affiliation(s)
- Li-Xue Jiang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Emerson Hernly
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Hang Hu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Ryan T. Hilger
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | | | - Manxi Yang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| |
Collapse
|
6
|
Conroy LR, Clarke HA, Allison DB, Valenca SS, Sun Q, Hawkinson TR, Young LEA, Ferreira JE, Hammonds AV, Dunne JB, McDonald RJ, Absher KJ, Dong BE, Bruntz RC, Markussen KH, Juras JA, Alilain WJ, Liu J, Gentry MS, Angel PM, Waters CM, Sun RC. Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis. Nat Commun 2023; 14:2759. [PMID: 37179348 PMCID: PMC10182559 DOI: 10.1038/s41467-023-38437-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Matrix assisted laser desorption/ionization imaging has greatly improved our understanding of spatial biology, however a robust bioinformatic pipeline for data analysis is lacking. Here, we demonstrate the application of high-dimensionality reduction/spatial clustering and histopathological annotation of matrix assisted laser desorption/ionization imaging datasets to assess tissue metabolic heterogeneity in human lung diseases. Using metabolic features identified from this pipeline, we hypothesize that metabolic channeling between glycogen and N-linked glycans is a critical metabolic process favoring pulmonary fibrosis progression. To test our hypothesis, we induced pulmonary fibrosis in two different mouse models with lysosomal glycogen utilization deficiency. Both mouse models displayed blunted N-linked glycan levels and nearly 90% reduction in endpoint fibrosis when compared to WT animals. Collectively, we provide conclusive evidence that lysosomal utilization of glycogen is required for pulmonary fibrosis progression. In summary, our study provides a roadmap to leverage spatial metabolomics to understand foundational biology in pulmonary diseases.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Harrison A Clarke
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Derek B Allison
- Markey Cancer Center, Lexington, KY, 40536, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Samuel Santos Valenca
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Qi Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Tara R Hawkinson
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Juanita E Ferreira
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Autumn V Hammonds
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jaclyn B Dunne
- Department of Cell & Molecular Pharmacology & Experimental Therapeutics at the Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Robert J McDonald
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Kimberly J Absher
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Brittany E Dong
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Ronald C Bruntz
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Kia H Markussen
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jelena A Juras
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Warren J Alilain
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, Lexington, KY, 40536, USA
| | - Jinze Liu
- Department of Biostatistics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Matthew S Gentry
- Markey Cancer Center, Lexington, KY, 40536, USA
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, 32610, USA
| | - Peggi M Angel
- Department of Cell & Molecular Pharmacology & Experimental Therapeutics at the Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Christopher M Waters
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
- Markey Cancer Center, Lexington, KY, 40536, USA.
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
7
|
Dannhorn A, Doria ML, McKenzie J, Inglese P, Swales JG, Hamm G, Strittmatter N, Maglennon G, Ghaem-Maghami S, Goodwin RJA, Takats Z. Targeted Desorption Electrospray Ionization Mass Spectrometry Imaging for Drug Distribution, Toxicity, and Tissue Classification Studies. Metabolites 2023; 13:metabo13030377. [PMID: 36984817 PMCID: PMC10060000 DOI: 10.3390/metabo13030377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
With increased use of mass spectrometry imaging (MSI) in support of pharmaceutical research and development, there are opportunities to develop analytical pipelines that incorporate exploratory high-performance analysis with higher capacity and faster targeted MSI. Therefore, to enable faster MSI data acquisition we present analyte-targeted desorption electrospray ionization–mass spectrometry imaging (DESI-MSI) utilizing a triple-quadrupole (TQ) mass analyzer. The evaluated platform configuration provided superior sensitivity compared to a conventional time-of-flight (TOF) mass analyzer and thus holds the potential to generate data applicable to pharmaceutical research and development. The platform was successfully operated with sampling rates up to 10 scans/s, comparing positively to the 1 scan/s commonly used on comparable DESI-TOF setups. The higher scan rate enabled investigation of the desorption/ionization processes of endogenous lipid species such as phosphatidylcholines and a co-administered cassette of four orally dosed drugs—erlotininb, moxifloxacin, olanzapine, and terfenadine. This was used to enable understanding of the impact of the desorption/ionization processes in order to optimize the operational parameters, resulting in improved compound coverage for olanzapine and the main olanzapine metabolite, hydroxy-olanzapine, in brain tissue sections compared to DESI-TOF analysis or matrix-assisted laser desorption/ionization (MALDI) platforms. The approach allowed reducing the amount of recorded information, thus reducing the size of datasets from up to 150 GB per experiment down to several hundred MB. The improved performance was demonstrated in case studies investigating the suitability of this approach for mapping drug distribution, spatially resolved profiling of drug-induced nephrotoxicity, and molecular–histological tissue classification of ovarian tumors specimens.
Collapse
Affiliation(s)
- Andreas Dannhorn
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Maria Luisa Doria
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - James McKenzie
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Paolo Inglese
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - John G. Swales
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Gregory Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Nicole Strittmatter
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Gareth Maglennon
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Sadaf Ghaem-Maghami
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Richard J. A. Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
- Correspondence:
| |
Collapse
|
8
|
Wang H, Wang Y. Matrix-assisted laser-desorption/ionization-mass spectrometric imaging of psilocybin and its analogues in psychedelic mushrooms using a cesium chloride-coated target plate. Anal Bioanal Chem 2023; 415:735-745. [PMID: 36459169 DOI: 10.1007/s00216-022-04467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
Fungi with hallucinogenic properties and neurotoxicity have been listed as prohibited drugs in recent years, but there is a lack of in situ quantification of psilocybin and analogues in these samples to avoid the decomposition of these psychoactive tryptamines in time-consuming sample preparation. In this study, matrix-assisted laser-desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FT ICR) mass spectrometric imaging (MSI) was used to analyze the distribution of psilocybin and its analogues in hallucinogenic Psilocybe mushrooms. A cesium chloride (CsCl)-coated target plate was prepared to improve the detection sensitivity and reduce the interference of other compounds or decomposition products with very similar m/z values in MALDI-FT ICR MS analysis. Psilocybin and other tryptamines with structurally similar compounds, including psilocin, baeocystin, tryptophan, tryptamine, and aeruginascin, were identified and imaged in the psilocybe tissue section; the semiquantitative analysis of the distribution of psilocybin was also investigated using a homemade 75-well CsCl-coated plate; and the target plate can be placed on the mass spectrometry target carrier along with the indium-tin oxide (ITO) conductive slide, which can simultaneously carry out matrix vapor deposition, thus ensuring the parallelism between the standards and samples in the pretreatment experiment and MSI. The contents of psilocybin and its analogues in the psilocybe tissue section can be evaluated from the color changes corresponding to different concentration standard curves. Furthermore, a comprehensive comparison between MALDI-FT ICR MS and ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-Q/TOF MS) analysis was performed for quantification and validation. This study reduces the decomposition in time-consuming sample pretreatment and provides a powerful tool for drug abuse control and forensic analysis.
Collapse
Affiliation(s)
- Hang Wang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai, 200063, People's Republic of China. .,Instrumental Analysis Center, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, People's Republic of China.
| | - Ying Wang
- Narcotics Control Commission, Nanjing Municipal Public Security Bureau, Nanjing, 210012, People's Republic of China
| |
Collapse
|
9
|
Russo C, Clench MR. Spatially Resolved Quantitation of Drug in Skin Equivalents Using Mass Spectrometry Imaging (MSI). Methods Mol Biol 2023; 2688:27-40. [PMID: 37410281 DOI: 10.1007/978-1-0716-3319-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has seen a growing interest as a leading technique in the pharmaceutical industry for mapping label-free exogenous and endogenous species in biological tissues. However, the use of MALDI-MSI to perform spatially resolved absolute quantitation of species directly in tissues is still challenging, and robust quantitative mass spectrometry imaging (QMSI) methods need to be developed. In this study, we describe the microspotting technique for analytical and internal standard deposition, matrix sublimation, powerful QMSI software, and mass spectrometry imaging setup to obtain absolute quantitation of drug distribution in 3D skin models.
Collapse
Affiliation(s)
- Cristina Russo
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK.
- Department of Natural Sciences, Middlesex University, London, UK.
| | - Malcolm R Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
10
|
Hristova J, Svinarov D. Enhancing precision medicine through clinical mass spectrometry platform. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2053342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Julieta Hristova
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Dobrin Svinarov
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
11
|
Pace CL, Garrard KP, Muddiman DC. Sequential paired covariance for improved visualization of mass spectrometry imaging datasets. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4872. [PMID: 35734788 PMCID: PMC9287032 DOI: 10.1002/jms.4872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 06/09/2022] [Indexed: 05/25/2023]
Abstract
Untargeted analyses in mass spectrometry imaging produce hundreds of ion images representing spatial distributions of biomolecules in biological tissues. Due to the large diversity of ions detected in untargeted analyses, normalization standards are often difficult to implement to account for pixel-to-pixel variability in imaging studies. Many normalization strategies exist to account for this variability, but they largely do not improve image quality. In this study, we present a new approach for improving image quality and visualization of tissue features by application of sequential paired covariance (SPC). This approach was demonstrated using previously published tissue datasets such as rat brain and human prostate with different biomolecules like metabolites and N-linked glycans. Data transformation by SPC improved ion images resulting in increased smoothing of biological features compared with commonly used normalization approaches.
Collapse
Affiliation(s)
- Crystal L. Pace
- FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Kenneth P. Garrard
- FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
- The Precision Engineering ConsortiumNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Molecular Education, Technology and Research Innovation Center (METRIC)North Carolina State UniversityRaleighNorth CarolinaUSA
| | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Molecular Education, Technology and Research Innovation Center (METRIC)North Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
12
|
Dannhorn A, Kazanc E, Hamm G, Swales JG, Strittmatter N, Maglennon G, Goodwin RJA, Takats Z. Correlating Mass Spectrometry Imaging and Liquid Chromatography-Tandem Mass Spectrometry for Tissue-Based Pharmacokinetic Studies. Metabolites 2022; 12:metabo12030261. [PMID: 35323705 PMCID: PMC8954739 DOI: 10.3390/metabo12030261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 01/12/2023] Open
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a standard tool used for absolute quantification of drugs in pharmacokinetic (PK) studies. However, all spatial information is lost during the extraction and elucidation of a drugs biodistribution within the tissue is impossible. In the study presented here we used a sample embedding protocol optimized for mass spectrometry imaging (MSI) to prepare up to 15 rat intestine specimens at once. Desorption electrospray ionization (DESI) and matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) were employed to determine the distributions and relative abundances of four benchmarking compounds in the intestinal segments. High resolution MALDI-MSI experiments performed at 10 µm spatial resolution allowed to determine the drug distribution in the different intestinal histological compartments to determine the absorbed and tissue bound fractions of the drugs. The low tissue bound drug fractions, which were determined to account for 56–66% of the total drug, highlight the importance to understand the spatial distribution of drugs within the histological compartments of a given tissue to rationalize concentration differences found in PK studies. The mean drug abundances of four benchmark compounds determined by MSI were correlated with the absolute drug concentrations. Linear regression resulted in coefficients of determination (R2) ranging from 0.532 to 0.926 for MALDI-MSI and R2 values ranging from 0.585 to 0.945 for DESI-MSI, validating a quantitative relation of the imaging data. The good correlation of the absolute tissue concentrations of the benchmark compounds and the MSI data provides a bases for relative quantification of compounds within and between tissues, without normalization to an isotopically labelled standard, provided that the compared tissues have inherently similar ion suppression effects.
Collapse
Affiliation(s)
- Andreas Dannhorn
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK; (A.D.); (E.K.)
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (G.H.); (J.G.S.); (N.S.); (R.J.A.G.)
| | - Emine Kazanc
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK; (A.D.); (E.K.)
| | - Gregory Hamm
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (G.H.); (J.G.S.); (N.S.); (R.J.A.G.)
| | - John G. Swales
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (G.H.); (J.G.S.); (N.S.); (R.J.A.G.)
| | - Nicole Strittmatter
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (G.H.); (J.G.S.); (N.S.); (R.J.A.G.)
| | - Gareth Maglennon
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK;
| | - Richard J. A. Goodwin
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (G.H.); (J.G.S.); (N.S.); (R.J.A.G.)
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK; (A.D.); (E.K.)
- Laboratoire PRISM, Inserm U1192, University of Lille, Villeneuve d’Ascq, 59655 Lille, France
- The Rosalind Franklin Institute, Harwell OX11 0QG, UK
- Correspondence:
| |
Collapse
|
13
|
Noun M, Akoumeh R, Abbas I. Cell and Tissue Imaging by TOF-SIMS and MALDI-TOF: An Overview for Biological and Pharmaceutical Analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-26. [PMID: 34809729 DOI: 10.1017/s1431927621013593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The potential of mass spectrometry imaging (MSI) has been demonstrated in cell and tissue research since 1970. MSI can reveal the spatial distribution of a wide range of atomic and molecular ions detected from biological sample surfaces, it is a powerful and valuable technique used to monitor and detect diverse chemical and biological compounds, such as drugs, lipids, proteins, and DNA. MSI techniques, notably matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and time of flight secondary ion mass spectrometry (TOF-SIMS), witnessed a dramatic upsurge in studying and investigating biological samples especially, cells and tissue sections. This advancement is attributed to the submicron lateral resolution, the high sensitivity, the good precision, and the accurate chemical specificity, which make these techniques suitable for decoding and understanding complex mechanisms of certain diseases, as well as monitoring the spatial distribution of specific elements, and compounds. While the application of both techniques for the analysis of cells and tissues is thoroughly discussed, a briefing of MALDI-TOF and TOF-SIMS basis and the adequate sampling before analysis are briefly covered. The importance of MALDI-TOF and TOF-SIMS as diagnostic tools and robust analytical techniques in the medicinal, pharmaceutical, and toxicology fields is highlighted through representative published studies.
Collapse
Affiliation(s)
- Manale Noun
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Rayane Akoumeh
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Imane Abbas
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| |
Collapse
|
14
|
Hahm TH, Matsui T, Tanaka M. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Tissues via the Formation of Reproducible Matrix Crystals by the Fluorescence-Assisted Spraying Method: A Quantification Approach. Anal Chem 2022; 94:1990-1998. [PMID: 35040638 DOI: 10.1021/acs.analchem.1c03369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging to quantitative analyses is restricted by the variability of MS intensity of the analytes in nonreproducible matrix crystals of tissues. To overcome this challenge, a fluorescence-assisted spraying method was developed for a constant matrix amount employing an MS-detectable fluorescent reagent, rhodamine 6G (R6G), which was sprayed with the matrix. To form a homogeneous matrix crystal on the tissue section, a matrix solution, 1,5-diaminonaphthalene (10 mg/mL), containing R6G (40 μg/mL) and O-dinitrobenzene (O-DNB, 10 mg/mL) was sprayed until the desired constant fluorescence intensity was achieved. Compared with that obtained via conventional cycle-number-fixed spraying [relative standard deviation (RSD) = 31.1%], the reproducibility of the relative MS intensity of the analyte [ferulic acid (FA), RSD = 3.1%] to R6G was significantly improved by the fluorescence-assisted matrix spraying. This result indicated that R6G could be employed as an index of the matrix amount and an MS normalizing standard. The proposed matrix spraying successfully quantified nifedipine (0.5-40 pmol/mm2 in the positive mode, R2 = 0.965) and FA (0.5-75 pmol/mm2 in the negative mode, R2 = 0.9972) in the kidney section of a rat. Employing the quantitative MALDI-MS imaging assay, FA, which accumulated in the kidney of the rat after 50 mg/kg was orally administered, was visually determined to be 3.5, 3.0, and 0.2 μmol/g tissue at 15, 30, and 60 min, respectively.
Collapse
Affiliation(s)
- Tae Hun Hahm
- Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| | - Toshiro Matsui
- Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan.,Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan
| | - Mitsuru Tanaka
- Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan.,Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Wang Y, Hummon AB. MS imaging of multicellular tumor spheroids and organoids as an emerging tool for personalized medicine and drug discovery. J Biol Chem 2021; 297:101139. [PMID: 34461098 PMCID: PMC8463860 DOI: 10.1016/j.jbc.2021.101139] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
MS imaging (MSI) is a powerful tool in drug discovery because of its ability to interrogate a wide range of endogenous and exogenous molecules in a broad variety of samples. The impressive versatility of the approach, where almost any ionizable biomolecule can be analyzed, including peptides, proteins, lipids, carbohydrates, and nucleic acids, has been applied to numerous types of complex biological samples. While originally demonstrated with harvested organs from animal models and biopsies from humans, these models are time consuming and expensive, which makes it necessary to extend the approach to 3D cell culture systems. These systems, which include spheroid models, prepared from immortalized cell lines, and organoid cultures, grown from patient biopsies, can provide insight on the intersection of molecular information on a spatial scale. In particular, the investigation of drug compounds, their metabolism, and the subsequent distribution of their metabolites in 3D cell culture systems by MSI has been a promising area of study. This review summarizes the different ionization methods, sample preparation steps, and data analysis methods of MSI and focuses on several of the latest applications of MALDI-MSI for drug studies in spheroids and organoids. Finally, the application of this approach in patient-derived organoids to evaluate personalized medicine options is discussed.
Collapse
Affiliation(s)
- Yijia Wang
- Department of Chemistry and Biochemistry, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
16
|
Kertesz V, Cahill JF. Spatially resolved absolute quantitation in thin tissue by mass spectrometry. Anal Bioanal Chem 2021; 413:2619-2636. [PMID: 33140126 DOI: 10.1007/s00216-020-02964-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry (MS) has become the de facto tool for routine quantitative analysis of biomolecules. MS is increasingly being used to reveal the spatial distribution of proteins, metabolites, and pharmaceuticals in tissue and interest in this area has led to a number of novel spatially resolved MS technologies. Most spatially resolved MS measurements are qualitative in nature due to a myriad of potential biases, such as sample heterogeneity, sampling artifacts, and ionization effects. As applications of spatially resolved MS in the pharmacological and clinical fields increase, demand has become high for quantitative MS imaging and profiling data. As a result, several varied technologies now exist that provide differing levels of spatial and quantitative information. This review provides an overview of MS profiling and imaging technologies that have demonstrated quantitative analysis from tissue. Focus is given on the fundamental processes affecting quantitative analysis in an array of MS imaging and profiling technologies and methods to address these biases.Graphical abstract.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| | - John F Cahill
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| |
Collapse
|
17
|
Shariatgorji R, Nilsson A, Fridjonsdottir E, Strittmatter N, Dannhorn A, Svenningsson P, Goodwin RJA, Odell LR, Andrén PE. Spatial visualization of comprehensive brain neurotransmitter systems and neuroactive substances by selective in situ chemical derivatization mass spectrometry imaging. Nat Protoc 2021; 16:3298-3321. [PMID: 34075230 DOI: 10.1038/s41596-021-00538-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/05/2021] [Indexed: 02/04/2023]
Abstract
Molecule-specific techniques such as MALDI and desorption electrospray ionization mass spectrometry imaging enable direct and simultaneous mapping of biomolecules in tissue sections in a single experiment. However, neurotransmitter imaging in the complex environment of biological samples remains challenging. Our covalent charge-tagging approach using on-tissue chemical derivatization of primary and secondary amines and phenolic hydroxyls enables comprehensive mapping of neurotransmitter networks. Here, we present robust and easy-to-use chemical derivatization protocols that facilitate quantitative and simultaneous molecular imaging of complete neurotransmitter systems and drugs in diverse biological tissue sections with high lateral resolution. This is currently not possible with any other imaging technique. The protocol, using fluoromethylpyridinium and pyrylium reagents, describes all steps from tissue preparation (~1 h), chemical derivatization (1-2 h), data collection (timing depends on the number of samples and lateral resolution) and data analysis and interpretation. The specificity of the chemical reaction can also help users identify unknown chemical identities. Our protocol can reveal the cellular locations in which signaling molecules act and thus shed light on the complex responses that occur after the administration of drugs or during the course of a disease.
Collapse
Affiliation(s)
- Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Elva Fridjonsdottir
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Nicole Strittmatter
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andreas Dannhorn
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Per Svenningsson
- Department of Clinical Neuroscience, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Richard J A Goodwin
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
18
|
Abstract
Mass spectrometry imaging (MSI) is a powerful, label-free technique that provides detailed maps of hundreds of molecules in complex samples with high sensitivity and subcellular spatial resolution. Accurate quantification in MSI relies on a detailed understanding of matrix effects associated with the ionization process along with evaluation of the extraction efficiency and mass-dependent ion losses occurring in the analysis step. We present a critical summary of approaches developed for quantitative MSI of metabolites, lipids, and proteins in biological tissues and discuss their current and future applications.
Collapse
Affiliation(s)
- Daisy Unsihuay
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA; , ,
| | - Daniela Mesa Sanchez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA; , ,
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA; , ,
| |
Collapse
|
19
|
Shibasaki H, Kinoh H, Cabral H, Quader S, Mochida Y, Liu X, Toh K, Miyano K, Matsumoto Y, Yamasoba T, Kataoka K. Efficacy of pH-Sensitive Nanomedicines in Tumors with Different c-MYC Expression Depends on the Intratumoral Activation Profile. ACS NANO 2021; 15:5545-5559. [PMID: 33625824 DOI: 10.1021/acsnano.1c00364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Effective inhibition of the protein derived from cellular myelocytomatosis oncogene (c-Myc) is one of the most sought-after goals in cancer therapy. While several c-Myc inhibitors have demonstrated therapeutic potential, inhibiting c-Myc has proven challenging, since c-Myc is essential for normal tissues and tumors may present heterogeneous c-Myc levels demanding contrasting therapeutic strategies. Herein, we developed tumor-targeted nanomedicines capable of treating both tumors with high and low c-Myc levels by adjusting their ability to spatiotemporally control drug action. These nanomedicines loaded homologues of the bromodomain and extraterminal (BET) motif inhibitor JQ1 as epigenetic c-Myc inhibitors through pH-cleavable bonds engineered for fast or slow drug release at intratumoral pH. In tumors with high c-Myc expression, the fast-releasing (FR) nanomedicines suppressed tumor growth more effectively than the slow-releasing (SR) ones, whereas, in the low c-Myc tumors, the efficacy of the nanomedicines was the opposite. By studying the tumor distribution and intratumoral activation of the nanomedicines, we found that, despite SR nanomedicines achieved higher accumulation than the FR counterparts in both c-Myc high and low tumors, the antitumor activity profiles corresponded with the availability of activated drugs inside the tumors. These results indicate the potential of engineered nanomedicines for c-Myc inhibition and spur the idea of precision pH-sensitive nanomedicine based on cancer biomarker levels.
Collapse
Affiliation(s)
- Hitoshi Shibasaki
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hiroaki Kinoh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Horacio Cabral
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Yuki Mochida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Xueying Liu
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazuki Miyano
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Department of Otorhinolaryngology, Tokyo Yamate Medical Center, 3-22-1, Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yu Matsumoto
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tatsuya Yamasoba
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Policy Alternative Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
20
|
Kertesz V, Cahill JF, Srijanto BR, Collier CP, Vavrek M, Chen B. Absolute quantitation of propranolol from 200-μm regions of mouse brain and liver thin tissues using laser ablation-dropletProbe-mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9010. [PMID: 33232548 DOI: 10.1002/rcm.9010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE The ability to quantify drugs and metabolites in tissue with sub-mm resolution is a challenging but much needed capability in pharmaceutical research. To fill this void, a novel surface sampling approach combining laser ablation with the commercial dropletProbe automated liquid surface sampling system (LA-dropletProbe) was developed and is presented here. METHODS Parylene C-coated 200 × 200 μm tissue regions of mouse brain and kidney thin tissue sections were analyzed for propranolol by laser ablation of tissue directly into a preformed liquid junction. Propranolol was detected by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) in positive electrospray ionization mode. Quantitation was achieved via application of a stable-isotope-labeled internal standard and an external calibration curve. RESULTS The absolute concentrations of propranolol determined from 200 × 200 μm tissue regions were compared with the propranolol concentrations obtained from 2.3-mm-diameter tissue punches of adjacent, non-coated sections using standard bulk tissue extraction protocols followed by regular HPLC/MS/MS analysis. The average concentration of propranolol in both organs determined by the two employed methods agreed to within ±12%. Furthermore, the relative abundances of phase II hydroxypropranolol glucuronide metabolites were recorded and found to be consistent with previous results. CONCLUSIONS This work illustrates that depositing a thin layer of parylene C onto thin tissue prior to analysis, which seals the surface and prevents direct liquid extraction of the drug from the tissue, coupled to the novel LA-dropletProbe surface sampling system is a viable approach for sub-mm resolution quantitative drug distribution analysis.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Bioanalytical Mass Spectrometry Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - John F Cahill
- Bioanalytical Mass Spectrometry Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Bernadeta R Srijanto
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Charles P Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Marissa Vavrek
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Bingming Chen
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| |
Collapse
|
21
|
He Q, Sun C, Liu J, Pan Y. MALDI-MSI analysis of cancer drugs: Significance, advances, and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Applications of stable isotopes in MALDI imaging: current approaches and an eye on the future. Anal Bioanal Chem 2021; 413:2637-2653. [PMID: 33532914 DOI: 10.1007/s00216-021-03189-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/30/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption/ionisation-imaging mass spectrometry (MALDI-IMS) is now an established imaging modality with particular utility in the study of biological, biomedical and pathological processes. In the first instance, the use of stable isotopically labelled (SIL) compounds in MALDI-IMS has addressed technical barriers to increase the accuracy and versatility of this technique. This has undoubtedly enhanced our ability to interpret the two-dimensional ion intensity distributions produced from biological tissue sections. Furthermore, studies using delivery of SIL compounds to live tissues have begun to decipher cell, tissue and inter-tissue metabolism while maintaining spatial resolution. Here, we review both the technical and biological applications of SIL compounds in MALDI-IMS, before using the uptake and metabolism of glucose in bovine ocular lens tissue to illustrate the current limitations of SIL compound use in MALDI-IMS. Finally, we highlight recent instrumentation advances that may further enhance our ability to use SIL compounds in MALDI-IMS to understand biological and pathological processes. Graphical Abstract.
Collapse
|
23
|
Banstola B, Murray KK. A nanoparticle co-matrix for multiple charging in matrix-assisted laser desorption ionization imaging of tissue. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35 Suppl 1:e8424. [PMID: 30822818 DOI: 10.1002/rcm.8424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/07/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE A two-component matrix of 2-nitrophloroglucinol (2-NPG) and silica nanoparticles was used for matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging of high-charge-state biomolecules in tissue. Potential advantages include increased effective mass range and efficiency of fragmentation. METHODS A mixture of 2-NPG matrix and silica nanoparticles was applied to cyrosectioned 10 μm thick mouse brain tissue. The mixture was pipetted onto the tissue for profiling and sprayed for tissue imaging. MALDI images were obtained under high vacuum in a commercial time-of-flight mass spectrometer. RESULTS The combined 2-NPG and nanoparticle matrix produced highly charged ions from tissue with high-vacuum MALDI. Nanoparticles of 20, 70, 400, and 1000 nm in diameter were tested, the 20 nm particles producing the highest charge states. Images of mouse brain tissue obtained from highly charged ions show similar spatial localization. CONCLUSIONS The combined 2-NPG and nanoparticle matrix produces highly charged ions from tissue through a mechanism that may rely on the high surface area of the particles which can dry the tissue, and their ability to bind analyte molecules thereby assisting in crystal formation and production of multiply charged ions on laser irradiation.
Collapse
Affiliation(s)
- Bijay Banstola
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
24
|
Veerasammy K, Chen YX, Sauma S, Pruvost M, Dansu DK, Choetso T, Zhong T, Marechal D, Casaccia P, Abzalimov R, He Y. Sample Preparation for Metabolic Profiling using MALDI Mass Spectrometry Imaging. J Vis Exp 2020:10.3791/62008. [PMID: 33427237 PMCID: PMC11819924 DOI: 10.3791/62008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Metabolomics, the study to identify and quantify small molecules and metabolites present in an experimental sample, has emerged as an important tool to investigate the biological activities during development and diseases. Metabolomics approaches are widely employed in the study of cancer, nutrition/diet, diabetes, and other physiological and pathological conditions involving metabolic processes. An advantageous tool that aids in metabolomic profiling advocated in this paper is matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). Its ability to detect metabolites in situ without labeling, structural modifications, or other specialized reagents, such as those used in immunostaining, makes MALDI MSI a unique tool in advancing methodologies relevant in the field of metabolomics. An appropriate sample preparation process is critical to yield optimal results and will be the focus of this paper.
Collapse
Affiliation(s)
- Kelly Veerasammy
- The Graduate Center - Advanced Science Research Center, Neuroscience Initiative, The City University of New York; The City College of New York, CUNY
| | - Yuki X Chen
- The Graduate Center - Advanced Science Research Center, Neuroscience Initiative, The City University of New York; The City College of New York, CUNY
| | - Sami Sauma
- The Graduate Center - Advanced Science Research Center, Neuroscience Initiative, The City University of New York
| | - Mathilde Pruvost
- The Graduate Center - Advanced Science Research Center, Neuroscience Initiative, The City University of New York
| | - David K Dansu
- The Graduate Center - Advanced Science Research Center, Neuroscience Initiative, The City University of New York
| | - Tenzin Choetso
- The Graduate Center - Advanced Science Research Center, Neuroscience Initiative, The City University of New York; The City College of New York, CUNY
| | | | - Damien Marechal
- The Graduate Center - Advanced Science Research Center, Neuroscience Initiative, The City University of New York
| | - Patrizia Casaccia
- The Graduate Center - Advanced Science Research Center, Neuroscience Initiative, The City University of New York
| | - Rinat Abzalimov
- The Graduate Center - Advanced Science Research Center, Structural Biology Initiative, The City University of New York; The Graduate Center - Advanced Science Research Center, MALDI MS Imaging Joint Core Facility, The City University of New York;
| | - Ye He
- The Graduate Center - Advanced Science Research Center, Neuroscience Initiative, The City University of New York; The Graduate Center - Advanced Science Research Center, MALDI MS Imaging Joint Core Facility, The City University of New York;
| |
Collapse
|
25
|
Ivanova B, Spiteller M. Stochastic dynamic mass spectrometric quantification of steroids in mixture - Part II. Steroids 2020; 164:108750. [PMID: 33069721 DOI: 10.1016/j.steroids.2020.108750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/04/2020] [Indexed: 01/25/2023]
Abstract
This paper deals with quantification of the following steroids in mixture: hydrocortisone (1), deoxycorticosterone (2), progesterone (3) and methyltestosterone (4) by means of mass spectrometry and implementing our innovative stochatic dynamic functional relationship between the analyte concentration in solution and the experimental variable intensity. The mass spectrometric data are correlated independently using chromatography. Chemometric analysis is carried out.
Collapse
Affiliation(s)
- Bojidarka Ivanova
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Nordrhein-Westfalen, Germany.
| | - Michael Spiteller
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Nordrhein-Westfalen, Germany
| |
Collapse
|
26
|
Abstract
Mass spectrometry imaging (MSI) is a label-free molecular imaging technique allowing an untargeted detection of a broad range of biomolecules and xenobiotics. MSI enables imaging of the spatial distribution of proteins, peptides, lipids and metabolites from a wide range of samples. To date, this technique is commonly applied to tissue sections in cancer diagnostics and biomarker development, but also molecular histology in general. Advances in the methodology and bioinformatics improved the resolution of MS images below the single cell level and increased the flexibility of the workflow. However, MSI-based research in virology is just starting to gain momentum and its full potential has not been exploited yet. In this review, we discuss the main applications of MSI in virology. We review important aspects of matrix-assisted laser desorption/ionization (MALDI) MSI, the most widely used MSI technique in virology. In addition, we summarize relevant literature on MSI studies that aim to unravel virus-host interactions and virus pathogenesis, to elucidate antiviral drug kinetics and to improve current viral disease diagnostics. Collectively, these studies strongly improve our general understanding of virus-induced changes in the proteome, metabolome and metabolite distribution in host tissues of humans, animals and plants upon infection. Furthermore, latest MSI research provided important insights into the drug distribution and distribution kinetics, especially in antiretroviral research. Finally, MSI-based investigations of oncogenic viruses greatly increased our knowledge on tumor mass signatures and facilitated the identification of cancer biomarkers.
Collapse
Affiliation(s)
- Luca D Bertzbach
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | | | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
27
|
Handler AM, Fallah M, Just Pedersen A, Pommergaard Pedersen G, Troensegaard Nielsen K, Janfelt C. MALDI mass spectrometry imaging as a complementary analytical method for improved skin distribution analysis of drug molecule and excipients. Int J Pharm 2020; 590:119949. [DOI: 10.1016/j.ijpharm.2020.119949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
|
28
|
Källback P, Vallianatou T, Nilsson A, Shariatgorji R, Schintu N, Pereira M, Barré F, Wadensten H, Svenningsson P, Andrén PE. Cross-validated Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Quantitation Protocol for a Pharmaceutical Drug and Its Drug-Target Effects in the Brain Using Time-of-Flight and Fourier Transform Ion Cyclotron Resonance Analyzers. Anal Chem 2020; 92:14676-14684. [PMID: 33086792 PMCID: PMC7660593 DOI: 10.1021/acs.analchem.0c03203] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Matrix-assisted laser desorption/ionization
mass spectrometry imaging
(MALDI-MSI) is an established tool in drug development, which enables
visualization of drugs and drug metabolites at spatial localizations
in tissue sections from different organs. However, robust and accurate
quantitation by MALDI-MSI still remains a challenge. We present a
quantitative MALDI-MSI method using two instruments with different
types of mass analyzers, i.e., time-of-flight (TOF) and Fourier transform
ion cyclotron resonance (FTICR) MS, for mapping levels of the in vivo-administered drug citalopram, a selective serotonin
reuptake inhibitor, in mouse brain tissue sections. Six different
methods for applying calibration standards and an internal standard
were evaluated. The optimized method was validated according to authorities’
guidelines and requirements, including selectivity, accuracy, precision,
recovery, calibration curve, sensitivity, reproducibility, and stability
parameters. We showed that applying a dilution series of calibration
standards followed by a homogeneously applied, stable, isotopically
labeled standard for normalization and a matrix on top of the tissue
section yielded similar results to those from the reference method
using liquid chromatography–tandem mass spectrometry (LC–MS/MS).
The validation results were within specified limits and the brain
concentrations for TOF MS (51.1 ± 4.4 pmol/mg) and FTICR MS (56.9
± 6.0 pmol/mg) did not significantly differ from those of the
cross-validated LC–MS/MS method (55.0 ± 4.9 pmol/mg).
The effect of in vivo citalopram administration on
the serotonin neurotransmitter system was studied in the hippocampus,
a brain region that is the principal target of the serotonergic afferents
along with the limbic system, and it was shown that serotonin was
significantly increased (2-fold), but its metabolite 5-hydroxyindoleacetic
acid was not. This study makes a substantial step toward establishing
MALDI-MSI as a fully quantitative validated method.
Collapse
Affiliation(s)
- Patrik Källback
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, BMC 591, 75124 Uppsala, Sweden
| | - Theodosia Vallianatou
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, BMC 591, 75124 Uppsala, Sweden
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, BMC 591, 75124 Uppsala, Sweden.,Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, BMC 591, 75124 Uppsala, Sweden
| | - Reza Shariatgorji
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, BMC 591, 75124 Uppsala, Sweden.,Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, BMC 591, 75124 Uppsala, Sweden
| | - Nicoletta Schintu
- Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Marcela Pereira
- Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Florian Barré
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, BMC 591, 75124 Uppsala, Sweden
| | - Henrik Wadensten
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, BMC 591, 75124 Uppsala, Sweden
| | - Per Svenningsson
- Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, BMC 591, 75124 Uppsala, Sweden.,Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, BMC 591, 75124 Uppsala, Sweden
| |
Collapse
|
29
|
Tobias F, Hummon AB. Considerations for MALDI-Based Quantitative Mass Spectrometry Imaging Studies. J Proteome Res 2020; 19:3620-3630. [PMID: 32786684 DOI: 10.1021/acs.jproteome.0c00443] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significant advances in mass spectrometry imaging (MSI) have pushed the boundaries in obtaining spatial information and quantification in biological samples. Quantitative MSI (qMSI) has typically been challenging to achieve because of matrix and tissue heterogeneity, inefficient analyte extraction, and ion suppression effects, but recent studies have demonstrated approaches to obtain highly robust methods and reproducible results. In this perspective, we share our insights into sample preparation, how the choice of matrix influences sensitivity, construction of calibration curves, signal normalization, and visualization of MSI data. We hope that by articulating these guidelines that qMSI can be routinely conducted while retaining the analytical merits of other mass spectrometry modalities.
Collapse
|
30
|
Dannhorn A, Kazanc E, Ling S, Nikula C, Karali E, Serra MP, Vorng JL, Inglese P, Maglennon G, Hamm G, Swales J, Strittmatter N, Barry ST, Sansom OJ, Poulogiannis G, Bunch J, Goodwin RJ, Takats Z. Universal Sample Preparation Unlocking Multimodal Molecular Tissue Imaging. Anal Chem 2020; 92:11080-11088. [PMID: 32519547 DOI: 10.1021/acs.analchem.0c00826] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A new tissue sample embedding and processing method is presented that provides downstream compatibility with numerous different histological, molecular biology, and analytical techniques. The methodology is based on the low temperature embedding of fresh frozen specimens into a hydrogel matrix composed of hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) and sectioning using a cryomicrotome. The hydrogel was expected not to interfere with standard tissue characterization methods, histologically or analytically. We assessed the compatibility of this protocol with various mass spectrometric imaging methods including matrix-assisted laser desorption ionization (MALDI), desorption electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS). We also demonstrated the suitability of the universal protocol for extraction based molecular biology techniques such as rt-PCR. The integration of multiple analytical modalities through this universal sample preparation protocol offers the ability to study tissues at a systems biology level and directly linking results to tissue morphology and cellular phenotype.
Collapse
Affiliation(s)
- Andreas Dannhorn
- Department of Digestion, Metabolism and Reproduction, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, U.K
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences (CPSS), AstraZeneca, Cambridge, U.K
| | - Emine Kazanc
- Department of Digestion, Metabolism and Reproduction, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, U.K
| | - Stephanie Ling
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences (CPSS), AstraZeneca, Cambridge, U.K
| | - Chelsea Nikula
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Evdoxia Karali
- The Institute for Cancer Research (ICR), London SW7 3RP, U.K
| | - Maria Paola Serra
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences (CPSS), AstraZeneca, Cambridge, U.K
| | - Jean-Luc Vorng
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Paolo Inglese
- Department of Digestion, Metabolism and Reproduction, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, U.K
| | - Gareth Maglennon
- Oncology Safety, Clinical Pharmacology and Safety Sciences (CPSS), AstraZeneca, Cambridge, U.K
| | - Gregory Hamm
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences (CPSS), AstraZeneca, Cambridge, U.K
| | - John Swales
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences (CPSS), AstraZeneca, Cambridge, U.K
| | - Nicole Strittmatter
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences (CPSS), AstraZeneca, Cambridge, U.K
| | - Simon T Barry
- Bioscience, Discovery, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | | | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Richard Ja Goodwin
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences (CPSS), AstraZeneca, Cambridge, U.K
| | - Zoltan Takats
- Department of Digestion, Metabolism and Reproduction, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
31
|
Park S, Yoon S, Min H, Moon SM, Choi YJ, Kim IS, Lee GH, Kim MS, Seo J, Jung W, Lee CY. Compartmentalized Arrays of Matrix Droplets for Quantitative Mass Spectrometry Imaging of Adsorbed Peptides. Anal Chem 2020; 92:8715-8721. [PMID: 32449357 DOI: 10.1021/acs.analchem.9b05316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mass spectrometry imaging (MSI) based on matrix-assisted laser desorption/ionization (MALDI) provides information on the identification and spatial distribution of biomolecules. Quantitative analysis, however, has been challenging largely due to heterogeneity in both the size of the matrix crystals and the extraction area. In this work, we present a compartmentalized elastomeric stamp for quantitative MALDI-MSI of adsorbed peptides. Filling the compartments with matrix solution and stamping onto a planar substrate extract and concentrate analytes adsorbed in each compartment into a single analyte-matrix cocrystal over the entire stamped area. Walls between compartments help preserve spatial information on the adsorbates. The mass intensity of the cocrystals directly correlates with the surface coverage of analytes, which enables not only quantitative analysis but estimation of an equilibrium constant for the adsorption. We demonstrate via MALDI-MSI relative quantitation of peptides adsorbed along a microchannel with varying surface coverages.
Collapse
Affiliation(s)
- Sanghwan Park
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sook Yoon
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyegi Min
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seung Min Moon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yoon Ji Choi
- In Vivo Research Center, UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Il Shin Kim
- In Vivo Research Center, UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ga Hyang Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Sun Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea
| | - Jungju Seo
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea
| | - Woonggyu Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chang Young Lee
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
32
|
McGee JP, Melani RD, Goodwin M, McAlister G, Huguet R, Senko MW, Compton PD, Kelleher NL. Voltage Rollercoaster Filtering of Low-Mass Contaminants During Native Protein Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:763-767. [PMID: 32126774 PMCID: PMC7274025 DOI: 10.1021/jasms.9b00037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Intact protein mass spectrometry (MS) via electrospray-based methods is often degraded by low-mass contaminants, which can suppress the spectral quality of the analyte of interest via space-charge effects. Consequently, selective removal of contaminants by their mobilities would benefit native MS if achieved without additional hardware and before the mass analyzer regions used for selection, analyte readout, or tandem MS. Here, we use the high-pressure multipole within the source of an Orbitrap Tribrid as the foundation for a coarse ion filter. Using this method, we show complete filtration of 2 mM polyethylene glycol (PEG-1000) during native MS of SILu mAb antibody present at a 200× lower concentration. We also show the generality of the process by rescuing 10 μM tetrameric pyruvate kinase from 2 mM PEG-1000, asserting this voltage rollercoaster filtering (VRF) method for use in native MS as an efficient alternative to conventional purification methods.
Collapse
Affiliation(s)
- John P McGee
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D Melani
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Michael Goodwin
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Graeme McAlister
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Romain Huguet
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Michael W Senko
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Philip D Compton
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
33
|
Fincher JA, Korte AR, Yadavilli S, Morris NJ, Vertes A. Multimodal imaging of biological tissues using combined MALDI and NAPA-LDI mass spectrometry for enhanced molecular coverage. Analyst 2020; 145:6910-6918. [DOI: 10.1039/d0an00836b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sequential imaging of a tissue section by MALDI and NAPA-LDI mass spectrometry provides enhanced molecular coverage.
Collapse
Affiliation(s)
- Jarod A. Fincher
- Department of Chemistry
- The George Washington University
- Washington
- USA
| | - Andrew R. Korte
- Department of Chemistry
- The George Washington University
- Washington
- USA
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine
- Children's National Medical Center
- Washington
- USA
| | | | - Akos Vertes
- Department of Chemistry
- The George Washington University
- Washington
- USA
| |
Collapse
|
34
|
Imaging and quantifying drug delivery in skin - Part 1: Autoradiography and mass spectrometry imaging. Adv Drug Deliv Rev 2020; 153:137-146. [PMID: 31778729 DOI: 10.1016/j.addr.2019.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/21/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Abstract
In this two-part review we present an up-to-date description of different imaging methods available to map the localization of drugs on skin as a complement of established ex-vivo absorption studies. This first part deals with invasive methods which are grouped in two classes according to their underlying principles: i) methods using radioactivity such as autoradiography and ii) mass spectrometry methods such as MALDI and SIMS. For each method, a description of the principle is given along with example applications of imaging and quantifying drug delivery in human skin. Thanks to these techniques a better assessment of the fate of drugs is obtained: its localization on a particular skin structure, its potential accumulation, etc. A critical comparison in terms of capabilities, sensitivity and practical applicability is included that will help the reader to select the most appropriate technique depending on the particular problem to be solved.
Collapse
|
35
|
Holzlechner M, Eugenin E, Prideaux B. Mass spectrometry imaging to detect lipid biomarkers and disease signatures in cancer. Cancer Rep (Hoboken) 2019; 2:e1229. [PMID: 32729258 PMCID: PMC7941519 DOI: 10.1002/cnr2.1229] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current methods to identify, classify, and predict tumor behavior mostly rely on histology, immunohistochemistry, and molecular determinants. However, better predictive markers are required for tumor diagnosis and evaluation. Due, in part, to recent technological advancements, metabolomics and lipid biomarkers have become a promising area in cancer research. Therefore, there is a necessity for novel and complementary techniques to identify and visualize these molecular markers within tumors and surrounding tissue. RECENT FINDINGS Since its introduction, mass spectrometry imaging (MSI) has proven to be a powerful tool for mapping analytes in biological tissues. By adding the label-free specificity of mass spectrometry to the detailed spatial information of traditional histology, hundreds of lipids can be imaged simultaneously within a tumor. MSI provides highly detailed lipid maps for comparing intra-tumor, tumor margin, and healthy regions to identify biomarkers, patterns of disease, and potential therapeutic targets. In this manuscript, recent advancement in sample preparation and MSI technologies are discussed with special emphasis on cancer lipid research to identify tumor biomarkers. CONCLUSION MSI offers a unique approach for biomolecular characterization of tumor tissues and provides valuable complementary information to histology for lipid biomarker discovery and tumor classification in clinical and research cancer applications.
Collapse
Affiliation(s)
- Matthias Holzlechner
- Department of Neuroscience, Cell Biology, and AnatomyThe University of Texas Medical Branch at Galveston (UTMB)GalvestonTexas
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and AnatomyThe University of Texas Medical Branch at Galveston (UTMB)GalvestonTexas
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and AnatomyThe University of Texas Medical Branch at Galveston (UTMB)GalvestonTexas
| |
Collapse
|
36
|
Barré FY, Paine MRL, Flinders B, Trevitt AJ, Kelly PD, Ait-Belkacem R, Garcia JP, Creemers LB, Stauber J, Vreeken RJ, Cillero-Pastor B, Ellis SR, Heeren RMA. Enhanced Sensitivity Using MALDI Imaging Coupled with Laser Postionization (MALDI-2) for Pharmaceutical Research. Anal Chem 2019; 91:10840-10848. [PMID: 31355633 PMCID: PMC6706868 DOI: 10.1021/acs.analchem.9b02495] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023]
Abstract
Visualizing the distributions of drugs and their metabolites is one of the key emerging application areas of matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) within pharmaceutical research. The success of a given MALDI-MSI experiment is ultimately determined by the ionization efficiency of the compounds of interest, which in many cases are too low to enable detection at relevant concentrations. In this work we have taken steps to address this challenge via the first application of laser-postionisation coupled with MALDI (so-called MALDI-2) to the analysis and imaging of pharmaceutical compounds. We demonstrate that MALDI-2 increased the signal intensities for 7 out of the 10 drug compounds analyzed by up to 2 orders of magnitude compared to conventional MALDI analysis. This gain in sensitivity enabled the distributions of drug compounds in both human cartilage and dog liver tissue to be visualized using MALDI-2, whereas little-to-no signal from tissue was obtained using conventional MALDI. This work demonstrates the vast potential of MALDI-2-MSI in pharmaceutical research and drug development and provides a valuable tool to broaden the application areas of MSI. Finally, in an effort to understand the ionization mechanism, we provide the first evidence that the preferential formation of [M + H]+ ions with MALDI-2 has no obvious correlation with the gas-phase proton affinity values of the analyte molecules, suggesting, as with MALDI, the occurrence of complex and yet to be elucidated ionization phenomena.
Collapse
Affiliation(s)
- Florian
P. Y. Barré
- The
Maastricht MultiModal Molecular Imaging Institute (M4I), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Martin R. L. Paine
- The
Maastricht MultiModal Molecular Imaging Institute (M4I), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Bryn Flinders
- The
Maastricht MultiModal Molecular Imaging Institute (M4I), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Adam J. Trevitt
- School
of Chemistry, University of Wollongong, Wollongong, Australia
| | - Patrick D. Kelly
- School
of Chemistry, University of Wollongong, Wollongong, Australia
| | | | - João P. Garcia
- University
Medical Centre (UMC) Utrecht, Department
of Orthopedics, Heidelberglaan
100, 3584 CX Utrecht, The Netherlands
| | - Laura B. Creemers
- University
Medical Centre (UMC) Utrecht, Department
of Orthopedics, Heidelberglaan
100, 3584 CX Utrecht, The Netherlands
| | | | - Rob J. Vreeken
- The
Maastricht MultiModal Molecular Imaging Institute (M4I), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Discovery
Sciences, Janssen Research and Development, Beerse, Belgium
| | - Berta Cillero-Pastor
- The
Maastricht MultiModal Molecular Imaging Institute (M4I), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Shane R. Ellis
- The
Maastricht MultiModal Molecular Imaging Institute (M4I), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging Institute (M4I), Division
of Imaging Mass Spectrometry, Maastricht
University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
37
|
Applications of MALDI mass spectrometry imaging for pharmacokinetic studies during drug development. Drug Metab Pharmacokinet 2019; 34:209-216. [DOI: 10.1016/j.dmpk.2019.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
|
38
|
Zhao Y, Prideaux B, Baistrocchi S, Sheppard DC, Perlin DS. Beyond tissue concentrations: antifungal penetration at the site of infection. Med Mycol 2019; 57:S161-S167. [PMID: 30816968 DOI: 10.1093/mmy/myy067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/05/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022] Open
Abstract
Despite advances in antifungal therapy, invasive fungal infections remain a significant cause of morbidity and mortality worldwide. One important factor contributing to the relative ineffectiveness of existing antifungal drugs is insufficient drug exposure at the site of infection. Despite the importance of this aspect of antifungal therapy, we generally lack a full appreciation of how antifungal drugs distribute, penetrate, and interact with their target organisms in different tissue subcompartments. A better understanding of drug distribution will be critical to guide appropriate use of currently available antifungal drugs, as well as to aid development of new agents. Herein we briefly review current perspectives of antifungal drug exposure at the site of infection and describe a new technique, matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging, which has the potential to greatly expand our understanding of drug penetration.
Collapse
Affiliation(s)
- Yanan Zhao
- Public Health Research Institute, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ 07103
| | - Brendan Prideaux
- Public Health Research Institute, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ 07103
| | - Shane Baistrocchi
- Departments of Medicine, Microbiology & Immunology, McGill University, Montreal, Quebec H4A 3J1
| | - Donald C Sheppard
- Departments of Medicine, Microbiology & Immunology, McGill University, Montreal, Quebec H4A 3J1
| | - David S Perlin
- Public Health Research Institute, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ 07103
| |
Collapse
|
39
|
Prentice BM, McMillen JC, Caprioli RM. Multiple TOF/TOF Events in a Single Laser Shot for Multiplexed Lipid Identifications in MALDI Imaging Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 437:30-37. [PMID: 30906202 PMCID: PMC6424509 DOI: 10.1016/j.ijms.2018.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Tandem mass spectrometry (MS/MS) is often used to identify lipids in matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) workflows. The molecular specificity afforded by MS/MS is crucial on MALDI time-of-flight (TOF) platforms that generally lack high resolution accurate mass measurement capabilities. Unfortunately, imaging MS/MS workflows generally only monitor a single precursor ion over the imaged area, limiting the throughput of this methodology. Herein, we demonstrate that multiple TOF/TOF events performed in each laser shot can be used to improve the throughput of imaging MS/MS. This is shown to enable the simultaneous identification of multiple phosphatidylcholine lipids in rat brain tissue. Uniquely, the separation in time achieved for the precursor ions in the TOF-1 region of the instrument is maintained for the fragment ions as they are analyzed in TOF-2, allowing for the differentiation of fragment ions of the exact same m/z derived from different precursor ions (e.g., the m/z 163 fragment ion from precursor ion m/z 772.5 is easily distinguished from the m/z 163 fragment ion from precursor ion m/z 826.5). This multiplexed imaging MS/MS approach allows for the acquisition of complete fragment ion spectra for multiple precursor ions per laser shot.
Collapse
Affiliation(s)
- Boone M. Prentice
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232
| | - Josiah C. McMillen
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232
| | - Richard M. Caprioli
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232
- Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN 37232
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232
- Address correspondence to: Dr. R. M. Caprioli, 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA, Phone: (615)322-4336, Fax: (615) 343-8372,
| |
Collapse
|
40
|
Schulz S, Becker M, Groseclose MR, Schadt S, Hopf C. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development. Curr Opin Biotechnol 2019; 55:51-59. [DOI: 10.1016/j.copbio.2018.08.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/21/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
|
41
|
Vaysse PM, Heeren RMA, Porta T, Balluff B. Mass spectrometry imaging for clinical research - latest developments, applications, and current limitations. Analyst 2018. [PMID: 28642940 DOI: 10.1039/c7an00565b] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry is being used in many clinical research areas ranging from toxicology to personalized medicine. Of all the mass spectrometry techniques, mass spectrometry imaging (MSI), in particular, has continuously grown towards clinical acceptance. Significant technological and methodological improvements have contributed to enhance the performance of MSI recently, pushing the limits of throughput, spatial resolution, and sensitivity. This has stimulated the spread of MSI usage across various biomedical research areas such as oncology, neurological disorders, cardiology, and rheumatology, just to name a few. After highlighting the latest major developments and applications touching all aspects of translational research (i.e. from early pre-clinical to clinical research), we will discuss the present challenges in translational research performed with MSI: data management and analysis, molecular coverage and identification capabilities, and finally, reproducibility across multiple research centers, which is the largest remaining obstacle in moving MSI towards clinical routine.
Collapse
Affiliation(s)
- Pierre-Maxence Vaysse
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Tiffany Porta
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
42
|
Himmel LE, Hackett TA, Moore JL, Adams WR, Thomas G, Novitskaya T, Caprioli RM, Zijlstra A, Mahadevan-Jansen A, Boyd KL. Beyond the H&E: Advanced Technologies for in situ Tissue Biomarker Imaging. ILAR J 2018; 59:51-65. [PMID: 30462242 PMCID: PMC6645175 DOI: 10.1093/ilar/ily004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/27/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
For decades, histopathology with routine hematoxylin and eosin staining has been and remains the gold standard for reaching a morphologic diagnosis in tissue samples from humans and veterinary species. However, within the past decade, there has been exponential growth in advanced techniques for in situ tissue biomarker imaging that bridge the divide between anatomic and molecular pathology. It is now possible to simultaneously observe localization and expression magnitude of multiple protein, nucleic acid, and molecular targets in tissue sections and apply machine learning to synthesize vast, image-derived datasets. As these technologies become more sophisticated and widely available, a team-science approach involving subspecialists with medical, engineering, and physics backgrounds is critical to upholding quality and validity in studies generating these data. The purpose of this manuscript is to detail the scientific premise, tools and training, quality control, and data collection and analysis considerations needed for the most prominent advanced imaging technologies currently applied in tissue sections: immunofluorescence, in situ hybridization, laser capture microdissection, matrix-assisted laser desorption ionization imaging mass spectrometry, and spectroscopic/optical methods. We conclude with a brief overview of future directions for ex vivo and in vivo imaging techniques.
Collapse
Affiliation(s)
- Lauren E Himmel
- Lauren E. Himmel, DVM, PhD, is an assistant professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee. Troy A. Hackett, PhD, is a professor in the Department of Hearing and Speech Sciences at Vanderbilt University Medical Center in Nashville, Tennessee. Jessica L. Moore, PhD, is a postdoctoral research fellow in the Mass Spectrometry Research Center at the Vanderbilt University School of Medicine in Nashville, Tennessee. Wilson R. Adams, BS, is graduate student in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Giju Thomas, PhD, is a post-doctoral researcher in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Tatiana Novitskaya, MD, PhD, is a staff scientist in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center. Richard M. Caprioli, PhD, is a professor in the Department of Chemistry at the Vanderbilt University School of Medicine in Nashville, Tennessee. Andries Zijlstra, PhD, is an associate professor in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center in Nashville, Tennessee. Anita Mahadevan-Jansen, PhD, is a professor in the Department of Biomedical Engineering at the Vanderbilt University School of Engineering and Department of Neurosurgery at Vanderbilt University Medical Center in Nashville, Tennessee. Kelli L. Boyd, DVM, PhD, is a professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee
| | - Troy A Hackett
- Lauren E. Himmel, DVM, PhD, is an assistant professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee. Troy A. Hackett, PhD, is a professor in the Department of Hearing and Speech Sciences at Vanderbilt University Medical Center in Nashville, Tennessee. Jessica L. Moore, PhD, is a postdoctoral research fellow in the Mass Spectrometry Research Center at the Vanderbilt University School of Medicine in Nashville, Tennessee. Wilson R. Adams, BS, is graduate student in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Giju Thomas, PhD, is a post-doctoral researcher in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Tatiana Novitskaya, MD, PhD, is a staff scientist in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center. Richard M. Caprioli, PhD, is a professor in the Department of Chemistry at the Vanderbilt University School of Medicine in Nashville, Tennessee. Andries Zijlstra, PhD, is an associate professor in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center in Nashville, Tennessee. Anita Mahadevan-Jansen, PhD, is a professor in the Department of Biomedical Engineering at the Vanderbilt University School of Engineering and Department of Neurosurgery at Vanderbilt University Medical Center in Nashville, Tennessee. Kelli L. Boyd, DVM, PhD, is a professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee
| | - Jessica L Moore
- Lauren E. Himmel, DVM, PhD, is an assistant professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee. Troy A. Hackett, PhD, is a professor in the Department of Hearing and Speech Sciences at Vanderbilt University Medical Center in Nashville, Tennessee. Jessica L. Moore, PhD, is a postdoctoral research fellow in the Mass Spectrometry Research Center at the Vanderbilt University School of Medicine in Nashville, Tennessee. Wilson R. Adams, BS, is graduate student in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Giju Thomas, PhD, is a post-doctoral researcher in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Tatiana Novitskaya, MD, PhD, is a staff scientist in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center. Richard M. Caprioli, PhD, is a professor in the Department of Chemistry at the Vanderbilt University School of Medicine in Nashville, Tennessee. Andries Zijlstra, PhD, is an associate professor in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center in Nashville, Tennessee. Anita Mahadevan-Jansen, PhD, is a professor in the Department of Biomedical Engineering at the Vanderbilt University School of Engineering and Department of Neurosurgery at Vanderbilt University Medical Center in Nashville, Tennessee. Kelli L. Boyd, DVM, PhD, is a professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee
| | - Wilson R Adams
- Lauren E. Himmel, DVM, PhD, is an assistant professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee. Troy A. Hackett, PhD, is a professor in the Department of Hearing and Speech Sciences at Vanderbilt University Medical Center in Nashville, Tennessee. Jessica L. Moore, PhD, is a postdoctoral research fellow in the Mass Spectrometry Research Center at the Vanderbilt University School of Medicine in Nashville, Tennessee. Wilson R. Adams, BS, is graduate student in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Giju Thomas, PhD, is a post-doctoral researcher in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Tatiana Novitskaya, MD, PhD, is a staff scientist in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center. Richard M. Caprioli, PhD, is a professor in the Department of Chemistry at the Vanderbilt University School of Medicine in Nashville, Tennessee. Andries Zijlstra, PhD, is an associate professor in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center in Nashville, Tennessee. Anita Mahadevan-Jansen, PhD, is a professor in the Department of Biomedical Engineering at the Vanderbilt University School of Engineering and Department of Neurosurgery at Vanderbilt University Medical Center in Nashville, Tennessee. Kelli L. Boyd, DVM, PhD, is a professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee
| | - Giju Thomas
- Lauren E. Himmel, DVM, PhD, is an assistant professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee. Troy A. Hackett, PhD, is a professor in the Department of Hearing and Speech Sciences at Vanderbilt University Medical Center in Nashville, Tennessee. Jessica L. Moore, PhD, is a postdoctoral research fellow in the Mass Spectrometry Research Center at the Vanderbilt University School of Medicine in Nashville, Tennessee. Wilson R. Adams, BS, is graduate student in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Giju Thomas, PhD, is a post-doctoral researcher in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Tatiana Novitskaya, MD, PhD, is a staff scientist in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center. Richard M. Caprioli, PhD, is a professor in the Department of Chemistry at the Vanderbilt University School of Medicine in Nashville, Tennessee. Andries Zijlstra, PhD, is an associate professor in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center in Nashville, Tennessee. Anita Mahadevan-Jansen, PhD, is a professor in the Department of Biomedical Engineering at the Vanderbilt University School of Engineering and Department of Neurosurgery at Vanderbilt University Medical Center in Nashville, Tennessee. Kelli L. Boyd, DVM, PhD, is a professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee
| | - Tatiana Novitskaya
- Lauren E. Himmel, DVM, PhD, is an assistant professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee. Troy A. Hackett, PhD, is a professor in the Department of Hearing and Speech Sciences at Vanderbilt University Medical Center in Nashville, Tennessee. Jessica L. Moore, PhD, is a postdoctoral research fellow in the Mass Spectrometry Research Center at the Vanderbilt University School of Medicine in Nashville, Tennessee. Wilson R. Adams, BS, is graduate student in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Giju Thomas, PhD, is a post-doctoral researcher in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Tatiana Novitskaya, MD, PhD, is a staff scientist in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center. Richard M. Caprioli, PhD, is a professor in the Department of Chemistry at the Vanderbilt University School of Medicine in Nashville, Tennessee. Andries Zijlstra, PhD, is an associate professor in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center in Nashville, Tennessee. Anita Mahadevan-Jansen, PhD, is a professor in the Department of Biomedical Engineering at the Vanderbilt University School of Engineering and Department of Neurosurgery at Vanderbilt University Medical Center in Nashville, Tennessee. Kelli L. Boyd, DVM, PhD, is a professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee
| | - Richard M Caprioli
- Lauren E. Himmel, DVM, PhD, is an assistant professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee. Troy A. Hackett, PhD, is a professor in the Department of Hearing and Speech Sciences at Vanderbilt University Medical Center in Nashville, Tennessee. Jessica L. Moore, PhD, is a postdoctoral research fellow in the Mass Spectrometry Research Center at the Vanderbilt University School of Medicine in Nashville, Tennessee. Wilson R. Adams, BS, is graduate student in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Giju Thomas, PhD, is a post-doctoral researcher in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Tatiana Novitskaya, MD, PhD, is a staff scientist in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center. Richard M. Caprioli, PhD, is a professor in the Department of Chemistry at the Vanderbilt University School of Medicine in Nashville, Tennessee. Andries Zijlstra, PhD, is an associate professor in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center in Nashville, Tennessee. Anita Mahadevan-Jansen, PhD, is a professor in the Department of Biomedical Engineering at the Vanderbilt University School of Engineering and Department of Neurosurgery at Vanderbilt University Medical Center in Nashville, Tennessee. Kelli L. Boyd, DVM, PhD, is a professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee
| | - Andries Zijlstra
- Lauren E. Himmel, DVM, PhD, is an assistant professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee. Troy A. Hackett, PhD, is a professor in the Department of Hearing and Speech Sciences at Vanderbilt University Medical Center in Nashville, Tennessee. Jessica L. Moore, PhD, is a postdoctoral research fellow in the Mass Spectrometry Research Center at the Vanderbilt University School of Medicine in Nashville, Tennessee. Wilson R. Adams, BS, is graduate student in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Giju Thomas, PhD, is a post-doctoral researcher in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Tatiana Novitskaya, MD, PhD, is a staff scientist in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center. Richard M. Caprioli, PhD, is a professor in the Department of Chemistry at the Vanderbilt University School of Medicine in Nashville, Tennessee. Andries Zijlstra, PhD, is an associate professor in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center in Nashville, Tennessee. Anita Mahadevan-Jansen, PhD, is a professor in the Department of Biomedical Engineering at the Vanderbilt University School of Engineering and Department of Neurosurgery at Vanderbilt University Medical Center in Nashville, Tennessee. Kelli L. Boyd, DVM, PhD, is a professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee
| | - Anita Mahadevan-Jansen
- Lauren E. Himmel, DVM, PhD, is an assistant professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee. Troy A. Hackett, PhD, is a professor in the Department of Hearing and Speech Sciences at Vanderbilt University Medical Center in Nashville, Tennessee. Jessica L. Moore, PhD, is a postdoctoral research fellow in the Mass Spectrometry Research Center at the Vanderbilt University School of Medicine in Nashville, Tennessee. Wilson R. Adams, BS, is graduate student in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Giju Thomas, PhD, is a post-doctoral researcher in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Tatiana Novitskaya, MD, PhD, is a staff scientist in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center. Richard M. Caprioli, PhD, is a professor in the Department of Chemistry at the Vanderbilt University School of Medicine in Nashville, Tennessee. Andries Zijlstra, PhD, is an associate professor in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center in Nashville, Tennessee. Anita Mahadevan-Jansen, PhD, is a professor in the Department of Biomedical Engineering at the Vanderbilt University School of Engineering and Department of Neurosurgery at Vanderbilt University Medical Center in Nashville, Tennessee. Kelli L. Boyd, DVM, PhD, is a professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee
| | - Kelli L Boyd
- Lauren E. Himmel, DVM, PhD, is an assistant professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee. Troy A. Hackett, PhD, is a professor in the Department of Hearing and Speech Sciences at Vanderbilt University Medical Center in Nashville, Tennessee. Jessica L. Moore, PhD, is a postdoctoral research fellow in the Mass Spectrometry Research Center at the Vanderbilt University School of Medicine in Nashville, Tennessee. Wilson R. Adams, BS, is graduate student in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Giju Thomas, PhD, is a post-doctoral researcher in the Biophotonics Center and Department of Biomedical Engineering at Vanderbilt University in Nashville, Tennessee. Tatiana Novitskaya, MD, PhD, is a staff scientist in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center. Richard M. Caprioli, PhD, is a professor in the Department of Chemistry at the Vanderbilt University School of Medicine in Nashville, Tennessee. Andries Zijlstra, PhD, is an associate professor in the Department of Pathology, Microbiology and Immunology at Vanderbilt University Medical Center in Nashville, Tennessee. Anita Mahadevan-Jansen, PhD, is a professor in the Department of Biomedical Engineering at the Vanderbilt University School of Engineering and Department of Neurosurgery at Vanderbilt University Medical Center in Nashville, Tennessee. Kelli L. Boyd, DVM, PhD, is a professor and veterinary pathologist in the Division of Comparative Medicine at Vanderbilt University Medical Center in Nashville, Tennessee
| |
Collapse
|
43
|
Tanner L, Denti P, Wiesner L, Warner DF. Drug permeation and metabolism in Mycobacterium tuberculosis: Prioritising local exposure as essential criterion in new TB drug development. IUBMB Life 2018; 70:926-937. [PMID: 29934964 PMCID: PMC6129860 DOI: 10.1002/iub.1866] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
Anti-tuberculosis (TB) drugs possess diverse abilities to penetrate the different host tissues and cell types in which infecting Mycobacterium tuberculosis bacilli are located during active disease. This is important since there is increasing evidence that the respective "lesion-penetrating" properties of the front-line TB drugs appear to correlate well with their specific activity in standard combination therapy. In turn, these observations suggest that rational efforts to discover novel treatment-shortening drugs and drug combinations should incorporate knowledge about the comparative abilities of both existing and experimental anti-TB agents to access bacilli in defined physiological states at different sites of infection, as well as avoid elimination by efflux or inactivation by host or bacterial metabolism. However, while there is a fundamental requirement to understand the mode of action and pharmacological properties of any current or experimental anti-TB agent within the context of the obligate human host, this is complex and, until recently, has been severely limited by the available methodologies and models. Here, we discuss advances in analytical models and technologies which have enabled investigations of drug metabolism and pharmacokinetics (DMPK) for new TB drug development. In particular, we consider the potential to shift the focus of traditional pharmacokinetic-pharmacodynamic analyses away from plasma to a more specific "site of action" drug exposure as an essential criterion for drug development and the design of dosing strategies. Moreover, in summarising approaches to determine DMPK data for the "unit of infection" comprising host macrophage and intracellular bacillus, we evaluate the potential benefits of including these analyses at an early stage in the preclinical drug development algorithm. © 2018 IUBMB Life, 70(9):926-937, 2018.
Collapse
Affiliation(s)
- Lloyd Tanner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Paolo Denti
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Lubbe Wiesner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Digby F. Warner
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| |
Collapse
|
44
|
Russo C, Brickelbank N, Duckett C, Mellor S, Rumbelow S, Clench MR. Quantitative Investigation of Terbinafine Hydrochloride Absorption into a Living Skin Equivalent Model by MALDI-MSI. Anal Chem 2018; 90:10031-10038. [PMID: 30024732 DOI: 10.1021/acs.analchem.8b02648] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The combination of microspotting of analytical and internal standards, matrix sublimation, and recently developed software for quantitative mass spectrometry imaging has been used to develop a high-resolution method for the determination of terbinafine hydrochloride in the epidermal region of a full thickness living skin equivalent model. A quantitative assessment of the effect of the addition of the penetration enhancer (dimethyl isosorbide (DMI)) to the delivery vehicle has also been performed, and data have been compared to those obtained from LC-MS/MS measurements of homogenates of isolated epidermal tissue. At 10% DMI, the levels of signal detected for the drug in the epidermis were 0.20 ± 0.072 mg/g tissue for QMSI and 0.28 ± 0.040 mg/g tissue for LC-MS/MS at 50% DMI 0.69 ± 0.23 mg/g tissue for QMSI and 0.66 ± 0.057 mg/g tissue for LC-MS/MS. Comparison of means and standard deviations indicates no significant difference between the values obtained by the two methods.
Collapse
Affiliation(s)
- Cristina Russo
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre , Sheffield Hallam University , Howard Street , Sheffield S1 1WB , U.K
| | - Neil Brickelbank
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre , Sheffield Hallam University , Howard Street , Sheffield S1 1WB , U.K
| | - Catherine Duckett
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre , Sheffield Hallam University , Howard Street , Sheffield S1 1WB , U.K
| | - Steve Mellor
- Croda International Plc , Cowick Hall , Snaith , Goole, East Yorkshire DN14 9AA , U.K
| | - Stephen Rumbelow
- Croda Inc. , 315 Cherry Lane New Castle , Delaware 19720 , United States
| | - Malcolm R Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre , Sheffield Hallam University , Howard Street , Sheffield S1 1WB , U.K
| |
Collapse
|
45
|
Matrix-assisted Laser Desorption/Ionization-Mass Spectrometry Imaging of Oligosaccharides in Soybean and Bean Leaf with Ionic Liquid as Matrix. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61031-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Nilsson A, Peric A, Strimfors M, Goodwin RJA, Hayes MA, Andrén PE, Hilgendorf C. Mass Spectrometry Imaging proves differential absorption profiles of well-characterised permeability markers along the crypt-villus axis. Sci Rep 2017; 7:6352. [PMID: 28743866 PMCID: PMC5526999 DOI: 10.1038/s41598-017-06583-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/14/2017] [Indexed: 12/26/2022] Open
Abstract
Knowledge about the region-specific absorption profiles from the gastrointestinal tract of orally administered drugs is a critical factor guiding dosage form selection in drug development. We have used a novel approach to study three well-characterized permeability and absorption marker drugs in the intestine. Propranolol and metoprolol (highly permeable compounds) and atenolol (low-moderate permeability compound) were orally co-administered to rats. The site of drug absorption was revealed by high spatial resolution matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and complemented by quantitative measurement of drug concentration in tissue homogenates. MALDI-MSI identified endogenous molecular markers that illustrated the villi structures and confirmed the different absorption sites assigned to histological landmarks for the three drugs. Propranolol and metoprolol showed a rapid absorption and shorter transit distance in contrast to atenolol, which was absorbed more slowly from more distal sites. This study provides novel insights into site specific absorption for each of the compounds along the crypt-villus axis, as well as confirming a proximal-distal absorption gradient along the intestine. The combined analytical approach allowed the quantification and spatial resolution of drug distribution in the intestine and provided experimental evidence for the suggested absorption behaviour of low and highly permeable compounds.
Collapse
Affiliation(s)
- Anna Nilsson
- Science for Life Laboratory, Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Alexandra Peric
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Gothenburg, Sweden
| | - Marie Strimfors
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Gothenburg, Sweden
| | - Richard J A Goodwin
- Mass Spectrometry Imaging, Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca Cambridge, Cambridge, United Kingdom
| | - Martin A Hayes
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Gothenburg, Sweden
| | - Per E Andrén
- Science for Life Laboratory, Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Constanze Hilgendorf
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Gothenburg, Sweden. .,Safety and ADME Translational Sciences, Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
47
|
MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) of skin: Aspects of sample preparation. Talanta 2017; 174:325-335. [PMID: 28738588 DOI: 10.1016/j.talanta.2017.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022]
Abstract
MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) allows molecular analysis of biological materials making possible the identification and localization of molecules in tissues, and has been applied to address many questions on skin pathophysiology, as well as on studies about drug absorption and metabolism. Sample preparation for MALDI IMS is the most important part of the workflow, comprising specimen collection and preservation, tissue embedding, cryosectioning, washing, and matrix application. These steps must be carefully optimized for specific analytes of interest (lipids, proteins, drugs, etc.), representing a challenge for skin analysis. In this review, critical parameters for MALDI IMS sample preparation of skin samples will be described. In addition, specific applications of MALDI IMS of skin samples will be presented including wound healing, neoplasia, and infection.
Collapse
|
48
|
Prentice BM, Chumbley CW, Caprioli RM. Absolute Quantification of Rifampicin by MALDI Imaging Mass Spectrometry Using Multiple TOF/TOF Events in a Single Laser Shot. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:136-144. [PMID: 27655354 PMCID: PMC5177505 DOI: 10.1007/s13361-016-1501-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 05/13/2023]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for the visualization of molecular distributions within tissue sections. While providing excellent molecular specificity and spatial information, absolute quantification by MALDI IMS remains challenging. Especially in the low molecular weight region of the spectrum, analysis is complicated by matrix interferences and ionization suppression. Though tandem mass spectrometry (MS/MS) can be used to ensure chemical specificity and improve sensitivity by eliminating chemical noise, typical MALDI MS/MS modalities only scan for a single MS/MS event per laser shot. Herein, we describe TOF/TOF instrumentation that enables multiple fragmentation events to be performed in a single laser shot, allowing the intensity of the analyte to be referenced to the intensity of the internal standard in each laser shot while maintaining the benefits of MS/MS. This approach is illustrated by the quantitative analyses of rifampicin (RIF), an antibiotic used to treat tuberculosis, in pooled human plasma using rifapentine (RPT) as an internal standard. The results show greater than 4-fold improvements in relative standard deviation as well as improved coefficients of determination (R2) and accuracy (>93% quality controls, <9% relative errors). This technology is used as an imaging modality to measure absolute RIF concentrations in liver tissue from an animal dosed in vivo. Each microspot in the quantitative image measures the local RIF concentration in the tissue section, providing absolute pixel-to-pixel quantification from different tissue microenvironments. The average concentration determined by IMS is in agreement with the concentration determined by HPLC-MS/MS, showing a percent difference of 10.6%. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Boone M Prentice
- Department of Biochemistry, Vanderbilt University, 9160 MRB III, Nashville, TN, 37232, USA
- Mass Spectrometry Research Center, Nashville, TN, 37232, USA
| | - Chad W Chumbley
- Department of Chemistry, Nashville, TN, 37232, USA
- Mass Spectrometry Research Center, Nashville, TN, 37232, USA
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, 9160 MRB III, Nashville, TN, 37232, USA.
- Department of Chemistry, Nashville, TN, 37232, USA.
- Departments of Pharmacology and Medicine, Nashville, TN, 37232, USA.
- Mass Spectrometry Research Center, Nashville, TN, 37232, USA.
| |
Collapse
|
49
|
Karlsson O, Hanrieder J. Imaging mass spectrometry in drug development and toxicology. Arch Toxicol 2016; 91:2283-2294. [PMID: 27933369 PMCID: PMC5429351 DOI: 10.1007/s00204-016-1905-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/24/2016] [Indexed: 11/25/2022]
Abstract
During the last decades, imaging mass spectrometry has gained significant relevance in biomedical research. Recent advances in imaging mass spectrometry have paved the way for in situ studies on drug development, metabolism and toxicology. In contrast to whole-body autoradiography that images the localization of radiolabeled compounds, imaging mass spectrometry provides the possibility to simultaneously determine the discrete tissue distribution of the parent compound and its metabolites. In addition, imaging mass spectrometry features high molecular specificity and allows comprehensive, multiplexed detection and localization of hundreds of proteins, peptides and lipids directly in tissues. Toxicologists traditionally screen for adverse findings by histopathological examination. However, studies of the molecular and cellular processes underpinning toxicological and pathologic findings induced by candidate drugs or toxins are important to reach a mechanistic understanding and an effective risk assessment strategy. One of IMS strengths is the ability to directly overlay the molecular information from the mass spectrometric analysis with the tissue section and allow correlative comparisons of molecular and histologic information. Imaging mass spectrometry could therefore be a powerful tool for omics profiling of pharmacological/toxicological effects of drug candidates and toxicants in discrete tissue regions. The aim of the present review is to provide an overview of imaging mass spectrometry, with particular focus on MALDI imaging mass spectrometry, and its use in drug development and toxicology in general.
Collapse
Affiliation(s)
- Oskar Karlsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76, Stockholm, Sweden.
- Department of Pharmaceutical Biosciences, Drug Safety and Toxicology, Uppsala University, 751 24, Uppsala, Sweden.
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, 431 80, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, Queen Square, London, WC1N, UK
| |
Collapse
|
50
|
Prentice BM, Chumbley CW, Hachey BC, Norris JL, Caprioli RM. Multiple Time-of-Flight/Time-of-Flight Events in a Single Laser Shot for Improved Matrix-Assisted Laser Desorption/Ionization Tandem Mass Spectrometry Quantification. Anal Chem 2016; 88:9780-9788. [PMID: 27573922 DOI: 10.1021/acs.analchem.6b02821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Quantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) approaches have historically suffered from poor accuracy and precision mainly due to the nonuniform distribution of matrix and analyte across the target surface, matrix interferences, and ionization suppression. Tandem mass spectrometry (MS/MS) can be used to ensure chemical specificity as well as improve signal-to-noise ratios by eliminating interferences from chemical noise, alleviating some concerns about dynamic range. However, conventional MALDI TOF/TOF modalities typically only scan for a single MS/MS event per laser shot, and multiplex assays require sequential analyses. We describe here new methodology that allows for multiple TOF/TOF fragmentation events to be performed in a single laser shot. This technology allows the reference of analyte intensity to that of the internal standard in each laser shot, even when the analyte and internal standard are quite disparate in m/z, thereby improving quantification while maintaining chemical specificity and duty cycle. In the quantitative analysis of the drug enalapril in pooled human plasma with ramipril as an internal standard, a greater than 4-fold improvement in relative standard deviation (<10%) was observed as well as improved coefficients of determination (R2) and accuracy (>85% quality controls). Using this approach we have also performed simultaneous quantitative analysis of three drugs (promethazine, enalapril, and verapamil) using deuterated analogues of these drugs as internal standards.
Collapse
Affiliation(s)
- Boone M Prentice
- Department of Biochemistry, ‡Department of Chemistry, §Departments of Pharmacology and Medicine, and ∥Mass Spectrometry Research Center, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Chad W Chumbley
- Department of Biochemistry, ‡Department of Chemistry, §Departments of Pharmacology and Medicine, and ∥Mass Spectrometry Research Center, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Brian C Hachey
- Department of Biochemistry, ‡Department of Chemistry, §Departments of Pharmacology and Medicine, and ∥Mass Spectrometry Research Center, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Jeremy L Norris
- Department of Biochemistry, ‡Department of Chemistry, §Departments of Pharmacology and Medicine, and ∥Mass Spectrometry Research Center, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Richard M Caprioli
- Department of Biochemistry, ‡Department of Chemistry, §Departments of Pharmacology and Medicine, and ∥Mass Spectrometry Research Center, Vanderbilt University , Nashville, Tennessee 37232, United States
| |
Collapse
|