1
|
Herzog H, Zhang L, Fontana L, Neely GG. Impact of non-sugar sweeteners on metabolism beyond sweet taste perception. Trends Endocrinol Metab 2024:S1043-2760(24)00276-5. [PMID: 39551640 DOI: 10.1016/j.tem.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
Non-sugar sweeteners (NSS), low- or no-calorie alternatives to sugar, are marketed for weight loss and improved blood glucose control in people with diabetes. However, their health effects remain controversial. This review provides a brief overview of sweet taste perception and summarizes experimental findings of the impact of NSS on cardiometabolic health in animal models and humans. We also review evidence suggesting that many NSS are not metabolically inert, highlighting the challenges in related human studies. Given the conflicting and unclear data on health outcomes, additional mechanistic studies, particularly in animal models, are necessary to clarify how NSS influence feeding behaviors and energy homoeostasis.
Collapse
Affiliation(s)
- Herbert Herzog
- St Vincent's Centre for Applied Medical Research, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia.
| | - Lei Zhang
- St Vincent's Centre for Applied Medical Research, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia
| | - Luigi Fontana
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - G Gregory Neely
- Dr John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
2
|
Mela DJ, Risso D. Does sweetness exposure drive 'sweet tooth'? Br J Nutr 2024; 131:1934-1944. [PMID: 38403648 DOI: 10.1017/s0007114524000485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
It is widely believed that exposure to sweetened foods and beverages stimulates the liking and desire for sweetness. Here we provide an updated review of the empirical evidence from human research examining whether exposure to sweet foods or beverages influences subsequent general liking for sweetness (‘sweet tooth’), based on the conclusions of existing systematic reviews and more recent research identified from a structured search of literature. Prior reviews have concluded that the evidence for a relationship between sweet taste exposure and measures of sweet taste liking is equivocal, and more recent primary research generally does not support the view that exposure drives increased liking for sweetness, in adults or children. In intervention trials using a range of designs, acute exposure to sweetness usually has the opposite effect (reducing subsequent liking and desire for sweet taste), while sustained exposures have no significant effects or inconsistent effects. Recent longitudinal observational studies in infants and children also report no significant associations between exposures to sweet foods and beverages with measures of sweet taste preferences. Overall, while it is widely assumed that exposure to sweetness stimulates a greater liking and desire for sweetness, this is not borne out by the balance of empirical evidence. While new research may provide a more robust evidence base, there are also a number of methodological, biological and behavioural considerations that may underpin the apparent absence of a positive relationship between sweetness exposure and liking.
Collapse
|
3
|
Chen Q, Zhang Y, Li H. Knowledge, attitude, and practice toward non-nutritive sweeteners among the population with reduced sugar intake requirement. Front Nutr 2024; 10:1268599. [PMID: 38249606 PMCID: PMC10796998 DOI: 10.3389/fnut.2023.1268599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction This study aimed to explore the knowledge, attitude, and practice (KAP) toward non-nutritive sweeteners among a population with reduced sugar intake requirements. Methods This cross-sectional study used self-developed questionnaires to collect demographic characteristics and KAP towards non-nutritive sweeteners among respondents with reduced sugar intake requirements, i.e., overweight or obese individuals and patients with pre-diabetes or diabetes. Results A total of 639 valid questionnaires were collected, and 51.64% of participants were male. The KAP scores were 7.63 ± 3.58 (range: 0-11), 34.28 ± 7.47 (range: 12-60), and 15.48 ± 3.97 (range: 7-35), respectively. Pearson's correlation analysis showed that knowledge score was positively correlated with attitude (r = 0.229, p < 0.001) and practice score (r = 0.467, p < 0.001), while attitude was positively correlated with practice (r = 0.312, p < 0.001). The structural equation model showed that knowledge was directly and positively associated with attitude (path coefficient = 0.48, p < 0.001) and practice (path coefficient = 0.46, p < 0.001). In addition, the attitude was directly and positively associated with practice (path coefficient = 0.12, p < 0.001). Besides, diabetes was associated with lower knowledge (path coefficient = -0.81, p = 0.038) and practice (path coefficient = -0.42, p < 0.041). Discussion Population with the reduced sugar intake requirement showed poor knowledge, negative attitudes, and suboptimal practices toward non-nutritive sweeteners. To optimize the utilization of non-nutritive sweeteners in accordance with medical prescriptions, especially for individuals with diabetes, tailored educational interventions may be designed for participants with lower KAP.
Collapse
Affiliation(s)
- Qiao Chen
- Department of Nutrition, Third Medical Center of PLA General Hospital, Beijing, China
| | - Yan Zhang
- Department of Clinical Nutrition, Leling People's Hospital, Leling, China
| | - Hui Li
- Department of Nutrition, Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Gearhardt AN, Bueno NB, DiFeliceantonio AG, Roberto CA, Jiménez-Murcia S, Fernandez-Aranda F. Social, clinical, and policy implications of ultra-processed food addiction. BMJ 2023; 383:e075354. [PMID: 37813420 PMCID: PMC10561019 DOI: 10.1136/bmj-2023-075354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Affiliation(s)
- Ashley N Gearhardt
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nassib B Bueno
- Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, Brazil
| | - Alexandra G DiFeliceantonio
- Fralin Biomedical Research Institute at VTC, Department of Human, Nutrition Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Christina A Roberto
- Department of Medical Ethics and Health Policy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Susana Jiménez-Murcia
- Department of Clinical Psychology, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III, Barcelona, Spain
| | - Fernando Fernandez-Aranda
- Department of Clinical Psychology, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III, Barcelona, Spain
| |
Collapse
|
5
|
Via E, Contreras-Rodríguez O. Binge-Eating Precursors in Children and Adolescents: Neurodevelopment, and the Potential Contribution of Ultra-Processed Foods. Nutrients 2023; 15:2994. [PMID: 37447320 DOI: 10.3390/nu15132994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Binge-eating disorder (BED) is a highly prevalent disorder. Subthreshold BED conditions (sBED) are even more frequent in youth, but their significance regarding BED etiology and long-term prognosis is unclear. A better understanding of brain findings associated with BED and sBED, in the context of critical periods for neurodevelopment, is relevant to answer such questions. The present narrative review starts from the knowledge of the development of emotional self-regulation in youth, and the brain circuits supporting emotion-regulation and eating behaviour. Next, neuroimaging studies with sBED and BED samples will be reviewed, and their brain-circuitry overlap will be examined. Deficits in inhibition control systems are observed to precede, and hyperactivity of reward regions to characterize, sBED, with overlapping findings in BED. The imbalance between reward/inhibition systems, and the implication of interoception/homeostatic processing brain systems should be further examined. Recent knowledge of the potential impact that the high consumption of ultra-processed foods in paediatric samples may have on these sBED/BED-associated brain systems is then discussed. There is a need to identify, early on, those sBED individuals at risk of developing BED at neurodevelopmental stages when there is a great possibility of prevention. However, more neuroimaging studies with sBED/BED pediatric samples are needed.
Collapse
Affiliation(s)
- Esther Via
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Department of Child and Adolescent Mental Health, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu, 2, 08950 Esplugues de Llobregat, Spain
| | - Oren Contreras-Rodríguez
- Medical Imaging, Girona Biomedical Research Institute (IdIBGi), Parc Hospitalari Martí i Julià-Edifici M2, Salt, 17190 Girona, Spain
- Health Institute Carlos III (ISCIII) and CIBERSAM, 28029 Madrid, Spain
- Department of Psychiatry and Legal Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
6
|
Chometton S, Tsan L, Hayes AMR, Kanoski SE, Schier LA. Early-life influences of low-calorie sweetener consumption on sugar taste. Physiol Behav 2023; 264:114133. [PMID: 36801464 PMCID: PMC11062773 DOI: 10.1016/j.physbeh.2023.114133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Children and adolescents are the highest consumers of added sugars, particularly from sugar-sweetened beverages (SSB). Regular consumption of SSB early in life induces a variety of negative consequences on health that can last into adulthood. Low-calorie sweeteners (LCS) are increasingly used as an alternative to added sugars because they provide a sweet sensation without adding calories to the diet. However, the long-term effects of early-life consumption of LCS are not well understood. Considering LCS engage at least one of the same taste receptors as sugars and potentially modulate cellular mechanisms of glucose transport and metabolism, it is especially important to understand how early-life LCS consumption impacts intake of and regulatory responses to caloric sugars. In our recent study, we found that habitual intake of LCS during the juvenile-adolescence period significantly changed how rats responded to sugar later in life. Here, we review evidence that LCS and sugars are sensed via common and distinct gustatory pathways, and then discuss the implications this has for shaping sugar-associated appetitive, consummatory, and physiological responses. Ultimately, the review highlights the diverse gaps in knowledge that will be necessary to fill to understand the consequences of regular LCS consumption during important phases of development.
Collapse
Affiliation(s)
- Sandrine Chometton
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Linda Tsan
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Anna M R Hayes
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Lindsey A Schier
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Gearhardt AN, DiFeliceantonio AG. Highly processed foods can be considered addictive substances based on established scientific criteria. Addiction 2023; 118:589-598. [PMID: 36349900 DOI: 10.1111/add.16065] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND There is growing evidence that an addictive-eating phenotype may exist. There is significant debate regarding whether highly processed foods (HPFs; foods with refined carbohydrates and/or added fats) are addictive. The lack of scientifically grounded criteria to evaluate the addictive nature of HPFs has hindered the resolution of this debate. ANALYSIS The most recent scientific debate regarding a substance's addictive potential centered around tobacco. In 1988, the Surgeon General issued a report identifying tobacco products as addictive based on three primary scientific criteria: their ability to (1) cause highly controlled or compulsive use, (2) cause psychoactive (i.e. mood-altering) effects via their effect on the brain and (3) reinforce behavior. Scientific advances have now identified the ability of tobacco products to (4) trigger strong urges or craving as another important indicator of addictive potential. Here, we propose that these four criteria provide scientifically valid benchmarks that can be used to evaluate the addictiveness of HPFs. Then, we review the evidence regarding whether HPFs meet each criterion. Finally, we consider the implications of labeling HPFs as addictive. CONCLUSION Highly processed foods (HPFs) can meet the criteria to be labeled as addictive substances using the standards set for tobacco products. The addictive potential of HPFs may be a key factor contributing to the high public health costs associated with a food environment dominated by cheap, accessible and heavily marketed HPFs.
Collapse
Affiliation(s)
| | - Alexandra G DiFeliceantonio
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Department of Human Nutrition Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
8
|
Zhang G, Zhang L, Ahmad I, Zhang J, Zhang A, Tang W, Ding Y, Lyu F. Recent advance in technological innovations of sugar-reduced products. Crit Rev Food Sci Nutr 2022; 64:5128-5142. [PMID: 36454077 DOI: 10.1080/10408398.2022.2151560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sugar is crucial as an essential nutrient for humans as well as for providing texture, sweetness and so on to food. But with the rise in people's pursuit of health, it is becoming increasingly clear that excessive consumption of sugar can locate a load on the body. It has been that excessive sugar is associated with many diseases, such as dental caries, obesity, diabetes, and coronary heart disease. Therefore, researchers and industries are trying to reduce or substitute sugar in food without affecting the sensory evaluation. Substituting sugar with sweeteners is alternatively becoming the most traditional way to minimize its use. So far, the sweeteners such as stevia and xylitol have been are commercially applied. Several studies have shown that technological innovation can partially compensate for the loss in sweetness as a result of sugar reduction, such as cross-modal interactions that stimulate sweetness with aroma, nanofiltration that filters disaccharides and above, enzyme-catalyzed sugar hydrolysis, and microbial fermentation that turns sugar into sugar alcohol. This review summarizes these studies to enhance the safety and quality of sugar-reduced products, and will provide some theoretical frameworks for the food industry to reduce sugar in foods, meet consumers' needs, and promote human health.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Lyu Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Ishtiaq Ahmad
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Anqiang Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| |
Collapse
|
9
|
Contreras-Rodriguez O, Solanas M, Escorihuela RM. Dissecting ultra-processed foods and drinks: Do they have a potential to impact the brain? Rev Endocr Metab Disord 2022; 23:697-717. [PMID: 35107734 DOI: 10.1007/s11154-022-09711-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
Ultra-processed foods and drinks (UPF) are formulation of ingredients, mostly of exclusive industrial use, that result from a series of industrial processes. They usually have a low nutrient but high energy density, with a high content of saturated and trans fats, and added sugars. In addition, they have characteristic organoleptic properties, and usually contain sophisticated additives, including artificial sweeteners, to intensify their sensory qualities and imitate the appearance of minimally processed foods. In addition, recent research has warned about the presence of chemicals (e.g., bisphenol) and neo-formed contaminants in these products. UPF production and consumption growth have been spectacular in the last decades, being specially consumed in children and adolescents. UPF features have been associated with a range of adverse health effects such as overeating, the promotion of inflammatory and oxidative stress processes, gut dysbiosis, and metabolic dysfunction including problems in glucose regulation. The evidence that these UPF-related adverse health effects may have on the neural network implicated in eating behavior are discussed, including the potential impact on serotonergic and dopaminergic neurotransmission, brain integrity and function. We end this review by placing UPF in the context of current food environments, by suggesting that an increased exposure to these products through different channels, such as marketing, may contribute to the automatic recruitment of the brain regions associated with food consumption and choice, with a detrimental effect on inhibitory-related prefrontal cortices. While further research is essential, preliminary evidence point to UPF consumption as a potential detrimental factor for brain health and eating behavior.
Collapse
Affiliation(s)
- Oren Contreras-Rodriguez
- Department of Medical Imaging, Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain.
- Department of Psychiatry and Legal Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Health Institute Carlos III (ISCIII) and CIBERSAM G17, Madrid, Spain.
| | - Montserrat Solanas
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rosa M Escorihuela
- Department of Psychiatry and Legal Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
10
|
Scapin T, Fernandes AC, Coyle DH, Pettigrew S, dos Santos Figueiredo L, Geraldo APG, da Costa Proença RP. Packaged foods containing non-nutritive sweeteners also have high added sugar content: a Brazilian survey. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Honorio AR, Soares AF, Lima DCND, Tribst AAL. Passion fruit nectar sweetened with stevia and sucralose: Is perception affected by the regular consumption of sweeteners or diabetes? Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Nadolsky KZ. COUNTERPOINT: Artificial Sweeteners for Obesity-Better than Sugary Alternatives; Potentially a Solution. Endocr Pract 2021; 27:1056-1061. [PMID: 34481971 DOI: 10.1016/j.eprac.2021.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Nonnutritive (NNSs) are used in place of sugars to reduce caloric and glycemic intake while providing desired sweetness, commonly replacing sugar-sweetened beverages (SSBs) with "diet" (zero-calorie) alternatives. Concern has developed due to observational data associating NNSs with obesity and adiposity-based chronic disease. This counterpoint argues that, in general, NNSs used in place of added or excess sugars in the diet are likely beneficial. METHODS A literature review was conducted on interventional trials investigating NNSs and obesity or type 2 diabetes mellitus. Key words used in the search included artificial sweeteners, nonnutritive sweeteners, saccharin, sucralose, aspartame, stevia/steviol, acesulfame potassium, meal replacements, type 2 diabetes mellitus, obesity, and weight. RESULTS Interventional data and indirect interventional data consistently showed beneficial effects on weight and cardiometabolic health, including glycemia, when SSBs or other energy-dense foods were replaced by artificially sweetened beverages or artificially sweetened meal replacements. CONCLUSION Although NNSs correlate with obesity and adiposity-based chronic disease, those data are fraught with confounding and error. Plausibility has been suggested on the basis of preclinical research on neuroendocrine control of appetite, satiety, and cravings plus the gut microbiome. However, interventional data reveal that replacing caloric/glycemic energy intake via NNSs creates an energy deficit resulting in weight loss and improvement in disease-especially dysglycemic disease. Intensive dietary intervention using artificially sweetened meal replacements shows a marked clinical benefit without detriment from their NNSs. Furthermore, beverages sweetened with NNSs rather than SSBs have been noted to be a critical component for those succeeding in maintaining weight loss. Although individual responses to the effects of NNSs are always warranted just like in any clinical situation, patients should not be advised to avoid NNSs in the context of dietary intervention to improve quality and energy deficit.
Collapse
Affiliation(s)
- Karl Z Nadolsky
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan; Department of Endocrinology & Diabetes, Spectrum Health West Michigan, Grand Rapids, Michigan.
| |
Collapse
|
13
|
Yunker AG, Alves JM, Luo S, Angelo B, DeFendis A, Pickering TA, Monterosso JR, Page KA. Obesity and Sex-Related Associations With Differential Effects of Sucralose vs Sucrose on Appetite and Reward Processing: A Randomized Crossover Trial. JAMA Netw Open 2021; 4:e2126313. [PMID: 34581796 PMCID: PMC8479585 DOI: 10.1001/jamanetworkopen.2021.26313] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IMPORTANCE Nonnutritive sweeteners (NNSs) are used as an alternative to nutritive sweeteners to quench desire for sweets while reducing caloric intake. However, studies have shown mixed results concerning the effects of NNSs on appetite, and the associations between sex and obesity with reward and appetitive responses to NNS compared with nutritive sugar are unknown. OBJECTIVE To examine neural reactivity to different types of high-calorie food cues (ie, sweet and savory), metabolic responses, and eating behavior following consumption of sucralose (NNS) vs sucrose (nutritive sugar) among healthy young adults. DESIGN, SETTING, AND PARTICIPANTS In a randomized, within-participant, crossover trial including 3 separate visits, participants underwent a functional magnetic resonance imaging task measuring blood oxygen level-dependent signal in response to visual cues. For each study visit, participants arrived at the Dornsife Cognitive Neuroimaging Center of University of Southern California at approximately 8:00 am after a 12-hour overnight fast. Blood was sampled at baseline and 10, 35, and 120 minutes after participants received a drink containing sucrose, sucralose, or water to measure plasma glucose, insulin, glucagon-like peptide(7-36), acyl-ghrelin, total peptide YY, and leptin. Participants were then presented with an ad libitum meal. Participants were right-handed, nonsmokers, weight-stable for at least 3 months before the study visits, nondieters, not taking medication, and with no history of eating disorders, illicit drug use, or medical diagnoses. Data analysis was performed from March 2020 to March 2021. INTERVENTIONS Participants ingested 300-mL drinks containing either sucrose (75 g), sucralose (individually sweetness matched), or water (as a control). MAIN OUTCOMES AND MEASURES Primary outcomes of interest were the effects of body mass index (BMI) status and sex on blood oxygen level-dependent signal to high-calorie food cues, endocrine, and feeding responses following sucralose vs sucrose consumption. Secondary outcomes included neural, endocrine, and feeding responses following sucrose vs water and sucralose vs water (control) consumption, and cue-induced appetite ratings following sucralose vs sucrose (and vs water). RESULTS A total of 76 participants were randomized, but 2 dropped out, leaving 74 adults (43 women [58%]; mean [SD] age, 23.40 [3.96] years; BMI range, 19.18-40.27) who completed the study. In this crossover design, 73 participants each received water (drink 1) and sucrose (drink 2), and 72 participants received water (drink 1), sucrose (drink 2), and sucralose (drink 3). Sucrose vs sucralose was associated with greater production of circulating glucose, insulin, and glucagon-like peptide-1 and suppression of acyl-ghrelin, but no differences were found for peptide YY or leptin. BMI status by drink interactions were observed in the medial frontal cortex (MFC; P for interaction < .001) and orbitofrontal cortex (OFC; P for interaction = .002). Individuals with obesity (MFC, β, 0.60; 95% CI, 0.38 to 0.83; P < .001; OFC, β, 0.27; 95% CI, 0.11 to 0.43; P = .002), but not those with overweight (MFC, β, 0.02; 95% CI, -0.19 to 0.23; P = .87; OFC, β, -0.06; 95% CI, -0.21 to 0.09; P = .41) or healthy weight (MFC, β, -0.13; 95% CI, -0.34 to 0.07; P = .21; OFC, β, -0.08; 95% CI, -0.23 to 0.06; P = .16), exhibited greater responsivity in the MFC and OFC to savory food cues after sucralose vs sucrose. Sex by drink interactions were observed in the MFC (P for interaction = .03) and OFC (P for interaction = .03) after consumption of sucralose vs sucrose. Female participants had greater MFC and OFC responses to food cues (MFC high-calorie vs low-calorie cues, β, 0.21; 95% CI, 0.05 to 0.37; P = .01; MFC sweet vs nonfood cues, β, 0.22; 95% CI, 0.02 to 0.42; P = .03; OFC food vs nonfood cues, β, 0.12; 95% CI, 0.02 to 0.22; P = .03; and OFC sweet vs nonfood cues, β, 0.15; 95% CI, 0.03 to 0.27; P = .01), but male participants' responses did not differ (MFC high-calorie vs low-calorie cues, β, 0.01; 95% CI, -0.19 to 0.21; P = .90; MFC sweet vs nonfood cues, β, -0.04; 95% CI, -0.26 to 0.18; P = .69; OFC food vs nonfood cues, β, -0.08; 95% CI, -0.24 to 0.08; P = .32; OFC sweet vs nonfood cues, β, -0.11; 95% CI, -0.31 to 0.09; P = .31). A sex by drink interaction on total calories consumed during the buffet meal was observed (P for interaction = .03). Female participants consumed greater total calories (β, 1.73; 95% CI, 0.38 to 3.08; P = .01), whereas caloric intake did not differ in male participants (β, 0.68; 95% CI, -0.99 to 2.35; P = .42) after sucralose vs sucrose ingestion. CONCLUSIONS AND RELEVANCE These findings suggest that female individuals and those with obesity may be particularly sensitive to disparate neural responsivity elicited by sucralose compared with sucrose consumption. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02945475.
Collapse
Affiliation(s)
- Alexandra G. Yunker
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
| | - Jasmin M. Alves
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
| | - Shan Luo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
- Department of Psychology, University of Southern California, Los Angeles
| | - Brendan Angelo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
| | - Alexis DeFendis
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
| | - Trevor A. Pickering
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - John R. Monterosso
- Department of Psychology, University of Southern California, Los Angeles
| | - Kathleen A. Page
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
14
|
|
15
|
O'Connor D, Pang M, Castelnuovo G, Finlayson G, Blaak E, Gibbons C, Navas-Carretero S, Almiron-Roig E, Harrold J, Raben A, Martinez JA. A rational review on the effects of sweeteners and sweetness enhancers on appetite, food reward and metabolic/adiposity outcomes in adults. Food Funct 2020; 12:442-465. [PMID: 33325948 DOI: 10.1039/d0fo02424d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Numerous strategies have been investigated to overcome the excessive weight gain that accompanies a chronic positive energy balance. Most approaches focus on a reduction of energy intake and the improvement of lifestyle habits. The use of high intensity artificial sweeteners, also known as non-caloric sweeteners (NCS), as sugar substitutes in foods and beverages, is rapidly developing. NCS are commonly defined as molecules with a sweetness profile of 30 times higher or more that of sucrose, scarcely contributing to the individual's net energy intake as they are hardly metabolized. The purpose of this review is first, to assess the impact of NCS on eating behaviour, including subjective appetite, food intake, food reward and sensory stimulation; and secondly, to assess the metabolic impact of NCS on body weight regulation, glucose homeostasis and gut health. The evidence reviewed suggests that while some sweeteners have the potential to increase subjective appetite, these effects do not translate in changes in food intake. This is supported by a large body of empirical evidence advocating that the use of NCS facilitates weight management when used alongside other weight management strategies. On the other hand, although NCS are very unlikely to impair insulin metabolism and glycaemic control, some studies suggest that NCS could have putatively undesirable effects, through various indirect mechanisms, on body weight, glycemia, adipogenesis and the gut microbiota; however there is insufficient evidence to determine the degree of such effects. Overall, the available data suggests that NCS can be used to facilitate a reduction in dietary energy content without significant negative effects on food intake behaviour or body metabolism, which would support their potential role in the prevention of obesity as a complementary strategy to other weight management approaches. More research is needed to determine the impact of NCS on metabolic health, in particular gut microbiota.
Collapse
Affiliation(s)
- Dominic O'Connor
- Biopsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yeung AWK, Wong NSM. How Does Our Brain Process Sugars and Non-Nutritive Sweeteners Differently: A Systematic Review on Functional Magnetic Resonance Imaging Studies. Nutrients 2020; 12:nu12103010. [PMID: 33007961 PMCID: PMC7600285 DOI: 10.3390/nu12103010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022] Open
Abstract
This systematic review aimed to reveal the differential brain processing of sugars and sweeteners in humans. Functional magnetic resonance imaging studies published up to 2019 were retrieved from two databases and were included into the review if they evaluated the effects of both sugars and sweeteners on the subjects’ brain responses, during tasting and right after ingestion. Twenty studies fulfilled the inclusion criteria. The number of participants per study ranged from 5 to 42, with a total number of study participants at 396. Seven studies recruited both males and females, 7 were all-female and 6 were all-male. There was no consistent pattern showing that sugar or sweeteners elicited larger brain responses. Commonly involved brain regions were insula/operculum, cingulate and striatum, brainstem, hypothalamus and the ventral tegmental area. Future studies, therefore, should recruit a larger sample size, adopt a standardized fasting duration (preferably 12 h overnight, which is the most common practice and brain responses are larger in the state of hunger), and reported results with familywise-error rate (FWE)-corrected statistics. Every study should report the differential brain activation between sugar and non-nutritive sweetener conditions regardless of the complexity of their experiment design. These measures would enable a meta-analysis, pooling data across studies in a meaningful manner.
Collapse
Affiliation(s)
- Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-28590403
| | - Natalie Sui Miu Wong
- Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|