1
|
Zhu Y, Wang F, Xia Y, Wang L, Lin H, Zhong T, Wang X. Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases. Rev Neurosci 2024; 35:855-875. [PMID: 38889403 DOI: 10.1515/revneuro-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), pose significant global health risks and represent a substantial public health concern in the contemporary era. A primary factor in the pathophysiology of these disorders is aberrant accumulation and aggregation of pathogenic proteins within the brain and spinal cord. Recent investigations have identified extracellular vesicles (EVs) in the central nervous system (CNS) as potential carriers for intercellular transport of misfolded proteins associated with neurodegenerative diseases. EVs are involved in pathological processes that contribute to various brain disorders including neurodegenerative disorders. Proteins linked to neurodegenerative disorders are secreted and distributed from cell to cell via EVs, serving as a mechanism for direct intercellular communication through the transfer of biomolecules. Astrocytes, as active participants in CNS intercellular communication, release astrocyte-derived extracellular vesicles (ADEVs) that are capable of interacting with diverse target cells. This review primarily focuses on the involvement of ADEVs in the development of neurological disorders and explores their potential dual roles - both advantageous and disadvantageous in the context of neurological disorders. Furthermore, this review examines the current studies investigating ADEVs as potential biomarkers for the diagnosis and treatment of neurodegenerative diseases. The prospects and challenges associated with the application of ADEVs in clinical settings were also comprehensively reviewed.
Collapse
Affiliation(s)
- Yifan Zhu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Fangsheng Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yu Xia
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Haihong Lin
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
2
|
Ghosh M, Pearse DD. The Yin and Yang of Microglia-Derived Extracellular Vesicles in CNS Injury and Diseases. Cells 2024; 13:1834. [PMID: 39594583 PMCID: PMC11592485 DOI: 10.3390/cells13221834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining neural homeostasis but can also contribute to disease and injury when this state is disrupted or conversely play a pivotal role in neurorepair. One way that microglia exert their effects is through the secretion of small vesicles, microglia-derived exosomes (MGEVs). Exosomes facilitate intercellular communication through transported cargoes of proteins, lipids, RNA, and other bioactive molecules that can alter the behavior of the cells that internalize them. Under normal physiological conditions, MGEVs are essential to homeostasis, whereas the dysregulation of their production and/or alterations in their cargoes have been implicated in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), spinal cord injury (SCI), and traumatic brain injury (TBI). In contrast, MGEVs may also offer therapeutic potential by reversing inflammation or being amenable to engineering for the delivery of beneficial biologics or drugs. The effects of MGEVs are determined by the phenotypic state of the parent microglia. Exosomes from anti-inflammatory or pro-regenerative microglia support neurorepair and cell survival by delivering neurotrophic factors, anti-inflammatory mediators, and molecular chaperones. Further, MGEVs can also deliver components like mitochondrial DNA (mtDNA) and proteins to damaged neurons to enhance cellular metabolism and resilience. MGEVs derived from pro-inflammatory microglia can have detrimental effects on neural health. Their cargo often contains pro-inflammatory cytokines, molecules involved in oxidative stress, and neurotoxic proteins, which can exacerbate neuroinflammation, contribute to neuronal damage, and impair synaptic function, hindering neurorepair processes. The role of MGEVs in neurodegeneration and injury-whether beneficial or harmful-largely depends on how they modulate inflammation through the pro- and anti-inflammatory factors in their cargo, including cytokines and microRNAs. In addition, through the propagation of pathological proteins, such as amyloid-beta and alpha-synuclein, MGEVs can also contribute to disease progression in disorders such as AD and PD, or by the transfer of apoptotic or necrotic factors, they can induce neuron toxicity or trigger glial scarring during neurological injury. In this review, we have provided a comprehensive and up-to-date understanding of the molecular mechanisms underlying the multifaceted role of MGEVs in neurological injury and disease. In particular, the role that specific exosome cargoes play in various pathological conditions, either in disease progression or recovery, will be discussed. The therapeutic potential of MGEVs has been highlighted including potential engineering methodologies that have been employed to alter their cargoes or cell-selective targeting. Understanding the factors that influence the balance between beneficial and detrimental exosome signaling in the CNS is crucial for developing new therapeutic strategies for neurodegenerative diseases and neurotrauma.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Shen H, Atiyas Y, Yang Z, Lin AA, Yang J, Liu D, Park J, Guo W, Issadore DA. Ultrasensitive quantification of PD-L1+ extracellular vesicles in melanoma patient plasma using a parallelized high throughput droplet digital assay. LAB ON A CHIP 2024; 24:3403-3411. [PMID: 38899443 PMCID: PMC11235413 DOI: 10.1039/d4lc00331d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
The expression of programmed death-ligand 1 (PD-L1) on extracellular vesicles (EVs) is an emerging biomarker for cancer, and has gained particular interest for its role mediating immunotherapy. However, precise quantification of PD-L1+ EVs in clinical samples remains challenging due to their sparse concentration and the enormity of the number of background EVs in human plasma, limiting applicability of conventional approaches. In this study, we develop a high-throughput droplet-based extracellular vesicle analysis (DEVA) assay for ultrasensitive quantification of EVs in plasma that are dual positive for both PD-L1 and tetraspanin (CD81) known to be expressed on EVs. We achieve a performance that significantly surpasses conventional approaches, demonstrating 360× enhancement in the limit of detection (LOD) and a 750× improvement in the limit of quantitation (LOQ) compared to conventional plate enzyme-linked immunoassay (ELISA). Underlying this performance is DEVA's high throughput analysis of individual EVs one at a time and the high specificity to targeted EVs versus background. We achieve a 0.006% false positive rate per droplet by leveraging avidity effects that arise from EVs having multiple copies of their target ligands on their surface. We use parallelized optofluidics to rapidly process 10 million droplets per minute, ∼100× greater than conventional approaches. A validation study on a cohort of 14 patients with melanoma confirms DEVA's ability to match conventional ELISA measurements with reduced plasma sample volume and without the need for prior EV purification. This proof-of-concept study demonstrates DEVA's potential for clinical utility to enhance prognosis as well as guide treatment for cancer.
Collapse
Affiliation(s)
- Hanfei Shen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yasemin Atiyas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Zijian Yang
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Andrew A Lin
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jingbo Yang
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Diao Liu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Juhwan Park
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Wei Guo
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Issadore
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Carata E, Muci M, Di Giulio S, Di Giulio T, Mariano S, Panzarini E. The Neuromuscular Disorder Mediated by Extracellular Vesicles in Amyotrophic Lateral Sclerosis. Curr Issues Mol Biol 2024; 46:5999-6017. [PMID: 38921029 PMCID: PMC11202069 DOI: 10.3390/cimb46060358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) represents a neurodegenerative disorder characterized by the progressive loss of both upper and lower motor neurons, resulting in muscular atrophy and eventual paralysis. While much research has concentrated on investigating the impact of major mutations associated with ALS on motor neurons and central nervous system (CNS) cells, recent studies have unveiled that ALS pathogenesis extends beyond CNS imbalances, encompassing dysregulation in other tissues such as skeletal muscle. Evidence from animal models and patients supports this broader perspective. Skeletal muscle, once considered solely as an effector organ, is now recognized as possessing significant secretory activity capable of influencing motor neuron survival. However, the precise cellular and molecular mechanisms underlying the detrimental effects observed in muscle and its associated structures in ALS remain poorly understood. Additionally, emerging data suggest that extracellular vesicles (EVs) may play a role in the establishment and function of the neuromuscular junction (NMJ) under both physiological and pathological conditions and in wasting and regeneration of skeletal muscles, particularly in neurodegenerative diseases like ALS. This review aims to explore the key findings about skeletal muscle involvement in ALS, shedding light on the potential underlying mechanisms and contributions of EVs and their possible application for the design of biosensors.
Collapse
Affiliation(s)
- Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Marco Muci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Simona Di Giulio
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy;
| | - Tiziano Di Giulio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| |
Collapse
|
5
|
Amagai R, Otomo R, Yoshioka S, Nagano H, Hashimoto N, Sakakibara R, Tanaka T, Okado-Matsumoto A. C-terminal truncation is a prominent post-translational modification of human erythrocyte α-synuclein. J Biochem 2024; 175:649-658. [PMID: 38308089 DOI: 10.1093/jb/mvae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
α-Synuclein (α-Syn) is a protein related to synucleinopathies with high expression in the central nervous system and erythrocytes which are a major source of peripheral α-Syn. Recent reports have suggested the presence of α-Syn within extracellular vesicles (EVs) derived from erythrocytes, potentially contributing to the pathogenesis of synucleinopathies. While Lewy bodies, intracellular inclusions containing aggregated α-Syn, are prominently observed within the brain, their occurrence in peripheral neurons implies the dissemination of synucleinopathy pathology throughout the body via the propagation of α-Syn. In this study, we found erythrocytes and circulating EVs obtained from plasma contained α-Syn, which was separated into four major forms using high-resolution clear native-PAGE and isoelectric focusing. Notably, erythrocyte α-Syn was classified into full-length and C-terminal truncated forms, with truncation observed between Y133 and Q134 as determined by LC-MS/MS analysis. Our finding revealed that C-terminally truncated α-Syn, which was previously reported to exist solely within the brain, was also present in erythrocytes and circulating EVs obtained from plasma.
Collapse
Affiliation(s)
- Ryosuke Amagai
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Riki Otomo
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Sakura Yoshioka
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Hidekazu Nagano
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Naoko Hashimoto
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Ryuji Sakakibara
- Division of Neurology, Department of Internal Medicine, Sakura Medical Center, Toho University, Sakura, Chiba 285-8741, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Ayako Okado-Matsumoto
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
6
|
DeMarino C, Cowen M, Williams A, Khatkar P, Abulwerdi FA, Henderson L, Denniss J, Pleet ML, Luttrell DR, Vaisman I, Liotta LA, Steiner J, Le Grice SFJ, Nath A, Kashanchi F. Autophagy Deregulation in HIV-1-Infected Cells Increases Extracellular Vesicle Release and Contributes to TLR3 Activation. Viruses 2024; 16:643. [PMID: 38675983 PMCID: PMC11054313 DOI: 10.3390/v16040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection can result in HIV-associated neurocognitive disorder (HAND), a spectrum of disorders characterized by neurological impairment and chronic inflammation. Combined antiretroviral therapy (cART) has elicited a marked reduction in the number of individuals diagnosed with HAND. However, there is continual, low-level viral transcription due to the lack of a transcription inhibitor in cART regimens, which results in the accumulation of viral products within infected cells. To alleviate stress, infected cells can release accumulated products, such as TAR RNA, in extracellular vesicles (EVs), which can contribute to pathogenesis in neighboring cells. Here, we demonstrate that cART can contribute to autophagy deregulation in infected cells and increased EV release. The impact of EVs released from HIV-1 infected myeloid cells was found to contribute to CNS pathogenesis, potentially through EV-mediated TLR3 (Toll-like receptor 3) activation, suggesting the need for therapeutics to target this mechanism. Three HIV-1 TAR-binding compounds, 103FA, 111FA, and Ral HCl, were identified that recognize TAR RNA and reduce TLR activation. These data indicate that packaging of viral products into EVs, potentially exacerbated by antiretroviral therapeutics, may induce chronic inflammation of the CNS observed in cART-treated patients, and novel therapeutic strategies may be exploited to mitigate morbidity.
Collapse
Affiliation(s)
- Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| | - Fardokht A. Abulwerdi
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA; (F.A.A.); (S.F.J.L.G.)
| | - Lisa Henderson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Julia Denniss
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Michelle L. Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| | - Delores R. Luttrell
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Iosif Vaisman
- Laboratory for Structural Bioinformatics, School of Systems Biology, George Mason University, Manassas, VA 20110, USA;
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA;
| | - Joseph Steiner
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Stuart F. J. Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA; (F.A.A.); (S.F.J.L.G.)
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (L.H.); (J.D.); (D.R.L.); (A.N.)
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA; (C.D.); (M.C.); (A.W.); (P.K.); (M.L.P.)
| |
Collapse
|
7
|
Alzahrani FA, Riza YM, Eid TM, Almotairi R, Scherschinski L, Contreras J, Nadeem M, Perez SE, Raikwar SP, Jha RM, Preul MC, Ducruet AF, Lawton MT, Bhatia K, Akhter N, Ahmad S. Exosomes in Vascular/Neurological Disorders and the Road Ahead. Cells 2024; 13:670. [PMID: 38667285 PMCID: PMC11049650 DOI: 10.3390/cells13080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), stroke, and aneurysms, are characterized by the abnormal accumulation and aggregation of disease-causing proteins in the brain and spinal cord. Recent research suggests that proteins linked to these conditions can be secreted and transferred among cells using exosomes. The transmission of abnormal protein buildup and the gradual degeneration in the brains of impacted individuals might be supported by these exosomes. Furthermore, it has been reported that neuroprotective functions can also be attributed to exosomes in neurodegenerative diseases. The potential neuroprotective functions may play a role in preventing the formation of aggregates and abnormal accumulation of proteins associated with the disease. The present review summarizes the roles of exosomes in neurodegenerative diseases as well as elucidating their therapeutic potential in AD, PD, ALS, HD, stroke, and aneurysms. By elucidating these two aspects of exosomes, valuable insights into potential therapeutic targets for treating neurodegenerative diseases may be provided.
Collapse
Affiliation(s)
- Faisal A. Alzahrani
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasir M. Riza
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamir M. Eid
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Laboratory Technology, Prince Fahad bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Lea Scherschinski
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Jessica Contreras
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Muhammed Nadeem
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sylvia E. Perez
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sudhanshu P. Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Andrew F. Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Michael T. Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Kanchan Bhatia
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA
| | - Saif Ahmad
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Phoenix Veterans Affairs (VA) Health Care System, Phoenix, AZ 85012, USA
| |
Collapse
|
8
|
Trubitsina NP, Matiiv AB, Rogoza TM, Zudilova AA, Bezgina MD, Zhouravleva GA, Bondarev SA. Role of the Gut Microbiome and Bacterial Amyloids in the Development of Synucleinopathies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:523-542. [PMID: 38648770 DOI: 10.1134/s0006297924030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 04/25/2024]
Abstract
Less than ten years ago, evidence began to accumulate about association between the changes in the composition of gut microbiota and development of human synucleinopathies, in particular sporadic form of Parkinson's disease. We collected data from more than one hundred and thirty experimental studies that reported similar results and summarized the frequencies of detection of different groups of bacteria in these studies. It is important to note that it is extremely rare that a unidirectional change in the population of one or another group of microorganisms (only an elevation or only a reduction) was detected in the patients with Parkinson's disease. However, we were able to identify several groups of bacteria that were overrepresented in the patients with Parkinson's disease in the analyzed studies. There are various hypotheses about the molecular mechanisms that explain such relationships. Usually, α-synuclein aggregation is associated with the development of inflammatory processes that occur in response to the changes in the microbiome. However, experimental evidence is accumulating on the influence of bacterial proteins, including amyloids (curli), as well as various metabolites, on the α-synuclein aggregation. In the review, we provided up-to-date information about such examples.
Collapse
Affiliation(s)
- Nina P Trubitsina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Anton B Matiiv
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Tatyana M Rogoza
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- St. Petersburg Branch of the Vavilov Institute of General Genetics, Saint Petersburg, 198504, Russia
| | - Anna A Zudilova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Mariya D Bezgina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia.
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| |
Collapse
|
9
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
10
|
Liang Y, Zhong G, Ren M, Sun T, Li Y, Ye M, Ma C, Guo Y, Liu C. The Role of Ubiquitin-Proteasome System and Mitophagy in the Pathogenesis of Parkinson's Disease. Neuromolecular Med 2023; 25:471-488. [PMID: 37698835 DOI: 10.1007/s12017-023-08755-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is mainly in middle-aged people and elderly people, and the pathogenesis of PD is complex and diverse. The ubiquitin-proteasome system (UPS) is a master regulator of neural development and the maintenance of brain structure and function. Dysfunction of components and substrates of this UPS has been linked to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Moreover, UPS can regulate α-synuclein misfolding and aggregation, mitophagy, neuroinflammation and oxidative stress to affect the development of PD. In the present study, we review the role of several related E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) on the pathogenesis of PD such as Parkin, CHIP, USP8, etc. On this basis, we summarize the connections and differences of different E3 ubiquitin ligases in the pathogenesis, and elaborate on the regulatory progress of different DUBs on the pathogenesis of PD. Therefore, we can better understand their relationships and provide feasible and valuable therapeutic clues for UPS-related PD treatment research.
Collapse
Affiliation(s)
- Yu Liang
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Guangshang Zhong
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Mingxin Ren
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Tingting Sun
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yangyang Li
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Ming Ye
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, 233000, China
| | - Caiyun Ma
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yu Guo
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| | - Changqing Liu
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China.
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
11
|
Shastry S, Hu J, Ying M, Mao X. Cell Therapy for Parkinson's Disease. Pharmaceutics 2023; 15:2656. [PMID: 38139997 PMCID: PMC10747991 DOI: 10.3390/pharmaceutics15122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons of the substantia nigra pars compacta with a reduction in dopamine concentration in the striatum. It is a substantial loss of dopaminergic neurons that is responsible for the classic triad of PD symptoms, i.e., resting tremor, muscular rigidity, and bradykinesia. Several current therapies for PD may only offer symptomatic relief and do not address the underlying neurodegeneration of PD. The recent developments in cellular reprogramming have enabled the development of previously unachievable cell therapies and patient-specific modeling of PD through Induced Pluripotent Stem Cells (iPSCs). iPSCs possess the inherent capacity for pluripotency, allowing for their directed differentiation into diverse cell lineages, such as dopaminergic neurons, thus offering a promising avenue for addressing the issue of neurodegeneration within the context of PD. This narrative review provides a comprehensive overview of the effects of dopamine on PD patients, illustrates the versatility of iPSCs and their regenerative abilities, and examines the benefits of using iPSC treatment for PD as opposed to current therapeutic measures. In means of providing a treatment approach that reinforces the long-term survival of the transplanted neurons, the review covers three supplementary avenues to reinforce the potential of iPSCs.
Collapse
Affiliation(s)
- Surabhi Shastry
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.S.); (J.H.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junkai Hu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.S.); (J.H.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.S.); (J.H.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
12
|
Lehmann TP, Golik M, Olejnik J, Łukaszewska M, Markowska D, Drożdżyńska M, Kotecki A, Głowacki M, Jagodziński PP. Potential applications of using tissue-specific EVs in targeted therapy and vaccinology. Biomed Pharmacother 2023; 166:115308. [PMID: 37660644 DOI: 10.1016/j.biopha.2023.115308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Many cell types secrete spherical membrane bodies classified as extracellular vesicles (EVs). EVs participate in intercellular communication and are present in body fluids, including blood, lymph, and cerebrospinal fluid. The time of EVs survival in the body varies depending on the body's localisation. Once the EVs reach cells, they trigger a cellular response. Three main modes of direct interaction of EVs with a target cell were described: receptor-ligand interaction mode, a direct fusion of EVs with the cellular membrane and EVs internalisation. Studies focused on the medical application of EVs. Medical application of EVs may require modification of their surface and interior. EVs surface was modified by affecting the parental cells or by the direct amendment of isolated EVs. The interior modification involved introducing materials into the cells or direct administrating isolated EVs. EVs carry proteins, lipids, fragments of DNA, mRNA, microRNA (miRNA) and long non-coding RNA. Because of EVs availability in liquid biopsy, they are potential diagnostic markers. Modified EVs could enhance the treatment of diseases such as colorectal cancer, Parkinson's disease, leukaemia or liver fibrosis. EVs have specific tissue tropisms, which makes them convenient organ-directed carriers of nucleic acids, drugs and vaccines. In conclusion, recently published works have shown that EVs could become biomarkers and modern vehicles of advanced drug forms.
Collapse
Affiliation(s)
- Tomasz P Lehmann
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.
| | - Marta Golik
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Jolanta Olejnik
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Marianna Łukaszewska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Dominika Markowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Martyna Drożdżyńska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Aleksander Kotecki
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maciej Głowacki
- Department of Paediatric Orthopaedics and Traumatology, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| |
Collapse
|
13
|
Li Y, Khan N, Ritzel RM, Lei Z, Allen S, Faden AI, Wu J. Sexually dimorphic extracellular vesicle responses after chronic spinal cord injury are associated with neuroinflammation and neurodegeneration in the aged brain. J Neuroinflammation 2023; 20:197. [PMID: 37653491 PMCID: PMC10469550 DOI: 10.1186/s12974-023-02881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Medical advances have made it increasingly possible for spinal cord injury (SCI) survivors to survive decades after the insult. But how SCI affects aging changes and aging impacts the injury process have received limited attention. Extracellular vesicles (EVs) are recognized as critical mediators of neuroinflammation after CNS injury, including at a distance from the lesion site. We have previously shown that SCI in young male mice leads to robust changes in plasma EV count and microRNA (miR) content. Here, our goal was to investigate the impact of biological sex and aging on EVs and brain after SCI. METHODS Young adult age-matched male and female C57BL/6 mice were subjected to SCI. At 19 months post-injury, total plasma EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis (NTA). EVs miR cargo was examined using the Fireplex® assay. The transcriptional changes in the brain were assessed by a NanoString nCounter Neuropathology panel and validated by Western blot (WB) and flow cytometry (FC). A battery of behavioral tests was performed for assessment of neurological function. RESULTS Transcriptomic changes showed a high number of changes between sham and those with SCI. Sex-specific changes were found in transcription networks related to disease association, activated microglia, and vesicle trafficking. FC showed higher microglia and myeloid counts in the injured tissue of SCI/Female compared to their male counterparts, along with higher microglial production of ROS in both injured site and the brain. In the latter, increased levels of TNF and mitochondrial membrane potential were seen in microglia from SCI/Female. WB and NTA revealed that EV markers are elevated in the plasma of SCI/Male. Particle concentration in the cortex increased after injury, with SCI/Female showing higher counts than SCI/Male. EVs cargo analysis revealed changes in miR content related to injury and sex. Behavioral testing confirmed impairment of cognition and depression at chronic time points after SCI in both sexes, without significant differences between males and females. CONCLUSIONS Our study is the first to show sexually dimorphic changes in brain after very long-term SCI and supports a potential sex-dependent EV-mediated mechanism that contributes to SCI-induced brain changes.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Niaz Khan
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Samantha Allen
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD, 21201, USA.
| |
Collapse
|
14
|
Kaya ZB, Karakoc E, McLean PJ, Saka E, Atilla P. Post-inflammatory administration of N-acetylcysteine reduces inflammation and alters receptor levels in a cellular model of Parkinson's disease. FASEB Bioadv 2023; 5:263-276. [PMID: 37415931 PMCID: PMC10320847 DOI: 10.1096/fba.2022-00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/10/2023] [Accepted: 04/28/2023] [Indexed: 07/08/2023] Open
Abstract
Parkinson's disease (PD) is a complex, multifactorial neurodegenerative disease with a prevalence of 1% over the age of 55. Neuropathological hallmarks of PD include the loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of Lewy bodies that contain a variety of proteins and lipids including alpha-synuclein (α-syn). Although the formation of α-syn occurs intracellularly, it can also be found in the extracellular space where it can be taken up by neighboring cells. Toll-like receptor 2 (TLR2) is an immune system receptor that has been shown to recognize extracellular α-syn and modulate its uptake by other cells. Lymphocyte-activation gene 3 (LAG3), an immune checkpoint receptor, has also been proposed to play a role in extracellular α-syn internalization; however, a recent study has disputed this role. Internalized α-syn can trigger expression and secretion of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-2, and IL-6 and induce neuroinflammation, apoptosis, and mitophagy that results in cellular death. In this study, we tested if N-acetylcysteine (NAC), an anti-inflammatory and anti-carcinogenic drug, can circumvent the detrimental effects of neuroinflammation and induce an anti-inflammatory response by modulating transcription and expression of TLR2 and LAG3 receptors. Cells overexpressing wild-type α-syn were treated with TNF-α to induce inflammation followed by NAC to inhibit the deleterious effects of TNF-α-induced inflammation and apoptosis. SNCA gene transcription and α-syn protein expression were validated by q-PCR and Western blot (WB), respectively. Cell viability was measured, and apoptosis was evaluated by WB and terminal deoxynucleotidyl transferase nick end labeling methods. Alterations in LAG3 and TLR2 receptor levels were evaluated by immunofluorescent labeling, WB, and q-PCR. TNF-α not only increased inflammation but also increased endogenous and overexpressed α-syn levels. NAC treatment decreased expression of TLR2 and increased transcription of LAG3 receptor and diminished inflammation-mediated toxicity and cell death. Here, we demonstrate that NAC can reduce neuroinflammation that occurs as a result of alpha-synuclein overexpression, via a TLR2-associated pathway, making it a promising candidate for therapeutic intervention. Further studies are needed to elucidate molecular mechanisms and pathways related to neuroinflammation in PD and to develop possible new therapeutic approaches to slow the clinical progression of PD.
Collapse
Affiliation(s)
- Zeynep Bengisu Kaya
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of Histology and EmbryologyHacettepe University Faculty of MedicineAnkaraTurkey
| | - Elif Karakoc
- Department of Histology and EmbryologyHacettepe University Faculty of MedicineAnkaraTurkey
| | | | - Esen Saka
- Department of NeurologyHacettepe University Faculty of MedicineAnkaraTurkey
| | - Pergin Atilla
- Department of Histology and EmbryologyHacettepe University Faculty of MedicineAnkaraTurkey
| |
Collapse
|
15
|
Amagai R, Yoshioka S, Otomo R, Nagano H, Hashimoto N, Sakakibara R, Tanaka T, Okado-Matsumoto A. Post-translational modification of lysine residues in erythrocyte α-synuclein. J Biochem 2023; 173:177-184. [PMID: 36469357 DOI: 10.1093/jb/mvac100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
α-Synuclein is a protein linked to various synuclein-associated diseases ('synucleinopathies'), including Parkinson's disease, dementia with Lewy Bodies and multiple system atrophy, and is highly expressed in the central nervous system and in erythrocytes. Moreover, α-synuclein-containing erythrocyte-derived extracellular vesicles may be involved in the pathogenesis of synucleinopathies and their progression across the blood-brain barrier. Several post-translational modifications of α-synuclein have been reported in brain inclusions, including S129 phosphorylation, but fewer have been found in erythrocytes. In this study, we analysed the post-translational modifications of erythrocyte α-synuclein using liquid chromatography-mass spectrometry. We found that all lysine residues in the α-synuclein protein could be modified by acetylation, glycation, ubiquitination or SUMOylation but that phosphorylation, nitration and acylation were uncommon minor post-translational modifications in erythrocytes. Since the post-translational modification of lysine residues has been implicated in both membrane association and protein clearance, our findings provide new insight into how synucleinopathies may progress and suggest possible therapeutic strategies designed to target α-synuclein.
Collapse
Key Words
- Parkinson’s disease
- erythrocyte
- post-translational modification
- synucleinopathy
- α-synuclein.Abbreviations: aa, amino acids; AGE, advanced glycation end product; BBB, blood–brain barrier; CML, Nε-(1-carboxymethyl)-L-lysine; CNS, central nervous system; EVs, extracellular vesicles; IP, immunoprecipitation; LC–MS/MS, liquid chromatography–mass spectrometry; PBS, phosphate buffered saline; PD, Parkinson’s disease; PTM, post-translational modification; SUMO, small ubiquitin-related modifier
Collapse
Affiliation(s)
- Ryosuke Amagai
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Sakura Yoshioka
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Riki Otomo
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Hidekazu Nagano
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Naoko Hashimoto
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Ryuji Sakakibara
- Division of Neurology, Department of Internal Medicine, Sakura Medical Center, Toho University, Sakura, Chiba 285-8741, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Ayako Okado-Matsumoto
- Laboratory of Biochemistry, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
16
|
Xia X, Wang Y, Zheng JC. Extracellular vesicles, from the pathogenesis to the therapy of neurodegenerative diseases. Transl Neurodegener 2022; 11:53. [PMID: 36510311 PMCID: PMC9743667 DOI: 10.1186/s40035-022-00330-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small bilipid layer-enclosed vesicles that can be secreted by all tested types of brain cells. Being a key intercellular communicator, EVs have emerged as a key contributor to the pathogenesis of various neurodegenerative diseases (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease through delivery of bioactive cargos within the central nervous system (CNS). Importantly, CNS cell-derived EVs can be purified via immunoprecipitation, and EV cargos with altered levels have been identified as potential biomarkers for the diagnosis and prognosis of NDs. Given the essential impact of EVs on the pathogenesis of NDs, pathological EVs have been considered as therapeutic targets and EVs with therapeutic effects have been utilized as potential therapeutic agents or drug delivery platforms for the treatment of NDs. In this review, we focus on recent research progress on the pathological roles of EVs released from CNS cells in the pathogenesis of NDs, summarize findings that identify CNS-derived EV cargos as potential biomarkers to diagnose NDs, and comprehensively discuss promising potential of EVs as therapeutic targets, agents, and drug delivery systems in treating NDs, together with current concerns and challenges for basic research and clinical applications of EVs regarding NDs.
Collapse
Affiliation(s)
- Xiaohuan Xia
- grid.24516.340000000123704535Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200072 China ,Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065 Shanghai, China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, 200434 Shanghai, China ,grid.412793.a0000 0004 1799 5032Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065 China
| | - Yi Wang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.24516.340000000123704535Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital Affiliated to Tongji University School of Medicine, Shanghai, 201613 China ,grid.24516.340000000123704535Collaborative Innovation Center for Brain Science, Tongji University, 200092 Shanghai, China
| | - Jialin C. Zheng
- grid.24516.340000000123704535Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200072 China ,Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065 Shanghai, China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, 200434 Shanghai, China ,grid.24516.340000000123704535Collaborative Innovation Center for Brain Science, Tongji University, 200092 Shanghai, China ,grid.412793.a0000 0004 1799 5032Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065 China
| |
Collapse
|
17
|
Reddy K, Dieriks BV. Multiple system atrophy: α-Synuclein strains at the neuron-oligodendrocyte crossroad. Mol Neurodegener 2022; 17:77. [DOI: 10.1186/s13024-022-00579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/31/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractThe aberrant accumulation of α-Synuclein within oligodendrocytes is an enigmatic, pathological feature specific to Multiple system atrophy (MSA). Since the characterization of the disease in 1969, decades of research have focused on unravelling the pathogenic processes that lead to the formation of oligodendroglial cytoplasmic inclusions. The discovery of aggregated α-Synuclein (α-Syn) being the primary constituent of glial cytoplasmic inclusions has spurred several lines of research investigating the relationship between the pathogenic accumulation of the protein and oligodendrocytes. Recent developments have identified the ability of α-Syn to form conformationally distinct “strains” with varying behavioral characteristics and toxicities. Such “strains” are potentially disease-specific, providing insight into the enigmatic nature of MSA. This review discusses the evidence for MSA-specific α-Syn strains, highlighting the current methods for detecting and characterizing MSA patient-derived α-Syn. Given the differing behaviors of α-Syn strains, we explore the seeding and spreading capabilities of MSA-specific strains, postulating their influence on the aggressive nature of the disease. These ideas culminate into one key question: What causes MSA–specific strain formation? To answer this, we discuss the interplay between oligodendrocytes, neurons and α-Syn, exploring the ability of each cell type to contribute to the aggregate formation while postulating the effect of additional variables such as protein interactions, host characteristics and environmental factors. Thus, we propose the idea that MSA strain formation results from the intricate interrelation between neurons and oligodendrocytes, with deficits in each cell type required to initiate α-Syn aggregation and MSA pathogenesis.
Graphical Abstract
Collapse
|
18
|
Liu SF, Li LY, Zhuang JL, Li MM, Ye LC, Chen XR, Lin S, Chen CN. Update on the application of mesenchymal stem cell-derived exosomes in the treatment of Parkinson's disease: A systematic review. Front Neurol 2022; 13:950715. [PMID: 36262830 PMCID: PMC9573985 DOI: 10.3389/fneur.2022.950715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Parkinson's disease (PD) has become the second largest neurodegenerative disease after Alzheimer's disease, and its incidence is increasing year by year. Traditional dopamine replacement therapy and deep brain stimulation can only alleviate the clinical symptoms of patients with PD but cannot cure the disease. In recent years, stem cell therapy has been used to treat neurodegenerative diseases. Many studies have shown that stem cell transplantation has a therapeutic effect on PD. Here, we review recent studies indicating that exosomes derived from mesenchymal stem cells also have the potential to treat PD in animal models, but the exact mechanism remains unclear. This article reviews the mechanisms through which exosomes are involved in intercellular information exchange, promote neuroprotection and freely cross the blood-brain barrier in the treatment of PD. The increase in the incidence of PD and the decline in the quality of life of patients with advanced PD have placed a heavy burden on patients, families and society. Therefore, innovative therapies for PD are urgently needed. Herein, we discuss the mechanisms underlying the effects of exosomes in PD, to provide new insights into the treatment of PD. The main purpose of this article is to explore the therapeutic potential of exosomes derived from mesenchymal stem cells and future research directions for this degenerative disease.
Collapse
Affiliation(s)
- Shu-fen Liu
- Department of Neurology, The Second Affiliated Hospital, The Second Clinical Medical College, Fujian Medical University, Quanzhou, China
| | - Lin-yi Li
- Department of Neurology, The Second Affiliated Hospital, The Second Clinical Medical College, Fujian Medical University, Quanzhou, China
| | - Jian-long Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Mi-mi Li
- Department of Neurology, The Second Affiliated Hospital, The Second Clinical Medical College, Fujian Medical University, Quanzhou, China
| | - Li-chao Ye
- Department of Neurology, The Second Affiliated Hospital, The Second Clinical Medical College, Fujian Medical University, Quanzhou, China
| | - Xiang-rong Chen
- Department of Neurosurgery, The Second Affiliated Hospital, The Second Clinical Medical College, Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Shu Lin
| | - Chun-nuan Chen
- Department of Neurology, The Second Affiliated Hospital, The Second Clinical Medical College, Fujian Medical University, Quanzhou, China
- *Correspondence: Chun-nuan Chen
| |
Collapse
|
19
|
Mavroeidi P, Vetsi M, Dionysopoulou D, Xilouri M. Exosomes in Alpha-Synucleinopathies: Propagators of Pathology or Potential Candidates for Nanotherapeutics? Biomolecules 2022; 12:957. [PMID: 35883513 PMCID: PMC9313025 DOI: 10.3390/biom12070957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
The pathological accumulation of alpha-synuclein governs the pathogenesis of neurodegenerative disorders, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, collectively termed alpha-synucleinopathies. Alpha-synuclein can be released in the extracellular space, partly via exosomes, and this extracellular protein pool may contribute to disease progression by facilitating the spread of pathological alpha-synuclein or activating immune cells. The content of exosomes depends on their origin and includes specific proteins, lipids, functional mRNAs and various non-coding RNAs. Given their ability to mediate intercellular communication via the transport of multilevel information, exosomes are considered to be transporters of toxic agents. Beyond neurons, glial cells also release exosomes, which may contain inflammatory molecules and this glia-to-neuron or neuron-to-glia transmission of exosomal alpha-synuclein may contribute to the propagation of pathology and neuroinflammation throughout the brain. In addition, as their content varies as per their originating and recipient cells, these vesicles can be utilized as a diagnostic biomarker for early disease detection, whereas targeted exosomes may be used as scaffolds to deliver therapeutic agents into the brain. This review summarizes the current knowledge regarding the role of exosomes in the progression of alpha-synuclein-related pathology and their potential use as biomarkers and nanotherapeutics in alpha-synucleinopathies.
Collapse
Affiliation(s)
| | | | | | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (P.M.); (M.V.); (D.D.)
| |
Collapse
|
20
|
Zhang P, Rasheed M, Liang J, Wang C, Feng L, Chen Z. Emerging Potential of Exosomal Non-coding RNA in Parkinson’s Disease: A Review. Front Aging Neurosci 2022; 14:819836. [PMID: 35360206 PMCID: PMC8960858 DOI: 10.3389/fnagi.2022.819836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes are extracellular vesicles that are released by cells and circulate freely in body fluids. Under physiological and pathological conditions, they serve as cargo for various biological substances such as nucleotides (DNA, RNA, ncRNA), lipids, and proteins. Recently, exosomes have been revealed to have an important role in the pathophysiology of several neurodegenerative illnesses, including Parkinson’s disease (PD). When secreted from damaged neurons, these exosomes are enriched in non-coding RNAs (e.g., miRNAs, lncRNAs, and circRNAs) and display wide distribution characteristics in the brain and periphery, bridging the gap between normal neuronal function and disease pathology. However, the current status of ncRNAs carried in exosomes regulating neuroprotection and PD pathogenesis lacks a systematic summary. Therefore, this review discussed the significance of ncRNAs exosomes in maintaining the normal neuron function and their pathogenic role in PD progression. Additionally, we have emphasized the importance of ncRNAs exosomes as potential non-invasive diagnostic and screening agents for the early detection of PD. Moreover, bioengineered exosomes are proposed to be used as drug carriers for targeted delivery of RNA interference molecules across the blood-brain barrier without immune system interference. Overall, this review highlighted the diverse characteristics of ncRNA exosomes, which may aid researchers in characterizing future exosome-based biomarkers for early PD diagnosis and tailored PD medicines.
Collapse
Affiliation(s)
- Peng Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Madiha Rasheed
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Junhan Liang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Chaolei Wang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- *Correspondence: Lin Feng,
| | - Zixuan Chen
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
- Zixuan Chen,
| |
Collapse
|
21
|
Li KL, Huang HY, Ren H, Yang XL. Role of exosomes in the pathogenesis of inflammation in Parkinson's disease. Neural Regen Res 2022; 17:1898-1906. [PMID: 35142665 PMCID: PMC8848593 DOI: 10.4103/1673-5374.335143] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inflammatory responses, including glial cell activation and peripheral immune cell infiltration, are involved in the pathogenesis of Parkinson’s disease (PD). These inflammatory responses appear to be closely related to the release of extracellular vesicles, such as exosomes. However, the relationships among different forms of glial cell activation, synuclein dysregulation, mitochondrial dysfunction, and exosomes are complicated. This review discusses the multiple roles played by exosomes in PD-associated inflammation and concludes that exosomes can transport toxic α-synuclein oligomers to immature neurons and into the extracellular environment, inducing the oligomerization of α-synuclein in normal neurons. Misfolded α-synuclein causes microglia and astrocytes to activate and secrete exosomes. Glial cell-derived exosomes participate in communications between glial cells and neurons, triggering anti-stress and anti-inflammatory responses, in addition to axon growth. The production and release of mitochondrial vesicles and exosomes establish a new mechanism for linking mitochondrial dysfunction to systemic inflammation associated with PD. Given the relevance of exosomes as mediators of neuron-glia communication in neuroinflammation and neuropathogenesis, new targeted treatment strategies are currently being developed that use these types of extracellular vesicles as drug carriers. Exosome-mediated inflammation may be a promising target for intervention in PD patients.
Collapse
Affiliation(s)
- Ke-Lu Li
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Hong-Yan Huang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui Ren
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xing-Long Yang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
22
|
Gao P, Li X, Du X, Liu S, Xu Y. Diagnostic and Therapeutic Potential of Exosomes in Neurodegenerative Diseases. Front Aging Neurosci 2022; 13:790863. [PMID: 34975460 PMCID: PMC8717921 DOI: 10.3389/fnagi.2021.790863] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative diseases are closely related to brain function and the progression of the diseases are irreversible. Due to brain tissue being not easy to acquire, the study of the pathophysiology of neurodegenerative disorders has many limitations—lack of reliable early biomarkers and personalized treatment. At the same time, the blood-brain barrier (BBB) limits most of the drug molecules into the damaged areas of the brain, which makes a big drop in the effect of drug treatment. Exosomes, a kind of endogenous nanoscale vesicles, play a key role in cell signaling through the transmission of genetic information and proteins between cells. Because of the ability to cross the BBB, exosomes are expected to link peripheral changes to central nervous system (CNS) events as potential biomarkers, and can even be used as a therapeutic carrier to deliver molecules specifically to CNS. Here we summarize the role of exosomes in pathophysiology, diagnosis, prognosis, and treatment of some neurodegenerative diseases (Alzheimer’s Disease, Parkinson’s Disease, Huntington’s Disease, Amyotrophic Lateral Sclerosis).
Collapse
Affiliation(s)
- Panyue Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Mental Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
23
|
Chang W, Xiao D, Fang X, Wang J. Phospholipids in small extracellular vesicles: emerging regulators of neurodegenerative diseases and cancer. Cytotherapy 2021; 24:93-100. [PMID: 34742629 DOI: 10.1016/j.jcyt.2021.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Small extracellular vesicles (sEVs) are generated by almost all cell types. They have a bilayer membrane structure that is similar to cell membranes. Thus, the phospholipids contained in sEVs are the main components of cell membranes and function as structural support elements. However, as in-depth research on sEV membrane components is conducted, some phospholipids have been found to participate in cellular biological processes and function as targets for cell-cell communication. Currently, sEVs are being developed as part of drug delivery systems and diagnostic factors for various diseases, especially neurodegenerative diseases and cancer. An understanding of the physiological and pathological roles of sEV phospholipids in cellular processes is essential for their future medical application. In this review, the authors discuss phospholipid components in sEVs of different origins and summarize the roles of phospholipids in sEV biogenesis. The authors further collect the current knowledge on the functional roles of sEV phospholipids in cell-cell communication and bioactivities as signals regulating neurodegenerative diseases and cancer and the possibility of using sEV phospholipids as biomarkers or in drug delivery systems for cancer diagnosis and treatment. Knowledge of sEV phospholipids is important to help us identify directions for future studies.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China.
| | - Dandan Xiao
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China; School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Xinyu Fang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China; School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Verdi V, Bécot A, van Niel G, Verweij FJ. In vivo imaging of EVs in zebrafish: New perspectives from "the waterside". FASEB Bioadv 2021; 3:918-929. [PMID: 34761174 PMCID: PMC8565201 DOI: 10.1096/fba.2021-00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
To harmoniously coordinate the activities of all its different cell types, a multicellular organism critically depends on intercellular communication. One recently discovered mode of intercellular cross-talk is based on the exchange of "extracellular vesicles" (EVs). EVs are nano-sized heterogeneous lipid bilayer vesicles enriched in a variety of biomolecules that mediate short- and long-distance communication between different cells, and between cells and their environment. Numerous studies have demonstrated important aspects pertaining to the dynamics of their release, their uptake, and sub-cellular fate and roles in vitro. However, to demonstrate these and other aspects of EV biology in a relevant, fully physiological context in vivo remains challenging. In this review we analyze the state of the art of EV imaging in vivo, focusing in particular on zebrafish as a promising model to visualize, study, and characterize endogenous EVs in real-time and expand our understanding of EV biology at cellular and systems level.
Collapse
Affiliation(s)
- Vincenzo Verdi
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
- Groupe Hospitalier Universitaire (GHU) Paris Paris France
| | - Anaïs Bécot
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
| | - Guillaume van Niel
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
- Groupe Hospitalier Universitaire (GHU) Paris Paris France
| | - Frederik J Verweij
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
| |
Collapse
|
25
|
Yao L, Wu J, Koc S, Lu G. Genetic Imaging of Neuroinflammation in Parkinson's Disease: Recent Advancements. Front Cell Dev Biol 2021; 9:655819. [PMID: 34336822 PMCID: PMC8320775 DOI: 10.3389/fcell.2021.655819] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative aging disorders characterized by motor and non-motor symptoms due to the selective loss of midbrain dopaminergic (DA) neurons. The decreased viability of DA neurons slowly results in the appearance of motor symptoms such as rigidity, bradykinesia, resting tremor, and postural instability. These symptoms largely depend on DA nigrostriatal denervation. Pharmacological and surgical interventions are the main treatment for improving clinical symptoms, but it has not been possible to cure PD. Furthermore, the cause of neurodegeneration remains unclear. One of the possible neurodegeneration mechanisms is a chronic inflammation of the central nervous system, which is mediated by microglial cells. Impaired or dead DA neurons can directly lead to microglia activation, producing a large number of reactive oxygen species and pro-inflammatory cytokines. These cytotoxic factors contribute to the apoptosis and death of DA neurons, and the pathological process of neuroinflammation aggravates the primary morbid process and exacerbates ongoing neurodegeneration. Therefore, anti-inflammatory treatment exerts a robust neuroprotective effect in a mouse model of PD. Since discovering the first mutation in the α-synuclein gene (SNCA), which can cause disease-causing, PD has involved many genes and loci such as LRRK2, Parkin, SNCA, and PINK1. In this article, we summarize the critical descriptions of the genetic factors involved in PD's occurrence and development (such as LRRK2, SNCA, Parkin, PINK1, and inflammasome), and these factors play a crucial role in neuroinflammation. Regulation of these signaling pathways and molecular factors related to these genetic factors can vastly improve the neuroinflammation of PD.
Collapse
Affiliation(s)
- Longping Yao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiayu Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sumeyye Koc
- Department of Neuroscience, Institute of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
26
|
Zhang T, Ma S, Lv J, Wang X, Afewerky HK, Li H, Lu Y. The emerging role of exosomes in Alzheimer's disease. Ageing Res Rev 2021; 68:101321. [PMID: 33727157 DOI: 10.1016/j.arr.2021.101321] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/20/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), manifested by memory loss and a decline in cognitive functions, is the most prevalent neurodegenerative disease accounting for 60-80 % of dementia cases. But, to-date, there is no effective treatment available to slow or stop the progression of AD. Exosomes are small extracellular vesicles that carry constituents, such as functional messenger RNAs, non-coding RNAs, proteins, lipids, DNA, and other bioactive substances of their source cells. In the brain, exosomes are likely to be sourced by almost all cell types and involve in cell communication to regulate cellular functions. The yet, accumulated evidence on the roles of exosomes and their constituents in the AD pathological process suggests their significance as additional biomarkers and therapeutic targets for AD. This review summarizes the current reported research findings on exosomes roles in the pathogenesis, diagnosis, and treatment of AD.
Collapse
|
27
|
Zheng T, Zhang Z. Activated microglia facilitate the transmission of α-synuclein in Parkinson's disease. Neurochem Int 2021; 148:105094. [PMID: 34097990 DOI: 10.1016/j.neuint.2021.105094] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta and abnormal aggregates of α-synuclein protein called Lewy bodies. To date, there is no drug that can definitely slow down or stop the progression of this disease. The discovery of the cell-to-cell transmission of pathologic α-synuclein seeds offers the possibility to explore novel treatment strategies to prevent the spread of α-synuclein, with the purpose of slowing down the progression of PD in its tracks. Although recent studies have made tremendous progress in understanding how α-synuclein spreads throughout the brain, neuroinflammation seems to play a crucial role in the development of α-synuclein pathology in PD. The activation of microglia, one of the hallmarks of the neuroinflammatory process, is suggested to influence the neuron-to-neuron transmission of α-synuclein. This review summarizes how activated microglia facilitate this process, and focuses on the following mechanisms including the activation of microglia in PD, the reduced ability of activated microglia to clear α-synuclein and increased migratory capacity of microglia in PD, as well as the cooperation between microglia and exosomes in mediating α-synuclein release and propagation. In conclusion, this article help collate information on microglia in-relation to PD.
Collapse
Affiliation(s)
- Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou 310006, China
| | - Zhengxiang Zhang
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou 310006, China.
| |
Collapse
|
28
|
Sun H, Su X, Li S, Mu D, Qu Y. Roles of glia-derived extracellular vesicles in central nervous system diseases: an update. Rev Neurosci 2021; 32:833-849. [PMID: 33792214 DOI: 10.1515/revneuro-2020-0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/06/2021] [Indexed: 11/15/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous vesicles secreted by various cells in the extracellular space. Accumulating evidence shows that EVs regulate cell-to-cell communication and signaling in the pathological processes of various diseases by carrying proteins, lipids, and nucleic acids to recipient cells. Glia-derived EVs act as a double-edged sword in the pathogenesis of central nervous system (CNS) diseases. They may be vectors for the spread of diseases or act as effective clearance systems to protect tissues. In this review, we summarize recent studies on glia-derived EVs with a focus on their relationships with CNS diseases.
Collapse
Affiliation(s)
- Hao Sun
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Xiaojuan Su
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Shiping Li
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Dezhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| |
Collapse
|
29
|
Zhao S, Sheng S, Wang Y, Ding L, Xu X, Xia X, Zheng JC. Astrocyte-derived extracellular vesicles: A double-edged sword in central nervous system disorders. Neurosci Biobehav Rev 2021; 125:148-159. [PMID: 33626395 DOI: 10.1016/j.neubiorev.2021.02.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Recent studies suggest that astrocytes released a great quantity of extracellular vesicles (AEVs) to communicate with other brain cells. Under pathological conditions, AEVs are widely associated with the pathogenesis of neurobiological diseases by horizontally transferring pathogenic factors to neighboring cells or peripheral immune cells. Their beneficial role is also evident by the fact that they are involved in neuroprotection and neuroregeneration through alleviating apoptosis, maintaining neuronal function, and repairing neural injuries. The strong association of AEVswith neurological disorders makes AEVs a promising target for disease diagnosis, treatment, and prevention. The identification of disease-specific cargos in AEVs isolated from the patients' biofluids suggests AEVs as an attractive platform for biomarker development. Furthermore, the inhibition of inflammatory/toxic AEV release and the preservation of neuroprotective AEV release have been considered as potential therapeutic strategies in CNS disorder treatment and prevention, respectively. Here, we summarize the biological roles of AEVs as pathological contributors, protective/regenerative factors, and potential diagnostic biomarkers and therapeutic targets for neurological disorders, with a focus on recent progresses and emerging concepts.
Collapse
Affiliation(s)
- Shu Zhao
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Shiyang Sheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaonan Xu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200434, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200434, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930, USA.
| |
Collapse
|
30
|
Pinnell JR, Cui M, Tieu K. Exosomes in Parkinson disease. J Neurochem 2021; 157:413-428. [PMID: 33372290 DOI: 10.1111/jnc.15288] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Parkinson disease (PD) is a prevalent neurodegenerative disease, in which the formation of misfolded and aggregated α-synuclein is a key neuropathological hallmark. Recent studies reveal that extracellular vesicles such as exosomes present a potential mechanism for propagation of pathological α-synuclein throughout the brain. The ability of exosomes to transport proteins and genetic material between cells, including mRNA and microRNAs which have been implicated in PD pathology, provides critical insights as to how exosomes may contribute to pathological progression in PD. Advances have also been made in the investigation of exosomes as potential tools for the modulation of Parkinson's pathology; their detection extracellularly may facilitate their use as biomarkers, while their small size could be utilised as vectors for the delivery of therapeutics. The aim of this review was to highlight our current knowledge of the role of exosomes in PD and potential clinical application.
Collapse
Affiliation(s)
- Jennifer R Pinnell
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA.,Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, UK
| | - Mei Cui
- Department of Neurology, Huashan hospital, Fudan University, Shanghai, China
| | - Kim Tieu
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
31
|
Melnik BC. Synergistic Effects of Milk-Derived Exosomes and Galactose on α-Synuclein Pathology in Parkinson's Disease and Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:1059. [PMID: 33494388 PMCID: PMC7865729 DOI: 10.3390/ijms22031059] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies associate milk consumption with an increased risk of Parkinson's disease (PD) and type 2 diabetes mellitus (T2D). PD is an α-synucleinopathy associated with mitochondrial dysfunction, oxidative stress, deficient lysosomal clearance of α-synuclein (α-syn) and aggregation of misfolded α-syn. In T2D, α-syn promotes co-aggregation with islet amyloid polypeptide in pancreatic β-cells. Prion-like vagal nerve-mediated propagation of exosomal α-syn from the gut to the brain and pancreatic islets apparently link both pathologies. Exosomes are critical transmitters of α-syn from cell to cell especially under conditions of compromised autophagy. This review provides translational evidence that milk exosomes (MEX) disturb α-syn homeostasis. MEX are taken up by intestinal epithelial cells and accumulate in the brain after oral administration to mice. The potential uptake of MEX miRNA-148a and miRNA-21 by enteroendocrine cells in the gut, dopaminergic neurons in substantia nigra and pancreatic β-cells may enhance miRNA-148a/DNMT1-dependent overexpression of α-syn and impair miRNA-148a/PPARGC1A- and miRNA-21/LAMP2A-dependent autophagy driving both diseases. MiRNA-148a- and galactose-induced mitochondrial oxidative stress activate c-Abl-mediated aggregation of α-syn which is exported by exosome release. Via the vagal nerve and/or systemic exosomes, toxic α-syn may spread to dopaminergic neurons and pancreatic β-cells linking the pathogenesis of PD and T2D.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| |
Collapse
|
32
|
Guo M, Wang J, Zhao Y, Feng Y, Han S, Dong Q, Cui M, Tieu K. Microglial exosomes facilitate α-synuclein transmission in Parkinson's disease. Brain 2020; 143:1476-1497. [PMID: 32355963 DOI: 10.1093/brain/awaa090] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/08/2020] [Accepted: 03/15/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulation of neuronal α-synuclein is a prominent feature in Parkinson's disease. More recently, such abnormal protein aggregation has been reported to spread from cell to cell and exosomes are considered as important mediators. The focus of such research, however, has been primarily in neurons. Given the increasing recognition of the importance of non-cell autonomous-mediated neurotoxicity, it is critical to investigate the contribution of glia to α-synuclein aggregation and spread. Microglia are the primary phagocytes in the brain and have been well-documented as inducers of neuroinflammation. How and to what extent microglia and their exosomes impact α-synuclein pathology has not been well delineated. We report here that when treated with human α-synuclein preformed fibrils, exosomes containing α-synuclein released by microglia are fully capable of inducing protein aggregation in the recipient neurons. Additionally, when combined with microglial proinflammatory cytokines, these exosomes further increased protein aggregation in neurons. Inhibition of exosome synthesis in microglia reduced α-synuclein transmission. The in vivo significance of these exosomes was demonstrated by stereotaxic injection of exosomes isolated from α-synuclein preformed fibrils treated microglia into the mouse striatum. Phosphorylated α-synuclein was observed in multiple brain regions consistent with their neuronal connectivity. These animals also exhibited neurodegeneration in the nigrostriatal pathway in a time-dependent manner. Depleting microglia in vivo dramatically suppressed the transmission of α-synuclein after stereotaxic injection of preformed fibrils. Mechanistically, we report here that α-synuclein preformed fibrils impaired autophagy flux by upregulating PELI1, which in turn, resulted in degradation of LAMP2 in activated microglia. More importantly, by purifying microglia/macrophage derived exosomes in the CSF of Parkinson's disease patients, we confirmed the presence of α-synuclein oligomer in CD11b+ exosomes, which were able to induce α-synuclein aggregation in neurons, further supporting the translational aspect of this study. Taken together, our study supports the view that microglial exosomes contribute to the progression of α-synuclein pathology and therefore, they may serve as a promising therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Min Guo
- Department of Neurology, Huashan hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology, Huashan hospital, Fudan University, Shanghai, China.,Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan hospital, Fudan University, Shanghai, China
| | - Yanxin Zhao
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China
| | - Yiwei Feng
- Department of Neurology, Huashan hospital, Fudan University, Shanghai, China
| | - Sida Han
- Department of Neurology, Huashan hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan hospital, Fudan University, Shanghai, China
| | - Kim Tieu
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| |
Collapse
|
33
|
Araldi RP, D’Amelio F, Vigerelli H, de Melo TC, Kerkis I. Stem Cell-Derived Exosomes as Therapeutic Approach for Neurodegenerative Disorders: From Biology to Biotechnology. Cells 2020; 9:E2663. [PMID: 33322404 PMCID: PMC7763259 DOI: 10.3390/cells9122663] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
The aging population has contributed to the rapid rise in the global incidence of neurodegenerative diseases. Despite the medical advances, there are no effective treatments for these disorders. Therefore, there is an urgent need for new treatments for these diseases. In this sense, cell therapy has been recognized as the best candidate for treating incurable diseases, such as neurodegenerative disorders. However, the therapeutic use of these cells can be limited by several factors. Thus, there has been a rediscovery that extracellular vesicles, including exosomes, can be alternatively explored in the treatment of these diseases, overcoming the limits of cell-based therapy. In this sense, this review aims to revisit all areas from biology, including biogenesis and the content of exosomes, to biotechnology, proposing the minimal information required to isolate, characterize, and study the content of these vesicles for scientific and/or clinical purposes.
Collapse
Affiliation(s)
- Rodrigo Pinheiro Araldi
- Genetics Laboratory, Instituto Butantan, 1500, Vital Brasil St., Sao Paulo SP 05503-900, Brazil; (R.P.A.); (F.D.); (H.V.); (T.C.d.M.)
- Programa de Pós-graduação em Endocrinologia e Metabologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Pauloa (UNIFESP), Sao Paulo SP 04021-001, Brazil
- Programa de Pós-graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo SP 04021-001, Brazil
| | - Fernanda D’Amelio
- Genetics Laboratory, Instituto Butantan, 1500, Vital Brasil St., Sao Paulo SP 05503-900, Brazil; (R.P.A.); (F.D.); (H.V.); (T.C.d.M.)
| | - Hugo Vigerelli
- Genetics Laboratory, Instituto Butantan, 1500, Vital Brasil St., Sao Paulo SP 05503-900, Brazil; (R.P.A.); (F.D.); (H.V.); (T.C.d.M.)
| | - Thatiana Correa de Melo
- Genetics Laboratory, Instituto Butantan, 1500, Vital Brasil St., Sao Paulo SP 05503-900, Brazil; (R.P.A.); (F.D.); (H.V.); (T.C.d.M.)
| | - Irina Kerkis
- Genetics Laboratory, Instituto Butantan, 1500, Vital Brasil St., Sao Paulo SP 05503-900, Brazil; (R.P.A.); (F.D.); (H.V.); (T.C.d.M.)
- Programa de Pós-graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo SP 04021-001, Brazil
| |
Collapse
|
34
|
Yarandi SS, Robinson JA, Vakili S, Donadoni M, Burdo TH, Sariyer IK. Characterization of Nef expression in different brain regions of SIV-infected macaques. PLoS One 2020; 15:e0241667. [PMID: 33137166 PMCID: PMC7605674 DOI: 10.1371/journal.pone.0241667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE HIV-associated CNS dysfunction is a significant problem among people with HIV (PWH), who now live longer due to viral suppression from combined anti-retroviral therapy (ART). Over the course of infection, HIV generates toxic viral proteins and induces inflammatory cytokines that have toxic effects on neurons in the CNS. Among these viral proteins, HIV Nef has been found in neurons of postmortem brain specimens from PWH. However, the source of Nef and its impact on neuronal cell homeostasis are still elusive. METHODS AND RESULTS Here, in using a simian immunodeficiency virus (SIV) infected rhesus macaque model of neuroHIV, we find SIV Nef reactivity in the frontal cortex, hippocampus and cerebellum of SIV-infected animals using immunohistochemistry (IHC). Interestingly, SIV-infected macaques treated with ART also showed frequent Nef positive cells in the cerebellum and hippocampus. Using dual quantitative RNAscope and IHC, we observed cells that were positive for Nef, but were not for SIV RNA, suggesting that Nef protein is present in cells that are not actively infected with SIV. Using cell specific markers, we observed Nef protein in microglia/macrophages and astrocytes. Importantly, we also identified a number of NeuN-positive neurons, which are not permissive to SIV infection, but contained Nef protein. Further characterization of Nef-positive neurons showed caspase 3 activation, indicating late stage apoptosis in the CNS neurons. CONCLUSIONS Our results suggest that regardless of ART status, Nef is expressed in the brain of SIV infected macaques and may contribute to neurological complications seen in PWH.
Collapse
Affiliation(s)
- Shadan S. Yarandi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Jake A. Robinson
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Sarah Vakili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Martina Donadoni
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Tricia H. Burdo
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Ilker K. Sariyer
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
35
|
Noncanonical Roles of h α-syn (A53T) in the Pathogenesis of Parkinson's Disease: Synaptic Pathology and Neuronal Aging. Neural Plast 2020; 2020:6283754. [PMID: 32273890 PMCID: PMC7115172 DOI: 10.1155/2020/6283754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/04/2020] [Accepted: 01/31/2020] [Indexed: 12/26/2022] Open
Abstract
The motor and nonmotor symptoms of PD involve several brain regions. However, whether α-syn pathology originating from the SNc can directly lead to the pathological changes in distant cerebral regions and induce PD-related symptoms remains unclear. Here, AAV9-synapsin-mCherry-human SNCA (A53T) was injected into the unilateral SNc of mice. Motor function and olfactory sensitivity were evaluated. Our results showed that AAV9-synapsin-mCherry-human SNCA was continuously expressed in SNc. The animals showed mild motor and olfactory dysfunction at 7 months after viral injection. The pathology in SNc was characterized by the loss of dopaminergic neurons accompanied by ER stress. In the striatum, hα-syn expression was high, CaMKβ-2 and NR2B expression decreased, and active synapses reduced. In the olfactory bulb, hα-syn expression was high, and aging cells in the mitral layer increased. The results suggested that hα-syn was transported in the striatum and OB along the nerve fibers that originated from the SNc and induced pathological changes in the distant cerebral regions, which contributed to the motor and nonmotor symptoms of PD.
Collapse
|
36
|
Tatullo M, Marrelli B, Zullo MJ, Codispoti B, Paduano F, Benincasa C, Fortunato F, Scacco S, Zavan B, Cocco T. Exosomes from Human Periapical Cyst-MSCs: Theranostic Application in Parkinson's Disease. Int J Med Sci 2020; 17:657-663. [PMID: 32210716 PMCID: PMC7085217 DOI: 10.7150/ijms.41515] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
The scientific community continuously strives to get new disease models, to discover early markers or novel therapeutic approaches, improving the diagnosis and prognosis of several human pathologies. Parkinson's Disease (PD) is characterized by a long asymptomatic phase, characterized by a selective loss of dopaminergic neurons. Recently, the human Periapical Cyst-Mesenchymal Stem Cells (hPCy-MSCs) have been differentiated in functional dopaminergic neurons: such oral-derived MSCs and the hPCy-MSCs-derived exosomes may represent a strategic and useful in vitro study-model, as well as intriguing therapeutic carriers. Circadian rhythm (CR) alteration variously impacts on PD pathways: an interesting research target is represented by the analysis of the exosomes released by dopaminergic neurons, derived from neural-differentiated hPCy-MSCs, after having reproduced in-vitro PD-like conditions. This review aims to describe the crosstalk among some aspects of circadian rhythm related to the onset of PD and the exosomes released by cells of PD patients. More in detail: the first part of this article will describe the main characteristics of circadian rhythm and the involvement of the exosomes found to be effective in the pathogenesis of PD. Finally, the authors will suggest how those exosomes derived from dopaminergic neurons, obtained by oral-derived stem cells (hPCy-MSCs) may represent a smart model for the in vitro research on PD, to find new biomarkers, to test new drugs or, fatally, to find new pathways applicable in future therapeutic approaches.
Collapse
Affiliation(s)
- Marco Tatullo
- Marrelli Health - Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
- Department of Therapeutic Dentistry, Sechenov University Russia, Moscow, Russia
| | - Benedetta Marrelli
- Marrelli Health - Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
- Department of Therapeutic Dentistry, Sechenov University Russia, Moscow, Russia
| | - Maria Josephine Zullo
- Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Bruna Codispoti
- Marrelli Health - Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
| | - Francesco Paduano
- Marrelli Health - Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
| | - Caterina Benincasa
- Marrelli Health - Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
| | - Francesco Fortunato
- Department of Neurological Sciences, University of Catanzaro “Magna Graecia”, Italy
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Tiziana Cocco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Italy
| |
Collapse
|
37
|
The Effects of IL-1β on Astrocytes are Conveyed by Extracellular Vesicles and Influenced by Age. Neurochem Res 2020; 45:694-707. [DOI: 10.1007/s11064-019-02937-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 01/23/2023]
|
38
|
Yuan Q, Li XD, Zhang SM, Wang HW, Wang YL. Extracellular vesicles in neurodegenerative diseases: Insights and new perspectives. Genes Dis 2019; 8:124-132. [PMID: 33997159 PMCID: PMC8099685 DOI: 10.1016/j.gendis.2019.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicle-like substances released by eukaryotic cells. Based on their origin and size, EVs are mainly divided into exosomes, microvesicles and apoptotic bodies, and they are secreted by eukaryotic cells under physiological and pathological conditions. EVs are enriched with nucleic acids, proteins and other factors. EVs can regulate the function of adjacent and distant cells, and they are even involved in the pathogenesis of diseases. They contain proteins associated with the pathogenesis of neurodegenerative diseases (NDs), such as the α-synuclein (α-syn) and tau proteins, which suggest potential roles for EVs as biomarkers and carriers of drugs and other therapeutic molecules that can cross the blood–brain barrier to treat NDs. In this review, we summarized the function of EVs in the pathogenesis of different NDs and related advances in EVs as diagnostic biomarkers and treatments for diseases.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450014, PR China
| | - Xiao-Dong Li
- Department of Neurology, Zhengzhou Central Hospital, Zhengzhou, Henan Province, 450014, PR China
| | - Si-Miao Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450014, PR China
| | - Hong-Wei Wang
- Department of Medicine, The University of Chicago, IL, 60637, USA
| | - Yun-Liang Wang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450014, PR China.,Department of Neurology, The 960th Hospital of Chinese PLA, Zibo, Shandong Province, 255300, PR China
| |
Collapse
|
39
|
Fan RZ, Guo M, Luo S, Cui M, Tieu K. Exosome release and neuropathology induced by α-synuclein: new insights into protective mechanisms of Drp1 inhibition. Acta Neuropathol Commun 2019; 7:184. [PMID: 31744532 PMCID: PMC6862865 DOI: 10.1186/s40478-019-0821-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/29/2019] [Indexed: 12/26/2022] Open
Abstract
Targeting alpha-synuclein (α-syn) as a therapeutic strategy for Parkinson’s disease (PD) has been intensively pursued largely due to its well-recognized pathogenic role. Since its discovery as the first familial link to PD over two decades ago, this protein has been associated with multiple neurotoxic mechanisms, such as mitochondrial dysfunction and impaired autophagic flux. We report here that blocking dynamin-related protein 1 (Drp1) improved both mitochondrial function and autophagic flux in experimental models of α-syn. Using rat dopaminergic neuronal cells with inducible wild-type human α-syn, we observed excessive mitochondrial fragmentation and increased Drp1 levels 48 h after gene induction. Functionally, these cells exhibited lower mitochondrial membrane potential, reduced ATP production rate and mitochondrial spare respiratory capacity, as well as increased levels of mitochondrial reactive oxygen species. To evaluate the protective role of Drp1 inhibition, we used three complementary approaches: gene silencing mediated by siRNA, overexpression of Drp1-dominant negative and the small molecule mitochondrial division inhibitor-1 (mdivi-1). Both morphological and functional defects induced by α-syn were attenuated by these strategies. Importantly, Drp1 inhibition reduced proteinase K-resistant α-syn aggregates. Based on that observation, we investigated the involvement of autophagy. Through a combination of stable autophagy reporter cells and immunoreactivity for LC3 and p62 in neuronal cells with either α-syn overexpression or treatment of human α-syn preformed fibrils (PFF), we observed that Drp1 inhibition abolished autophagic impairment induced by α-syn. Consistent with its role in improving autophagy function, Drp1 inhibition reduced exosome release and spread of α-syn pathology from neurons to neurons and from microglia to neurons. In summary, this study highlights new insights that Drp1 inhibition confers neuroprotection through both mitochondrial and autophagy-lysosomal pathways, further strengthening the therapeutic potential of targeting Drp1.
Collapse
|
40
|
Li N, Wu Y, Zhu L, Huang Y, Liu Z, Shi M, Soltys D, Zhang J, Chang Q. Extracellular microvesicles-derived from microglia treated with unaggregated α-synuclein attenuate mitochondrial fission and toxicity-induced by Parkinsonian toxin MPP+. Biochem Biophys Res Commun 2019; 517:642-647. [DOI: 10.1016/j.bbrc.2019.07.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
|
41
|
Deng F, Miller J. A review on protein markers of exosome from different bio-resources and the antibodies used for characterization. J Histotechnol 2019; 42:226-239. [PMID: 31432761 DOI: 10.1080/01478885.2019.1646984] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exosomes are small membrane vesicles (ranging from 30 nm to 150 nm), secreted by different cell types upon fusion of multivesicular bodies (MVB) to the cell plasma membrane under a variety of normal and pathological conditions. Through transferring their cargos such as proteins, lipids and nucleic acids from donor cells to recipient cells, exosomes play a crucial role in cell-to-cell communication. Due to their presence in most body fluids (such as blood, breast milk, saliva, urine, bile, pancreatic juice, cerebrospinal and peritoneal fluids), and their role in carrying bioactive molecules from the cells of origin, exosomes have attracted great interest in their diagnostic and prognostic value for various diseases and therapeutic approaches. Although a large body of literature has documented the importance of exosomes over the past decade, there is no article systematically summarizing protein markers of exosome from different resources and the antibodies that are suited to characterize exosomes. In this review, we briefly summarize the exosome marker proteins, exosomal biomarkers for different diseases, and the antibodies suitable for different bio-resources exosomes characterization.
Collapse
Affiliation(s)
- Fengyan Deng
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, MO, USA
| | - Josh Miller
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, MO, USA
| |
Collapse
|
42
|
Cheng YY, Zhao HK, Chen LW, Yao XY, Wang YL, Huang ZW, Li GP, Wang Z, Chen BY. Reactive astrocytes increase expression of proNGF in the mouse model of contused spinal cord injury. Neurosci Res 2019; 157:34-43. [PMID: 31348996 DOI: 10.1016/j.neures.2019.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are major glial cells critically in maintaining stability of the central nervous system and functional activation of astrocytes occurs rapidly in various diseased or traumatic events. We are interested in functional changes of astrocytes during the spinal cord injury, and studied expression of nerve growth factor (NGF) in activated astrocytes by mouse model of contused spinal cord injury and cell culture experiment. It revealed that the spinal cord injury resulted in apparent activation of astrocytes and microglial cells and decreased BMS scores. A larger number of astrocytes showed immunoreactivity to proNGF in the injured spinal cord areas, and proNGF expression increased and remained high level at 7 to 14dpi, which was coincided with upregulation of glial fibrillary acidic protein. The proNGF was clearly localized in both exosome-like vesicles and cytoplasm of astrocytes in culture. Electron microscopy confirmed exosome-like vesicles with proNGF-immunoreactivity in diameter sizes of 50-100 nm. Finally, cell culture with lipopolysaccharide (LPS) experiment indicated increasing expression and release of proNGF in the astrocytes with LPS exposure. This study demonstrated that reactive astrocytes increased proNGF expression after spinal cord injury, also suggesting involvement of exosome-like proNGF transport or release in triggering neuronal apoptosis and aggravating progression of spinal cord injury.
Collapse
Affiliation(s)
- Ying-Ying Cheng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China; Department of Neurosurgery, Second Affiliated Hospital, Xi'an Medical University, 710038, PR China.
| | - Hai-Kang Zhao
- Department of Neurosurgery, Second Affiliated Hospital, Xi'an Medical University, 710038, PR China.
| | - Liang-Wei Chen
- Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China; Department of Histology and Embryology, School of Medicine, Northwest University, Xi'an 710069, PR China.
| | - Xin-Yi Yao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China; Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Yu-Ling Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Zhen-Wen Huang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Guo-Peng Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Bei-Yu Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
43
|
Coskuner O, Uversky VN. Intrinsically disordered proteins in various hypotheses on the pathogenesis of Alzheimer's and Parkinson's diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:145-223. [PMID: 31521231 DOI: 10.1016/bs.pmbts.2019.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyloid-β (Aβ) and α-synuclein (αS) are two intrinsically disordered proteins (IDPs) at the centers of the pathogenesis of Alzheimer's and Parkinson's diseases, respectively. Different hypotheses have been proposed for explanation of the molecular mechanisms of the pathogenesis of these two diseases, with these two IDPs being involved in many of these hypotheses. Currently, we do not know, which of these hypothesis is more accurate. Experiments face challenges due to the rapid conformational changes, fast aggregation processes, solvent and paramagnetic effects in studying these two IDPs in detail. Furthermore, pathological modifications impact their structures and energetics. Theoretical studies using computational chemistry and computational biology have been utilized to understand the structures and energetics of Aβ and αS. In this chapter, we introduce Aβ and αS in light of various hypotheses, and discuss different experimental and theoretical techniques that are used to study these two proteins along with their weaknesses and strengths. We suggest that a promising solution for studying Aβ and αS at the center of varying hypotheses could be provided by developing new techniques that link quantum mechanics, statistical mechanics, thermodynamics, bioinformatics to machine learning. Such new developments could also lead to development in experimental techniques.
Collapse
Affiliation(s)
- Orkid Coskuner
- Turkish-German University, Molecular Biotechnology, Istanbul, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
44
|
Fernández-Valle T, Gabilondo I, Gómez-Esteban JC. New therapeutic approaches to target alpha-synuclein in Parkinson's disease: The role of immunotherapy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:281-295. [PMID: 31349931 DOI: 10.1016/bs.irn.2019.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. It is characterized by a slow and progressive loss of dopaminergic neurons. Its neuropathological hallmark is the accumulation of aggregated form of α-synuclein (α-syn) protein in intracellular inclusions known as Lewy bodies. This aggregated α-syn is believed to be central to the pathogenesis of PD. Emerging evidence suggests that aggregated forms of α-syn self-amplificates and propagates spreading from cell-to-cell in a "prion-like" fashion. Genetics and environmental factors are known causes for the pathogenesis of PD. In last years, inflammation in the pathophysiology of PD is gaining more importance. This neuroinflammation seems to contribute to the progressive degeneration of dopaminergic neurons. The currently available therapies for PD fail to modify the disease progression and neurodegeneration. The connection between α-syn and PD makes α-syn the major therapeutic target. We summarize the possible therapeutic strategies to target α-syn according to the steps in the molecular pathogenesis. The contribution of neuroinflammation to the progression of the disease and the "prion-like" hypothesis which enables targeting the extracellular phase of transmission of α-syn, make immunotherapy probably the most promising therapeutic approach for PD.
Collapse
Affiliation(s)
- T Fernández-Valle
- Movement Disorders and Autonomic Unit, Neurology Department, Cruces University Hospital, Barakaldo, Spain; Neurodegenerative Unit, Biocruces Health Research Institute, Barakaldo, Spain.
| | - I Gabilondo
- Movement Disorders and Autonomic Unit, Neurology Department, Cruces University Hospital, Barakaldo, Spain; Neurodegenerative Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - J C Gómez-Esteban
- Movement Disorders and Autonomic Unit, Neurology Department, Cruces University Hospital, Barakaldo, Spain; Neurodegenerative Unit, Biocruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
45
|
Cheng J, Lu Q, Song L, Ho MS. α-Synuclein Trafficking in Parkinson's Disease: Insights From Fly and Mouse Models. ASN Neuro 2019; 10:1759091418812587. [PMID: 30482039 PMCID: PMC6259071 DOI: 10.1177/1759091418812587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein aggregation and accumulation are common pathological hallmarks in neurodegenerative diseases. To efficiently clear and eliminate such aggregation becomes an important cellular strategy for cell survival. Lewy bodies inclusion and aggregation of α-Synuclein (α-Syn) during the pathogenesis of Parkinson's disease (PD) serve as a good example and are potentially linked to other pathological PD features such as progressive dopaminergic neuron cell death, behavioral defects, and nonmotor symptoms like anosmia, cognitive impairment, and depression. Years of research have revealed a variety of mechanisms underlying α-Syn aggregation, clearance, and spread. Particularly, vesicular routes associated with the trafficking of α-Syn, leading to its aggregation and accumulation, have been shown to play vital roles in PD pathogenesis. How α-Syn proteins propagate among cells in a prion-like manner, either from or to neurons and glia, via means of uptake or secretion, are questions under active investigation and have been of central interest in the field of PD study. This review covers components and pathways of possible vesicular routes involved in α-Syn trafficking. Events including but not limited to exocytosis and endocytosis will be discussed within the context of an overall cellular trafficking theme. Recent advances on α-Syn trafficking mechanisms and their significance in mediating PD pathogenesis will be thoroughly reviewed, ending with a discussion on the advantages and limitations of different animal PD models.
Collapse
Affiliation(s)
- Jingjing Cheng
- 1 School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,*These authors contributed equally to this work
| | - Qingqing Lu
- 2 Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China.,*These authors contributed equally to this work
| | - Li Song
- 2 Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Margaret S Ho
- 1 School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
46
|
Rosas-Hernandez H, Cuevas E, Raymick JB, Robinson BL, Ali SF, Hanig J, Sarkar S. Characterization of Serum Exosomes from a Transgenic Mouse Model of Alzheimer’s Disease. Curr Alzheimer Res 2019; 16:388-395. [DOI: 10.2174/1567205016666190321155422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer’s Disease (AD) is the most common type of dementia characterized
by amyloid plaques containing Amyloid Beta (Aβ) peptides and neurofibrillary tangles containing tau
protein. In addition to neuronal loss, Cerebral Amyloid Angiopathy (CAA) commonly occurs in AD.
CAA is characterized by Aβ deposition in brain microvessels. Recent studies have suggested that
exosomes (cell-derived vesicles containing a diverse cargo) may be involved in the pathogenesis of AD.
Objective:
Isolate and characterize brain-derived exosomes from a transgenic mouse model of AD that
presents CAA.
Methods:
Exosomes were isolated from serum obtained from 13-month-old wild type and AD transgenic
female mice using an exosome precipitation solution. Characterization of exosomal proteins was
performed by western blots and dot blots.
Results:
Serum exosomes were increased in transgenic mice compared to wild types as determined by
increased levels of the exosome markers flotillin and alix. High levels of neuronal markers were found
in exosomes, without any difference any between the 2 groups. Markers for endothelial-derived
exosomes were decreased in the transgenic model, while astrocytic-derived exosomes were increased.
Exosome characterization showed increased levels of oligomeric Aβ and oligomeric and monomeric
forms tau on the transgenic animals. Levels of amyloid precursor protein were also increased. In addition,
pathological and phosphorylated forms of tau were detected, but no difference was observed between
the groups.
Conclusion:
These data suggest that monomeric and oligomeric forms of Aβ and tau are secreted into
serum via brain exosomes, most likely derived from astrocytes in the transgenic mouse model of AD
with CAA. Studies on the implication of this event in the propagation of AD are underway.
Collapse
Affiliation(s)
- Hector Rosas-Hernandez
- Division of Neurotoxicology National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR. 72079, United States
| | - Elvis Cuevas
- Division of Neurotoxicology National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR. 72079, United States
| | - James B. Raymick
- Division of Neurotoxicology National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR. 72079, United States
| | - Bonnie L. Robinson
- Division of Neurotoxicology National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR. 72079, United States
| | - Syed F. Ali
- Division of Neurotoxicology National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR. 72079, United States
| | - Joseph Hanig
- Office of Testing & Research, CDER/FDA, White Oak, MD-20993, United States
| | - Sumit Sarkar
- Division of Neurotoxicology National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR. 72079, United States
| |
Collapse
|
47
|
Yuan L, Li JY. Exosomes in Parkinson's Disease: Current Perspectives and Future Challenges. ACS Chem Neurosci 2019; 10:964-972. [PMID: 30664350 DOI: 10.1021/acschemneuro.8b00469] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exosomes, which are lipid bilayer membrane vesicles, have been implicated as carriers of biological macromolecules. In recent years, the functions of exosomes in the spreading of pathological conversion of proteins among neurons have drawn particular attention in Parkinson's disease research. Extracellular α-synuclein is proven to be associated with exosomes in vivo and in vitro. The contents of these exosomes may be altered during the pathological and clinical processes, serving as a potential target for biomarker development in Parkinson's disease. This Review highlights the current understanding of biogenesis and pathophysiological roles of exosomes. Meanwhile, exosomes are promising delivery vehicles. Artificial exosomes can be loaded with defined therapeutically active molecules, such as drugs, small interfering RNAs, long noncoding RNAs, and proteins to the brain, ensuring the site-specific targeting strategy to the recipient cells. Therefore, we will also discuss the potential applications of exosomes in developing modified exosome-based drug carrier systems to halt the pathologic propagation of Parkinson's disease.
Collapse
Affiliation(s)
- Lin Yuan
- Institute of Health Science, China Medical University, Shenyang 110122, China
| | - Jia-Yi Li
- Institute of Health Science, China Medical University, Shenyang 110122, China
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184 Lund, Sweden
| |
Collapse
|
48
|
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med 2019; 17:3. [PMID: 30602375 PMCID: PMC6317263 DOI: 10.1186/s12967-018-1760-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
Milk consumption is a hallmark of western diet. According to common believes, milk consumption has beneficial effects for human health. Pasteurization of cow's milk protects thermolabile vitamins and other organic compounds including bioactive and bioavailable exosomes and extracellular vesicles in the range of 40-120 nm, which are pivotal mediators of cell communication via systemic transfer of specific micro-ribonucleic acids, mRNAs and regulatory proteins such as transforming growth factor-β. There is compelling evidence that human and bovine milk exosomes play a crucial role for adequate metabolic and immunological programming of the newborn infant at the beginning of extrauterine life. Milk exosomes assist in executing an anabolic, growth-promoting and immunological program confined to the postnatal period in all mammals. However, epidemiological and translational evidence presented in this review indicates that continuous exposure of humans to exosomes of pasteurized milk may confer a substantial risk for the development of chronic diseases of civilization including obesity, type 2 diabetes mellitus, osteoporosis, common cancers (prostate, breast, liver, B-cells) as well as Parkinson's disease. Exosomes of pasteurized milk may represent new pathogens that should not reach the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7A, 49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
49
|
Chen S, Datta-Chaudhuri A, Deme P, Dickens A, Dastgheyb R, Bhargava P, Bi H, Haughey NJ. Lipidomic characterization of extracellular vesicles in human serum. J Circ Biomark 2019; 8:1849454419879848. [PMID: 31632506 PMCID: PMC6769212 DOI: 10.1177/1849454419879848] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
There is a wide variety of extracellular vesicles (EVs) that differ in size and cargo composition. EVs isolated from human plasma or serum carry lipid, protein, and RNA cargo that provides insights to the regulation of normal physiological processes, and to pathological states. Specific populations of EVs have been proposed to contain protein and RNA cargo that are biomarkers for neurologic and systemic diseases. Although there is a considerable amount of evidence that circulating lipids are biomarkers for multiple disease states, it not clear if these lipid biomarkers are enriched in EVs, or if specific populations of EVs are enriched for particular classes of lipid. A highly reproducible workflow for the analysis of lipid content in EVs isolated from human plasma or serum would facilitate this area of research. Here we optimized an MS/MSALL workflow for the untargeted analysis of the lipid content in EVs isolated from human serum. A simple sequential ultracentrifugation protocol isolated three distinct types of serum EVs that were identified based on size, targeted protein, and untargeted lipidomic analyses. EVs in the upper and middle fractions were approximately 140 nm in diameter, while EVs in the pellet were approximately 110 nm in diameter. EVs in the upper most buoyant fractions contained the highest concentration of lipids, were enriched with phospholipids, and immunopositive for the cytoskeletal markers actin, α-actinin, and the mitochondrial protein mitofillin, but negative for the typical EV markers CD63, TSG101, and flotillin. A central fraction of EVs was devoid of cytoskeletal and mitochondrial markers, and positive for CD63, and TSG101, but negative for flotillin. The EV pellet contained no cytoskeletal or mitochondrial markers, but was positive for CD63, TSG101, and flotillin. The EV pellet contained the lowest concentration of most lipids, but was enriched with ceramide. These results provided new insights into the lipid composition of EVs isolated from serum using a simple ultracentrifugation isolation method suitable for lipidomic analysis by mass spectrometry.
Collapse
Affiliation(s)
- Suming Chen
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amrita Datta-Chaudhuri
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pragney Deme
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex Dickens
- Turku Centre for Biotechnology, Turku University, Turku, Finland
| | - Raha Dastgheyb
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pavan Bhargava
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Honghao Bi
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norman J Haughey
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
50
|
Karnati HK, Garcia JH, Tweedie D, Becker RE, Kapogiannis D, Greig NH. Neuronal Enriched Extracellular Vesicle Proteins as Biomarkers for Traumatic Brain Injury. J Neurotrauma 2018; 36:975-987. [PMID: 30039737 DOI: 10.1089/neu.2018.5898] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of injury-related death throughout the world and lacks effective treatment. Surviving TBI patients often develop neuropsychiatric symptoms, and the molecular mechanisms underlying the neuronal damage and recovery following TBI are not well understood. Extracellular vesicles (EVs) are membranous nanoparticles that are divided into exosomes (originating in the endosomal/multi-vesicular body [MVB] system) and microvesicles (larger EVs produced through budding of the plasma membrane). Both types of EVs are generated by all cells and are secreted into the extracellular environment, and participate in cell-to-cell communication and protein and RNA delivery. EVs enriched for neuronal origin can be harvested from peripheral blood samples and their contents quantitatively examined as a window to follow potential changes occurring in brain. Recent studies suggest that the levels of exosomal proteins and microRNAs (miRNAs) may represent novel biomarkers to support the clinical diagnosis and potential response to treatment for neurological disorders. In this review, we focus on the biogenesis of EVs, their molecular composition, and recent advances in research of their contents as potential diagnostic tools for TBI.
Collapse
Affiliation(s)
- Hanuma Kumar Karnati
- 1 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Joseph H Garcia
- 1 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - David Tweedie
- 1 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Robert E Becker
- 1 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland.,2 Aristea Translational Medicine Corporation, Park City, Utah
| | - Dimitrios Kapogiannis
- 3 Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Nigel H Greig
- 1 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|