1
|
Yadav L, Sharma M, Laddha H, Agarwal M, Gupta R. Insight into efficient photocatalytic degradation of norfloxacin over a simple, economical biochar-based magnetic photocatalyst under solar illumination: a statistical and experimental approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60971-60987. [PMID: 39400670 DOI: 10.1007/s11356-024-35275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
The transformation of residual agricultural solid waste into an efficient value-added carbon product has been an ongoing strategy for solid waste management and a sustainable economy. Meanwhile, the upsurgence of antibiotic contamination in water bodies due to their inadvertent use poses a serious threat to human health and leads to antimicrobial resistance. Hence, to neutralize two evils in one stroke simultaneously, a simple, easy, and cost-effective pea shell-based magnetic photocatalyst (PSMC) has been synthesized and characterized by XRD (X-ray diffraction), VSM (vibrating sample magnetometer), XPS (X-ray photoelectron spectroscopy), TGA (thermogravimetric analysis), and FTIR (Fourier-transform infrared) spectroscopy techniques. Batch experimental studies revealed that PSMC efficiently eliminates norfloxacin (91.3%) within 180 min from wastewater and mineralizes it into innocuous products at optimum parameters of norfloxacin concentration of 20 mg/L, catalyst dosage of 15 mg, and pH 3.5. Additionally, statistical parameters for the photodegradation of NX obtained from ANOVA by applying the Box-Behnken design are in close agreement with batch experiment parameters. PSMC has surplus advantages of facile recovery for recycling up to seven consecutive cycles by an external magnet and efficacy in natural solar light, making it cost-effective and economical. Radical scavenging studies revealed that O2•- and OH• were the potent reactive species in the photocatalytic degradation process.
Collapse
Affiliation(s)
- Lalita Yadav
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Manish Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Harshita Laddha
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| |
Collapse
|
2
|
Lázaro-Mass S, Quintana P, Gómez-Cornelio S, Hernández-Bolio G, Herrera-Candelario L, López-González R, Fuentes AF, De la Rosa-García S, Ruiz-Gómez M. Efficiency of CaZn₂(OH)₆·2H₂O and ZnO nanoparticles in photocatalytic degradation of amoxicillin after multiple cycles. CHEMOSPHERE 2024; 367:143577. [PMID: 39428024 DOI: 10.1016/j.chemosphere.2024.143577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The widespread use of antibiotics has increased their presence in wastewater, largely due to inadequate removal by conventional treatment methods. This highlights a critical need for effective degradation strategies to mitigate environmental and public health risks. This study reports the photocatalytic degradation of amoxicillin (AMX) using calcium zinc hydroxide dihydrate [CaZn2(OH)6·2H2O] (CZ) and zinc oxide (ZnO) nanoparticles (NPs) synthesized by different routes. X-ray diffraction results confirmed the formation of CZ NPs with an 81-95% crystalline phase, while ZnO NPs present a single crystalline phase. The photolysis of AMX under UV-A light (365 nm) was strongly pH-dependent, with degradation rates of 34.7, 5.7, and 4.2% observed at pH 3, 5, and 13, respectively. Maximum adsorption occurred at pH 3, with ZnO achieving 63-83.2% AMX removal and 23.5-47.1% in the case of CZ. The highest overall AMX removal was observed at pH 3, where adsorption dominated the photocatalytic process for both CZ and ZnO. At pH 5 and 13, degradation was primarily driven by photocatalysis in CZ materials, particularly CZ-HT and CZ-SG, while adsorption remained predominant in ZnO. Proton nuclear magnetic resonance analysis indicates benzene ring cleavage in AMX photodegraded by CZ materials. Furthermore, the residues of photodegraded AMX by CZ materials lost antimicrobial activity against Gram-positive and Gram-negative bacteria. Additionally, the reuse of NPs over four cycles maintained consistent degradation performance, highlighting their potential for repeated applications. The comparative analysis of CZ and ZnO NPs superior photocatalytic efficiency of CZ in degrading AMX. This efficiency, along with its potential for repeated use, establish CZ as a promising material for environmental applications aimed at reducing antibiotic contamination and the associated risks of resistance development.
Collapse
Affiliation(s)
- Stephania Lázaro-Mass
- Laboratorio Nacional de Nano y Biomateriales. Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Mérida, Mexico
| | - Patricia Quintana
- Laboratorio Nacional de Nano y Biomateriales. Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Mérida, Mexico
| | - Sergio Gómez-Cornelio
- Laboratorio de Nanotecnología, División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán, Jalpa de Méndez, Cunduacán, Mexico; Laboratorio de Biotecnología, Universidad Politécnica del Centro, Carretera Federal, Villahermosa, Mexico
| | - Gloria Hernández-Bolio
- Laboratorio Nacional de Nano y Biomateriales. Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Mérida, Mexico
| | - Luis Herrera-Candelario
- Laboratorio de Microbiología Aplicada, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Rosendo López-González
- Laboratorio de Nanotecnología, División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán, Jalpa de Méndez, Cunduacán, Mexico
| | - Antonio F Fuentes
- Centro de Investigación y de Estudios Avanzados, Unidad Saltillo, Ramos Arizpe, Mexico
| | - Susana De la Rosa-García
- Laboratorio de Microbiología Aplicada, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Miguel Ruiz-Gómez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, Mexico.
| |
Collapse
|
3
|
Behravesh N, Younesi H, Bahramifar N, Mousavi SE, Tamunaidu P, Huzir NM, Bijari M. Efficient photocatalysis activation for reactive red 195 degradation by magnetic MIL-53(Fe)/Fe 3O 4@TiO 2 hybrid nanocomposite. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117057. [PMID: 39278004 DOI: 10.1016/j.ecoenv.2024.117057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
The study investigated the performance of a novel magnetic hybrid MIL-53(Fe)/Fe3O4@TiO2 composite for removing reactive red 195 (RR195) dye from water using UVc light. Various analytical techniques were used to characterize the nanocomposite materials. X-ray diffraction analysis confirmed the presence of MIL-53(Fe) and TiO2 in the composite. FT-IR analysis identified carboxyl and Ti-O-Ti groups in the photocatalyst structure. The study evaluated the effects of pH, dye concentration, photocatalyst dosage, and temperature on RR195 photodegradation. The Langmuir-Hinshelwood kinetic model provided the best fit for the reaction rate. Optimal conditions for an 84 % dye degradation were found at a photocatalyst dose of 15 mg/100 mL, pH 3, dye concentration of 100 mg/L, and 35 °C after 120 minutes of UVc light exposure. Thermodynamic analysis indicated an endothermic reaction with positive values for Δ#H and negative values for Δ#S. The MIL-53(Fe)/Fe3O4@TiO2 composite demonstrated excellent stability and achieved over 90 % dye degradation after five cycles. Overall, the composite shows promise for treating wastewater with dyes.
Collapse
Affiliation(s)
- Narges Behravesh
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, B.O. Box 46414-356, Nour, Mazandaran, Iran
| | - Habibollah Younesi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, B.O. Box 46414-356, Nour, Mazandaran, Iran.
| | - Nader Bahramifar
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, B.O. Box 46414-356, Nour, Mazandaran, Iran
| | - Seyedeh Elaheh Mousavi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, B.O. Box 46414-356, Nour, Mazandaran, Iran
| | - Pramila Tamunaidu
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Semarak, Kuala Lumpur 54100, Malaysia; Malaysia-Japan Advanced Research Centre (MJARC), Eduhub Pagoh, Universiti Teknologi Malaysia Pagoh, Pagoh, Muar, Johor 84600, Malaysia
| | - Nurhamieza Md Huzir
- Malaysia-Japan Advanced Research Centre (MJARC), Eduhub Pagoh, Universiti Teknologi Malaysia Pagoh, Pagoh, Muar, Johor 84600, Malaysia
| | - Mehran Bijari
- Department of Environmental Technologies, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| |
Collapse
|
4
|
Evazinejad-Galangashi R, Mohagheghian A, Shirzad-Siboni M. Catalytic wet air oxidation removal of tetracycline by La 2O 3 immobilized on recycled polyethylene terephthalate using the response surface methodology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122043. [PMID: 39126841 DOI: 10.1016/j.jenvman.2024.122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
This study investigated the removal of tetracycline from the aqueous solutions by lanthanum oxide nanoparticles covered with polyethylene terephthalate (PET) using a low-cost and facile co-precipitation method, via catalytic wet air oxidation process (CWAO) by response surface methodology (RSM). XRD, FTIR, SEM, and EDX-map techniques have been employed to investigate the crystal structure, functional groups on the surface, morphologic characteristics, and elemental composition, respectively. Under optimum conditions (pH= 9, initial TC concentration= 20 mg L-1, nanocomposite dosage= 1.5 g L-1, pressure= 4 bar, temperature= 70 °C, and time= 90 min), TC removal efficiency by La2O3-PET was achieved at about 99.9%. The environmental parameters were assessed to determine tetracycline catalytic wet air oxidation degradation rate, which included cleaning gases, hydrogen peroxide, type of organic compounds, anions, radical scavenger and reusability. The ANOVA results indicated that the polynomial model proves that the model is entirely meaningful (F-value> 0.001 and P-value< 0.0001) and has high coefficient values of adjusted R2 (0.7404) and predicted R2 (0.5940). The findings indicated that the variables of time, pH, temperature, dosage, and TC concentration have the greatest role in removing tetracycline, respectively. However, pressure as a factor does not have a considerable influence on the performance of the system. In general, due to the presence of the role of additional anionics, the effectiveness of this method for removing tetracycline from drinking water was 82.76%. The catalyst indicated pleasing stability and recycling power during eight testing cycles. Further, the estimated electrical energy per order consumption (EEO) for the CWAO/La2O3-PET system was calculated as 5.31 kWh m-3 with an operational cost (OC) utilization of 1.78 USD kg-1 and it has been shown that this process is feasible and economically comparable to other CWAO processes. The breakdown intermediate products of tetracycline in the CWAO were examined using gas chromatography/mass spectrometry (GC-MS) analysis. The toxicity analyses for the removal of TC were carried out using Daphnia magna and the CWAO process achieved a remarkable decrease in the presence of La2O3-PET nanocomposite (LC50 and toxicity unit (TU) 48 h equal to 0.634 and 157.72 vol percent).
Collapse
Affiliation(s)
| | - Azita Mohagheghian
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran; Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Shirzad-Siboni
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran; Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
5
|
Liu X, Liu M, Dai Y, Cui J, Jamil A, Liu W, Li J, Wang J. Construction of self-cleaning g-C 3N 4/Bi 2MoO 6/PVDF membrane and coupling with photo-Fenton-like reaction for sustainable removal of antibiotics in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121928. [PMID: 39029171 DOI: 10.1016/j.jenvman.2024.121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Constructing a photocatalytic membrane and photo-Fenton reaction coupling system is a novel strategy to enhance the photocatalytic activity of the membrane and eliminate the problem of membrane contamination. Herein, a g-C3N4/Bi2MoO6/PVDF photocatalytic membrane was prepared using a tannic acid-assisted in-situ deposition method. The membrane was characterized by three advantages of photocatalytic, self-cleaning, and antibacterial properties. Under the photo-Fenton-like conditions, the membrane had superior photodegradation efficiency of 90.7% for tetracycline, one of the main antibiotic contaminants in the China's aquatic system. Moreover, the membrane had excellent photo-Fenton self-cleaning ability, its flux recovery rate was up to 96%-98% after the self-cleaning process. Photoluminescence spectra, diffuse UV-visible spectrum, transient photocurrent responses, and electrochemical AC impedance spectrum results show that the heterojunction structure formed by g-C3N4 and Bi2MoO6 could improve the separation efficiency of photogenerated electrons-hole pairs. Electron spin resonance spectroscopy confirmed the photo-electrons facilitated the formation of hydroxyl radical (·OH) in the existence of H2O2, which enhanced tetracycline degradation. Moreover, the superior photo-Fenton self-cleaning performance, which mainly relied on the active free radicals produced by the photo-Fenton-like membrane to remove dirt on the membrane surface or in the membrane pore channel. Our results may shed new light on the development of promising photocatalytic membrane systems by coupling with photo-Fenton-like processes, and facilitate their applications for wastewater treatment.
Collapse
Affiliation(s)
- Xianhua Liu
- College of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Miao Liu
- College of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Yexin Dai
- College of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Jinran Cui
- College of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Asad Jamil
- College of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Wanxin Liu
- College of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Jiaxuan Li
- College of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Jiao Wang
- College of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China; School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
6
|
Khanmohammadi M, Rahmani F, Rahbar Shahrouzi J, Akbari Sene R. Insightful properties-performance study of Ti-Cu-O heterojunction sonochemically embedded in mesoporous silica matrix for efficient tetracycline adsorption and photodegradation: RSM and ANN-based modeling and optimization. CHEMOSPHERE 2024; 352:141223. [PMID: 38228191 DOI: 10.1016/j.chemosphere.2024.141223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
This study aims to provide a comprehensive evaluation of the photocatalytic properties and performance of the Cu-Ti-O heterojunction sonochemically embedded in the mesoporous silica matrix. Various characterization analyses and adsorption/photodegradation experiments were performed to assess the potential of the sample for tetracycline (TC) removal. The characterization results indicated that sonication contributes to better dispersion of Ti-Cu-O species, resulting in more uniform particle sizes, stronger semiconductors-silica interaction, and less agglomeration. Furthermore, sonication significantly affected the optical nanocomposite features, leading to an improvement in charge carrier separation and a decrease in the band gap of Ti-Cu-Si (S) by approximately 2.6 eV. Based on the textural results, the ultrasound microjets increased the surface area and pore volume, which facilitate mass transfer and provide suitable adsorption sites for TC molecules. Accordingly, Cu-Ti-Si (S) demonstrated higher adsorption capacity (0.051 g TC/g adsorbent) and eliminated TC significantly faster (0.0054 L.mg-1.min-1) than a non-sonicated sample during 120 min of irradiation, resulting in 2.84 times improvement in the constant rate. In addition, experimental results were accurately modeled using a central composite design in combination with response surface methodology (RSM) and artificial neural networks (ANN) to predict and optimize TC photodegradation. Both RSM and ANN models revealed excellent predictability for TC degradation efficiency, with R2 = 99.47 and 99.71%, respectively. At optimal operational conditions (CTC = 20 ppm, photocatalyst dosage = 1.15 g.L-1, pH = 9, and irradiation time = 100 min), more than 95% and 87% of TC were degraded within the UV (375 W) and simulated solar light (400 W) irradiation periods, respectively. It was observed that the Cu-Ti-Si (S) nanocomposite maintained remarkable stability after four cycles with only a negligible 3% loss of activity, owing to the superior interaction between the bimetallic heterojunction and the silica matrix.
Collapse
Affiliation(s)
- Morteza Khanmohammadi
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, P.O.Box 66177-15175, Sanandaj, Iran
| | - Farhad Rahmani
- Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, P.O.Box 66177-15175, Sanandaj, Iran.
| | - Javad Rahbar Shahrouzi
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran.
| | - Rojiar Akbari Sene
- Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, P.O.Box 66177-15175, Sanandaj, Iran
| |
Collapse
|
7
|
Zhang Y, Gao W, Li D, Peng Y, Yuan H, Sun X. Catalytic degradation of amoxicillin from water by a combined system of ultrasound/H 2O 2/KI. ENVIRONMENTAL TECHNOLOGY 2024; 45:695-704. [PMID: 36065627 DOI: 10.1080/09593330.2022.2120830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
A new combined system of ultrasound (US)/ H2O2/KI was presented in this study for the degradation of amoxicillin (AMX). Various parameters that influencing the degradation efficiency, such as ultrasonic power, pH value of the solution, concentrations of H2O2 and KI, initial concentration of AMX were investigated. The maximum degradation efficiency of 84.1% in 60 min was obtained under the optimal conditions when the ultrasonic power was 195 W, the solution pH was 3.2, the concentrations of H2O2 and KI were 120 and 2.4 mmol/L, respectively. Results also showed US/H2O2/KI system possessed better degradation efficiency compared with that by using the systems of US alone, H2O2, US/H2O2, US/KI and H2O2/KI. The degradation reaction of AMX should be a very complex process, and the corresponding degradation pathways may change at different concentrations or under different reaction conditions. The results indicate that the combined system of US/ H2O2/KI has great potential applications for the treatment of wastewater containing antibiotics with high concentrations.
Collapse
Affiliation(s)
- Yan Zhang
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Wenning Gao
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Dongmin Li
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Yingying Peng
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Honglei Yuan
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Xianke Sun
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, People's Republic of China
| |
Collapse
|
8
|
Sawunyama L, Oyewo O, Onwudiwe DC, Makgato SS. Photocatalytic degradation of tetracycline using surface defective black TiO 2-ZnO heterojunction photocatalyst under visible light. Heliyon 2023; 9:e21423. [PMID: 38027928 PMCID: PMC10661122 DOI: 10.1016/j.heliyon.2023.e21423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Fabrication of heterojunction and surface defective engineering, through the formation of oxygen vacancies, are among the various photocatalytic enhancement techniques. A combination of these techniques has the prospect of enhancing photocatalytic activities through improved light absorption capabilities and charge separation process of the photocatalysts. In this study, a heterojunction of black titanium oxide-zinc oxide (BTiO2-ZnO) nanocomposite was synthesized using the conventional sol-gel approach, coupled with aluminum foil-assisted NaBH4 reduction. The structure, morphology, surface properties, and optical characteristics of the synthesized material were studied using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-vis absorption spectra, scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS), and transmission electron microscope (TEM). The XRD confirmed the successful formation of BTiO2-ZnO heterostructure, while SEM revealed the structural morphology as pseudo-spherical with slight agglomeration. BTiO2-ZnO was found to be more efficient than BTiO2 and BZnO for the removal of tetracycline with degradation efficiencies of 63, 58, and 56 % respectively. The effects of process parameters such as the amount of photocatalyst, pollutant's concentration, and the initial solution pH on photocatalytic degradation study were systematically explored. The results confirm that the formation of the heterostructure from BTiO2 and BZnO could offer a facile route to improving the catalytic degradation of tetracycline. Therefore, this study offers a novel perspective on the design of efficient metal oxide photocatalyst systems that rely on the integration of defect engineering and heterojunction for the removal of organic contaminants.
Collapse
Affiliation(s)
- Lawrence Sawunyama
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Opeyemi Oyewo
- Department of Chemical Engineering, College of Science, Engineering and Technology, University of South Africa, South Africa
| | - Damian C. Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
| | - Seshibe S. Makgato
- Department of Chemical Engineering, College of Science, Engineering and Technology, University of South Africa, South Africa
| |
Collapse
|
9
|
Parashar D, Achari G, Kumar M. Multi-antibiotics removal under UV-A light using sol-gel prepared TiO 2: Central composite design, effect of persulfate addition and degradation pathway study. CHEMOSPHERE 2023; 341:140025. [PMID: 37660792 DOI: 10.1016/j.chemosphere.2023.140025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
The removal of three antibiotics i.e., metronidazole (MNZ), ciprofloxacin (CIP) and tetracycline (TET), from aqueous system via TiO2 photocatalysis under UV-A light was investigated. Photocatalyst(s) were prepared using sol-gel method under different calcination temperatures (400-800 °C) and water-alcohol ratio. The spherical shaped catalyst (mean particle size ∼ 61 nm) was characterized via FTIR, XRD, BET, SEM, Raman, XPS, UV-DRS, and Fluorometry, and point of zero charge was also determined (pHPZC ∼ 6.6). Batch photo-catalytic degradation studies have shown complete degradation of MNZ, CIP and TET after 50, 75 and 20 min with a TOC removal of 37%, 44% and 31%, respectively. The activity of sol-gel prepared TiO2 was comparatively higher than commercially available pure anatase TiO2 nanoparticles due to lesser mean particle size. The ratio of water to alcohol in the preparation of TiO2 catalyst was found to have significant effect on antibiotic removal. Moreover, persulfate (PS) addition of 0.1 g/L amplified the pseudo-first-order removal-rate constant by 2.75, 3.3 and 1.6 times for MNZ, CIP and TET, respectively. The higher initial pH values (8 and 10) have shown the best removal efficiency for all antibiotics. Subsequently, central composite design (CCD) experiments were conducted under multi-antibiotic conditions. Near complete removal of all antibiotics were observed within 120 min. Scavenging studies revealed that hydroxyl and superoxide radicals play major roles in photo-catalytic degradation of MNZ, CIP and TET. During photocatalysis, MNZ degradation was initiated by hydroxylation reaction, CIP by piperazine ring opening by hydroxyl attack and TET by multiple hydroxylation process. Overall, TiO2 showed good efficiency at degrading multiple antibiotics and has the potential for practical application on a larger scale.
Collapse
Affiliation(s)
- Dinkar Parashar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, ENF 262, 2500 University Drive NW, Calgary, T2N 1N4, Canada
| | - Mathava Kumar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
10
|
Zhang Y, Zhu H, Guo J, Liu W, Qi J, Qingqing G, Li B, Ning P. Resource degradation of pharmacy sludge in sub-supercritical system with high degradation rate of 99% and formic acid yield of 32.44. ENVIRONMENTAL TECHNOLOGY 2023; 44:2184-2199. [PMID: 34967700 DOI: 10.1080/09593330.2021.2024887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/11/2021] [Indexed: 05/30/2023]
Abstract
In response to the social goal of 'carbon peak and carbon neutral' in the 14th Five-Year Plan of China, this article used Enrofloxacin (ENR), a common antibiotic, as a model compound to study the method of efficiently degrading pharmaceutical sludge and simultaneously producing Formic Acid (FA), hydrogen storage energy, in a sub-supercritical system. The Ni/SnO2 bimetallic catalyst, which was prepared by the equal volume impregnation method, was used for the liquid phase catalysis. As shown by the results, when the reaction temperature was 330°C, and the addition amount of H2O2 was 0.38 mL, the degradation rate of antibiotics could reach 99% after the reaction proceeded for 6 h. In terms of the resource utilization, the yield of FA could reach up to 32.44%. The resource utilization efficiency with Ni/SnO2 catalyst in sub-/supercritical reaction was about 2.5 times higher than that without catalyst. The kinetic reaction model was established to explore the reaction rate of the antibiotic degradation process. In addition, the Ea and the frequency factor of the reaction were 6455 J/mol and 5.78, respectively. As shown by characterization, the prepared Ni/SnO2 bimetallic catalyst had good activity and has already passed repeated stability experiments. In short, this method has broad application prospects in antibiotic catalysis and resource degradation.
Collapse
Affiliation(s)
- Yuwei Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, People's Republic of China
| | - Hengxi Zhu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, People's Republic of China
| | - Junjiang Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, People's Republic of China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Jiang Qi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, People's Republic of China
| | - Guan Qingqing
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Bin Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, People's Republic of China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, People's Republic of China
| |
Collapse
|
11
|
Amin A, Manzoor M, Ramay MW, Hassan A, Hina K, Syed A, Bahkali AH, Arshad M. Metallic nanoparticles photodegraded antibiotics and co-application improved wheat growth and nutritional quality through stress alleviation. CHEMOSPHERE 2023; 323:138189. [PMID: 36812989 DOI: 10.1016/j.chemosphere.2023.138189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics are now considered as emerging environmental pollutants due to their persistent nature and continuous exposure through irrigation with wastewater contaminated with antibiotics. The aim of present study was to assess the potential of nanoparticles for the photodegradation of antibiotics and subsequent stress alleviation via Titania oxide (TiO2) application for improvement in crop productivity and quality in terms of the nutritional composition. In the first phase, different nanoparticles, TiO2, Zinc oxide (ZnO), and Iron oxide (Fe2O3) with varying concentrations (40-60 mg L-1) and time-periods (1-9 days) were tested to degrade amoxicillin (Amx) and levofloxacin (Lev) @ 5 mg L-1 under the visible light. Results indicated that TiO2 nanoparticles (50 mg L-1) were the most effective nanoparticles for the removal of both antibiotics with maximum degradation of 65% and 56% for Amx and Lev, respectively, on the 7th day. In the second phase, a pot experiment was conducted in which TiO2 (50 mg L-1) was applied individually and along with antibiotics (5 mg L-1) in order to evaluate the effect of nanoparticles on stress alleviation for growth promotion of wheat exposed to antibiotics. Plant biomass was reduced by Amx (58.7%) and Lev (68.4%) significantly (p < 0.05) when compared to the control. However, co-application of TiO2 and antibiotics improved the total iron (34.9% and 42%), carbohydrate (33% and 31%), and protein content (36% and 33%) in grains under Amx and Lev stress, respectively. The highest plant length, grain weight, and nutrient uptake were observed upon application of TiO2 nanoparticles alone. Total iron, carbohydrates, and proteins in grains were significantly increased by 52%, 38.5%, and 40%, respectively compared to the control (with antibiotics). The findings highlight the potential of TiO2 nanoparticles for stress alleviation, growth, and nutritional improvement under antibiotic stress upon irrigation with contaminated wastewater.
Collapse
Affiliation(s)
- Anum Amin
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Maria Manzoor
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan; Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118, Kiel, Germany
| | - Muhammad Wajahat Ramay
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Ali Hassan
- Department of Chemical Engineering, MNS University of Engineering and Technology, Multan, Pakistan
| | - Kiran Hina
- Department of Environmental Sciences, University of Gujrat, Gujrat, Pakistan
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
12
|
Fatimah I, Sulistyowati RZ, Wijayana A, Purwiandono G, Sagadevan S. Z-scheme NiO/g-C 3N 4 nanocomposites prepared using phyto-mediated nickel nanoparticles for the efficient photocatalytic degradation. Heliyon 2023; 9:e16232. [PMID: 37251879 PMCID: PMC10209412 DOI: 10.1016/j.heliyon.2023.e16232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Highly-effective photocatalyst of NiO/g-C3N4 with was successfully synthesized by using phyto-mediated-synthesized nickel nanoparticles. The preparation was initiated by synthesizing nickel nanoparticles by using Tinosphora cordifolia stem extract under ultrasound-assisted method followed by the dispersing onto g-C3N4 structure. The study focused on physicochemical characterization and photocatalytic activity as function of the percentage of Ni in the nanocomposite. The photocatalytic activity examinations were carried out to rhodamine B and tetracycline photocatalytic oxidation. The results demonstrated that graphitic carbon nitride is effectively improved the photocatalytic activity of NiO for both photocatalytic oxidation reactions. From the varied Ni content of 5; 10; and 20 %wt., it was also found that the highest photoactivity was achieved by the composite having 10 %wt. of nickel content. The high effectivity was showed by degradation efficiency of 95% toward Rhodamine B and 98% toward tetracycline. The examination on effect of scavengers suggests that Z-scheme involved in the photocatalytic mechanism which facilitated the efficient separation of the photogenerated electron-hole pairs under visible light illumination. In summary, the present findings provide a green approach for fabricating the effective photocatalysts for organic contaminant degradation.
Collapse
Affiliation(s)
- Is Fatimah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
| | - Rizky Zenita Sulistyowati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
| | - Adytia Wijayana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
| | - Gani Purwiandono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Center (NANOCAT), Universiti Malaya, Level 3 Block A, 50603 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Bio-inspired functional photocatalyst: Lipase enzyme functionalized TiO2 with excellent photocatalytic, enzymatic, and antimicrobial performance. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Construction of Z-scheme N-doped BiFeO3/NH2-MIL-53(Fe) with the synergy of hydrogen peroxide and visible-light-driven photo-Fenton degradation of organic contaminants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
15
|
Li L, Li Y, Li M, Sun Y, Wang H, Cui M, Xu W. Adsorption of tetracycline by Nicandra physaloides (L.) Gaertn seed gum and Nicandra physaloides(L.) Gaertn seed gum/Carboxymethyl chitosan aerogel. ENVIRONMENTAL TECHNOLOGY 2022; 43:4237-4248. [PMID: 34152265 DOI: 10.1080/09593330.2021.1946166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
In this study, novel aerogels of Nicandra physaloides (L.) Gaertn seed gum (NPG) and Nicandra physaloides (L.) Gaertn seed gum/Carboxymethyl chitosan (NPG/CMC) were prepared by freeze-drying method for removing tetracycline (TC) from water. Scanning electron microscope (SEM), X-ray diffraction (XRD),Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) were used to characterize structure and morphology of NPG and NPG/CMC aerogels. The average pore diameter of NPG and NPG/CMC were 3.04 and 1.2 nm, the specific surface areas were 2.67 and 0.73 m2/g, respectively. The maximum adsorption capacity of NPG and NPG/CMC aerogels for TC based on Langmuir isotherm was 266.7 and 332.23 mg/g respectively. Through thermodynamic and kinetic studies, it was found that the adsorption processes of the two adsorbents were spontaneous and followed the pseudo-second-order kinetic model. And the process of NPG adsorption of TC was endothermic, while NPG/CMC was exothermic.
Collapse
Affiliation(s)
- Liubo Li
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Yanhui Li
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
- College of Materials Science and Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Meixiu Li
- College of Materials Science and Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Yong Sun
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Huimin Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Mingfeii Cui
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Wenshuo Xu
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
16
|
Al-Musawi TJ, Mazari Moghaddam NS, Rahimi SM, Amarzadeh M, Nasseh N. Efficient photocatalytic degradation of metronidazole in wastewater under simulated sunlight using surfactant- and CuS-activated zeolite nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115697. [PMID: 35868191 DOI: 10.1016/j.jenvman.2022.115697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Hexadecyltrimethylammonium-bromide-activated zeolite nanoparticles coated with copper sulfide (ZEO/HDTMA-Br/CuS) was evaluated as a photocatalyst under sunlight for the degradation of metronidazole (MET). The surface and structural characteristics of ZEO/HDTMA-Br/CuS and other materials used in this study were analyzed using field emission-scanning electron microscopy, Fourier transform infrared and ultraviolet-visible diffuse reflectance spectroscopies, X-ray diffraction, Brunauer-Emmett-Teller surface area and Barrett-Joyner-Halenda pore size and volume analyses, and pH of zero charge test. ZEO/HDTMA-Br/CuS exhibited excellent surface and structural catalytic properties. For a comprehensive study of the degradation process, several parameters, such as the pH (3-11), MET concentration (10-30 mg/L), ZEO/HDTMA-Br/CuS dose (0.005-0.1 g/L), reaction time (5-200 min), and H2O2 concentration (50-200 mg/L), were optimized. ZEO/HDTMA-Br/CuS achieved 100% degradation efficiency when 10 mg/L MET was used under the optimum conditions: pH = 7, ZEO/HDTMA-Br/CuS dose = 0.01 g/L, and reaction time = 180 min. The degradation efficiency increased when the concentration of H2O2 was increased from 50 to 150 mg/L and decreased with further increase to 200 mg/L, indicating that the efficiency of MET degradation highly depends on the concentration of H2O2 in an aqueous solution. The degradation kinetics analysis revealed that the degradation is of the pseudo first-order. Thus, ZEO/HDTMA-Br/CuS proved to be an exceptional catalyst for the photodegradation of MET in aqueous media.
Collapse
Affiliation(s)
- Tariq J Al-Musawi
- Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, 51001 Hillah, Babylon, Iraq
| | | | | | - Mohamadamin Amarzadeh
- Department of Safety Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Negin Nasseh
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
17
|
Facile synthesis and preparation of graphite/chitosan/graphene quantum dots nanocomposite cathode for electrochemical removal of tetracycline from aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
18
|
Sharma M, Mandal MK, Pandey S, Kumar R, Dubey KK. Visible-Light-Driven Photocatalytic Degradation of Tetracycline Using Heterostructured Cu 2O-TiO 2 Nanotubes, Kinetics, and Toxicity Evaluation of Degraded Products on Cell Lines. ACS OMEGA 2022; 7:33572-33586. [PMID: 36157782 PMCID: PMC9494644 DOI: 10.1021/acsomega.2c04576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 05/30/2023]
Abstract
This study first reports on the tetracycline photodegradation with the synthesized heterostructured titanium oxide nanotubes coupled with cuprous oxide photocatalyst. The large surface area and more active sites on TiO2 nanotubes with a reduced band gap (coupling of Cu2O) provide faster photodegradation of tetracycline under visible light conditions. Cytotoxicity experiments performed on the RAW 264.7 (mouse macrophage) and THP-1 (human monocytes) cell lines of tetracycline and the photodegraded products of tetracycline as well as quenching experiments were also performed. The effects of different parameters like pH, photocatalyst loading concentration, cuprous oxide concentration, and tetracycline load on the photodegradation rate were investigated. With an enhanced surface area of nanotubes and a reduced band gap of 2.58 eV, 1.5 g/L concentration of 10% C-TAC showed the highest efficiency of visible-light-driven photodegradation (∼100% photodegradation rate in 60 min) of tetracycline at pH 5, 7, and 9. The photodegradation efficiency is not depleted up to five consecutive batch cycles. Quenching experiments confirmed that superoxide radicals and hydroxyl radicals are the most involved reactive species in the photodegradation of tetracycline, while valance band electrons are the least involved reactive species. The cytotoxicity percentage of tetracycline and its degraded products on RAW 264.7 (-0.932) as well as THP-1 (-0.931) showed a negative correlation with the degradation percentage with a p-value of 0.01. The toxicity-free effluent of photodegradation suggests the application of the synthesized photocatalyst in wastewater treatment.
Collapse
Affiliation(s)
- Manisha Sharma
- Department
of Biotechnology, Central University of
Haryana, Mahendergarh, Haryana 123031, India
| | - Mrinal Kanti Mandal
- Department
of Chemical Engineering, National Institute
of Technology, Durgapur, West Bengal 713209, India
| | - Shailesh Pandey
- Department
of Chemical Engineering, National Institute
of Technology, Durgapur, West Bengal 713209, India
| | - Ravi Kumar
- Department
of Biotechnology, Central University of
Haryana, Mahendergarh, Haryana 123031, India
| | - Kashyap Kumar Dubey
- Bioprocess
Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New
Delhi 110067, India
| |
Collapse
|
19
|
Jahanshahi R, Mohammadi A, Doosti M, Sobhani S, Sansano JM. ZnCo 2O 4/g-C 3N 4/Cu nanocomposite as a new efficient and recyclable heterogeneous photocatalyst with enhanced photocatalytic activity towards the metronidazole degradation under the solar light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65043-65060. [PMID: 35484449 DOI: 10.1007/s11356-022-19969-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
In this study, ZnCo2O4/g-C3N4/Cu is synthesized as a new and highly effectual solar light-driven heterogeneous photocatalyst. The prepared photocatalyst is characterized using FT-IR, XRD, XPS, DRS, FESEM, TEM, EDS, and elemental mapping techniques. The performance of ZnCo2O4/g-C3N4/Cu is studied towards the metronidazole (MNZ) degradation under solar light irradiation. The kinetics of MNZ degradation and efficacy of the operational parameters comprising the initial MNZ amount (10-30 mg L-1), photocatalyst dosage (0.005-0.05 g L-1), pH (3-11), and contact time (5-30 min) on the MNZ degradation process are investigated. Surprisingly, the ZnCo2O4/g-C3N4/Cu nanocomposite presents a privileged photocatalytic performance towards the MNZ degradation under solar light irradiation. The enhanced photocatalytic activity of this photocatalyst can be ascribed to the synergistic optical effects of ZnCo2O4, g-C3N4, and Cu. The value of band gap energy for ZnCo2O4/g-C3N4/Cu is estimated to be 2.3 eV based on the Tauc plot of (αhν)2 vs. hν. The radical quenching experiments confirm that the superoxide radicals and holes are the principal active species in the photocatalytic degradation of MNZ, whereas the hydroxyl radicals have no major role in such degradation. The as-prepared photocatalyst is simply isolated and recycled for at least eight runs without noticeable loss of the efficiency. Using the natural sunlight source, applying a very low amount of the photocatalyst, neutrality of the reaction medium, short reaction time, high efficiency of the degradation procedure, utilizing air as the oxidant, low operational costs, and easy to recover and reuse of the photocatalyst are the significant highlights of the present method. It is supposed that the current investigation can be a step forward in the representation of an efficacious photocatalytic system in the treatment of a wide range of contaminated aquatic environments.
Collapse
Affiliation(s)
- Roya Jahanshahi
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - Alieh Mohammadi
- Department of Civil Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | - Mohammadreza Doosti
- Department of Civil Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | - Sara Sobhani
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran.
| | - José Miguel Sansano
- Departamento de Química Orgánica, Facultad de Ciencias, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| |
Collapse
|
20
|
Felis E, Buta-Hubeny M, Zieliński W, Hubeny J, Harnisz M, Bajkacz S, Korzeniewska E. Solar-light driven photodegradation of antimicrobials, their transformation by-products and antibiotic resistance determinants in treated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155447. [PMID: 35469868 DOI: 10.1016/j.scitotenv.2022.155447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 05/23/2023]
Abstract
This study aimed to assess the possibility of using solar light-driven photolysis and TiO2-based photocatalysis to remove (1) antibiotic residues, (2) their transformation products (TPs), (3) antibiotic resistance determinants, and (4) genes identifying the indicator bacteria in a treated wastewater (secondary effluent). 16 antimicrobials belonging to the different classes and 45 their transformation by-products were selected for the study. The most susceptible to photochemical decomposition was tetracycline, which was completely removed in the photocatalysis process and in more than 80% in the solar light-driven photolysis. 83.8% removal (on average) was observed using photolysis and 89.9% using photocatalysis in the case of the tested genes, among which the genes sul1, uidA, and intI1 showed the highest degree of removal by both methods. The study revealed that applied methods promisingly remove the tested antibiotics, their TPs and genes even in such a complex matrix including treated wastewater and photocatalysis process had a higher removal efficiency of antibiotics, TPs and genes tested. Moreover, the high percentage removal of the intI1 gene (>93%) indicates the possibilities of use of the solar light-driven photolysis and TiO2-based photocatalysis in minimizing the antibiotic resistance genes transfer by mobile genetic elements.
Collapse
Affiliation(s)
- Ewa Felis
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland; Silesian University of Technology, Centre for Biotechnology, ul. B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Sylwia Bajkacz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland; Silesian University of Technology, Centre for Biotechnology, ul. B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| |
Collapse
|
21
|
Wahyuni ET, Mochammad RS, Mahira NS, Lestari ND, Syoufian A, Nasir TA. Enhancement of TiO2 activity under visible light by doping S element from sulfur core for Pb(II) photo-oxidation. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
22
|
Mahmoodi M, Rafiee E, Eavani S. Photocatalytic removal of toxic dyes, liquorice and tetracycline wastewaters by a mesoporous photocatalyst under irradiation of different lamps and sunlight. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:115023. [PMID: 35398644 DOI: 10.1016/j.jenvman.2022.115023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Simple recyclable K5CoW12O40/TiO2 was synthesized and used to remove methyl orange, rhodamine B, direct red 16 and crystal violet toxic organic dyes, liquorice industrial wastewater and tetracycline (TC) as an antibiotic. Photoactivity of the catalyst was checked out under irradiation of various lamps (such as 18 W fluorescent, 300 W Xenon, LED and IR lamps). The best efficiency was obtained by fluorescent lamp at catalyst loading of 3 g/L, initial pH of 5, initial dye concentration of 5 ppm, complete degradation was achieved after 30 min contact time. Mechanistic investigation showed that·O2 radicals and h+ are majorly responsible for photodegradation in this process. Electrochemical investigation, Nyquist, Bode, Mott-Schottky, Tauc plots and photoluminescence proved that using this photocatalyst delay the electron-hole recombination, increase the lifetime of excited electron, extend light absorption to visible region and improve the light absorption capacity. This photocatalyst work well under winter sunlight. Also 97% and 84% dye removal was obtained for liquorice with 300 and 1000 COD at optimal condition. This catalyst showed similar activity for TC wastewater. Photocatalyst was characterized by FE-SEM, EDX, AFM, FT-IR, XRD, PL, DRS, EIS, BJH and BET.
Collapse
Affiliation(s)
- M Mahmoodi
- Faculty of Chemistry, Razi University, Kermanshah, 6714414971, Iran
| | - E Rafiee
- Faculty of Chemistry, Razi University, Kermanshah, 6714414971, Iran; Institute of Nanoscience and Nanotechnology, Razi University, Kermanshah, 6714414971, Iran.
| | - S Eavani
- Faculty of Chemistry, Razi University, Kermanshah, 6714414971, Iran
| |
Collapse
|
23
|
Dang Thi Ngoc T, Thi HN, Nguyen Duc D, Nguyen Thi S, Nguyen Duc T, Nguyen Hoang N. Preparation and Photocatalytic Characterization of Modified Nano TiO 2/Nd/Rice Husk Ash Material for Rifampicin Removal in Aqueous Solution. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:2084906. [PMID: 35402061 PMCID: PMC8986426 DOI: 10.1155/2022/2084906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics like rifampicin are often persistent in the environment. When entering the water, it causes antimicrobial resistance that affects the ecosystem and accumulates in the aquatic organisms and affects human health through the food chain. In this study, titanium dioxide was doped with neodymium (0.01 to 0.8%) using the sol-gel hydrothermal method. TiO2/Nd was then coated on rice husk ash to produce a modified TiO2/Nd/rice husk ash material containing 0.36% (w/w) Nd. The structural characteristics and photocatalytic properties of the materials were analyzed by X-ray diffraction, energy dispersive X-ray, transmission electron microscopy, scanning electron microscopy, forbidden zone energy, and specific surface area. The TiO2/Nd material exhibited a higher photocatalytic decomposition capacity than TiO2 and depended on the Nd content. The rifampicin removal efficiency of TiO2/Nd materials with 0.36 to 0.80% Nd contents was approximately 40% higher than that of TiO2/Nd containing 0.01 to 0.28% Nd. A new photocatalytic TiO2/Nd/rice husk ash material was developed to decompose rifampicin. The rifampicin-degrading efficiency of TiO2/Nd and TiO2/Nd/rice husk ash material reached approximately 86 and 75%, respectively, within 90 min under sunlight. Although a lower efficiency was obtained, the TiO2/Nd/rice husk ash material was selected to degrade rifampicin residue in water via the photocatalytic process (under sunlight) because of its advantages such as requirement of a small amount and easy recovery. In the rifampicin removal process, k values were found to match the zero- and first-order kinetics. In particular, for TiO2/Nd and TiO2/Nd/rice husk ash under solar irradiation, R 2 values reached approximately 0.98. These results have been previously published as a preprint.
Collapse
Affiliation(s)
- Thuy Dang Thi Ngoc
- Department of Environment, Hanoi University of Mining and Geology, Hanoi 100000/129000, Vietnam
| | - Ha Nguyen Thi
- Faculty of Environmental Sciences, VNU-University of Science, Vietnam National University, Hanoi 100000/11406, Vietnam
| | - Dung Nguyen Duc
- Department of Environment, Hanoi University of Mining and Geology, Hanoi 100000/129000, Vietnam
| | - Sen Nguyen Thi
- Institute of Natural Resources and Environment Science, 7th Floor, GIM Building, 460 Lane, Hanoi 100000/11408, Vietnam
| | - Toan Nguyen Duc
- Institute of Natural Resources and Environment Training, 83 Nguyen Chi Thanh, Hanoi 100000/11500, Vietnam
| | - Nam Nguyen Hoang
- Department of Environment, Hanoi University of Mining and Geology, Hanoi 100000/129000, Vietnam
| |
Collapse
|
24
|
Rajan MS, John A, Thomas J. Nanophotocatalysis for the Removal of Pharmaceutical Residues from
Water Bodies: State of Art and Recent Trends. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666210412095354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Background:
The occurrence of pharmaceuticals in surface and drinking water is ubiquitous
and is a major concern of researchers. These compounds cause a destructive impact on
aquatic and terrestrial life forms, and the removal of these compounds from the environment is a
challenging issue. Existent conventional wastewater treatment processes are generally inefficacious
because of their low degradation efficiency and inadequate techniques associated with the disposal
of adsorbed pollutants during comparatively effective methods like the adsorption process.
Remediation Method:
Semiconductor-mediated photocatalysis is an attractive technology for the
efficient removal of pharmaceutical compounds. Among various semiconductors, TiO2 and ZnObased
photocatalysts gained much interest during the last years because of their efficiency in decomposing
and mineralizing the lethal organic pollutants with the utilization of UV-visible light.
Incessant efforts are being undertaken for tuning the physicochemical, optical, and electronic properties
of these photocatalysts to strengthen their overall photocatalytic performance with good recycling
efficiency.
Results:
This review attempts to showcase the recent progress in the rational design and fabrication
of nanosized TiO2 and ZnO photocatalysts for the removal of pollutants derived from the pharmaceutical
industry and hospital wastes.
Conclusion:
Photocatalysis involving TiO2 and ZnO provides a positive impact on pollution management
and could be successfully applied to remove pharmaceuticals from wastewater streams.
Structure modifications, the introduction of heteroatoms, and the integration of polymers with
these nano photocatalysts offer leapfrogging opportunities for broader applications in the field of
photocatalysis.
Collapse
Affiliation(s)
- Mekha Susan Rajan
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala 686561,India
| | - Anju John
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala 686561,India
| | - Jesty Thomas
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala 686561,India
| |
Collapse
|
25
|
González-González RB, Sharma A, Parra-Saldívar R, Ramirez-Mendoza RA, Bilal M, Iqbal HMN. Decontamination of emerging pharmaceutical pollutants using carbon-dots as robust materials. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127145. [PMID: 34547693 DOI: 10.1016/j.jhazmat.2021.127145] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/05/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Environmental pollution is a critical issue that requires proper measures to maintain environmental health in a sustainable and effective manner. The growing persistence of several active pharmaceutical residues, such as antibiotics like tetracycline, and anti-inflammatory drugs like diclofenac in water matrices is considered an issue of global concern. Numerous sewage/drain waste lines from the domestic and pharmaceutical sector contain an array of toxic compounds, so-called "emerging pollutants" and possess adverse effects on entire living ecosystem and damage its biodiversity. Therefore, effective solution and preventive measures are urgently required to sustainably mitigate and/or remediate pharmaceutically active emerging pollutants from environmental matrices. In this context, herein, the entry pathways of the pharmaceutical waste into the environment are presented, through the entire lifecycle of a pharmaceutical product. There is no detailed review available on carbon-dots (CDs) as robust materials with multifunctional features that support sustainable mitigation of emerging pollutants from water matrices. Thus, CDs-based photocatalysts are emerging as an efficient alternative for decontamination by pharmaceutical pollutants. The addition of CDs on photocatalytic systems has an important role in their performance, mainly because of their up-conversion property, transfer photoinduced electron capacities, and efficient separation of electrons and holes. In this review, we analyze the strategies followed by different researchers to optimize the photodegradation of various pharmaceutical pollutants. In this manner, the effect of different parameters such as pH, the dosage of photocatalyst, amount of carbon dots, and initial pollutant concentration, among others are discussed. Finally, current challenges are presented from a pollution prevention perspective and from CDs-based photocatalytic remediation perspective, with the aim to suggest possible research directions.
Collapse
Affiliation(s)
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Av. Epigmenio González 500, Fracc, SanPablo, CP 76130 Queretaro, Mexico
| | | | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
26
|
Qiu Y, Lu J, Yan Y, Niu J. Enhanced visible-light-driven photocatalytic degradation of tetracycline by 16% Er 3+-Bi 2WO 6 photocatalyst. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126920. [PMID: 34449331 DOI: 10.1016/j.jhazmat.2021.126920] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/28/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of antibiotics in drug therapy and agriculture has seriously polluted the aquatic environment. Bismuth tungstate (Bi2WO6) is a new and efficient visible-light catalyst that is simple to prepare, non-toxic, stable, and corrosion resistant. Nonetheless, its efficiency has remained limited, and erbium (Er) mixing has been tested to address this. Here, a new Er3+-mixed Bi2WO6 photocatalyst was successfully prepared through the one-step hydrothermal method; pigments were characterized via XRD, SEM, BET, XPS, Uv-vis, PL and EIS. The results showed that the 16% Er3+-Bi2WO6 photocatalyst is a 250 nm flower-like nanosheet with a specific surface area of 67.1 m2/g and bandgap (Eg) of 2.35 eV, which provides the basis for superior performance. When the concentration of the catalyst was 0.4 g/L, 94.58% of the tetracycline (TC) solution (initial concentration of 10 mg/L) degraded within 60 min under visible light irradiation (λ ≥ 420 nm). ESR and LC-MS were used to identify the free radicals and intermediates for the degradation of TC pollutants; a photocatalytic degradation system and pathway were proposed. This solar-driven system will ultimately reduce resource consumption, providing a sustainable and energy-saving environmental decontamination strategy.
Collapse
Affiliation(s)
- Yijin Qiu
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory for environmental monitoring and pollutant control of Xinjiang Production and Construction Corps, Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory for environmental monitoring and pollutant control of Xinjiang Production and Construction Corps, Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, China.
| | - Yujun Yan
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory for environmental monitoring and pollutant control of Xinjiang Production and Construction Corps, Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, China
| | - Junfeng Niu
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory for environmental monitoring and pollutant control of Xinjiang Production and Construction Corps, Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, China
| |
Collapse
|
27
|
Jia L, Jin Y, Li J, Wei Z, Chen M, Ma J. Study on High-Efficiency Photocatalytic Degradation of Oxytetracycline Based on a Spiral Microchannel Reactor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Lianyu Jia
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yang Jin
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jun Li
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhizhen Wei
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ming Chen
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jun Ma
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
28
|
Chen L, Huang CP, Chuang Y, Nguyen TB, Chen CW, Dong CD. Z-Scheme MoS 2/TiO 2/graphene nanohybrid photocatalysts for visible light-induced degradation for highly efficient water disinfection and antibacterial activity. NEW J CHEM 2022. [DOI: 10.1039/d2nj01824a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new Z-scheme MoS2/TiO2/graphene nanohybrid effectively degraded antibiotics, heavy metals and microorganisms under visible irradiation.
Collapse
Affiliation(s)
- Linjer Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, 19716, DE, USA
| | - Yuliv Chuang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Thanh-Binh Nguyen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| |
Collapse
|
29
|
Manikandan VS, Harish S, Archana J, Navaneethan M. Fabrication of novel hybrid Z-Scheme WO 3@g-C 3N 4@MWCNT nanostructure for photocatalytic degradation of tetracycline and the evaluation of antimicrobial activity. CHEMOSPHERE 2022; 287:132050. [PMID: 34583295 DOI: 10.1016/j.chemosphere.2021.132050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Exploring highly efficient visible-light-driven photocatalyst for the elimination organic pollutants is a great concern for constructing sustainable green energy systems. In the current work, a novel hybrid ternary WO3@g-C3N4@MWCNT nanocomposites have been fabricated for visible-light-driven photocatalyst by self-assembly method. The as-prepared photocatalyst was examined by XRD, Raman, FESEM, HRTEM, XPS EDS, EIS, UV-visible DRS, and PL analysis. The experimental results revealed that the photocatalytic activity of WO3@g-C3N4@MWCNT nanocomposites on the degradation of Tetracycline (TC) is 79.54% at 120 min, which is higher than the binary WO3@g-C3N4 composite and pristine WO3. The improved degradation performance towards TC is recognized for its higher surface area, intense light absorption towards the visible region, and enhanced charge separation efficiency. Consequently, the fabricated catalyst endows a promising application for antibiotic degradation.
Collapse
Affiliation(s)
- V S Manikandan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Tamilnadu, India
| | - S Harish
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Tamilnadu, India
| | - J Archana
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Tamilnadu, India.
| | - M Navaneethan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Tamilnadu, India; Nanotechnology Research Centre, SRM Institute of Science and Technology, Kattankulathur Campus, Tamilnadu, India.
| |
Collapse
|
30
|
Wu FD, Chen JC, Yang ZT. Preparation of C/Ho co-doped TiO 2 for enhancing the photocatalytic degradation efficiency of tetracycline hydrochloride. NEW J CHEM 2022. [DOI: 10.1039/d2nj00632d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
A new C/Ho co-doped TiO2 catalyst was synthesized with Ti3C2Tx MXene and the photocatalytic performance was found to be significantly enhanced.
Collapse
Affiliation(s)
- Fang-Di Wu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, China
| | - Jyh-Cherng Chen
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
| | - Zi-Tao Yang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, China
| |
Collapse
|
31
|
Kinetic and mechanism studies of tetracycline photodegradation using synthesized ZnAl2O4. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02114-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Impact of water matrix and oxidant agent on the solar assisted photodegradation of a complex mix of pesticides over titania-reduced graphene oxide nanocomposites. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
33
|
Zhang G, Chen S, Yang Y, Liu Y, Lei L, Liu X, Xiao R, Du L, Huang D, Cheng M. Boron nitride quantum dots decorated MIL-100(Fe) for boosting the photo-generated charge separation in photocatalytic refractory antibiotics removal. ENVIRONMENTAL RESEARCH 2021; 202:111661. [PMID: 34331924 DOI: 10.1016/j.envres.2021.111661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Metal organic frameworks (MOFs) have great potential for photocatalysis, but only possess moderate activity due to their slow charge transfer and low solar energy conversion. Herein, heterostructures photocatalysts constructed by boron nitride quantum dots (BNQDs) and MIL-100(Fe) (MNB) were successfully fabricated for overcoming these shortcomings. It was indicated that the composites possessed large surface area, mesoporous structure, and enhanced visible light absorption. The MNB photocatalysts exhibited excellent photocatalytic activity for tetracycline hydrochloride (TC-HCl) degradation under visible light irradiation. Compared with MIL-100(Fe), the photodegradation rate of TC-HCl by MNB-1 was 0.02383 min-1, which was 5.3 times higher than that of pure MIL-100(Fe). The close contact of MIL-100(Fe) with BNQDs and the synergistic effect between them were the main reasons for the improved photodegradation performance. This study reveals that a rational combination of MIL-100(Fe) and BNQDs can improve photocatalytic activity to enhance molecular oxygen activation. Therefore, it is reasonable to believe that quantum dots/MOFs photocatalysts have great potential in environmental remediation.
Collapse
Affiliation(s)
- Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yang Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lei Lei
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| |
Collapse
|
34
|
Nasseh N, Khosravi R, Mazari Moghaddam NS, Rezania S. Effect of UV C and UV A Photocatalytic Processes on Tetracycline Removal Using CuS-Coated Magnetic Activated Carbon Nanocomposite: A Comparative Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111163. [PMID: 34769682 PMCID: PMC8582642 DOI: 10.3390/ijerph182111163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/25/2022]
Abstract
In this study, we synthesized a novel MAC nanocomposite using almond’s green hull coated with CuS. The whole set of experiments have been conducted inside a batch (discontinuous reactor system) at room temperature. The effectiveness of different parameters in tetracycline removal pH (3, 5, 7, and 9), pollutant concentration (5–100 mg/L), nanocomposite dosage (0.025–1 g/L), and contact time (5–60 min) using newly synthesized nanocomposite were investigated. Based on the results, in the optimal conditions of pH = 9, nanocomposite dosage of 1 g/L, pollutant concentration of 20 mg/L, contact time of 60 min, and room temperature, 95% removal efficiency was obtained. In MAC/CuS/UVC process, the removal of COD and TOC were 76.89% and 566.84% respectively meanwhile, these values in MAC/CuS/UVA process were 74.19% and 62.11%, respectively. The results of nanocomposite stability and magnetic recovery illustrated that the removal efficiency was reduced by 1.5% in the presence of UVC and 5% in the presence of UVA lights during all six cycles. Therefore, this nanocomposite was highly capable of recycling and reuse. It can be concluded that considering the high potential of the synthesized nanocomposite, the photocatalytic efficiency of the MAC/CuS/UVC process in tetracycline synthesis was higher than MAC/CuS/UVA process.
Collapse
Affiliation(s)
- Negin Nasseh
- Social Determinants of Health Research Center, Environmental Health Engineering Department, Faculty of Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran; (N.N.); (R.K.)
| | - Rasoul Khosravi
- Social Determinants of Health Research Center, Environmental Health Engineering Department, Faculty of Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran; (N.N.); (R.K.)
| | - Narjes sadat Mazari Moghaddam
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853577, Iran
- Correspondence: (N.s.M.M.); (S.R.)
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul 05006, Korea
- Correspondence: (N.s.M.M.); (S.R.)
| |
Collapse
|
35
|
Photocatalytic Degradation of Antibiotics by Superparamagnetic Iron Oxide Nanoparticles. Tetracycline Case. Catalysts 2021. [DOI: 10.3390/catal11101243] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The challenges associated with the uncontrolled presence of antibiotics such as tetracycline in the environment have necessitated their removal through different techniques. Tetracycline is hard to degrade in living organisms and can even be converted to more toxic substances. In view of this, we synthesized iron oxide nanoparticles with good magnetization (70 emu g−1) and 15 nm particle size for the adsorption and photocatalytic degradation of tetracycline. Characterization carried out on the synthesized iron oxides revealed a bandgap of 1.83 eV and an isoelectric point at pH 6.8. The results also showed that the pH of the solution does not directly influence the adsorption of tetracycline. The adsorption isotherm was consistent with the model proposed by Langmuir, having 97 mg g−1 adsorption capacity. Combined with the superparamagnetic behavior, this capacity is advantageous for the magnetic extraction of tetracycline from wastewater. The mechanisms of adsorption were proposed to be hydrogen bonding and n-π interactions. Photocatalytic degradation studies showed that approximately 40% of tetracycline degraded within 60 min of irradiation time with UV/vis light. The kinetics of photodegradation of tetracycline followed the pseudo-first-order mechanism, proceeding through hydroxyl radicals generated under illumination. Moreover, the photogenerated hydrogen peroxide could lead to heterogeneous photo-Fenton processes on the surface of iron oxide nanoparticles, additionally generating hydroxyl and hydroperoxyl radicals and facilitating photodegradation of tetracycline.
Collapse
|
36
|
Development of a 3D-Printed Dosing Platform to Aid in Zolpidem Withdrawal Therapy. Pharmaceutics 2021; 13:pharmaceutics13101684. [PMID: 34683977 PMCID: PMC8541164 DOI: 10.3390/pharmaceutics13101684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
The long-term use of benzodiazepine receptor agonists (BZRAs) is associated with multiple side effects, such as increased sedation, hangover or an elevated risk of dependency and abuse. Unfortunately, the long-term use of BZRAs is reaching worrying intake rates, and therefore, the need for action is high. It was demonstrated already that the overall willingness of patients for deprescription increased when a slow dose reduction scheme with the possibility for dose increase, if needed, is employed. The current study aims to develop a flexible dosing platform of zolpidem hemitartrate (ZHT) to facilitate such withdrawal therapy. As this is the first report on the extrusion and 3D printing of ZHT, its thermal behaviour and sensitivity towards photolytic degradation was characterised. It was shown that ZHT possesses multiple polymorphs and was especially prone to oxidative photolysis. Next, a variety of immediate release polymers (Eudragit EPO, Kollidon VA64, Kollidon 12PF and Soluplus) were blended and extruded with Polyox WSR N10 to investigate their feedability and printability by mechanical and rheological analysis. The addition of PEO was shown to enable printing of these brittle pharmaceutical polymers, although the processing temperature was deemed critical to avoid surface defects on the resulting filaments. An EPO(70)PEO(30) system was selected based on its suitable mechanical properties and low hygroscopicity favoring ZHT stability. The matrix was blended with 1% or 10% API. The effect of certain printing parameters (caplet size, nozzle diameter, % overlap) on dissolution behaviour and caplet weight/dimensions/quality was assessed. A flexible dosing platform capable of delivering <1 mg and up to 10 mg of ZHT was created. Either caplet modification (incorporation of channels) or disintegrant addition (Primojel, Explotab, Ac-Di-Sol, Primellose and Polyplasdone-XL) failed to achieve an immediate release profile. This study provides the first report of a 3D-printed flexible dosing platform containing ZHT to aid in withdrawal therapy.
Collapse
|
37
|
Photocatalytic Degradation of Tetracycline in Aqueous Solution Using Copper Sulfide Nanoparticles. Catalysts 2021. [DOI: 10.3390/catal11101238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this paper, spherical-shaped pure phase djurleite (Cu31S16) and roxbyite (Cu7S4) nanoparticles were prepared by a solvothermal decomposition of copper(II) dithiocarbamate complex in dodecanthiol (DDT). The reaction temperature was used to control the phases of the samples, which were represented as Cu31S16 (120 °C), Cu31S16 (150 °C), Cu7S4 (220 °C), and Cu7S4 (250 °C) and were characterized by using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and absorption spectroscopy. The samples were used as photocatalysts for the degradation of tetracycline (TC) under visible light irradiation. The results of the study showed that Cu7S4 (250 °C) exhibited the best activity in the reaction system with the TC degradation rate of up to 99% within 120 min of light exposure, while the Cu31S16 (120 °C) system was only 46.5% at the same reaction condition. In general, roxbyite Cu7S4 (250 °C) could be considered as a potential catalyst for the degradation of TC in solution.
Collapse
|
38
|
Mesoporous TiO2 Implanted ZnO QDs for the Photodegradation of Tetracycline: Material Design, Structural Characterization and Photodegradation Mechanism. Catalysts 2021. [DOI: 10.3390/catal11101205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A sol-gel method was used to prepare a mesoporous TiO2 implanted with a ZnO quantum dot photocatalyst (TZQ) for the photodegradation of tetracycline (TC) under fluorescent light irradiation. Scanning electron microscopy (SEM) shows the presence of cavities on the photocatalyst surface due to the use of starch as a synthetic template, where the nitrogen sorption results indicate that TZQ contains mesopores with reduced size (ca. 4.3 nm) versus the pore size of the parent meso-TiO2 (ca. 7.5 nm). The addition of ZnO quantum dots (QDs) resulted in spherically-shaped binary composite particles in layers onto the surface of TiO2. The coexistence of the ZnO QDs and TiO2 phase was observed using high resolution-transmission electron microscopy (HR-TEM). The photodegradation of TC was carried out in a homemade reactor equipped with two fluorescent lights (24 W each) and within 90 min of irradiation, 94.6% of TC (40 mg L−1) was photodegraded using 250 mg L−1 of TZQ at pH 9. The major reactive oxygen species identified from the scavenging tests were O2●− followed by HO●. The deconvolution of the photoluminescence spectrum of TZQ indicates the presence of a strong quantum confinement effect (QCE) of the ZnO QDs, a defect related to Ti-species and oxygen. The analysis of the intermediates detected by LC-time-of-flight/mass spectrometry (LC/TOF-MS) suggest two photodegradation pathways. The pathways were validated using the Fukui function approach and the Wheland localisation approach. This simple and efficient photocatalytic technology is anticipated to benefit small-scale animal husbandries and aquaculture operators that have limited access to sustainable water treatment technology.
Collapse
|
39
|
Sadat SA, Salimi L, Ghafourian H, Yadegarian Hadji Abadi L, Sadatipour SM. Study of the performance of improved TiO2/N/S photo-catalyst on the removal of tetracycline from aqueous solutions. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1977924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
| | - Lida Salimi
- Department of Environmental Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Ghafourian
- Department of Marin Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Linda Yadegarian Hadji Abadi
- Department of Marin Environment Protection and Pollution, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
40
|
Photocatalytic degradation of tetracycline in a stirred tank: computational fluid dynamic modeling and data validation. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02062-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
41
|
The upsurge of photocatalysts in antibiotic micropollutants treatment: Materials design, recovery, toxicity and bioanalysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
42
|
Photocatalysis over N-Doped TiO2 Driven by Visible Light for Pb(II) Removal from Aqueous Media. Catalysts 2021. [DOI: 10.3390/catal11080945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The photocatalysis process over N-doped TiO2 under visible light is examined for Pb(II) removal. The doping TiO2 with N element was conducted by simple hydrothermal technique and using urea as the N source. The doped photocatalysts were characterized by DRUVS, XRD, FTIR and SEM-EDX instruments. Photocatalysis of Pb(II) through a batch experiment was performed for evaluation of the doped TiO2 activity under visible light, with applying various fractions of N-doped, photocatalyst mass, irradiation time, and solution pH. The research results attributed that N doping has been successfully performed, which shifted TiO2 absorption into visible region, allowing it to be active under visible irradiation. The photocatalytic removal of Pb(II) proceeded through photo-oxidation to form PbO2. Doping N into TiO2 noticeably enhanced the photo-catalytic oxidation of Pb(II) under visible light irradiation. The highest photocatalytic oxidation of 15 mg/L Pb(II) in 25 mL of the solution could be reached by employing TiO2 doped with 10%w of N content 15 mg, 30 min of time and at pH 8. The doped-photocatalyst that was three times repeatedly used demonstrated significant activity. The most effective process of Pb(II) photo-oxidation under beneficial condition, producing less toxic and handleable PbO2 and good repeatable photocatalyst, suggest a feasible method for Pb(II) remediation on an industrial scale.
Collapse
|
43
|
Chellammal Gayathri R, Elakkiya V, Sumathi S. Effect of method of preparation on the photocatalytic activity of NiAl2O4. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
44
|
Abazari R, Sanati S, Morsali A, Kirillov AM. Instantaneous Sonophotocatalytic Degradation of Tetracycline over NU-1000@ZnIn 2S 4 Core-Shell Nanorods as a Robust and Eco-friendly Catalyst. Inorg Chem 2021; 60:9660-9672. [PMID: 34161079 DOI: 10.1021/acs.inorgchem.1c00951] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The universal pollution of diverse water bodies and declined water quality represent very important environmental problems. The development of new and efficient photocatalytic water treatment systems based on the Z-scheme mechanisms can contribute to tackling such problems. This study reports the preparation, full characterization, and detailed sonophotocatalytic activity of a new series of hybrid NU@ZIS nanocomposites, which comprise a p-n heterojunction of 3D Zr(IV) metal-organic framework nanorods (NU-1000) and photoactive ZnIn2S4 (ZIS) nanostars. Among the obtained materials with varying content of ZIS (5, 10, 20, and 30%) on the surface of NU-1000, the NU@ZIS20 nanocomposite revealed an ultrahigh catalytic performance and recyclability in a quick visible-light-induced degradation of the tetracycline antibiotic in water under sonophotocatalytic conditions. Moreover, increased activity of NU@ZIS20 can be ascribed to the formation of a p-n heterojunction between NU-1000 and ZIS, and a synergistic effect of these components, leading to a high level of radical production, facilitating a Z-scheme charge carrier transfer and reducing the recombination of charge carriers. The radical trapping tests revealed that •OH, •O2-, and h+ are the major active species in the sonophotocatalytic degradation of tetracycline. Possible mechanism and mineralization pathways were introduced. Cytotoxicity of NU@ZIS20 and aquatic toxicity of water samples after tetracycline degradation were also assessed, showing good biocompatibility of the catalyst and efficacy of sonophotocatalytic protocols to produce water that does not affect the growth of bacteria. Finally, the obtained nanocomposites and developed photocatalytic processes can represent an interesting approach toward diverse environmental applications in water remediation and the elimination of other types of organic pollutants.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Alexander M Kirillov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal.,Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| |
Collapse
|
45
|
Li X, Raza S, Liu C. Preparation of titanium dioxide modified biomass polymer microspheres for photocatalytic degradation of rhodamine-B dye and tetracycline. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
46
|
Floating ZnO QDs-Modified TiO 2/LLDPE Hybrid Polymer Film for the Effective Photodegradation of Tetracycline under Fluorescent Light Irradiation: Synthesis and Characterisation. Molecules 2021; 26:molecules26092509. [PMID: 33923041 PMCID: PMC8123277 DOI: 10.3390/molecules26092509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/02/2023] Open
Abstract
In this work, mesoporous TiO2-modified ZnO quantum dots (QDs) were immobilised on a linear low-density polyethylene (LLDPE) polymer using a solution casting method for the photodegradation of tetracycline (TC) antibiotics under fluorescent light irradiation. Various spectroscopic and microscopic techniques were used to investigate the physicochemical properties of the floating hybrid polymer film catalyst (8%-ZT@LLDPE). The highest removal (89.5%) of TC (40 mg/L) was achieved within 90 min at pH 9 due to enhanced water uptake by the LDDPE film and the surface roughness of the hybrid film. The formation of heterojunctions increased the separation of photogenerated electron-hole pairs. The QDs size-dependent quantum confinement effect leads to the displacement of the conduction band potential of ZnO QDs to more negative energy values than TiO2. The displacement generates more reactive species with higher oxidation ability. The highly stable film photocatalyst can be separated easily and can be repeatedly used up to 8 cycles without significant loss in the photocatalytic ability. The scavenging test indicates that the main species responsible for the photodegradation was O2●−. The proposed photodegradation mechanism of TC was demonstrated in further detail based on the intermediates detected by LC-time-of-flight/mass spectrometry (LC/TOF-MS).
Collapse
|
47
|
Hou C, Liu H, Li Y. The preparation of three-dimensional flower-like TiO 2/TiOF 2 photocatalyst and its efficient degradation of tetracycline hydrochloride. RSC Adv 2021; 11:14957-14969. [PMID: 35424047 PMCID: PMC8697858 DOI: 10.1039/d1ra01772a] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
A kind of high-efficiency photocatalyst of the three-dimensional flower-like TiO2/TiOF2 was synthesized by a one-step hydrothermal method. XRD, FE-SEM, EDS, HTEM, BET, XPS, PL, and UV-Vis-DRS were utilized to characterize the photocatalyst. The photocatalyst of TiO2/TiOF2 shows a narrow band gap of 2.8 eV. The generation of Ti3+ and an oxygen vacancy (Ov) in the photocatalyst are helpful to increase the absorption of visible light, and to inhibit faster charge recombination by capturing photogenerated carriers. Through the degradation of tetracycline hydrochloride (TCH) under simulated sunlight, the photocatalytic activity and stability of the synthesized samples were investigated. The results showed that the removal rate of tetracycline hydrochloride was 59% only in 0.5 h of dark reaction and 85% in 0.5 h of simulated sunlight. The removal efficiency of the photocatalyst for the adsorption and photocatalytic degradation of TCH is higher than that of the single TiO2, TiOF2, and Degussa P25. The synthesized three-dimensional flower-like TiO2/TiOF2 has great application potential in the treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Chentao Hou
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Huayang Liu
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Yijie Li
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| |
Collapse
|
48
|
Nasseh N, Arghavan FS, Daglioglu N, Asadi A. Fabrication of novel magnetic CuS/Fe 3O 4/GO nanocomposite for organic pollutant degradation under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19222-19233. [PMID: 33394401 DOI: 10.1007/s11356-020-12066-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The magnetic nanocomposites composed of copper sulphide, iron oxide, and graphene oxide (CuS/Fe3O4/GO) were synthesized through a facile sol-gel combined with hydrothermal techniques for photodegradation of methylene blue (MB) as a model organic pollutant. The as-prepared samples were characterized by powder X-ray diffraction (XRD), vibrating sample magnetometer (VSM), differential reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray analysis (EDX) and results confirmed successful synthesis of magnetic nanocomposite. Presence of Fe3O4 and GO in nanocomposite induced a synergistic effect in CuS performance as CS88F6G6 (i.e. 88% CuS, 6% Fe3O4, and 6% GO). The photocatalytic degradation efficiency of MB reached up to 90.3% after exposure to visible light irradiation for 80 min. The composite nanosheets are photostable, reusable, and magnetically recoverable, revealing potential application in removal of organic pollutants.
Collapse
Affiliation(s)
- Negin Nasseh
- Social Determinants of Health Research Center, Faculty of Health, Department of Environmental Health Engineering, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Sadat Arghavan
- Student Research Committee, Department of Environmental Health Engineering, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nebile Daglioglu
- School of Medicine, Department of Forensic Medicine, Cukurova University, 01330, Adana, Turkey
| | - Anvar Asadi
- Research Center for Environmental Determinants of Health, Health Institute, Department of Environmental Health Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
49
|
Hernández-Rodríguez EA, Castillo-Suárez LA, Teutli-Sequeira EA, Martínez-Miranda V, Vázquez Mejía G, Linares-Hernández I, Santoyo-Tepole F, Benavides A. Electro-oxidation and solar electro-oxidation of commercial carbamazepine: effect of the support electrolyte. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1900251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Evelyn Anaid Hernández-Rodríguez
- Wastewater treatment and pollution control department, Instituto Interamericano De Tecnología Y Ciencias Del Agua (IITCA), Universidad Autónoma Del Estado De México, Unidad San Cayetano, Toluca, Estado De México, México
| | - Luis Antonio Castillo-Suárez
- Wastewater treatment and pollution control department, Instituto Interamericano De Tecnología Y Ciencias Del Agua (IITCA), Universidad Autónoma Del Estado De México, Unidad San Cayetano, Toluca, Estado De México, México
| | | | - Verónica Martínez-Miranda
- Wastewater treatment and pollution control department, Instituto Interamericano De Tecnología Y Ciencias Del Agua (IITCA), Universidad Autónoma Del Estado De México, Unidad San Cayetano, Toluca, Estado De México, México
| | - Guadalupe Vázquez Mejía
- Wastewater treatment and pollution control department, Instituto Interamericano De Tecnología Y Ciencias Del Agua (IITCA), Universidad Autónoma Del Estado De México, Unidad San Cayetano, Toluca, Estado De México, México
| | - Ivonne Linares-Hernández
- Wastewater treatment and pollution control department, Instituto Interamericano De Tecnología Y Ciencias Del Agua (IITCA), Universidad Autónoma Del Estado De México, Unidad San Cayetano, Toluca, Estado De México, México
| | - Fortunata Santoyo-Tepole
- Research department, Escuela Nacional De Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN). Prolongación De Carpio Y Plan De Ayala S/n, Miguel Hidalgo, Santo Tomás, Ciudad De México, México
| | - Abraham Benavides
- Department of Public Administration, University of North Texas, Denton, Texas, USA
| |
Collapse
|
50
|
Liu Y, Li J, Wu L, Wan D, Shi Y, He Q, Chen J. Synergetic adsorption and Fenton-like degradation of tetracycline hydrochloride by magnetic spent bleaching earth carbon: Insights into performance and reaction mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143956. [PMID: 33352346 DOI: 10.1016/j.scitotenv.2020.143956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
In this study, the synergetic adsorption and Fenton-like degradation of tetracycline hydrochloride (TCH) by magnetic spent bleaching earth carbon (Mag-SBE@C) with H2O2 were developed and performed, with 91.5% of TCH degradation efficiency and 42.1% of TOC removal efficiency. The effects of the reaction parameters (temperature, initial pH, catalyst dosage, molar ratio of TCH to H2O2) on TCH degradation in Mag-SBE@C/H2O2 system were studied. Under the optimal conditions (temperature 41.1 °C, initial pH 4.89 and molar ratio of H2O2 to TCH 114.435) forecasted by response surface methodology (RSM), high TCH degradation efficiency (99%) was achieved. Also, four cycling tests were performed to confirm the excellent stability and regeneration ability of Mag-SBE@C in presence of H2O2. In addition, the characteristics of Mag-SBE@C after reaction are analyzed in details via scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Brunner-Emmet-Teller (BET), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrum (FTIR) and X-ray diffraction (XRD), and it was found that Fe3O4 nanoparticles on Mag-SBE@C surface acted as co-catalyst and participated in degradation and improved reaction efficiency, while its properties were not greatly changed. The quenching experiments showed that hydroxyl radicals on Mag-SBE@C surface (OHadsorption) were dominant in Mag-SBE@C/H2O2 system. Meanwhile, three possible TCH degradation pathways were given based on the possible intermediates determined by liquid chromatography quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS/MS). Mag-SBE@C is an excellent heterogeneous Fenton-like catalyst, exhibiting greatly potential to antibiotics elimination.
Collapse
Affiliation(s)
- Yongde Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, Henan 450001, China.
| | - Jinsong Li
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Lairong Wu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, Henan 450001, China.
| | - Yahui Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, Henan 450001, China
| | - Qiaochong He
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, Henan 450001, China
| | - Jing Chen
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, Henan 450001, China
| |
Collapse
|