1
|
Wu Q, Pan X, Han D, Ma Z, Zhang H. New Insights into the Epidemiological Characteristics of Mycoplasma pneumoniae Infection before and after the COVID-19 Pandemic. Microorganisms 2024; 12:2019. [PMID: 39458327 PMCID: PMC11509874 DOI: 10.3390/microorganisms12102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Mycoplasma pneumoniae (M. pneumoniae), a prevalent respiratory pathogen affecting children and adolescents, is known to trigger periodic global epidemics. The most recent significant outbreak commenced in the first half of 2023 and reached its peak globally during the autumn and winter months. Considering the worldwide repercussions of the COVID-19 pandemic, it has become increasingly essential to delve into the epidemiological characteristics of M. pneumoniae both before and after the pandemic. This review aims to provide a comprehensive analysis of the key features of M. pneumoniae epidemics in the pre-and post-COVID-19 contexts, including but not limited to shifts in the susceptible population, the molecular genotypes of the pathogen, the clinical manifestations, and potential new trends in drug resistance. Additionally, we will introduce the latest advancements in the diagnosis of M. pneumoniae.
Collapse
Affiliation(s)
- Qianyue Wu
- Clinical Lab in Children’s Hospital of Shanghai, Children’s Hospital of Shanghai Jiao Tong University, Shanghai 200040, China; (Q.W.); (X.P.); (D.H.); (Z.M.)
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Xiaozhou Pan
- Clinical Lab in Children’s Hospital of Shanghai, Children’s Hospital of Shanghai Jiao Tong University, Shanghai 200040, China; (Q.W.); (X.P.); (D.H.); (Z.M.)
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Dingding Han
- Clinical Lab in Children’s Hospital of Shanghai, Children’s Hospital of Shanghai Jiao Tong University, Shanghai 200040, China; (Q.W.); (X.P.); (D.H.); (Z.M.)
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Zhan Ma
- Clinical Lab in Children’s Hospital of Shanghai, Children’s Hospital of Shanghai Jiao Tong University, Shanghai 200040, China; (Q.W.); (X.P.); (D.H.); (Z.M.)
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Hong Zhang
- Clinical Lab in Children’s Hospital of Shanghai, Children’s Hospital of Shanghai Jiao Tong University, Shanghai 200040, China; (Q.W.); (X.P.); (D.H.); (Z.M.)
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| |
Collapse
|
2
|
Li S, Zhou Y, Yan Y, Qin Y, Weng Q, Sun L. Structure-Based Virtual Screening, ADMET Properties Prediction and Molecular Dynamics Studies Reveal Potential Inhibitors of Mycoplasma pneumoniae HPrK/P. Life (Basel) 2024; 14:657. [PMID: 38929642 PMCID: PMC11204831 DOI: 10.3390/life14060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Mycoplasma pneumoniae pneumonia (MPP) is a frequent cause of community-acquired pneumonia (CAP) in children. The incidence of childhood pneumonia caused by M. pneumoniae infection has been rapidly increasing worldwide. M. pneumoniae is naturally resistant to beta-lactam antibiotics due to its lack of a cell wall. Macrolides and related antibiotics are considered the optimal drugs for treating M. pneumoniae infection. However, clinical resistance to macrolides has become a global concern in recent years. Therefore, it is imperative to urgently identify new targets and develop new anti-M. pneumoniae drugs to treat MMP. Previous studies have shown that deficiencies in HPrK/P kinase or phosphorylase activity can seriously affect carbon metabolism, growth, morphology, and other cellular functions of M. pneumoniae. To identify potential drug development targets against M. pneumoniae, this study analyzed the sequence homology and 3D structure alignment of M. pneumoniae HPrK/P. Through sequence and structure analysis, we found that HPrK/P lacks homologous proteins in the human, while its functional motifs are highly conserved in bacteria. This renders it a promising candidate for drug development. Structure-based virtual screening was then used to discover potential inhibitors among 2614 FDA-approved drugs and 948 bioactive small molecules for M. pneumoniae HPrK/P. Finally, we identified three candidate drugs (Folic acid, Protokylol and Gluconolactone) as potential HPrK/P inhibitors through molecular docking, molecular dynamics (MDs) simulations, and ADMET predictions. These drugs offer new strategies for the treatment of MPP.
Collapse
Affiliation(s)
- Shen Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Ying Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Yujuan Yan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Yinying Qin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Qilu Weng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
3
|
Grubelnik G, Korva M, Kogoj R, Polanc T, Mavrič M, Jevšnik Virant M, Uršič T, Keše D, Seme K, Petrovec M, Jereb M, Avšič-Županc T. Herpesviridae and Atypical Bacteria Co-Detections in Lower Respiratory Tract Samples of SARS-CoV-2-Positive Patients Admitted to an Intensive Care Unit. Microorganisms 2024; 12:714. [PMID: 38674658 PMCID: PMC11051806 DOI: 10.3390/microorganisms12040714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Shortly after the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cases of viral, bacterial, and fungal coinfections in hospitalized patients became evident. This retrospective study investigates the prevalence of multiple pathogen co-detections in 1472 lower respiratory tract (LRT) samples from 229 SARS-CoV-2-positive patients treated in the largest intensive care unit (ICU) in Slovenia. In addition to SARS-CoV-2, (rt)RT-PCR tests were used to detect cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus 1 (HSV-1), herpes simplex virus 2 (HSV-2), varicella zoster virus (VZV), and atypical bacteria: Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella pneumophila/spp. At least one co-detection was observed in 89.1% of patients. EBV, HSV-1, and CMV were the most common, with 74.7%, 58.1%, and 38.0% of positive patients, respectively. The median detection time of EBV, HSV-1, and CMV after initial SARS-CoV-2 confirmation was 11 to 20 days. Bronchoalveolar lavage (BAL) and tracheal aspirate (TA) samples showed equivalent performance for the detection of EBV, CMV, and HSV-1 in patients with both available samples. Our results indicate that SARS-CoV-2 infection could be a risk factor for latent herpesvirus reactivation, especially HSV-1, EBV, and CMV. However, additional studies are needed to elucidate the clinical importance of these findings.
Collapse
Affiliation(s)
- Gašper Grubelnik
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (G.G.); (M.K.); (R.K.); (M.J.V.); (T.U.); (D.K.); (K.S.); (M.P.)
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (G.G.); (M.K.); (R.K.); (M.J.V.); (T.U.); (D.K.); (K.S.); (M.P.)
| | - Rok Kogoj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (G.G.); (M.K.); (R.K.); (M.J.V.); (T.U.); (D.K.); (K.S.); (M.P.)
| | - Tina Polanc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (G.G.); (M.K.); (R.K.); (M.J.V.); (T.U.); (D.K.); (K.S.); (M.P.)
| | - Matej Mavrič
- Department of Infectious Diseases, Ljubljana University Medical Center, Japljeva Ulica 2, 1000 Ljubljana, Slovenia; (M.M.); (M.J.)
| | - Monika Jevšnik Virant
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (G.G.); (M.K.); (R.K.); (M.J.V.); (T.U.); (D.K.); (K.S.); (M.P.)
| | - Tina Uršič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (G.G.); (M.K.); (R.K.); (M.J.V.); (T.U.); (D.K.); (K.S.); (M.P.)
| | - Darja Keše
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (G.G.); (M.K.); (R.K.); (M.J.V.); (T.U.); (D.K.); (K.S.); (M.P.)
| | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (G.G.); (M.K.); (R.K.); (M.J.V.); (T.U.); (D.K.); (K.S.); (M.P.)
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (G.G.); (M.K.); (R.K.); (M.J.V.); (T.U.); (D.K.); (K.S.); (M.P.)
| | - Matjaž Jereb
- Department of Infectious Diseases, Ljubljana University Medical Center, Japljeva Ulica 2, 1000 Ljubljana, Slovenia; (M.M.); (M.J.)
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (G.G.); (M.K.); (R.K.); (M.J.V.); (T.U.); (D.K.); (K.S.); (M.P.)
| |
Collapse
|
4
|
Nieto-Rivera B, Saldaña-Ahuactzi Z, Parra-Ortega I, Flores-Alanis A, Carbajal-Franco E, Cruz-Rangel A, Galaviz-Hernández S, Romero-Navarro B, de la Rosa-Zamboni D, Salazar-García M, Contreras CA, Ortega-Riosvelasco F, López-Martínez I, Barrera-Badillo G, Diaz-Garcia H, Romo-Castillo M, Moreno-Espinosa S, Luna-Pineda VM. Frequency of respiratory virus-associated infection among children and adolescents from a tertiary-care hospital in Mexico City. Sci Rep 2023; 13:19763. [PMID: 37957308 PMCID: PMC10643542 DOI: 10.1038/s41598-023-47035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
Acute respiratory infections (ARIs) are a major cause of morbidity and mortality among children. The causative pathogens show geographic and seasonal variations. We retrospectively evaluated the frequency and seasonality of respiratory pathogens in children and adolescents (age: 0-19 years) with ARIs treated between January 1, 2021, and March 31, 2022, at a single center in Mexico. Out of 2400 patients, 1,603 were diagnosed with SARS-CoV-2 infection and 797 were diagnosed with other common respiratory pathogens (CRPs). Of the 797 patients, 632 were infected with one CRP and 165 with > 2 CRPs. Deaths occurred only in SARS-CoV-2-infected patients. Rhinovirus/Enterovirus, respiratory syncytial virus B, and parainfluenza virus 3 were the most prevalent in cases with single and multiple infections. CRP showed a high frequency between autumn and winter of 2021, with higher incidence of hospitalization compared to COVID-19. The main comorbidities were immunosuppression, cardiovascular disease (CD), and asthma. The frequency of CRPs showed a downward trend throughout the first half of 2021. CRPs increased in single- and co-infection cases between the fourth and fifth waves of COVID-19, probably due to decreased nonpharmaceutical interventions and changes in diagnostic tests. Age, cyanosis (symptom), and immunosuppression (comorbidity) were found to differentiate between SARS-CoV-2 infection and CRP infection.
Collapse
Affiliation(s)
- Brenda Nieto-Rivera
- Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Zeus Saldaña-Ahuactzi
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Santa Inés Tecuexcomac, Tepetitla de Lardizábal, Tlaxcala, México
| | - Israel Parra-Ortega
- Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Alejandro Flores-Alanis
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ebzadrel Carbajal-Franco
- Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Armando Cruz-Rangel
- Laboratorio de Bioquímica de Enfermedades Crónicas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | | | - Benjamín Romero-Navarro
- Subdirección de Servicios Auxiliares de Diagnóstico, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Daniela de la Rosa-Zamboni
- Subdirección de Atención Integral al Paciente, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Marcela Salazar-García
- Laboratorio de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Carmen A Contreras
- Facultad de Medicina, Universidad Privada Antenor Orrego, Trujillo, Peru
| | | | - Irma López-Martínez
- Dirección de Diagnóstico y Referencia, Instituto de Diagnóstico y Referencia Epidemiológicos, Ciudad de México, México
| | - Gisela Barrera-Badillo
- Laboratorio de Virus Respiratorios, Instituto de Diagnóstico y Referencia Epidemiológicos, Ciudad de México, México
| | - Hector Diaz-Garcia
- Centro de Investigación en Malformaciones Congénitas, Hospital Infantil de México Federico Gómez, Ciudad de México, México
- Escuela Superior de Enfermería y Obstetricia, Instituto Politécnico Nacional, Ciudad de México, México
| | - Mariana Romo-Castillo
- Laboratorio de Investigación en COVID-19, Laboratorio de Investigación en Inmunología y Proteomica, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | | | - Victor M Luna-Pineda
- Laboratorio de Investigación en COVID-19, Laboratorio de Investigación en Inmunología y Proteomica, Hospital Infantil de México Federico Gómez, Ciudad de México, México.
| |
Collapse
|
5
|
Shin S, Koo S, Yang YJ, Lim HJ. Characteristics of the Mycoplasma pneumoniae Epidemic from 2019 to 2020 in Korea: Macrolide Resistance and Co-Infection Trends. Antibiotics (Basel) 2023; 12:1623. [PMID: 37998825 PMCID: PMC10669541 DOI: 10.3390/antibiotics12111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
Mycoplasma pneumoniae, a major etiological agent of community-acquired pneumonia, exhibits distinct cyclic epidemic patterns recurring every three to five years. Several cases of co-infection with severe acute respiratory syndrome coronavirus 2 have been reported globally, resulting in unfavorable clinical manifestations. This study investigated the epidemiological features of the recent M. pneumoniae outbreak (May 2019-April 2020) using retrospective data from the last five years. Molecular test data for macrolide resistance and co-infection were obtained from the Seegene Medical Foundation. National medical expenditure and hospitalization rates were analyzed using data from The Health Insurance Review and Assessment Service of Korea. The macrolide resistance rate was 69.67%, peaking at 71.30% during the epidemic period, which was considerably higher than the 60.89% rate during non-epidemic periods. The co-infection rate with other respiratory pathogens was 88.49%; macrolide-resistant M. pneumoniae strains showed a 2.33% higher co-infection rate than the susceptible strains. The epidemic period had 15.43% higher hospitalization and 78.27% higher medical budget expenditure per patient than non-epidemic periods. The increased rates of macrolide resistance and co-infection observed in macrolide-resistant M. pneumoniae during the epidemic period highlight the importance of monitoring future outbreaks, especially considering macrolide resistance and the risk of co-infection with other pathogens.
Collapse
Affiliation(s)
- Soyoun Shin
- Daejeon & Chungcheong Reference Lab., Seegene Medical Foundation, Daejeon 35203, Republic of Korea;
| | - Sunhoe Koo
- Daejeon & Chungcheong Reference Lab., Seegene Medical Foundation, Daejeon 35203, Republic of Korea;
| | - Yong-Jin Yang
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (Y.-J.Y.); (H.-J.L.)
| | - Ho-Jae Lim
- Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea; (Y.-J.Y.); (H.-J.L.)
| |
Collapse
|
6
|
Antuori A, Giménez M, Linares G, Cardona PJ. Characterization of respiratory bacterial co-infection and assessment of empirical antibiotic treatment in patients with COVID-19 at hospital admission. Sci Rep 2023; 13:19302. [PMID: 37935785 PMCID: PMC10630415 DOI: 10.1038/s41598-023-46692-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
Accurate characterization of respiratory bacterial co-infection is critical for guiding empirical antibiotic treatment for hospitalised patients with coronavirus disease 2019 (COVID-19). We retrospectively assessed the clinical and analytical predictors of respiratory bacterial co-infection and described the empirical use of antibiotics in COVID-19 hospitalised patients. Respiratory bacterial co-infection was documented in 6.9% (80/1157) of the patients. The predominant bacteria isolates were Haemophilus influenzae, followed by Streptococcus pneumoniae and Pseudomonas aeruginosa. Respiratory bacterial co-infection was associated with having had a positive culture for a respiratory pathogen in the last year (OR = 25.89), dyslipidaemia (OR = 2.52), heart failure (OR = 7.68), ferritin levels < 402 ng/mL (OR = 2.28), leukocyte count > 8.7 × 109/L (OR = 2.4), and patients with chronic obstructive pulmonary disease treated with inhaled corticosteroids (OR = 12.94). Empirical antibiotic treatment was administered in 42.33% of patients, although it declined across the distinct study periods (p < 0.001). Patients admitted to intensive care units harbouring co-infection exhibited worse outcomes and more bacterial secondary infections. In conclusion, respiratory bacterial co-infection prevalence was low, although it could lead to unfavourable outcomes. Moreover, the percentage of empirical antibiotic treatment remained high. The study's findings allowed the identification of several predictors for respiratory bacterial co-infection and could help implement adequate antibiotic stewardship measures.
Collapse
Affiliation(s)
- Adrián Antuori
- Microbiology Department, Clinical Laboratory North Metropolitan Area, Germans Trias i Pujol University Hospital, 08916, Badalona, Spain.
| | - Montserrat Giménez
- Microbiology Department, Clinical Laboratory North Metropolitan Area, Germans Trias i Pujol University Hospital, 08916, Badalona, Spain
| | - Georgina Linares
- Microbiology Department, Clinical Laboratory North Metropolitan Area, Germans Trias i Pujol University Hospital, 08916, Badalona, Spain
| | - Pere-Joan Cardona
- Microbiology Department, Clinical Laboratory North Metropolitan Area, Germans Trias i Pujol University Hospital, 08916, Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029, Madrid, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08913, Cerdanyola del Vallès, Spain
| |
Collapse
|
7
|
Van Laethem J, Pierreux J, Wuyts SC, De Geyter D, Allard SD, Dauby N. Using risk factors and markers to predict bacterial respiratory co-/superinfections in COVID-19 patients: is the antibiotic steward's toolbox full or empty? Acta Clin Belg 2023; 78:418-430. [PMID: 36724448 DOI: 10.1080/17843286.2023.2167328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/07/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Adequate diagnosis of bacterial respiratory tract co-/superinfection (bRTI) in coronavirus disease (COVID-19) patients is challenging, as there is insufficient knowledge about the role of risk factors and (para)clinical parameters in the identification of bacterial co-/superinfection in the COVID-19 setting. Empirical antibiotic therapy is mainly based on COVID-19 severity and expert opinion, rather than on scientific evidence generated since the start of the pandemic. PURPOSE We report the best available evidence regarding the predictive value of risk factors and (para)clinical markers in the diagnosis of bRTI in COVID-19 patients. METHODS A multidisciplinary team identified different potential risk factors and (para)clinical predictors of bRTI in COVID-19 and formulated one or two research questions per topic. After a thorough literature search, research gaps were identified, and suggestions concerning further research were formulated. The quality of this narrative review was ensured by following the Scale for the Assessment of Narrative Review Articles. RESULTS Taking into account the scarcity of scientific evidence for markers and risk factors of bRTI in COVID-19 patients, to date, COVID-19 severity is the only parameter which can be associated with higher risk of developing bRTI. CONCLUSIONS Evidence on the usefulness of risk factors and (para)clinical factors as predictors of bRTI in COVID-19 patients is scarce. Robust studies are needed to optimise antibiotic prescribing and stewardship activities in the context of COVID-19.
Collapse
Affiliation(s)
- Johan Van Laethem
- Department of Internal Medicine and Infectious Diseases, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Jan Pierreux
- Department of Internal Medicine and Infectious Diseases, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Stephanie Cm Wuyts
- Universitair Ziekenhuis Brussel (UZ Brussel), Hospital Pharmacy, Brussels, Belgium
- Research group Clinical Pharmacology and Pharmacotherapy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Deborah De Geyter
- Microbiology and Infection Control Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Sabine D Allard
- Department of Internal Medicine and Infectious Diseases, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Nicolas Dauby
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Infectious Diseases, CHU Saint-Pierre - Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
8
|
Khan A, El Hosseiny A, Siam R. Assessing and Reassessing the Association of Comorbidities and Coinfections in COVID-19 Patients. Cureus 2023; 15:e36683. [PMID: 37113367 PMCID: PMC10126732 DOI: 10.7759/cureus.36683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2023] [Indexed: 03/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has posed an enormous global health and economic burden. To date, 324 million confirmed cases and over 5.5 million deaths have been reported. Several studies have reported comorbidities and coinfections associated with complicated and serious COVID-19 infections. Data from retrospective, prospective, case series, and case reports from various geographical locations were assessed, which included ~ 2300 COVID-19 patients with varying comorbidities and coinfection. We report that Enterobacterales with Staphylococcus aureus was the most while Mycoplasma pneumoniae was the least prevalent coinfection in COVID-19 patients with a comorbidity. In this order, hypertension, diabetes, cardiovascular disease, and pulmonary disease were the prevalent comorbidities observed in COVID-19 patients. There was a statistically significant difference in the prevalent comorbidities observed in patients coinfected with Staphylococcus aureus and COVID-19 and a statistically non-significant difference in the prevalent comorbidities in patients coinfected with Mycoplasma pneumoniae and COVID-19 as compared to similar infections in non-COVID-19 coinfection. We report a significant difference in the prevalent comorbidities recorded in COVID-19 patients with varying coinfections and varying geographic study regions. Our study provides informative data on the prevalence of comorbidities and coinfections in COVID-19 patients to aid in evidence-based patient management and care.
Collapse
|
9
|
Baccari O, Barkallah M, Elleuch J, Ben Ayed N, Chtourou A, Karray-Hakim H, Hammami A, Michaud P, Fendri I, Abdelkafi S. A new TaqMan real-time PCR assay to detect Parachlamydia acanthamoebae and to monitor its co-existence with SARS-COV-2 among COVID-19 patients. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17564-17572. [PMID: 36195814 PMCID: PMC9532228 DOI: 10.1007/s11356-022-23227-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Human respiratory infections caused by a large variety of microbial pathogens are the most common diseases responsible for hospitalization, morbidity and mortality. Parachlamydia acanthamoebae, a Chlamydia-related bacterium, has been found to be potentially associated with these diseases. An early and accurate diagnosis of this pathogen could be useful to avoid the potential respiratory complications linked especially to COVID-19 patients and to set suitable outbreak control measures. A TaqMan-PCR assay was developed to detect and quantify Parachlamydia acanthamoebae in environmental and clinical samples from patients of all ages with COVID-19. The selected hydrolysis probe displayed no cross-reaction with the closely related Chlamydia or the other tested pathogens. This q-PCR achieved good reproducibility and repeatability with a detection limit of about 5 DNA copies per reaction. Using this q-PCR assay, Parachlamydia acanthamoebae was detected in 2/78 respiratory specimens and 9/47 water samples. Only one case (1.3%) of Parachlamydia acanthamoebae and SARS-COV-2 co-infection was noticed. To our knowledge, the combination of these two respiratory pathogens has not been described yet. This new TaqMan-PCR assay represents an efficient diagnostic tool to survey Parachlamydia acanthamoebae on a large-scale screening programs and also during outbreaks.
Collapse
Affiliation(s)
- Olfa Baccari
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Nourelhouda Ben Ayed
- Laboratory of Microbiology, Faculty of Medicine of Sfax, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Amel Chtourou
- Laboratory of Microbiology, Faculty of Medicine of Sfax, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Héla Karray-Hakim
- Laboratory of Microbiology, Faculty of Medicine of Sfax, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Adenene Hammami
- Laboratory of Microbiology, Faculty of Medicine of Sfax, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000, Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologie Végétale Appliquée à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.
| |
Collapse
|
10
|
Iacovelli A, Oliva A, Siccardi G, Tramontano A, Pellegrino D, Mastroianni CM, Venditti M, Palange P. Risk factors and effect on mortality of superinfections in a newly established COVID-19 respiratory sub-intensive care unit at University Hospital in Rome. BMC Pulm Med 2023; 23:30. [PMID: 36670381 PMCID: PMC9854038 DOI: 10.1186/s12890-023-02315-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Little is known on the burden of co-infections and superinfections in a specific setting such as the respiratory COVID-19 sub-intensive care unit. This study aims to (i) assess the prevalence of concurrent and superinfections in a respiratory sub-intensive care unit, (ii) evaluate the risk factors for superinfections development and (iii) assess the impact of superinfections on in-hospital mortality. METHODS Single-center retrospective analysis of prospectively collected data including COVID-19 patients hospitalized in a newly established respiratory sub-intensive care unit managed by pneumologists which has been set up from September 2020 at a large (1200 beds) University Hospital in Rome. Inclusion criteria were: (i) COVID-19 respiratory failure and/or ARDS; (ii) hospitalization in respiratory sub-intensive care unit and (iii) age > 18 years. Survival was analyzed by Kaplan-Meier curves and the statistical significance of the differences between the two groups was assessed using the log-rank test. Multivariable logistic regression and Cox regression model were performed to tease out the independent predictors for superinfections' development and for mortality, respectively. RESULTS A total of 201 patients were included. The majority (106, 52%) presented severe COVID-19. Co-infections were 4 (1.9%), whereas 46 patients (22%) developed superinfections, mostly primary bloodstream infections and pneumonia. In 40.6% of cases, multi-drug resistant pathogens were detected, with carbapenem-resistant Acinetobacter baumannii (CR-Ab) isolated in 47%. Overall mortality rate was 30%. Prior (30-d) infection and exposure to antibiotic therapy were independent risk factors for superinfection development whereas the development of superinfections was an independent risk factors for in-hospital mortality. CR-Ab resulted independently associated with 14-d mortality. CONCLUSION In a COVID-19 respiratory sub-intensive care unit, superinfections were common and represented an independent predictor of mortality. CR-Ab infections occurred in almost half of patients and were associated with high mortality. Infection control rules and antimicrobial stewardship are crucial in this specific setting to limit the spread of multi-drug resistant organisms.
Collapse
Affiliation(s)
- Alessandra Iacovelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
- Infective Diseases Unit, Policlinico Umberto I Hospital Rome, 00185, Rome, Lazio, Italy.
| | - Guido Siccardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Infective Diseases Unit, Policlinico Umberto I Hospital Rome, 00185, Rome, Lazio, Italy
| | - Angela Tramontano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Daniela Pellegrino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Infective Diseases Unit, Policlinico Umberto I Hospital Rome, 00185, Rome, Lazio, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Infective Diseases Unit, Policlinico Umberto I Hospital Rome, 00185, Rome, Lazio, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| |
Collapse
|
11
|
Alsayed AR, Hasoun L, Khader HA, Abu-Samak MS, Al-Shdifat LM, Al-Shammari B, Maqbali MA. Co-infection of COVID-19 patients with atypical bacteria: A study based in Jordan. Pharm Pract (Granada) 2023; 21:2753. [PMID: 37090467 PMCID: PMC10117357 DOI: 10.18549/pharmpract.2023.1.2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 04/25/2023] Open
Abstract
Objective The aim of this work was to know the prevalence of Chlamydophila pneumoniae and Mycoplasma pneumoniae in coronavirus disease 2019 (COVID-19) patients in Jordan. Also, to assess a TaqMan real-time polymerase chain reaction (PCR) assay in detecting these two bacteria. Methods This is a retrospective study performed over the last five months of the 2021. All nasopharyngeal specimens from COVID-19 patients were tested for C. pneumonia, and M. pneumoniae. The C. pneumoniae Pst-1 gene and M. pneumoniae P1 cytadhesin protein gene were the targets. Results In this study, 14 out of 175 individuals with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (8.0%) were co-infected with C. pneumoniae or M. pneumoniae. Co-infection with SARS-CoV-2 and C. pneumoniae was reported in 5 (2.9%) patients, while 9 (5.1%) patients had M. pneumoniae and SARS-CoV-2 co-infection. The mean (± std) of the correlation coefficient of the calibration curve for real-time PCR analysis was -0.993 (± 0.001) for C. pneumoniae and -0.994 (± 0.003) for M. pneumoniae. The mean amplification efficiencies of C. pneumoniae and M. Pneumoniae were 187.62% and 136.86%, respectively. Conclusion In this first study based in Jordan, patients infected with COVID-19 have a low rate of atypical bacterial co-infection. However, clinicians should suspect co-infections with both common and uncommon bacteria in COVID-19 patients. Large prospective investigations are needed to give additional insight on the true prevalence of these co-infections and their impact on the clinical course of COVID-19 patients.
Collapse
Affiliation(s)
- Ahmad R Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931-166, Jordan. ,
| | - Luai Hasoun
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931-166, Jordan.
| | - Heba A Khader
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, PO Box 330127, Zarqa 13133, Jordan.
| | - Mahmoud S Abu-Samak
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931-166, Jordan.
| | - Laith Mh Al-Shdifat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931-166, Jordan.
| | - Basheer Al-Shammari
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931-166, Jordan.
| | - Mohammed Al Maqbali
- Department of Nursing Midwifery and Health, Northumbria University, Newcastle-Upon-Tyne, UK.
| |
Collapse
|
12
|
Aissaoui Y, Ennassimi Y, Myatt I, El Bouhiaoui M, Nabil M, Bahi M, Arsalane L, Miloudi M, Belhadj A. What happened during COVID-19 in African ICUs? An observational study of pulmonary co-infections, superinfections, and mortality in Morocco. PLoS One 2022; 17:e0278175. [PMID: 36454978 PMCID: PMC9714850 DOI: 10.1371/journal.pone.0278175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND There is a growing literature showing that critically ill COVID-19 patients have an increased risk of pulmonary co-infections and superinfections. However, studies in developing countries, especially African countries, are lacking. The objective was to describe the prevalence of bacterial co-infections and superinfections in critically ill adults with severe COVID-19 pneumonia in Morocco, the micro-organisms involved, and the impact of these infections on survival. METHODS This retrospective study included severe COVID-19 patients admitted to the intensive care unit (ICU) between April 2020 and April 2021. The diagnosis of pulmonary co-infections and superinfections was based on the identification of pathogens from lower respiratory tract samples. Co-infection was defined as the identification of a respiratory pathogen, diagnosed concurrently with SARS-Cov2 pneumonia. Superinfections include hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP). A multivariate regression analysis was performed to identify factors independently associated with mortality. RESULTS Data from 155 patients were analyzed. The median age was 68 years [62-72] with 87% of patients being male. A large proportion of patients (68%) received antibiotics before ICU admission. Regarding ventilatory management, the majority of patients (88%) underwent non-invasive ventilation (NIV). Sixty-five patients (42%) were placed under invasive mechanical ventilation, mostly after failure of NIV. The prevalence of co-infections, HAP and VAP was respectively 4%, 12% and 40% (64 VAP/1000 ventilation days). The most isolated pathogens were Enterobacterales for HAP and Acinetobacter sp. for VAP. The proportion of extra-drug resistant (XDR) bacteria was 78% for Acinetobacter sp. and 24% for Enterobacterales. Overall ICU mortality in this cohort was 64.5%. Patients with superinfection showed a higher risk of death (OR = 6.4, 95% CI: 1.8-22; p = 0.004). CONCLUSIONS In this single-ICU Moroccan COVID-19 cohort, bacterial co-infections were relatively uncommon. Conversely, high rates of superinfections were observed, with an increased frequency of antimicrobial resistance. Patients with superinfections showed a higher risk of death.
Collapse
Affiliation(s)
- Younes Aissaoui
- COVID-19 Intensive Care Unit, Avicenna Military Hospital, Marrakech, Morocco
- Biosciences and Health Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- * E-mail:
| | - Youssef Ennassimi
- COVID-19 Intensive Care Unit, Avicenna Military Hospital, Marrakech, Morocco
| | - Ismail Myatt
- COVID-19 Intensive Care Unit, Avicenna Military Hospital, Marrakech, Morocco
| | | | - Mehdi Nabil
- COVID-19 Intensive Care Unit, Avicenna Military Hospital, Marrakech, Morocco
| | - Mohammed Bahi
- COVID-19 Intensive Care Unit, Avicenna Military Hospital, Marrakech, Morocco
| | - Lamiae Arsalane
- Microbiology and Virology Department, Avicenna Military Hospital, Marrakech, Morocco
- Department of Microbiology, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Mouhcine Miloudi
- Microbiology and Virology Department, Avicenna Military Hospital, Marrakech, Morocco
- Department of Microbiology, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Ayoub Belhadj
- COVID-19 Intensive Care Unit, Avicenna Military Hospital, Marrakech, Morocco
- Biosciences and Health Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
13
|
Dracheva NA, Mazankova LN, Samitova ER, Osmanov IM, Klimova OI, Demina OI. Features of the course of COVID-19 in combination with respiratory mycoplasmosis in children. CHILDREN INFECTIONS 2022. [DOI: 10.22627/2072-8107-2022-21-4-8-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During the COVID-19 pandemic, the combination of infections caused by SARS-Cov-2 and M. rheimopiae is the subject of increased attention of clinicians. This article presents an observation of 37 children with COVID-19 in combination with respiratory mycoplasmosis (RM), the purpose of which was to identify the features of the course of combined infections compared with monoinfections. According to the results of the study, the similarity of the clinical picture of upper and lower respiratory tract lesions in the groups of combined infections and monoinfection COVID-19 was reliably established, which requires updating the examination and treatment plan in the study cohort of children.
Collapse
Affiliation(s)
- N. A. Dracheva
- Russian Medical Academy of Continuing Professional Education of the Ministry of Health of the Russian Federation
| | - L. N. Mazankova
- Russian Medical Academy of Continuing Professional Education of the Ministry of Health of the Russian Federation
| | - E. R. Samitova
- Russian Medical Academy of Continuing Professional Education of the Ministry of Health of the Russian Federation; Children's City Clinical Hospital named after Z. A. Bashlyaeva
| | - I. M. Osmanov
- Children's City Clinical Hospital named after Z. A. Bashlyaeva
| | - O. I. Klimova
- Children's City Clinical Hospital named after Z. A. Bashlyaeva
| | - O. I. Demina
- Russian Medical Academy of Continuing Professional Education of the Ministry of Health of the Russian Federation
| |
Collapse
|
14
|
Long COVID and the Neuroendocrinology of Microbial Translocation Outside the GI Tract: Some Treatment Strategies. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Similar to previous pandemics, COVID-19 has been succeeded by well-documented post-infectious sequelae, including chronic fatigue, cough, shortness of breath, myalgia, and concentration difficulties, which may last 5 to 12 weeks or longer after the acute phase of illness. Both the psychological stress of SARS-CoV-2 infection and being diagnosed with COVID-19 can upregulate cortisol, a stress hormone that disrupts the efferocytosis effectors, macrophages, and natural killer cells, leading to the excessive accumulation of senescent cells and disruption of biological barriers. This has been well-established in cancer patients who often experience unrelenting fatigue as well as gut and blood–brain barrier dysfunction upon treatment with senescence-inducing radiation or chemotherapy. In our previous research from 2020 and 2021, we linked COVID-19 to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) via angiotensin II upregulation, premature endothelial senescence, intestinal barrier dysfunction, and microbial translocation from the gastrointestinal tract into the systemic circulation. In 2021 and 2022, these hypotheses were validated and SARS-CoV-2-induced cellular senescence as well as microbial translocation were documented in both acute SARS-CoV-2 infection, long COVID, and ME/CFS, connecting intestinal barrier dysfunction to disabling fatigue and specific infectious events. The purpose of this narrative review is to summarize what is currently known about host immune responses to translocated gut microbes and how these responses relate to fatiguing illnesses, including long COVID. To accomplish this goal, we examine the role of intestinal and blood–brain barriers in long COVID and other illnesses typified by chronic fatigue, with a special emphasis on commensal microbes functioning as viral reservoirs. Furthermore, we discuss the role of SARS-CoV-2/Mycoplasma coinfection in dysfunctional efferocytosis, emphasizing some potential novel treatment strategies, including the use of senotherapeutic drugs, HMGB1 inhibitors, Toll-like receptor 4 (TLR4) blockers, and membrane lipid replacement.
Collapse
|
15
|
Varela FH, Sartor ITS, Polese-Bonatto M, Azevedo TR, Kern LB, Fazolo T, de David CN, Zavaglia GO, Fernandes IR, Krauser JRM, Stein RT, Scotta MC. Rhinovirus as the main co-circulating virus during the COVID-19 pandemic in children. J Pediatr (Rio J) 2022; 98:579-586. [PMID: 35490727 PMCID: PMC9015957 DOI: 10.1016/j.jped.2022.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Changes in the epidemiology of respiratory infections during the restrictions imposed as a response to the coronavirus disease 2019 (COVID-19) pandemic have been reported elsewhere. The present study's aim was to describe the prevalence of a large array of respiratory pathogens in symptomatic children and adolescents during the pandemic in Southern Brazil. METHODS Hospitalized and outpatients aged 2 months to 18 years with signs and symptoms of acute COVID-19 were prospectively enrolled in the study from May to November 2020 in two hospitals in a large metropolitan area in a Brazilian city. All participants performed a real-time PCR panel assessing 20 respiratory pathogens (three bacteria and 17 viruses). RESULTS 436 participants were included, with 45 of these hospitalized. Rhinovirus was the most prevalent pathogen (216/436) followed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, 97/436), with a coinfection of these two viruses occurring in 31/436 participants. The remaining pathogens were found in 24 symptomatic participants (adenovirus, n = 6; Chlamydophila pneumoniae, n = 1; coronavirus NL63, n = 2; human enterovirus, n = 7; human metapneumovirus, n = 2; Mycoplasma pneumoniae, n = 6). Hospitalization was more common among infants (p = 0.004) and those with pathogens other than SARS-CoV-2 (p = 0.001). CONCLUSION During the period of social distancing in response to COVID-19, the prevalence of most respiratory pathogens was unusually low. Rhinovirus remained as the main virus co-circulating with SARS-CoV-2. COVID-19 in symptomatic children was less associated with hospitalization than with other respiratory infections in children and adolescents.
Collapse
Affiliation(s)
- Fernanda Hammes Varela
- Social Responsibility, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil; Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | - Tiago Fazolo
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | | | | | - Renato T Stein
- Social Responsibility, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil; Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo Comerlato Scotta
- Social Responsibility, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil; Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
16
|
Sreenath K, Kabra SK, Dey AB, Chandolia A, Sagar T, Singh V, Ghimire JJ, Guleria R, Chaudhry R. Mycoplasma pneumoniae among Hospitalized Patients with Acute Respiratory Tract Infections in an Indian Tertiary Care Hospital: an Underreported Health Problem. Microbiol Spectr 2022; 10:e0158922. [PMID: 35867428 PMCID: PMC9430479 DOI: 10.1128/spectrum.01589-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
The epidemiology of Mycoplasma pneumoniae (Mp) is poorly understood in India. The present study was conducted to identify the prevalence of Mp in a large set of patients with acute respiratory tract infections (ARI) in an Indian tertiary hospital. During 2015-2020, we tested throat swab specimens from patients with the clinical diagnosis of ARI (n = 1,098) by a real-time PCR and compared the demographic, clinical, laboratory, and outcome data of Mp-positive and Mp-negative patients. During the study period, 5% (55/1,098) of the tested samples were positive for Mp by PCR. School-aged children and young adults represented 36% (20/55) of the cases and 47.3% (26/55) of the cases were registered during the summer and monsoon. Among the Mp-positive patients, 61.8% (34/55) had underlying conditions; the most common were malignancy (n = 12; 21.8%) and hypertension (n = 6; 10.9%). Fever (98.2% versus 84.9%; P = 0.006), and pharyngitis (27.3% versus 16.3%; P = 0.034) were significantly common in the Mp-positive group than Mp-negative group. Among the Mp-positive group, 20% (11/55) of patients were admitted to an intensive care unit and a total of 7/55 (12.7%) patients received ventilatory support. The mortality in the Mp-positive cohort was 13.3%. The study provides baseline data regarding Mp prevalence and clinical characteristics. The application of molecular assays for diagnosing this pathogen among hospitalized patients with ARI could reduce inappropriate empirical antibiotic treatment and improve patient outcomes. Further large-scale studies are required to avoid the underdiagnosis of Mp infections in India and such studies should address some research gaps, such as macrolide resistance and molecular typing. IMPORTANCE M. pneumoniae (Mp) is a significant pathogen causing atypical pneumonia but by far these infections are underreported clinical entities in India. In the present study, we report the prevalence of Mp and describe the demographic and baseline clinical data of Mp-positive cases in an Indian tertiary care hospital. Our study may improve the clinician's awareness of this important agent of respiratory infection therefore timely and accurate diagnostic tools can be applied for patient management decisions and outcomes.
Collapse
Affiliation(s)
- K. Sreenath
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - S. K. Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - A. B. Dey
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Amita Chandolia
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Tanu Sagar
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Vishwajeet Singh
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Jagat Jeevan Ghimire
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary, Critical Care, and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
17
|
Role of Intracellular Pulmonary Pathogens during SARS-CoV-2 Infection in the First Pandemic Wave of COVID-19: Clinical and Prognostic Significance in a Case Series of 1200 Patients. Microorganisms 2022; 10:microorganisms10081636. [PMID: 36014055 PMCID: PMC9412488 DOI: 10.3390/microorganisms10081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Since 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic (COVID-19) has caused millions of deaths worldwide and is the second most serious pandemic after the Spanish flu. Despite SARS-CoV-2 infection having a dominant effect on morbidity and life-threatening outcomes, the role of bacterial co-infection in patients with COVID-19 is poorly understood. The present study aimed to verify the existence of bacterial co-infections and their possible role as cofactors worsening COVID-19-related clinical manifestations. Methods: All patients with suspected SARS-CoV-infection, hospitalised in COVID-19 wards at the Sant'Anna University Hospital of Ferrara, were retrospectively included in this single-centre study and their specific bacterial serologies were assessed. Univariate and logistic regression analyses were performed. Results: A total of 1204 individual records were retrieved. Among them, 959 were excluded because of a negative nasopharyngeal swab or missing data; of the eligible 245 patients, 51 were co-infected. Compared to patients with SARS-CoV-2 infection alone, those with Chlamydia pneumoniae or Mycoplasma pneumoniae co-infections had worse respiratory/radiological features and more intensive care unit admissions. However, the co-infection did not result in a higher mortality rate. Conclusions: The present study, comparing clinical, laboratory and radiological findings between patients with COVID-19 vs. those with co-infections (C. pneumoniae or M. pneumoniae) showed that, on admission, these features were worse in co-infected patients, although the mortality rate did not differ between the two groups.
Collapse
|
18
|
Sarton B, Grare M, Vardon-Bounes F, Gaubert A, Silva S, Crognier L, Riu B, Seguin T, Georges B, Minville V, Ruiz S. Co-Infection and Ventilator-Associated Pneumonia in Critically Ill COVID-19 Patients Requiring Mechanical Ventilation: A Retrospective Cohort Study. Biomedicines 2022; 10:1952. [PMID: 36009500 PMCID: PMC9405710 DOI: 10.3390/biomedicines10081952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/12/2022] Open
Abstract
Considering virus-related and drug-induced immunocompromised status of critically ill COVID-19 patients, we hypothesize that these patients would more frequently develop ventilator-associated pneumonia (VAP) than patients with ARDS from other viral causes. We conducted a retrospective observational study in two intensive care units (ICUs) from France, between 2017 and 2020. We compared bacterial co-infection at ICU admission and throughout the disease course of two retrospective longitudinally sampled groups of critically ill patients, who were admitted to ICU for either H1N1 or SARS-CoV-2 respiratory infection and depicted moderate-to-severe ARDS criteria upon admission. Sixty patients in the H1N1 group and 65 in the COVID-19 group were included in the study. Bacterial co-infection at the endotracheal intubation time was diagnosed in 33% of H1N1 and 16% COVID-19 patients (p = 0.08). The VAP incidence per 100 days of mechanical ventilation was 3.4 (2.2−5.2) in the H1N1 group and 7.2 (5.3−9.6) in the COVID-19 group (p < 0.004). The HR to develop VAP was of 2.33 (1.34−4.04) higher in the COVID-19 group (p = 0.002). Ten percent of H1N1 patients and 30% of the COVID-19 patients had a second episode of VAP (p = 0.013). COVID-19 patients have fewer bacterial co-infections upon admission, but the incidence of secondary infections increased faster in this group compared to H1N1 patients.
Collapse
Affiliation(s)
- Benjamine Sarton
- Réanimation Hôpital Purpan, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
| | - Marion Grare
- Plateau Technique Infectiologie, Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
- INSERM-INRA-ENVT-UPS: UMR1220, Institut de Recherche en Santé Digestive (IRSD), 31059 Toulouse, France
| | - Fanny Vardon-Bounes
- Réanimation Hôpital Rangueil, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
| | - Anna Gaubert
- Réanimation Hôpital Purpan, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
| | - Stein Silva
- Réanimation Hôpital Purpan, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
| | - Laure Crognier
- Réanimation Hôpital Rangueil, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
| | - Béatrice Riu
- Réanimation Hôpital Purpan, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
| | - Thierry Seguin
- Réanimation Hôpital Rangueil, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
| | - Bernard Georges
- Réanimation Hôpital Rangueil, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
| | - Vincent Minville
- Département Anesthésie Réanimation, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
| | - Stéphanie Ruiz
- Réanimation Hôpital Rangueil, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France
| |
Collapse
|
19
|
Frutos MC, Origlia J, Gallo Vaulet ML, Venuta ME, García MG, Armitano R, Cipolla L, Madariaga MJ, Cuffini C, Cadario ME. SARS-CoV-2 and Chlamydia pneumoniae co-infection: A review of the literature. Rev Argent Microbiol 2022; 54:247-257. [PMID: 35931565 PMCID: PMC9189145 DOI: 10.1016/j.ram.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/10/2022] [Accepted: 05/02/2022] [Indexed: 01/08/2023] Open
Abstract
Bacterial co-pathogens are commonly identified in viral respiratory infections and are important causes of morbid-mortality. The prevalence of Chlamydia (C.) pneumoniae infection in patients infected with SARS-CoV-2 has not been sufficiently studied. The objective of the present review was to describe the prevalence of C. pneumoniae in patients with coronavirus disease 2019 (COVID-19). A search in MEDLINE and Google Scholar databases for English language literature published between January 2020 and August 2021 was performed. Studies evaluating patients with confirmed COVID-19 and reporting the simultaneous detection of C. pneumoniae were included. Eleven articles were included in the systematic review (5 case cross-sectional studies and 6 retrospective studies). A total of 18 450 patients were included in the eleven studies. The detection of laboratory-confirmed C. pneumoniae infection varied between 1.78 and 71.4% of the total number of co-infections. The median age of patients ranged from 35 to 71 years old and 65% were male. Most of the studies reported one or more pre-existing comorbidities and the majority of the patients presented with fever, cough and dyspnea. Lymphopenia and eosinopenia were described in COVID-19 co-infected patients. The main chest CT scan showed a ground glass density shadow, consolidation and bilateral pneumonia. Most patients received empirical antibiotics. Bacterial co-infection was not associated with increased ICU admission and mortality. Despite frequent prescription of broad-spectrum empirical antimicrobials in patients with coronavirus 2-associated respiratory infections, there is a paucity of data to support the association with respiratory bacterial co-infection. Prospective evidence generation to support the development of an antimicrobial policy and appropriate stewardship interventions specific for the COVID-19 pandemic are urgently required.
Collapse
Affiliation(s)
- María Celia Frutos
- Instituto de Virología, Dr. J.M. Vanella, Facultad de Ciencias Médicas - Universidad Nacional de Córdoba, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Javier Origlia
- Cátedra de Patología de Aves y Pilíferos, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Lucia Gallo Vaulet
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Inmunología y Virología Clínica, Argentina
| | - María Elena Venuta
- Servicio de Microbiología, Hospital de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Miriam Gabriela García
- Laboratorio de Virología y Biología Molecular, Hospital Interzonal General Agudos Pedro Fiorito, Buenos Aires, Argentina
| | - Rita Armitano
- Departamento de Bacteriología, INEI-ANLIS Dr. Carlos G Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía Cipolla
- Departamento de Bacteriología, INEI-ANLIS Dr. Carlos G Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Julia Madariaga
- Sección Serología y Pruebas Biológicas, Instituto de Zoonosis Luis Pasteur, Ciudad Autónoma de Buenos Aires, Argentina
| | - Cecilia Cuffini
- Instituto de Virología, Dr. J.M. Vanella, Facultad de Ciencias Médicas - Universidad Nacional de Córdoba, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Estela Cadario
- Departamento de Bacteriología, INEI-ANLIS Dr. Carlos G Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
20
|
Second infection with SARS-CoV-2 wild-type is associated with increased disease burden after primary SARS-CoV-2/HBoV-1 coinfection, Cologne, Germany. Access Microbiol 2022. [DOI: 10.1099/acmi.0.000339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SARS-CoV-2 is the cause of the still-ongoing COVID-19 pandemic. To date reports on re-infections after full recovery from a previous COVID-19 course remain limited due to the fact that re-infections or second infections occur at the earliest between 3 to 24 months after full recovery while the pandemic lasts only since a year. Even less data are available on re-infections associated with emerging variants.
A 33-year-old previously healthy male patient was tested twice SARS-CoV-2 RNA positive with an 8 months symptom-free interval between the two COVID-19 episodes in our setting in Cologne, Germany. While the first episode was accompanied by a co-detection of human bocavirus and hardly any symptoms, the second episode was characterized by serious illness and severe flu-like symptoms, although hospitalization was not required. After the first episode no residual viral RNA was detected after the patient was released from quarantine. Follow up of the patient revealed a moderate but significant reduction of the lung volume and slightly impaired diffusion capacity.
Conclusion. While it is known that re-infections with SARS-CoV-2 may occur this is the first report of a co-detection of human bocavirus (HBoV) during a primary SARS-CoV-2 infection. The first, hardly symptomatic episode showed that co-infections do not necessarily initiate severe COVID-19 courses. The second more severe episode with serious flu-like symptoms could be explained by the sustained mild damage of the airways during the primary infection.
Collapse
|
21
|
Cai F, Shou X, Ye Q. Epidemiological Study on Mycoplasma pneumoniae and Chlamydia pneumoniae Infection of Hospitalized Children in a Single Center During the COVID-19 Pandemic. Front Cell Infect Microbiol 2022; 12:843463. [PMID: 35386684 PMCID: PMC8977740 DOI: 10.3389/fcimb.2022.843463] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Since the outbreak of COVID-19, a series of preventive and control measures in China have been used to effectively curb the spread of COVID-19. This study aimed to analyze the epidemiological characteristics of Mycoplasma pneumoniae (MP) and Chlamydia pneumoniae (CP) in hospitalized children with acute respiratory tract infection during the COVID-19 pandemic. Methods MP IgM antibody and CP IgM antibody were detected in all hospitalized children due to acute respiratory tract infection in the Children’s Hospital Affiliated to Zhejiang University from January 2019 to December 2020. These data were compared between 2019 and 2020 based on age and month. Results The overall detection rate of MP and CP in 2020 was significantly lower than that in 2019 (MP: 21.5% vs 32.9%, P<0.001; CP: 0.3% vs 0.9%, P<0.001). This study found a 4-fold reduction in the number of children positive for MP and a 7.5-fold reduction in the number of children positive for CP from 2019 to 2020. The positive cases were concentrated in children aged >1 year old. In 2019, the positive rate of MP was detected more commonly in children 3 years of age or older than in younger children. In 2020, the higher positive rate of MP reached a peak in the 3- to 6-year age group (35.3%). CP was detected predominantly in children aged 6 years older in 2019 and 2020, with positive rates of 4.8% and 2.6%, respectively. Meanwhile, the positive rates of MP in 2019 were detected more commonly in July, August and September, with 47.2%, 46.7% and 46.3%, respectively. Nevertheless, the positive rates of MP from February to December 2020 apparently decreased compared to those in 2019. The positive rates of CP were evenly distributed throughout the year, with 0.5%-1.6% in 2019 and 0.0%-2.1% in 2020. Conclusions A series of preventive and control measures for SARS-CoV-2 during the COVID-19 pandemic can not only contain the spread of SARS-CoV-2 but also sharply improve the infection of other atypical pathogens, including MP and CP.
Collapse
|
22
|
Pushparaj K, Kuchi Bhotla H, Arumugam VA, Pappusamy M, Easwaran M, Liu WC, Issara U, Rengasamy KRR, Meyyazhagan A, Balasubramanian B. Mucormycosis (black fungus) ensuing COVID-19 and comorbidity meets - Magnifying global pandemic grieve and catastrophe begins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150355. [PMID: 34818767 PMCID: PMC8443313 DOI: 10.1016/j.scitotenv.2021.150355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/25/2021] [Accepted: 09/11/2021] [Indexed: 05/02/2023]
Abstract
Post COVID-19, mucormycosis occurred after the SARS-CoV-2 has rampaged the human population and is a scorching problem among the pandemic globally, particularly among Asian countries. Invasive mucormycosis has been extensively reported from mild to severe COVID-19 survivors. The robust predisposing factor seems to be uncontrolled diabetes mellitus, comorbidity and immunosuppression acquired through steroid therapy. The prime susceptive reason for the increase of mucormycosis cases is elevated iron levels in the serum of the COVID survivors. A panoramic understanding of the infection has been elucidated based on clinical manifestation, genetic and non- genetic mechanisms of steroid drug administration, biochemical pathways and immune modulated receptor associations. This review lime-lights and addresses the "What", "Why", "How" and "When" about the COVID-19 associated mucormycosis (CAM) in a comprehensive manner with a pure intention to bring about awareness to the common public as the cases are inevitably and exponentially increasing in India and global countries as well. The article also unearthed the pathogenesis of mucormycosis and its association with the COVID-19 sequela, the plausible routes of entry, diagnosis and counter remedies to keep the infection at bay. Cohorts of case reports were analysed to spotlight the link between the pandemic COVID-19 and the nightmare-mucormycosis.
Collapse
Affiliation(s)
- Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Haripriya Kuchi Bhotla
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka 560076, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Manikantan Pappusamy
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka 560076, India
| | - Murugesh Easwaran
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Utthapon Issara
- Division of Food Science and Technology Management, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Private Bag X1106, Polokwane, Sovenga 0727, South Africa
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka 560076, India.
| | | |
Collapse
|
23
|
Yakovlev AS, Belyaletdinova IK, Mazankova LN, Samitova ER, Osmanov IM, Gavelya NV, Volok VP, Kolpakova ES, Shishova AA, Dracheva NA, Kozlovskaya LI, Karganova GG, Ishmukhametov AA. SARS-CoV-2 infection in children in Moscow in 2020: clinical features and impact on circulation of other respiratory viruses: SARS-CoV-2 infection in children in Moscow in 2020. Int J Infect Dis 2022; 116:331-338. [PMID: 34986407 PMCID: PMC8720385 DOI: 10.1016/j.ijid.2021.12.358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives This study aimed to estimate the impact of the COVID-19 pandemic on the circulation of non-SARS-CoV-2 respiratory viruses and the clinical characteristics of COVID-19 in hospitalized children. Methods A total of 226 and 864 children admitted to the Children's City Clinical Hospital with acute respiratory infection in September to November of 2018 and 2020 in Moscow were tested for respiratory viruses using multiplex polymerase chain reaction (PCR) and Mycoplasma pneumoniae/Chlamydia pneumoniae using enzyme-linked immunosorbent assay. Results The detection rate of non-SARS-CoV-2 viruses in 2020 was lower than in 2018, 16.9% versus 37.6%. An increase in the median age of children with respiratory viruses was observed during the pandemic (3 years vs 1 year). There was no significant difference in the frequency of intensive care unit (ICU) admission in children with SARS-CoV-2 and other respiratory virus infections (2.7% vs 2.9%). SARS-CoV-2 and human rhinoviruses, human metapneumoviruses, and human adenoviruses showed significantly lower than expected co-detection rates during co-circulation. An increase in body mass index (BMI) or bacterial coinfection leads to an increased risk of ICU admission and a longer duration of COVID-19 in children. Conclusions The COVID-19 pandemic led to significant changes in the epidemiological characteristics of non-SARS-CoV-2 respiratory viruses during the autumn peak of the 2020 pandemic, compared with the same period in 2018.
Collapse
Affiliation(s)
- Alexander S Yakovlev
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Ilmira K Belyaletdinova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Lyudmila N Mazankova
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Moscow, 125993, Russia; Z.A. Bashlyaeva Children's Municipal Clinical Hospital, Moscow, 125373, Russia.
| | - Elmira R Samitova
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Moscow, 125993, Russia; Z.A. Bashlyaeva Children's Municipal Clinical Hospital, Moscow, 125373, Russia.
| | - Ismail M Osmanov
- Z.A. Bashlyaeva Children's Municipal Clinical Hospital, Moscow, 125373, Russia.
| | - Nataly V Gavelya
- Z.A. Bashlyaeva Children's Municipal Clinical Hospital, Moscow, 125373, Russia
| | - Viktor P Volok
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Department of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Ekaterina S Kolpakova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow, 119991, Russia.
| | - Anna A Shishova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow, 119991, Russia.
| | - Natalia A Dracheva
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Moscow, 125993, Russia
| | - Liubov I Kozlovskaya
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow, 119991, Russia.
| | - Galina G Karganova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Department of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia; Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow, 119991, Russia.
| | - Aydar A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, Moscow, 119991, Russia.
| |
Collapse
|
24
|
Crosby J, Semon S, Ganti SS, Klauber-Choephel E, Abraham J. Mycoplasma pneumoniae COVID-19 Delta Variant Co-Infection Mimicking COVID-19 ARDS. J Investig Med High Impact Case Rep 2022; 10:23247096221129925. [PMID: 36218836 PMCID: PMC9554565 DOI: 10.1177/23247096221129925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
The Delta variant of COVID-19 has been associated with severe disease causing a surge in the second half of 2021. Atypical pathogens can be present in those in particular with severe ARDS and can contribute to excess morbidity and mortality. We must maintain a high level of suspicion for these pathogens as this can present an opportunity to dramatically improve the prognosis of a patient with COVID-19 ARDS. However, lend caution to Mycoplasma IgM serology as this can be a false-positive. If suspicion remains high for Mycoplasma pneumoniae infection, sputum polymerase chain reaction (PCR) for M pneumoniae is the gold standard for diagnosis. We present the case of a 42-year-old female with COVID-19 Delta variant presumed ARDS who had co-infection with M pneumoniae confirmed by endotracheal sputum aspirate PCR with rapidly improving oxygenation and extubation within 4 days of effective antibiotic therapy.
Collapse
Affiliation(s)
- James Crosby
- HCA Healthcare/USF Morsani College of
Medicine GME Programs, Tampa, FL, USA
| | - Sarah Semon
- HCA Healthcare/USF Morsani College of
Medicine GME Programs, Tampa, FL, USA
| | | | | | - James Abraham
- HCA Healthcare/USF Morsani College of
Medicine GME Programs, Tampa, FL, USA
| |
Collapse
|
25
|
Pérez-Lazo G, Silva-Caso W, del Valle-Mendoza J, Morales-Moreno A, Ballena-López J, Soto-Febres F, Martins-Luna J, Carrillo-Ng H, del Valle LJ, Kym S, Aguilar-Luis MA, Peña-Tuesta I, Tinco-Valdez C, Illescas LR. Identification of Coinfections by Viral and Bacterial Pathogens in COVID-19 Hospitalized Patients in Peru: Molecular Diagnosis and Clinical Characteristics. Antibiotics (Basel) 2021; 10:1358. [PMID: 34827296 PMCID: PMC8615059 DOI: 10.3390/antibiotics10111358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 01/14/2023] Open
Abstract
The impact of respiratory coinfections in COVID-19 is still not well understood despite the growing evidence that consider coinfections greater than expected. A total of 295 patients older than 18 years of age, hospitalized with a confirmed diagnosis of moderate/severe pneumonia due to SARS-CoV-2 infection (according to definitions established by the Ministry of Health of Peru) were enrolled during the study period. A coinfection with one or more respiratory pathogens was detected in 154 (52.2%) patients at hospital admission. The most common coinfections were Mycoplasma pneumoniae (28.1%), Chlamydia pneumoniae (8.8%) and with both bacteria (11.5%); followed by Adenovirus (1.7%), Mycoplasma pneumoniae/Adenovirus (0.7%), Chlamydia pneumoniae/Adenovirus (0.7%), RSV-B/Chlamydia pneumoniae (0.3%) and Mycoplasma pneumoniae/Chlamydia pneumoniae/Adenovirus (0.3%). Expectoration was less frequent in coinfected individuals compared to non-coinfected (5.8% vs. 12.8%). Sepsis was more frequent among coinfected patients than non-coinfected individuals (33.1% vs. 20.6%) and 41% of the patients who received macrolides empirically were PCR-positive for Mycoplasma pneumoniae and Chlamydia pneumoniae.
Collapse
Affiliation(s)
- Giancarlo Pérez-Lazo
- Division of Infectious Diseases, Guillermo Almenara Irigoyen National Hospital-EsSalud, Lima 15033, Peru; (A.M.-M.); (J.B.-L.); (F.S.-F.); (L.R.I.)
| | - Wilmer Silva-Caso
- Centre of Research and Innovation, Faculty of Health Sciences, School of Medicine, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (I.P.-T.); (C.T.-V.)
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima 15024, Peru;
| | - Juana del Valle-Mendoza
- Centre of Research and Innovation, Faculty of Health Sciences, School of Medicine, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (I.P.-T.); (C.T.-V.)
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima 15024, Peru;
| | - Adriana Morales-Moreno
- Division of Infectious Diseases, Guillermo Almenara Irigoyen National Hospital-EsSalud, Lima 15033, Peru; (A.M.-M.); (J.B.-L.); (F.S.-F.); (L.R.I.)
| | - José Ballena-López
- Division of Infectious Diseases, Guillermo Almenara Irigoyen National Hospital-EsSalud, Lima 15033, Peru; (A.M.-M.); (J.B.-L.); (F.S.-F.); (L.R.I.)
| | - Fernando Soto-Febres
- Division of Infectious Diseases, Guillermo Almenara Irigoyen National Hospital-EsSalud, Lima 15033, Peru; (A.M.-M.); (J.B.-L.); (F.S.-F.); (L.R.I.)
| | - Johanna Martins-Luna
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima 15024, Peru;
- Facultad de Ciencias de la Salud, Universidad Tecnológica del Perú, Lima 15046, Peru
| | - Hugo Carrillo-Ng
- Centre of Research and Innovation, Faculty of Health Sciences, School of Medicine, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (I.P.-T.); (C.T.-V.)
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima 15024, Peru;
| | - Luís J. del Valle
- Barcelona Research Center for Multiscale Science and Engineering, Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain;
| | - Sungmin Kym
- Korea International Cooperation for Infectious Diseases, Chungnam National University College of Medicine, Daejeon 305764, Korea;
| | - Miguel Angel Aguilar-Luis
- Centre of Research and Innovation, Faculty of Health Sciences, School of Medicine, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (I.P.-T.); (C.T.-V.)
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima 15024, Peru;
| | - Issac Peña-Tuesta
- Centre of Research and Innovation, Faculty of Health Sciences, School of Medicine, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (I.P.-T.); (C.T.-V.)
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima 15024, Peru;
| | - Carmen Tinco-Valdez
- Centre of Research and Innovation, Faculty of Health Sciences, School of Medicine, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru; (H.C.-N.); (M.A.A.-L.); (I.P.-T.); (C.T.-V.)
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima 15024, Peru;
| | - Luis Ricardo Illescas
- Division of Infectious Diseases, Guillermo Almenara Irigoyen National Hospital-EsSalud, Lima 15033, Peru; (A.M.-M.); (J.B.-L.); (F.S.-F.); (L.R.I.)
| |
Collapse
|
26
|
Chaudhry R, Sreenath K, Batra P, Vinayaraj EV, Rathor N, Saikiran K, Aravindan A, Singh V, Brijwal M, Soneja M, Verma N, Subramanium R, Singh UB, Guleria R. Atypical bacterial co-infections among patients with COVID-19: A study from India. J Med Virol 2021; 94:303-309. [PMID: 34491594 PMCID: PMC8661859 DOI: 10.1002/jmv.27324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/04/2021] [Indexed: 01/17/2023]
Abstract
Emerging evidence shows co‐infection with atypical bacteria in coronavirus disease 2019 (COVID‐19) patients. Respiratory illness caused by atypical bacteria such as Mycoplasma pneumoniae, Chlamydia pneumoniae, and Legionella pneumophila may show overlapping manifestations and imaging features with COVID‐19 causing clinical and laboratory diagnostic issues. We conducted a prospective study to identify co‐infections with SARS‐CoV‐2 and atypical bacteria in an Indian tertiary hospital. From June 2020 to January 2021, a total of 194 patients with laboratory‐confirmed COVID‐19 were also tested for atypical bacterial pathogens. For diagnosing M. pneumoniae, a real‐time polymerase chain reaction (PCR) assay and serology (IgM ELISA) were performed. C. pneumoniae diagnosis was made based on IgM serology. L. pneumophila diagnosis was based on PCR or urinary antigen testing. Clinical and epidemiological features of SARS‐CoV‐2 and atypical bacteria‐positive and ‐negative patient groups were compared. Of the 194 patients admitted with COVID‐19, 17 (8.8%) were also diagnosed with M. pneumoniae (n = 10) or C. pneumoniae infection (n = 7). Confusion, headache, and bilateral infiltrate were found more frequently in the SARS CoV‐2 and atypical bacteria co‐infection group. Patients in the M. pneumoniae or C. pneumoniae co‐infection group were more likely to develop ARDS, required ventilatory support, had a longer hospital length of stay, and higher fatality rate compared to patients with only SARS‐CoV‐2. Our report highlights co‐infection with bacteria causing atypical pneumonia should be considered in patients with SARS‐CoV‐2 depending on the clinical context. Timely identification of co‐existing pathogens can provide pathogen‐targeted treatment and prevent fatal outcomes of patients infected with SARS‐CoV‐2 during the current pandemic.
Collapse
Affiliation(s)
- Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - K Sreenath
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Priyam Batra
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - E V Vinayaraj
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Nisha Rathor
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Kvp Saikiran
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ajisha Aravindan
- Department of Anesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Vishwajeet Singh
- Department of Geriatric Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Megha Brijwal
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Manish Soneja
- Department of Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Nishant Verma
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rajeshwari Subramanium
- Department of Anesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Urvashi B Singh
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
27
|
Loconsole D, De Robertis AL, Sallustio A, Centrone F, Morcavallo C, Campanella S, Accogli M, Chironna M. Update on the Epidemiology of Macrolide-Resistant Mycoplasma pneumoniae in Europe: A Systematic Review. Infect Dis Rep 2021; 13:811-820. [PMID: 34562998 PMCID: PMC8482213 DOI: 10.3390/idr13030073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Macrolide-resistant Mycoplasma pneumoniae (MR-MP) infections cause upper and lower respiratory tract infections in both children and adults, and are characterized by a longer duration of symptoms. Here, we undertook a systematic review of studies on MR-MP in Europe. The review meets PRISMA guidelines. The PubMed, Scopus, and Science Direct databases were searched using suitable keywords to identify relevant studies published from 2010 to 2021; 21 studies were included. Overall, a low level of MR-MP spread was reported in Europe. MR-MP spread increased during epidemic waves registered in Europe, particularly in Italy and Scotland, where the highest MR-MP infection rates were registered during the 2010–2011 epidemic. By contrast, no MR-MP infections were reported in Finland and the Netherlands. Continued monitoring of MR-MP in Europe is needed to maintain the low rates of infection. Moreover, a coordinated and structured pan-European surveillance program adequate for public health surveillance is advisable, with the purpose of containing the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Daniela Loconsole
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Anna Lisa De Robertis
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Anna Sallustio
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy;
| | - Francesca Centrone
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Caterina Morcavallo
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Silvia Campanella
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Marisa Accogli
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
| | - Maria Chironna
- Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (D.L.); (A.L.D.R.); (F.C.); (C.M.); (S.C.); (M.A.)
- Correspondence: ; Tel.: +39-080-5478498; Fax: +39-080-5593887
| |
Collapse
|
28
|
Hoque MN, Akter S, Mishu ID, Islam MR, Rahman MS, Akhter M, Islam I, Hasan MM, Rahaman MM, Sultana M, Islam T, Hossain MA. Microbial co-infections in COVID-19: Associated microbiota and underlying mechanisms of pathogenesis. Microb Pathog 2021; 156:104941. [PMID: 33962007 PMCID: PMC8095020 DOI: 10.1016/j.micpath.2021.104941] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 01/08/2023]
Abstract
The novel coronavirus infectious disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has traumatized the whole world with the ongoing devastating pandemic. A plethora of microbial domains including viruses (other than SARS-CoV-2), bacteria, archaea and fungi have evolved together, and interact in complex molecular pathogenesis along with SARS-CoV-2. However, the involvement of other microbial co-pathogens and underlying molecular mechanisms leading to extortionate ailment in critically ill COVID-19 patients has yet not been extensively reviewed. Although, the incidence of co-infections could be up to 94.2% in laboratory-confirmed COVID-19 cases, the fate of co-infections among SARS-CoV-2 infected hosts often depends on the balance between the host's protective immunity and immunopathology. Predominantly identified co-pathogens of SARS-CoV-2 are bacteria such as Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae, Acinetobacter baumannii, Legionella pneumophila and Clamydia pneumoniae followed by viruses including influenza, coronavirus, rhinovirus/enterovirus, parainfluenza, metapneumovirus, influenza B virus, and human immunodeficiency virus. The cross-talk between co-pathogens (especially lung microbiomes), SARS-CoV-2 and host is an important factor that ultimately increases the difficulty of diagnosis, treatment, and prognosis of COVID-19. Simultaneously, co-infecting microbiotas may use new strategies to escape host defense mechanisms by altering both innate and adaptive immune responses to further aggravate SARS-CoV-2 pathogenesis. Better understanding of co-infections in COVID-19 is critical for the effective patient management, treatment and containment of SARS-CoV-2. This review therefore necessitates the comprehensive investigation of commonly reported microbial co-pathogens amid COVID-19, their transmission pattern along with the possible mechanism of co-infections and outcomes. Thus, identifying the possible co-pathogens and their underlying molecular mechanisms during SARS-CoV-2 pathogenesis may shed light in developing diagnostics, appropriate curative and preventive interventions for suspected SARS-CoV-2 respiratory infections in the current pandemic.
Collapse
Affiliation(s)
- M Nazmul Hoque
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh; Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Salma Akter
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh; Department of Microbiology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | | | - M Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - M Shaminur Rahman
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Masuda Akhter
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Israt Islam
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mehedi Mahmudul Hasan
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh; Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Mizanur Rahaman
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur, 1706, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh; Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
29
|
Alhumaid S, Al Mutair A, Al Alawi Z, Alshawi AM, Alomran SA, Almuhanna MS, Almuslim AA, Bu Shafia AH, Alotaibi AM, Ahmed GY, Rabaan AA, Al-Tawfiq JA, Al-Omari A. Coinfections with Bacteria, Fungi, and Respiratory Viruses in Patients with SARS-CoV-2: A Systematic Review and Meta-Analysis. Pathogens 2021; 10:pathogens10070809. [PMID: 34202114 PMCID: PMC8308492 DOI: 10.3390/pathogens10070809] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Coinfection with bacteria, fungi, and respiratory viruses in SARS-CoV-2 is of particular importance due to the possibility of increased morbidity and mortality. In this meta-analysis, we calculated the prevalence of such coinfections. Methods: Electronic databases were searched from 1 December 2019 to 31 March 2021. Effect sizes of prevalence were pooled with 95% confidence intervals (CIs). To minimize heterogeneity, we performed sub-group analyses. Results: Of the 6189 papers that were identified, 72 articles were included in the systematic review (40 case series and 32 cohort studies) and 68 articles (38 case series and 30 cohort studies) were included in the meta-analysis. Of the 31,953 SARS-CoV-2 patients included in the meta-analysis, the overall pooled proportion who had a laboratory-confirmed bacterial infection was 15.9% (95% CI 13.6–18.2, n = 1940, 49 studies, I2 = 99%, p < 0.00001), while 3.7% (95% CI 2.6–4.8, n = 177, 16 studies, I2 = 93%, p < 0.00001) had fungal infections and 6.6% (95% CI 5.5–7.6, n = 737, 44 studies, I2 = 96%, p < 0.00001) had other respiratory viruses. SARS-CoV-2 patients in the ICU had higher co-infections compared to ICU and non-ICU patients as follows: bacterial (22.2%, 95% CI 16.1–28.4, I2 = 88% versus 14.8%, 95% CI 12.4–17.3, I2 = 99%), and fungal (9.6%, 95% CI 6.8–12.4, I2 = 74% versus 2.7%, 95% CI 0.0–3.8, I2 = 95%); however, there was an identical other respiratory viral co-infection proportion between all SARS-CoV-2 patients [(ICU and non-ICU) and the ICU only] (6.6%, 95% CI 0.0–11.3, I2 = 58% versus 6.6%, 95% CI 5.5–7.7, I2 = 96%). Funnel plots for possible publication bias for the pooled effect sizes of the prevalence of coinfections was asymmetrical on visual inspection, and Egger’s tests confirmed asymmetry (p values < 0.05). Conclusion: Bacterial co-infection is relatively high in hospitalized patients with SARS-CoV-2, with little evidence of S. aureus playing a major role. Knowledge of the prevalence and type of co-infections in SARS-CoV-2 patients may have diagnostic and management implications.
Collapse
Affiliation(s)
- Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
- Correspondence: ; Tel.: +966-561-522-581
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia; (A.A.M.); (G.Y.A.)
- College of Nursing, Princess Norah Bint Abdul Rahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Abeer M. Alshawi
- Department of Pharmacy, King Fahad Hofuf Hospital, Al-Ahsa 36441, Saudi Arabia; (A.M.A.); (S.A.A.)
| | - Salamah A. Alomran
- Department of Pharmacy, King Fahad Hofuf Hospital, Al-Ahsa 36441, Saudi Arabia; (A.M.A.); (S.A.A.)
| | - Mohammed S. Almuhanna
- Department of Pharmacy, Maternity and Children Hospital, Al-Ahsa 36422, Saudi Arabia; (M.S.A.); (A.A.A.)
| | - Anwar A. Almuslim
- Department of Pharmacy, Maternity and Children Hospital, Al-Ahsa 36422, Saudi Arabia; (M.S.A.); (A.A.A.)
| | | | - Abdullah M. Alotaibi
- Department of Pharmacy, Prince Sultan Cardiac Center, Al-Ahsa 36441, Saudi Arabia;
| | - Gasmelseed Y. Ahmed
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia; (A.A.M.); (G.Y.A.)
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia;
| | - Jaffar A. Al-Tawfiq
- Infectious Disease Unit, Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia;
- Infectious Disease Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Infectious Disease Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Awad Al-Omari
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Research Center, Dr. Sulaiman Al Habib Medical Group, Riyadh 11372, Saudi Arabia
| |
Collapse
|
30
|
Filardo S, Di Pietro M, Diaco F, Romano S, Sessa R. Oxidative Stress and Inflammation in SARS-CoV-2- and Chlamydia pneumoniae-Associated Cardiovascular Diseases. Biomedicines 2021; 9:biomedicines9070723. [PMID: 34202515 PMCID: PMC8301438 DOI: 10.3390/biomedicines9070723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Throughout the years, a growing number of studies have provided evidence that oxidative stress and inflammation may be involved in the pathogenesis of infectious agent-related cardiovascular diseases. Amongst the numerous respiratory pathogens, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus responsible for the global ongoing pandemic, and Chlamydia pneumoniae, a widely known intracellular obligate bacteria, seem to have an essential role in promoting reactive oxygen species and cytokine production. The present review highlights the common oxidative and inflammatory molecular pathways underlying the cardiovascular diseases associated with SARS-CoV-2 or C. pneumoniae infections. The main therapeutic and preventive approaches using natural antioxidant compounds will be also discussed.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, University of Rome “Sapienza”, P.le Aldo Moro, 5, 00185 Rome, Italy; (M.D.P.); (F.D.); (R.S.)
- Correspondence:
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, University of Rome “Sapienza”, P.le Aldo Moro, 5, 00185 Rome, Italy; (M.D.P.); (F.D.); (R.S.)
| | - Fabiana Diaco
- Department of Public Health and Infectious Diseases, University of Rome “Sapienza”, P.le Aldo Moro, 5, 00185 Rome, Italy; (M.D.P.); (F.D.); (R.S.)
| | - Silvio Romano
- Cardiology, Department of Life, Health and Environmental Sciences, University of L’Aquila, P.le Salvatore Tommasi, 1, 67100 L’Aquila, Italy;
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, University of Rome “Sapienza”, P.le Aldo Moro, 5, 00185 Rome, Italy; (M.D.P.); (F.D.); (R.S.)
| |
Collapse
|
31
|
Comparison of clinical features and outcomes in COVID-19 and influenza pneumonia patients requiring intensive care unit admission. Infection 2021; 49:965-975. [PMID: 34036458 PMCID: PMC8149291 DOI: 10.1007/s15010-021-01624-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Little is known in distinguishing clinical features and outcomes between coronavirus disease-19 (COVID-19) and influenza (FLU). MATERIALS/METHODS Retrospective, single-centre study including patients with COVID-19 or FLU pneumonia admitted to the Intensive care Unit (ICU) of Policlinico Umberto I (Rome). Aims were: (1) to assess clinical features and differences of patients with COVID-19 and FLU, (2) to identify clinical and/or laboratory factors associated with FLU or COVID-19 and (3) to evaluate 30-day mortality, bacterial superinfections, thrombotic events and invasive pulmonary aspergillosis (IPA) in patients with FLU versus COVID-19. RESULTS Overall, 74 patients were included (19, 25.7%, FLU and 55, 74.3%, COVID-19), median age 67 years (58-76). COVID-19 patients were more male (p = 0.013), with a lower percentage of COPD (Chronic Obstructive Pulmonary Disease) and chronic kidney disease (CKD) (p = 0.001 and p = 0.037, respectively) than FLU. SOFA score was higher (p = 0.020) and lymphocytes were significantly lower in FLU than in COVID-19 [395.5 vs 770.0 cells/mmc, p = 0.005]. At multivariable analysis, male sex (OR 6.1, p < 0.002), age > 65 years (OR 2.4, p = 0.024) and lymphocyte count > 725 cells/mmc at ICU admission (OR 5.1, p = 0.024) were significantly associated with COVID-19, whereas CKD and COPD were associated with FLU (OR 0.1 and OR 0.16, p = 0.020 and p < 0.001, respectively). No differences in mortality, bacterial superinfections and thrombotic events were observed, whereas IPA was mostly associated with FLU (31.5% vs 3.6%, p = 0.0029). CONCLUSIONS In critically ill patients, male sex, age > 65 years and lymphocytes > 725 cells/mmc are related to COVID-19. FLU is associated with a significantly higher risk of IPA than COVID-19.
Collapse
|
32
|
Musuuza JS, Watson L, Parmasad V, Putman-Buehler N, Christensen L, Safdar N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PLoS One 2021; 16:e0251170. [PMID: 33956882 PMCID: PMC8101968 DOI: 10.1371/journal.pone.0251170] [Citation(s) in RCA: 304] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/21/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION The recovery of other pathogens in patients with SARS-CoV-2 infection has been reported, either at the time of a SARS-CoV-2 infection diagnosis (co-infection) or subsequently (superinfection). However, data on the prevalence, microbiology, and outcomes of co-infection and superinfection are limited. The purpose of this study was to examine the occurrence of co-infections and superinfections and their outcomes among patients with SARS-CoV-2 infection. PATIENTS AND METHODS We searched literature databases for studies published from October 1, 2019, through February 8, 2021. We included studies that reported clinical features and outcomes of co-infection or superinfection of SARS-CoV-2 and other pathogens in hospitalized and non-hospitalized patients. We followed PRISMA guidelines, and we registered the protocol with PROSPERO as: CRD42020189763. RESULTS Of 6639 articles screened, 118 were included in the random effects meta-analysis. The pooled prevalence of co-infection was 19% (95% confidence interval [CI]: 14%-25%, I2 = 98%) and that of superinfection was 24% (95% CI: 19%-30%). Pooled prevalence of pathogen type stratified by co- or superinfection were: viral co-infections, 10% (95% CI: 6%-14%); viral superinfections, 4% (95% CI: 0%-10%); bacterial co-infections, 8% (95% CI: 5%-11%); bacterial superinfections, 20% (95% CI: 13%-28%); fungal co-infections, 4% (95% CI: 2%-7%); and fungal superinfections, 8% (95% CI: 4%-13%). Patients with a co-infection or superinfection had higher odds of dying than those who only had SARS-CoV-2 infection (odds ratio = 3.31, 95% CI: 1.82-5.99). Compared to those with co-infections, patients with superinfections had a higher prevalence of mechanical ventilation (45% [95% CI: 33%-58%] vs. 10% [95% CI: 5%-16%]), but patients with co-infections had a greater average length of hospital stay than those with superinfections (mean = 29.0 days, standard deviation [SD] = 6.7 vs. mean = 16 days, SD = 6.2, respectively). CONCLUSIONS Our study showed that as many as 19% of patients with COVID-19 have co-infections and 24% have superinfections. The presence of either co-infection or superinfection was associated with poor outcomes, including increased mortality. Our findings support the need for diagnostic testing to identify and treat co-occurring respiratory infections among patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jackson S. Musuuza
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States of America
| | - Lauren Watson
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Vishala Parmasad
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Nathan Putman-Buehler
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Leslie Christensen
- Ebling Library for the Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Nasia Safdar
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States of America
| |
Collapse
|
33
|
Feldman C, Anderson R. The role of co-infections and secondary infections in patients with COVID-19. Pneumonia (Nathan) 2021; 13:5. [PMID: 33894790 PMCID: PMC8068564 DOI: 10.1186/s41479-021-00083-w] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND It has been recognised for a considerable time-period, that viral respiratory infections predispose patients to bacterial infections, and that these co-infections have a worse outcome than either infection on its own. However, it is still unclear what exact roles co-infections and/or superinfections play in patients with COVID-19 infection. MAIN BODY This was an extensive review of the current literature regarding co-infections and superinfections in patients with SARS-CoV-2 infection. The definitions used were those of the Centers for Disease Control and Prevention (US), which defines coinfection as one occurring concurrently with the initial infection, while superinfections are those infections that follow on a previous infection, especially when caused by microorganisms that are resistant, or have become resistant, to the antibiotics used earlier. Some researchers have envisioned three potential scenarios of bacterial/SARS-CoV-2 co-infection; namely, secondary SARS-CoV-2 infection following bacterial infection or colonisation, combined viral/bacterial pneumonia, or secondary bacterial superinfection following SARS-CoV-2. There are a myriad of published articles ranging from letters to the editor to systematic reviews and meta-analyses describing varying ranges of co-infection and/or superinfection in patients with COVID-19. The concomitant infections described included other respiratory viruses, bacteria, including mycobacteria, fungi, as well as other, more unusual, pathogens. However, as will be seen in this review, there is often not a clear distinction made in the literature as to what the authors are referring to, whether true concomitant/co-infections or superinfections. In addition, possible mechanisms of the interactions between viral infections, including SARS-CoV-2, and other infections, particularly bacterial infections are discussed further. Lastly, the impact of these co-infections and superinfections in the severity of COVID-19 infections and their outcome is also described. CONCLUSION The current review describes varying rates of co-infections and/or superinfections in patients with COVID-19 infections, although often a clear distinction between the two is not clear in the literature. When they occur, these infections appear to be associated with both severity of COVID-19 as well as poorer outcomes.
Collapse
Affiliation(s)
- Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
34
|
Teng XQ, Gong WC, Qi TT, Li GH, Qu Q, Lu Q, Qu J. Clinical Analysis of Metagenomic Next-Generation Sequencing Confirmed Chlamydia psittaci Pneumonia: A Case Series and Literature Review. Infect Drug Resist 2021; 14:1481-1492. [PMID: 33888999 PMCID: PMC8057788 DOI: 10.2147/idr.s305790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Chlamydia psittaci infection is a zoonotic infectious disease, which mainly inhaled through the lungs when exposed to the secretions of poultry that carry pathogenic bacteria. The traditional respiratory specimens or serological antibody testing is slow, and the false-negative rate is high. Metagenomic next-generation sequencing (mNGS) gives a promising rapid diagnosis tool. Methods We retrospectively summarized the clinical characteristics of five C. psittaci pneumonia patients diagnosed by mNGS, conducted a literature review summarizing the clinical characteristics of patients with C. psittaci pneumonia reported since 2010. Results Five C. psittaci pneumonia patients confirmed by mNGS aged from 36 to 66 years with three males. About 60% of patients had a history of contact with avian or poultry. All patients had a high fever over 38.5 °C, cough, hypodynamia, hypoxemia, and dyspnea on admission. Two patients had invasive ventilator support and extracorporeal membrane oxygenation support. Inflammatory index levels on admission and follow-up were all higher than normal values. Doxycycline or moxifloxacin and their combination therapy were used in patients. Four patients improved and were discharged, and one patient died due to multiple organ failures and disseminated intravascular coagulation. We summarized 19 articles including 69 C. psittaci pneumonia patients and patients in 11 publications were identified by mNGS, and most patients are treated with tetracycline and quinolone with good outcomes. Conclusion mNGS is a promising rapid diagnosis tool, which may increase the detection rate and shorten the diagnosis time of C. psittaci pneumonia. Further case-control studies are needed to confirm.
Collapse
Affiliation(s)
- Xin-Qi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, People's Republic of China
| | - Wen-Cheng Gong
- Department of Pharmacy, Jiangxi Cancer Hospital of Nanchang University, Jiangxi Cancer Center, Nanchang, Jiangxi, People's Republic of China
| | - Ting-Ting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, People's Republic of China
| | - Guo-Hua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, People's Republic of China
| |
Collapse
|
35
|
Chaudhry R, Sreenath K, Vinayaraj EV, Sahoo B, Vishnu Narayanan MR, Kiran KVPS, Batra P, Rathor N, Singh S, Mohan A, Bhatnagar S. Mycoplasma pneumoniae co-infection with SARS-CoV-2: A case report. Access Microbiol 2021; 3:000212. [PMID: 34151164 PMCID: PMC8209699 DOI: 10.1099/acmi.0.000212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
We report co-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Mycoplasma pneumoniae in a patient with pneumonia in India. Atypical bacterial pathogens causing community-acquired pneumonia may share similar clinical presentations and radiographic features with SARS-CoV-2 making a thorough differential diagnosis essential. The co-infection of SARS-CoV-2 and M. pneumoniae is infrequently reported in the literature. Broader testing for common respiratory pathogens should be performed in severe COVID-19 cases to rule out other concurrent infections. Early identification of co-existing respiratory pathogens could provide pathogen-directed therapy, and can save patient lives during the ongoing COVID-19 outbreak.
Collapse
Affiliation(s)
- Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - K Sreenath
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - E V Vinayaraj
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Biswajeet Sahoo
- Department of Laboratory Oncology, National Cancer Institute, Jhajjar, Hayana, India
| | - M R Vishnu Narayanan
- Department of Anaesthesiology, All India Institute of Medical Sciences, New Delhi, India
| | - K V P Sai Kiran
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Priyam Batra
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Nisha Rathor
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sheetal Singh
- Department of Hospital Administration, National Cancer Institute, Jhajjar, Hayana, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sushma Bhatnagar
- Department of Onco-Anaesthesia and Palliative Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
36
|
Tsai SC, Lu CC, Bau DT, Chiu YJ, Yen YT, Hsu YM, Fu CW, Kuo SC, Lo YS, Chiu HY, Juan YN, Tsai FJ, Yang JS. Approaches towards fighting the COVID‑19 pandemic (Review). Int J Mol Med 2021; 47:3-22. [PMID: 33236131 PMCID: PMC7723515 DOI: 10.3892/ijmm.2020.4794] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/04/2020] [Indexed: 11/05/2022] Open
Abstract
The coronavirus disease 2019 (COVID‑19) outbreak, which has caused >46 millions confirmed infections and >1.2 million coronavirus related deaths, is one of the most devastating worldwide crises in recent years. Infection with COVID‑19 results in a fever, dry cough, general fatigue, respiratory symptoms, diarrhoea and a sore throat, similar to those of acute respiratory distress syndrome. The causative agent of COVID‑19, SARS‑CoV‑2, is a novel coronavirus strain. To date, remdesivir has been granted emergency use authorization for use in the management of infection. Additionally, several efficient diagnostic tools are being actively developed, and novel drugs and vaccines are being evaluated for their efficacy as therapeutic agents against COVID‑19, or in the prevention of infection. The present review highlights the prevalent clinical manifestations of COVID‑19, characterizes the SARS‑CoV‑2 viral genome sequence and life cycle, highlights the optimal methods for preventing viral transmission, and discusses possible molecular pharmacological mechanisms and approaches in the development of anti‑SARS‑CoV‑2 therapeutic agents. In addition, the use of traditional Chinese medicines for management of COVID‑19 is discussed. It is expected that novel anti‑viral agents, vaccines or an effective combination therapy for treatment/management of SARS‑CoV‑2 infection and spread therapy will be developed and implemented in 2021, and we would like to extend our best regards to the frontline health workers across the world in their fight against COVID‑19.
Collapse
Affiliation(s)
- Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University
| | - Chi-Cheng Lu
- Department of Sport Performance, National Taiwan University of Sport
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354
| | - Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veteran General Hospital
- Department of Surgery, School of Medicine, National Yang Ming University, Taipei 11217
| | - Yu-Ting Yen
- Drug Development Center, Institute of New Drug Development, China Medical University, Taichung 40402
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University
| | - Chih-Wei Fu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401
| | - Sheng-Chu Kuo
- School of Pharmacy, China Medical University, Taichung 40402
| | - Yu-Shiang Lo
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 97002
- Master and PhD Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 97004
- General Education Center, Tzu Chi University of Science and Technology, Hualien 97005
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University
- China Medical University Children's Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447
| |
Collapse
|