1
|
Murakami Y, Nozaki Y, Morosawa M, Toyama M, Ogashiwa H, Ueda T, Nakajima K, Tanaka R, Takesue Y. Difference in the impact of coinfections and secondary infections on antibiotic use in patients hospitalized with COVID-19 between the Omicron-dominant period and the pre-Omicron period. J Infect Chemother 2024; 30:853-859. [PMID: 38428674 DOI: 10.1016/j.jiac.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
INTRODUCTION This study evaluated the effect of coinfections and/or secondary infections on antibiotic use in patients hospitalized with coronavirus disease 2019 (COVID-19). METHOD Days of therapy per 100 bed days (DOT) in a COVID-19 ward were compared between 2022 (Omicron period) and 2021 (pre-Omicron period). Antibiotics were categorized as antibiotics predominantly used for community-acquired infections (CAIs) and antibiotics predominantly used for health care-associated infections (HAIs). Bacterial and/or fungal infections which were proved or assumed on admission were defined as coinfections. Secondary infections were defined as infections that occurred following COVID-19. RESULTS Patients with COVID-19 during the Omicron period were older and had more comorbidities. Coinfections were more common in the Omicron period than in the pre-Omicron period (44.4% [100/225] versus 0.8% [2/257], respectively, p < 0.001), and the mean DOT of antibiotics for CAIs was significantly increased in the Omicron period (from 3.60 to 17.84, p < 0.001). Secondary infection rate tended to be higher in the Omicron period (p = 0.097). Mean DOT of antibiotics for HAIs were appeared to be lower in the COVID-19 ward than in the general ward (pre-Omicron, 3.33 versus 6.37, respectively; Omicron, 3.84 versus 5.22, respectively). No multidrug-resistant gram-negative organisms were isolated in the COVID-19 ward. CONCLUSION Antibiotic use for CAIs was limited in the pre-Omicron period but increased in the Omicron period because of a high coinfection rate on admission. With the antimicrobial stewardship, excessive use of antibiotics for HAIs was avoided in the COVID-19 ward during both periods.
Collapse
Affiliation(s)
- Yasushi Murakami
- Department of Respiratory Medicine, Tokoname City Hospital, 3-3-3 Asukadai, Tokoname, Aichi, 479-8510, Japan.
| | - Yasuhiro Nozaki
- Department of Respiratory Medicine, Tokoname City Hospital, 3-3-3 Asukadai, Tokoname, Aichi, 479-8510, Japan.
| | - Mika Morosawa
- Department of Respiratory Medicine, Tokoname City Hospital, 3-3-3 Asukadai, Tokoname, Aichi, 479-8510, Japan.
| | - Masanobu Toyama
- Department of Pharmacy, Tokoname City Hospital, 3-3-3 Asukadai, Tokoname, Aichi, 479-8510, Japan.
| | - Hitoshi Ogashiwa
- Department of Clinical Technology, Tokoname City Hospital, 3-3-3 Asukadai, Tokoname, Aichi, 479-8510, Japan.
| | - Takashi Ueda
- Department of Infection Control and Prevention, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Kazuhiko Nakajima
- Department of Infection Control and Prevention, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Ryoya Tanaka
- Department of Clinical Infectious Diseases, Tokoname City Hospital, 3-3-3 Asukadai, Tokoname, 479-8510, Japan.
| | - Yoshio Takesue
- Department of Infection Control and Prevention, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan; Department of Clinical Infectious Diseases, Tokoname City Hospital, 3-3-3 Asukadai, Tokoname, 479-8510, Japan.
| |
Collapse
|
2
|
Yu S, Yang T. Non-HIV Immunocompetent Patient with COVID-19 and Severe Pneumocystis jirovecii Pneumonia Co-Infection. Emerg Infect Dis 2024; 30:1948-1952. [PMID: 39174035 PMCID: PMC11346996 DOI: 10.3201/eid3009.240615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Pneumocystis jirovecii pneumonia is an opportunistic infection that affects HIV-infected and immunocompromised persons and rarely affects immunocompetent patients. However, after the advent of the COVID-19 pandemic, some COVID-19 patients without immunocompromise or HIV were infected with P. jirovecii. Clinical manifestations were atypical, easily misdiagnosed, and rapidly progressive, and the prognosis was poor.
Collapse
|
3
|
Lubkin A, Bernard-Raichon L, DuMont AL, Valero Jimenez AM, Putzel GG, Gago J, Zwack EE, Olusanya O, Boguslawski KM, Dallari S, Dyzenhaus S, Herrmann C, Ilmain JK, Isom GL, Pawline M, Perault AI, Perelman S, Sause WE, Shahi I, St. John A, Tierce R, Zheng X, Zhou C, Noval MG, O'Keeffe A, Podkowik M, Gonzales S, Inglima K, Desvignes L, Hochman SE, Stapleford KA, Thorpe LE, Pironti A, Shopsin B, Cadwell K, Dittmann M, Torres VJ. SARS-CoV-2 infection predisposes patients to coinfection with Staphylococcus aureus. mBio 2024; 15:e0166724. [PMID: 39037272 PMCID: PMC11323729 DOI: 10.1128/mbio.01667-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
Severe COVID-19 has been associated with coinfections with bacterial and fungal pathogens. Notably, patients with COVID-19 who develop Staphylococcus aureus bacteremia exhibit higher rates of mortality than those infected with either pathogen alone. To understand this clinical scenario, we collected and examined S. aureus blood and respiratory isolates from a hospital in New York City during the early phase of the pandemic from both SARS-CoV-2+ and SARS-CoV-2- patients. Whole genome sequencing of these S. aureus isolates revealed broad phylogenetic diversity in both patient groups, suggesting that SARS-CoV-2 coinfection was not associated with a particular S. aureus lineage. Phenotypic characterization of the contemporary collection of S. aureus isolates from SARS-CoV-2+ and SARS-CoV-2- patients revealed no notable differences in several virulence traits examined. However, we noted a trend toward overrepresentation of S. aureus bloodstream strains with low cytotoxicity in the SARS-CoV-2+ group. We observed that patients coinfected with SARS-CoV-2 and S. aureus were more likely to die during the acute phase of infection when the coinfecting S. aureus strain exhibited high or low cytotoxicity. To further investigate the relationship between SARS-CoV-2 and S. aureus infections, we developed a murine coinfection model. These studies revealed that infection with SARS-CoV-2 renders mice susceptible to subsequent superinfection with low cytotoxicity S. aureus. Thus, SARS-CoV-2 infection sensitizes the host to coinfections, including S. aureus isolates with low intrinsic virulence. IMPORTANCE The COVID-19 pandemic has had an enormous impact on healthcare across the globe. Patients who were severely infected with SARS-CoV-2, the virus causing COVID-19, sometimes became infected with other pathogens, which is termed coinfection. If the coinfecting pathogen is the bacterium Staphylococcus aureus, there is an increased risk of patient death. We collected S. aureus strains that coinfected patients with SARS-CoV-2 to study the disease outcome caused by the interaction of these two important pathogens. We found that both in patients and in mice, coinfection with an S. aureus strain lacking toxicity resulted in more severe disease during the early phase of infection, compared with infection with either pathogen alone. Thus, SARS-CoV-2 infection can directly increase the severity of S. aureus infection.
Collapse
Affiliation(s)
- Ashira Lubkin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Lucie Bernard-Raichon
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ashley L. DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ana Mayela Valero Jimenez
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Gregory G. Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| | - Juan Gago
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| | - Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Olufolakemi Olusanya
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| | - Kristina M. Boguslawski
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Simone Dallari
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sophie Dyzenhaus
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Christin Herrmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Juliana K. Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Georgia L. Isom
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Miranda Pawline
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Andrew I. Perault
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| | - Sofya Perelman
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - William E. Sause
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ifrah Shahi
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Amelia St. John
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Rebecca Tierce
- Division of Comparative Medicine, New York University Langone Health, New York, New York, USA
| | - Xuhui Zheng
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Chunyi Zhou
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Maria G. Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Anna O'Keeffe
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Magda Podkowik
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| | - Sandra Gonzales
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kenneth Inglima
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Ludovic Desvignes
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
- High Containment Laboratories, Office of Science and Research, NYU Langone Health, New York, New York, USA
| | - Sarah E. Hochman
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Lorna E. Thorpe
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Meike Dittmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, Microbial Genomics Core Lab, New York University Langone Health, New York, New York, USA
| |
Collapse
|
4
|
Río-Chacón JMD, Rojas-Larios F, Bocanegra-Ibarias P, Salas-Treviño D, Espinoza-Gómez F, Camacho-Ortiz A, Flores-Treviño S. Biofilm Eradication of Stenotrophomonas maltophilia by Levofloxacin and Trimethoprim-Sulfamethoxazole. Jpn J Infect Dis 2024; 77:213-219. [PMID: 38296539 DOI: 10.7883/yoken.jjid.2023.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Stenotrophomonas maltophilia is a nonfermenting Gram-negative drug-resistant pathogen that causes healthcare-associated infections. Clinical isolates from Mexico were assessed for biofilm formation using crystal violet staining. Antimicrobial susceptibility was evaluated in planktonic and biofilm cells using the broth microdilution method. The effects of antibiotics on biofilms were visualized using fluorescence microscopy. Fifty isolates were included in this study, of which 14 (28%) were biofilm producers (9 [64%] from blood and 5 [36%] from respiratory samples). In planktonic cells 4/50 (8%) of isolates were resistant to levofloxacin (8.0%) and 22/50 (44%) were resistant to trimethoprim-sulfamethoxazole. All isolates were resistant to levofloxacin and trimethoprim-sulfamethoxazole in biofilm cells. Bacterial biofilms treated with different concentrations of both antibiotics were completely disrupted. In conclusion, S. maltophilia isolated from blood had higher biofilm production than those isolated from respiratory samples. Biofilm production was associated with increased antibiotic resistance. Antibiotic monotherapy might not be the best course of action for the treatment of S. maltophilia infections in Mexico, because it might cause biofilm production and antimicrobial resistance.
Collapse
Affiliation(s)
| | | | - Paola Bocanegra-Ibarias
- Department of Infectious Diseases, University Hospital Dr. José Eleuterio González and School of Medicine, Autonomous University of Nuevo León, Mexico
| | - Daniel Salas-Treviño
- Department of Infectious Diseases, University Hospital Dr. José Eleuterio González and School of Medicine, Autonomous University of Nuevo León, Mexico
| | | | - Adrián Camacho-Ortiz
- Department of Infectious Diseases, University Hospital Dr. José Eleuterio González and School of Medicine, Autonomous University of Nuevo León, Mexico
| | - Samantha Flores-Treviño
- Department of Infectious Diseases, University Hospital Dr. José Eleuterio González and School of Medicine, Autonomous University of Nuevo León, Mexico
| |
Collapse
|
5
|
Durlak U, Kapturkiewicz C, Różańska A, Gajda M, Krzyściak P, Kania F, Wójkowska-Mach J. Is Antimicrobial Stewardship Policy Effectively Implemented in Polish Hospitals? Results from Antibiotic Consumption Surveillance before and during the COVID-19 Pandemic. Antibiotics (Basel) 2024; 13:636. [PMID: 39061318 PMCID: PMC11274110 DOI: 10.3390/antibiotics13070636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic posed numerous challenges to public health systems, particularly in antimicrobial stewardship. This study aimed to assess antibiotic consumption before and during the COVID-19 pandemic to evaluate the effectiveness of the implemented antimicrobial stewardship program. METHODS This retrospective study was carried out at the University Hospital in Krakow, Poland, between 1 January 2019 and 31 December 2020. A total of 80,639 patients were enrolled. Antibiotic usage was measured as the percentage of patients receiving antibiotics and the number of days of therapy (DOTs). The World Health Organization (WHO) methodology and Anatomical Therapeutic Chemical (ATC) codes and AWaRe classification were utilized. The analyzed ATC antibiotic groups included penicillins (J01CA, J01CE, J01CF, J01CR, excluding piperacillin/tazobactam), piperacillin with tazobactam-beta-lactamase inhibitor (J01CR05), third- and fourth-generation cephalosporins (J01DD, J01DE), carbapenems (J01DH), macrolides (J01FA), fluoroquinolones (J01M), colistin (J01XB01), metronidazole (J01XD01) and others (J01DF, J01DI, J01E, J01G, J01XA, J01A). In the AWaRe classification, Access, Watch and Reserve groups of antibiotics were included. RESULTS In 2020, 79.2% of COVID-19 patients and 40.1% of non-COVID-19 patients were treated with antibiotics, compared to 28.8% in 2019. Also, in 2020, the antibiotic consumption in non-ICU COVID-19 patients was twice as high as in non-COVID-19 patients: 50.9 vs. 38.5 DOTs/100 patient days (pds). Conversely, in the ICU, antibiotic consumption in COVID-19 patients was 112.1 DOTs/100 pds compared to 248.9 DOTs/100 pds in non-COVID-19 patients. Significant increases were observed in the usage of third- and fourth-generation cephalosporins in 2020. The analysis according to the AWaRe system revealed the highest usage of the Watch group-ranging from 61.9% to 78.7%-and very high usage of the Reserve group-from 5.8% to 11.1%-in non COVID-19 and COVID-19 patients, respectively. CONCLUSIONS Our findings highlight substantial issues with antibiotic use both before and during the COVID-19 pandemic. The results underscore the urgent need for improved antimicrobial stewardship policy implementation.
Collapse
Affiliation(s)
- Urszula Durlak
- Students’ Scientific Group of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (U.D.); (F.K.)
| | - Cezary Kapturkiewicz
- Students’ Scientific Group of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (U.D.); (F.K.)
| | - Anna Różańska
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (M.G.); (P.K.); (J.W.-M.)
| | - Mateusz Gajda
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (M.G.); (P.K.); (J.W.-M.)
| | - Paweł Krzyściak
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (M.G.); (P.K.); (J.W.-M.)
| | - Filip Kania
- Students’ Scientific Group of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (U.D.); (F.K.)
| | - Jadwiga Wójkowska-Mach
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland; (M.G.); (P.K.); (J.W.-M.)
| |
Collapse
|
6
|
Su L, Yu T, Zhang C, Huo P, Zhao Z. A prediction model for secondary invasive fungal infection among severe SARS-CoV-2 positive patients in ICU. Front Cell Infect Microbiol 2024; 14:1382720. [PMID: 39040601 PMCID: PMC11260608 DOI: 10.3389/fcimb.2024.1382720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Background The global COVID-19 pandemic has resulted in over seven million deaths, and IFI can further complicate the clinical course of COVID-19. Coinfection of COVID-19 and IFI (secondary IFI) pose significant threats not only to healthcare systems but also to patient lives. After the control measures for COVID-19 were lifted in China, we observed a substantial number of ICU patients developing COVID-19-associated IFI. This creates an urgent need for predictive assessment of COVID-19 patients in the ICU environment for early detection of suspected fungal infection cases. Methods This study is a single-center, retrospective research endeavor. We conducted a case-control study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive patients. The cases consisted of patients who developed any secondary IFI during their ICU stay at Jilin University China-Japan Union Hospital in Changchun, Jilin Province, China, from December 1st, 2022, to August 31st, 2023. The control group consisted of SARS-CoV-2 positive patients without secondary IFI. Descriptive and comparative analyses were performed, and a logistic regression prediction model for secondary IFI in COVID-19 patients was established. Additionally, we observed an increased incidence of COVID-19-associated pulmonary aspergillosis (CAPA) during this pandemic. Therefore, we conducted a univariate subgroup analysis on top of IFI, using non-CAPA patients as the control subgroup. Results From multivariate analysis, the prediction model identified 6 factors that are significantly associated with IFI, including the use of broad-spectrum antibiotics for more than 2 weeks (aOR=4.14, 95% CI 2.03-8.67), fever (aOR=2.3, 95%CI 1.16-4.55), elevated log IL-6 levels (aOR=1.22, 95% CI 1.04-1.43) and prone position ventilation (aOR=2.38, 95%CI 1.15-4.97) as independent risk factors for COVID-19 secondary IFI. High BMI (BMI ≥ 28 kg/m2) (aOR=0.85, 95% CI 0.75-0.94) and the use of COVID-19 immunoglobulin (aOR=0.45, 95% CI 0.2-0.97) were identified as independent protective factors against COVID-19 secondary IFI. The Receiver Operating Curve (ROC) area under the curve (AUC) of this model was 0.81, indicating good classification. Conclusion We recommend paying special attention for the occurrence of secondary IFI in COVID-19 patients with low BMI (BMI < 28 kg/m2), elevated log IL-6 levels and fever. Additionally, during the treatment of COVID-19 patients, we emphasize the importance of minimizing the duration of broad-spectrum antibiotic use and highlight the potential of immunoglobulin application in reducing the incidence of IFI.
Collapse
Affiliation(s)
- Leilei Su
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tong Yu
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Chunmei Zhang
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pengfei Huo
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongyan Zhao
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Yang X, Li X, Qiu S, Liu C, Chen S, Xia H, Zeng Y, Shi L, Chen J, Zheng J, Yang S, Tian G, Liu G, Yang L. Global antimicrobial resistance and antibiotic use in COVID-19 patients within health facilities: A systematic review and meta-analysis of aggregated participant data. J Infect 2024; 89:106183. [PMID: 38754635 DOI: 10.1016/j.jinf.2024.106183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES The COVID-19 pandemic has posed a significant threat to the global healthcare system, presenting a major challenge to antimicrobial stewardship worldwide. This study aimed to provide a comprehensive and up-to-date picture of global antimicrobial resistance (AMR) and antibiotic use in COVID-19 patients. METHODS We conducted a systematic review to determine the prevalence of AMR and antibiotic usage among COVID-19 patients receiving treatment in healthcare facilities. Our search encompassed the PubMed, Web of Science, Embase, and Scopus databases, spanning studies published from December 2019 to May 2023. We utilized random-effects meta-analysis to assess the prevalence of multidrug-resistant organisms (MDROs) and antibiotic use in COVID-19 patients, aligning with both the WHO's priority list of MDROs and the AWaRe list of antibiotic products. Estimates were stratified by region, country, and country income. Meta-regression models were established to identify predictors of MDRO prevalence and antibiotic use in COVID-19 patients. The study protocol was registered with PROSPERO (CRD 42023449396). RESULTS Among the 11,050 studies screened, 173 were included in the review, encompassing a total of 892,312 COVID-19 patients. MDROs were observed in 42.9% (95% CI 31.1-54.5%, I2 = 99.90%) of COVID-19 patients: 41.0% (95% CI 35.5-46.6%) for carbapenem-resistant organisms (CRO), 19.9% (95% CI 13.4-27.2%) for methicillin-resistant Staphylococcus aureus (MRSA), 24.9% (95% CI 16.7-34.1%) for extended-spectrum beta-lactamase-producing organisms (ESBL), and 22.9% (95% CI 13.0-34.5%) for vancomycin-resistant Enterococcus species (VRE), respectively. Overall, 76.2% (95% CI 69.5-82.9%, I2 = 99.99%) of COVID-19 patients were treated with antibiotics: 29.6% (95% CI 26.0-33.4%) with "Watch" antibiotics, 22.4% (95% CI 18.0-26.7%) with "Reserve" antibiotics, and 16.5% (95% CI 13.3-19.7%) with "Access" antibiotics. The MDRO prevalence and antibiotic use were significantly higher in low- and middle-income countries than in high-income countries, with the lowest proportion of antibiotic use (60.1% (95% CI 52.1-68.0%)) and MDRO prevalence (29.1% (95% CI 21.8-36.4%)) in North America, the highest MDRO prevalence in the Middle East and North Africa (63.9% (95% CI 46.6-81.2%)), and the highest proportion of antibiotic use in South Asia (92.7% (95% CI 90.4-95.0%)). The meta-regression identified antibiotic use and ICU admission as a significant predictor of higher prevalence of MDROs in COVID-19 patients. CONCLUSIONS This systematic review offers a comprehensive and current assessment of MDRO prevalence and antibiotic use among COVID-19 patients in healthcare facilities. It underscores the formidable challenge facing global efforts to prevent and control AMR amidst the backdrop of the COVID-19 pandemic. These findings serve as a crucial warning to policymakers, highlighting the urgent need to enhance antimicrobial stewardship strategies to mitigate the risks associated with future pandemics.
Collapse
Affiliation(s)
- Xinyi Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiying Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shengyue Qiu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chaojie Liu
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Shanquan Chen
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Haohai Xia
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingchao Zeng
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lin Shi
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinkun Zheng
- Medical Research Centre, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan, Guangdong, China
| | - Shifang Yang
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guobao Tian
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Gordon Liu
- National School of Development, Peking University, Beijing, China; Institute for Global Health and Development, Peking University, Beijing, China
| | - Lianping Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Institute for Global Health and Development, Peking University, Beijing, China; Sun Yat-sen Global Health Institute, Institute of State Governance, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Kibria MK, Ali MA, Yaseen M, Khan IA, Bhat MA, Islam MA, Mahumud RA, Mollah MNH. Discovery of Bacterial Key Genes from 16S rRNA-Seq Profiles That Are Associated with the Complications of SARS-CoV-2 Infections and Provide Therapeutic Indications. Pharmaceuticals (Basel) 2024; 17:432. [PMID: 38675393 PMCID: PMC11053588 DOI: 10.3390/ph17040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
SARS-CoV-2 infections, commonly referred to as COVID-19, remain a critical risk to both human life and global economies. Particularly, COVID-19 patients with weak immunity may suffer from different complications due to the bacterial co-infections/super-infections/secondary infections. Therefore, different variants of alternative antibacterial therapeutic agents are required to inhibit those infection-causing drug-resistant pathogenic bacteria. This study attempted to explore these bacterial pathogens and their inhibitors by using integrated statistical and bioinformatics approaches. By analyzing bacterial 16S rRNA sequence profiles, at first, we detected five bacterial genera and taxa (Bacteroides, Parabacteroides, Prevotella Clostridium, Atopobium, and Peptostreptococcus) based on differentially abundant bacteria between SARS-CoV-2 infection and control samples that are significantly enriched in 23 metabolic pathways. A total of 183 bacterial genes were found in the enriched pathways. Then, the top-ranked 10 bacterial genes (accB, ftsB, glyQ, hldD, lpxC, lptD, mlaA, ppsA, ppc, and tamB) were selected as the pathogenic bacterial key genes (bKGs) by their protein-protein interaction (PPI) network analysis. Then, we detected bKG-guided top-ranked eight drug molecules (Bemcentinib, Ledipasvir, Velpatasvir, Tirilazad, Acetyldigitoxin, Entreatinib, Digitoxin, and Elbasvir) by molecular docking. Finally, the binding stability of the top-ranked three drug molecules (Bemcentinib, Ledipasvir, and Velpatasvir) against three receptors (hldD, mlaA, and lptD) was investigated by computing their binding free energies with molecular dynamic (MD) simulation-based MM-PBSA techniques, respectively, and was found to be stable. Therefore, the findings of this study could be useful resources for developing a proper treatment plan against bacterial co-/super-/secondary-infection in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Md. Kaderi Kibria
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
- Department of Statistics, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Ahad Ali
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Main Campus, Charbagh 19130, Pakistan;
| | - Imran Ahmad Khan
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan;
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Md. Ariful Islam
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
| | - Rashidul Alam Mahumud
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Md. Nurul Haque Mollah
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
| |
Collapse
|
9
|
Renema P, Pittet JF, Brandon AP, Leal SM, Gu S, Promer G, Hackney A, Braswell P, Pickering A, Rafield G, Voth S, Balczon R, Lin MT, Morrow KA, Bell J, Audia JP, Alvarez D, Stevens T, Wagener BM. Tau and Aβ42 in lavage fluid of pneumonia patients are associated with end-organ dysfunction: A prospective exploratory study. PLoS One 2024; 19:e0298816. [PMID: 38394060 PMCID: PMC10889620 DOI: 10.1371/journal.pone.0298816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Bacterial pneumonia and sepsis are both common causes of end-organ dysfunction, especially in immunocompromised and critically ill patients. Pre-clinical data demonstrate that bacterial pneumonia and sepsis elicit the production of cytotoxic tau and amyloids from pulmonary endothelial cells, which cause lung and brain injury in naïve animal subjects, independent of the primary infection. The contribution of infection-elicited cytotoxic tau and amyloids to end-organ dysfunction has not been examined in the clinical setting. We hypothesized that cytotoxic tau and amyloids are present in the bronchoalveolar lavage fluid of critically ill patients with bacterial pneumonia and that these tau/amyloids are associated with end-organ dysfunction. METHODS Bacterial culture-positive and culture-negative mechanically ventilated patients were recruited into a prospective, exploratory observational study. Levels of tau and Aβ42 in, and cytotoxicity of, the bronchoalveolar lavage fluid were measured. Cytotoxic tau and amyloid concentrations were examined in comparison with patient clinical characteristics, including measures of end-organ dysfunction. RESULTS Tau and Aβ42 were increased in culture-positive patients (n = 49) compared to culture-negative patients (n = 50), independent of the causative bacterial organism. The mean age of patients was 52.1 ± 16.72 years old in the culture-positive group and 52.78 ± 18.18 years old in the culture-negative group. Males comprised 65.3% of the culture-positive group and 56% of the culture-negative group. Caucasian culture-positive patients had increased tau, boiled tau, and Aβ42 compared to both Caucasian and minority culture-negative patients. The increase in cytotoxins was most evident in males of all ages, and their presence was associated with end-organ dysfunction. CONCLUSIONS Bacterial infection promotes the generation of cytotoxic tau and Aβ42 within the lung, and these cytotoxins contribute to end-organ dysfunction among critically ill patients. This work illuminates an unappreciated mechanism of injury in critical illness.
Collapse
Affiliation(s)
- Phoibe Renema
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Biomedical Sciences, University of South Alabama, Mobile, Alabama, United States of America
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Angela P. Brandon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sixto M. Leal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven Gu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Grace Promer
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrew Hackney
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Phillip Braswell
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrew Pickering
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Grace Rafield
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
| | - Ron Balczon
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Mike T. Lin
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - K. Adam Morrow
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
| | - Jessica Bell
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Jonathon P. Audia
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, United States of America
| | - Diego Alvarez
- Department of Physiology and Pharmacology, Sam Houston State University, Conroe, Texas, United States of America
| | - Troy Stevens
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
10
|
Rhodes RH, Love GL, Da Silva Lameira F, Sadough Shahmirzadi M, Fox SE, Vander Heide RS. Acute neutrophilic vasculitis (leukocytoclasia) in 36 COVID-19 autopsy brains. Diagn Pathol 2024; 19:33. [PMID: 38360666 PMCID: PMC10870569 DOI: 10.1186/s13000-024-01445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Hypercytokinemia, the renin-angiotensin system, hypoxia, immune dysregulation, and vasculopathy with evidence of immune-related damage are implicated in brain morbidity in COVID-19 along with a wide variety of genomic and environmental influences. There is relatively little evidence of direct SARS-CoV-2 brain infection in COVID-19 patients. METHODS Brain histopathology of 36 consecutive autopsies of patients who were RT-PCR positive for SARS-CoV-2 was studied along with findings from contemporary and pre-pandemic historical control groups. Immunostaining for serum and blood cell proteins and for complement components was employed. Microcirculatory wall complement deposition in the COVID-19 cohort was compared to historical control cases. Comparisons also included other relevant clinicopathological and microcirculatory findings in the COVID-19 cohort and control groups. RESULTS The COVID-19 cohort and both the contemporary and historical control groups had the same rate of hypertension, diabetes mellitus, and obesity. The COVID-19 cohort had varying amounts of acute neutrophilic vasculitis with leukocytoclasia in the microcirculation of the brain in all cases. Prominent vascular neutrophilic transmural migration was found in several cases and 25 cases had acute perivasculitis. Paravascular microhemorrhages and petechial hemorrhages (small brain parenchymal hemorrhages) had a slight tendency to be more numerous in cohort cases that displayed less acute neutrophilic vasculitis. Tissue burden of acute neutrophilic vasculitis with leukocytoclasia was the same in control cases as a group, while it was significantly higher in COVID-19 cases. Both the tissue burden of acute neutrophilic vasculitis and the activation of complement components, including membrane attack complex, were significantly higher in microcirculatory channels in COVID-19 cohort brains than in historical controls. CONCLUSIONS Acute neutrophilic vasculitis with leukocytoclasia, acute perivasculitis, and associated paravascular blood extravasation into brain parenchyma constitute the first phase of an immune-related, acute small-vessel inflammatory condition often termed type 3 hypersensitivity vasculitis or leukocytoclastic vasculitis. There is a higher tissue burden of acute neutrophilic vasculitis and an increased level of activated complement components in microcirculatory walls in COVID-19 cases than in pre-pandemic control cases. These findings are consistent with a more extensive small-vessel immune-related vasculitis in COVID-19 cases than in control cases. The pathway(s) and mechanism for these findings are speculative.
Collapse
Affiliation(s)
- Roy H Rhodes
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA.
| | - Gordon L Love
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
| | - Fernanda Da Silva Lameira
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
- Department of Pathology, Virginia Commonwealth University, Norfolk, Virginia, 23510, USA
| | - Maryam Sadough Shahmirzadi
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
| | - Sharon E Fox
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
- Pathology and Laboratory Medicine Services, Southeast Louisiana Veterans Healthcare System, New Orleans, Louisiana, 70112, USA
| | - Richard S Vander Heide
- Department of Pathology, Louisiana State University Health Sciences Center, 7th Floor, 2021 Perdido Street, New Orleans, Louisiana, 70112, USA
- Marshfield Clinic Health System, Marshfield, Wisconsin, 54449, USA
| |
Collapse
|
11
|
Wang Y, Yao Y, Zhang Q, Chen H, He Y, Hu K. Clinical courses and outcomes of COVID-19 associated pulmonary aspergillosis in 168 patients with the SARS-CoV-2 omicron variant. BMC Infect Dis 2024; 24:117. [PMID: 38263011 PMCID: PMC10804746 DOI: 10.1186/s12879-023-08971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/30/2023] [Indexed: 01/25/2024] Open
Abstract
PURPOSE We aimed to analyze the clinical features of COVID-19-associated pulmonary aspergillosis (CAPA) during the SARS-CoV-2 Omicron variant pandemic and to reveal the risk factors for CAPA and death. METHODS A retrospective cohort study was conducted on 168 CAPA patients from December 8, 2022 to January 31, 2023. 168 COVID-19 patients without secondary fungal infection during this period were matched 1:1 using propensity score matching as controls. RESULTS The incidence of CAPA was 3.8% (168/4421). Compared with patients without fungal infection, CAPA patients had a higher mortality (43.5% vs. 10.1%, P < 0.001). Patients in the death group (n = 73) were more likely to be admitted to ICU (91.8% vs. 26.3%, p < 0.001), had a shorter ICU length of hospitalization (10 (IQR, 6 ~ 16.5) days vs. 14 (IQR, 8 ~ 37) days, p = 0.012). Immunocompromised status (p = 0.023), NLR ≥ 5.7 (p = 0.004), CRP ≥ 50 mg/L (p = 0.043), and the number of antibiotics ≥ 3 (p < 0.001) were all risk factors for CAPA; NLR ≥ 5.7 (p = 0.009) and the number of antibiotics ≥ 3 (p = 0.018) were all independent risk factors for death. CONCLUSIONS During the Omicron variant pandemic, CAPA increased death and ICU length of hospitalization. The risk factors of CAPA and death obtained from the study can help us further understand the disease characteristics of CAPA and better guide our clinical decision-making.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Yao
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingfeng Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao Chen
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
12
|
Peng M, Zhang C, Duan YY, Liu HB, Peng XY, Wei Q, Chen QY, Sang H, Kong QT. Antifungal activity of the repurposed drug disulfiram against Cryptococcus neoformans. Front Pharmacol 2024; 14:1268649. [PMID: 38273827 PMCID: PMC10808519 DOI: 10.3389/fphar.2023.1268649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Fungal infections have become clinically challenging owing to the emergence of drug resistance in invasive fungi and the rapid increase in the number of novel pathogens. The development of drug resistance further restricts the use of antifungal agents. Therefore, there is an urgent need to identify alternative treatments for Cryptococcus neoformans (C. neoformans). Disulfiram (DSF) has a good human safety profile and promising applications as an antiviral, antifungal, antiparasitic, and anticancer agent. However, the effect of DSF on Cryptococcus is yet to be thoroughly investigated. This study investigated the antifungal effects and the mechanism of action of DSF against C. neoformans to provide a new theoretical foundation for the treatment of Cryptococcal infections. In vitro studies demonstrated that DSF inhibited Cryptococcus growth at minimum inhibitory concentrations (MICs) ranging from 1.0 to 8.0 μg/mL. Combined antifungal effects have been observed for DSF with 5-fluorocytosine, amphotericin B, terbinafine, or ketoconazole. DSF exerts significant protective effects and synergistic effects combined with 5-FU for Galleria mellonella infected with C. neoformans. Mechanistic investigations showed that DSF dose-dependently inhibited melanin, urease, acetaldehyde dehydrogenase, capsule and biofilm viability of C. neoformans. Further studies indicated that DSF affected C. neoformans by interfering with multiple biological pathways, including replication, metabolism, membrane transport, and biological enzyme activity. Potentially essential targets of these pathways include acetaldehyde dehydrogenase, catalase, ATP-binding cassette transporter (ABC transporter), and iron-sulfur cluster transporter. These findings provide novel insights into the application of DSF and contribute to the understanding of its mechanisms of action in C. neoformans.
Collapse
Affiliation(s)
- Min Peng
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chen Zhang
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuan-Yuan Duan
- Affiliated Hospital for Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hai-Bo Liu
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin-Yuan Peng
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Qi-Ying Chen
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hong Sang
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing-Tao Kong
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Wei C, Yin W, Hu T, Zhang J, Dan H, Wu B. Agranulocytosis and secondary infection related to JAK inhibitors and IL-6 receptor blockers: a disproportionality analysis using the US Food and drug administration adverse event reporting system. Front Pharmacol 2024; 14:1323240. [PMID: 38264533 PMCID: PMC10803638 DOI: 10.3389/fphar.2023.1323240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Background: Given that the fight against coronavirus disease 2019 (COVID-19) is not over, we aimed to explore the occurrence of agranulocytosis and infectious complications in patients with and without COVID-19 following immunoregulatory therapy based on real-world data. Methods: This was a retrospective disproportionality analysis based on the US Food and Drug Administration Adverse Event Reporting System (FAERS). All cases reported between the first quarter of 2004 and the fourth quarter of 2022 about Janus kinase inhibitors (baricitinib, tofacitinib, ruxolitinib) and interleukin-6 receptor blockers (tocilizumab, sarilumab) were collected. Disproportionality analyses were conducted by reporting odds ratio (ROR) and information component (IC). Results: A total of 211,363 cases were recognized from the FDA Adverse Event Reporting System database. Data analysis showed that tocilizumab (reporting odds ratio: 3.18, 95% CI: 3.18-3.29; information component: 1.37, 95% CI: 1.31-1.42), sarilumab (ROR: 1.64, 95% CI: 1.55-1.73; IC: 0.61, 95% CI: 0.43-0.79), baricitinib (ROR: 3.42, 95% CI: 3.19-3.67; IC: 1.43, 95% CI: 1.21-1.65), tofacitinib (ROR: 2.53, 95% CI: 2.49-2.57; IC: 1.11, 95% CI: 1.05-1.16), and ruxolitinib (ROR: 1.87, 95% CI: 1.83-1.91; IC: 0.77, 95% CI: 0.70-0.84) were all associated with secondary infection. The association in the combination group was higher than that in the monotherapy group (ROR: 4.69, 95% CI: 4.53-4.86; IC: 1.73, 95% CI: 1.62-1.84). As for agranulocytosis, tocilizumab (ROR: 1.61, 95% CI: 1.53-1.69; IC: 0.67, 95% CI: 0.50-0.84) and ruxolitinib (ROR: 2.32, 95% CI: 2.21-2.43; IC: 1.18, 95% CI: 1.02-1.33) showed the significant signals. The association was higher in the combination group than in the monotherapy group (ROR: 2.36, 95% CI: 2.15-2.58; IC: 1.20, 95% CI: 0.90-1.51). Secondary infection after treatment with tofacitinib (ROR: 1.37, 95% CI: 1.02-1.84), tocilizumab (ROR: 1.46, 95% CI: 1.01-2.09), and sarilumab (ROR: 2.46, 95% CI: 1.10-5.50) was reported more frequently in COVID-19 than in non-COVID-19 patients. Conclusion: Both Janus kinase inhibitors and interleukin-6 receptor blockers are significantly associated with secondary infection and agranulocytosis, and the combined treatment further increases the association. The correlation with secondary infection in patients treated with tofacitinib, tocilizumab, and sarilumab is higher in COVID-19 than in non-COVID-19 patients.
Collapse
Affiliation(s)
- Chunyan Wei
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Wanhong Yin
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Clinical Medical College, Sichuan University, Chengdu, China
| | - Tingting Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyi Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Dan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Shmoury AH, Zakhour J, Sawma T, Haddad SF, Zahreddine N, Tannous J, Bou Fakhreddine H, Rizk N, Kanj SS. Bacterial respiratory infections in patients with COVID-19: A retrospective study from a tertiary care center in Lebanon. J Infect Public Health 2023; 16 Suppl 1:19-25. [PMID: 37923680 DOI: 10.1016/j.jiph.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Despite multiple reports of increased incidence of bacterial respiratory tract infections following COVID-19 globally, the microbiology is not yet fully elucidated. In this study, we describe the microbiology of bacterial infections and the prevalence of multidrug resistant organisms (MDROs) in hospitalized COVID-19 patients with community-acquired pneumonia (CAP), and hospital-acquired pneumonia (HAP) which includes both non-ventilated hospital acquired pneumonia (NVHAP) and ventilator-associated pneumonia (VAP). To our knowledge, this is the first study that compares the microbiology of VAP and NVHAP in COVID-19 patients. METHODS This is a longitudinal retrospective cohort study conducted at the American University of Beirut Medical Center (AUBMC), a tertiary-care centre in Lebanon. Adult patients with confirmed COVID-19 and concurrent bacterial respiratory infections with an identifiable causative organism who were hospitalized between March 2020 and September 2021 were included. Bacterial isolates identified in hospital-acquired pneumonia (HAP) were divided into 3 groups based on the time of acquisition of pneumonia after admission: hospital day 3-14, 15-28 and 29-42. RESULTS Out of 1674 patients admitted with COVID-19, 159 (9.5%) developed one or more respiratory infections with an identifiable causative organism. Overall, Gram-negative bacteria were predominant (84%) and Stenotrophomonas maltophilia was the most common pathogen, particularly in HAP. Among 231 obtained isolates, 59 (26%) were MDROs, seen in higher proportion in HAP, especially among patients with prolonged hospital stay (> 4 weeks). Non-fermenter Gram-negative bacilli (NFGNB) (OR = 3.52, p-value<0.001), particularly S. maltophilia (OR = 3.24, p-value = 0.02), were significantly more implicated in VAP compared to NVHAP. CONCLUSIONS NFGNB particularly S. maltophilia were significantly associated with COVID-19 VAP. A high rate of bacterial resistance (25%), especially among Gram-negative bacteria, was found which may compromise patients' outcomes and has important implications in guiding therapeutic decisions in COVID-19 patients who acquire bacterial respiratory infections.
Collapse
Affiliation(s)
- Abdel Hadi Shmoury
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Johnny Zakhour
- Department of Internal Medicine, Division of Infectious Diseases, Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tedy Sawma
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sara F Haddad
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nada Zahreddine
- Infection Control and Prevention Program, American University of Beirut Medical Center, Beirut, Lebanon
| | - Joseph Tannous
- Infection Control and Prevention Program, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hisham Bou Fakhreddine
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nesrine Rizk
- Department of Internal Medicine, Division of Infectious Diseases, Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Souha S Kanj
- Department of Internal Medicine, Division of Infectious Diseases, Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
15
|
Mendes de Almeida V, Engel DF, Ricci MF, Cruz CS, Lopes ÍS, Alves DA, d’ Auriol M, Magalhães J, Machado EC, Rocha VM, Carvalho TG, Lacerda LSB, Pimenta JC, Aganetti M, Zuccoli GS, Smith BJ, Carregari VC, da Silva Rosa E, Galvão I, Dantas Cassali G, Garcia CC, Teixeira MM, André LC, Ribeiro FM, Martins FS, Saia RS, Costa VV, Martins-de-Souza D, Hansbro PM, Marques JT, Aguiar ERGR, Vieira AT. Gut microbiota from patients with COVID-19 cause alterations in mice that resemble post-COVID symptoms. Gut Microbes 2023; 15:2249146. [PMID: 37668317 PMCID: PMC10481883 DOI: 10.1080/19490976.2023.2249146] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
Long-term sequelae of coronavirus disease (COVID)-19 are frequent and of major concern. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects the host gut microbiota, which is linked to disease severity in patients with COVID-19. Here, we report that the gut microbiota of post-COVID subjects had a remarkable predominance of Enterobacteriaceae strains with an antibiotic-resistant phenotype compared to healthy controls. Additionally, short-chain fatty acid (SCFA) levels were reduced in feces. Fecal transplantation from post-COVID subjects to germ-free mice led to lung inflammation and worse outcomes during pulmonary infection by multidrug-resistant Klebsiella pneumoniae. transplanted mice also exhibited poor cognitive performance. Overall, we show prolonged impacts of SARS-CoV-2 infection on the gut microbiota that persist after subjects have cleared the virus. Together, these data demonstrate that the gut microbiota can directly contribute to post-COVID sequelae, suggesting that it may be a potential therapeutic target.
Collapse
Affiliation(s)
- Viviani Mendes de Almeida
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Daiane F. Engel
- Department of Clinical Analysis, School of Pharmacy, Universidade Federal de Ouro Preto - UFOP, Ouro Preto, Brazil
| | - Mayra F. Ricci
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Clênio Silva Cruz
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Ícaro Santos Lopes
- Laboratory of Virus Bioinformatics - Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz - UESC, Ilhéus, Brazil
| | - Daniele Almeida Alves
- Laboratory of RNA Interference and Antiviral Immunity - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Mirna d’ Auriol
- Laboratory of Toxicology - Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - João Magalhães
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Elayne C. Machado
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Victor M. Rocha
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Toniana G. Carvalho
- Laboratory of Neurobiochemistry - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Larisse S. B. Lacerda
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Jordane C. Pimenta
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Mariana Aganetti
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Giuliana S. Zuccoli
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
| | - Bradley J. Smith
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
| | - Victor C. Carregari
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
| | - Erika da Silva Rosa
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Izabela Galvão
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology - Department of Pathology, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Cristiana C. Garcia
- Laboratory of Respiratory Viruses and Measles, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Mauro Martins Teixeira
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Leiliane C. André
- Laboratory of Toxicology - Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Fabiola Mara Ribeiro
- Laboratory of Neurobiochemistry - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Flaviano S. Martins
- Laboratory of Biotherapeutic Agents - Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Rafael Simone Saia
- Laboratory of Intestinal Physiology - Department of Physiology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vivian Vasconcelos Costa
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
- D’Or Institute for Research and Education, São Paulo, Brazil
- Experimental Medicine Research Cluster, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
- National Institute of Biomarkers in Neuropsychiatry, National Council for Scientific and Technological Development, São Paulo, Brazil
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - João Trindade Marques
- Laboratory of RNA Interference and Antiviral Immunity - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
- CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Eric R. G. R. Aguiar
- Laboratory of Virus Bioinformatics - Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz - UESC, Ilhéus, Brazil
| | - Angélica T. Vieira
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Liu J, Xiang Y, Zhang Y. Stenotrophomonas maltophilia: An Urgent Threat with Increasing Antibiotic Resistance. Curr Microbiol 2023; 81:6. [PMID: 37955756 DOI: 10.1007/s00284-023-03524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/14/2023] [Indexed: 11/14/2023]
Abstract
Stenotrophomonas maltophilia is a Gram-negative opportunistic pathogen that can cause many infections, such as chronic pulmonary infections in patients with cystic fibrosis and infections in immunocompromised patients with hematology-oncology diseases. Because of its remarkable and increasing antimicrobial resistance, the treatment of S. maltophilia infections is quite challenging. Meanwhile, the prevalence of S. maltophilia infections is increasing in recent decades. S. maltophilia is usually considered to be of low virulence but has numerous virulence factors involved in the pathogenesis of infections caused by S. maltophilia. By revealing its pathogenesis associated with virulence factors and molecular mechanisms of antimicrobial resistance, many existing or potential therapeutic strategies have been developed. However, because of the limited treatment options, new strategies are urgently needed. Here, we review the recent progresses in research on S. maltophilia which may help to develop more effective treatments against this increasing threat.
Collapse
Affiliation(s)
- Jiaying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China.
| |
Collapse
|
17
|
Noack P, Grosse C, Bodingbauer J, Almeder M, Lohfink-Schumm S, Salzer HJF, Meier J, Lamprecht B, Schmitt CA, Langer R. Minimally invasive autopsies for the investigation of pulmonary pathology of COVID-19-experiences of a longitudinal series of 92 patients. Virchows Arch 2023; 483:611-619. [PMID: 37653260 PMCID: PMC10673967 DOI: 10.1007/s00428-023-03622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Minimally invasive autopsies (MIAs) allow the collection of tissue samples for diagnostic and research purposes in special situations, e.g., when there is a high risk of infection which is the case in the context of COVID-19 or restrictions due to legal or personal reasons. We performed MIA to analyze lung tissue from 92 COVID-19 patients (mean age 78 years; range 48-98; 35 women, 57 men), representing 44% of all patients who died from the disease between October 2020 and April 2021. An intercostal approach was used with removal of a 5-cm rib section followed by manual collection of four lung tissue samples (5-8 cm in size). Diffuse alveolar damage (DAD) was found in 89 (97%) patients at various stages. Exudative DAD (eDAD) predominated in 18 (20%) patients, proliferative DAD (pDAD) in 43 (47%) patients, and mixed DAD (mDAD) in 31 (34%) patients. There were no significant differences in the predominant DAD pattern between tissue samples from the same patient. Additional purulent components were present in 46 (50%) cases. Fungi were detected in 11 (12%) patients. The pDAD pattern was associated with longer hospital stay including intensive care unit (p=0.026 and p<0.001) and younger age (p=0.019). Positive bronchoalveolar lavage and blood cultures were observed more frequently in pDAD patterns (p<0.001; p=0.018). In contrast, there was no significant association between intravital positive microbiological results and superimposed bronchopneumonia or fungal infection at autopsy. Having demonstrated the characteristic lung changes in a large longitudinal autopsy series, we conclude that the presented MIA approach can be considered a reliable and safe method for performing post mortem lung diagnostics in COVID-19 and other high-risk situations. The lack of correlation between histological changes indicative of bacterial or fungal superinfection and microbiology could have clinical implications for disease and treatment surveillance.
Collapse
Affiliation(s)
- Petar Noack
- Institute of Clinical Pathology, Kepler University Hospital, Krankenhausstr. 9, 4021, Linz, Austria
- Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Claudia Grosse
- Institute of Clinical Pathology, Kepler University Hospital, Krankenhausstr. 9, 4021, Linz, Austria
| | - Jacob Bodingbauer
- Institute of Clinical Pathology, Kepler University Hospital, Krankenhausstr. 9, 4021, Linz, Austria
- Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Marion Almeder
- Institute of Clinical Pathology, Kepler University Hospital, Krankenhausstr. 9, 4021, Linz, Austria
- Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Sylvia Lohfink-Schumm
- Institute of Clinical Pathology, Kepler University Hospital, Krankenhausstr. 9, 4021, Linz, Austria
- Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Helmut J F Salzer
- Medical Faculty, Johannes Kepler University, Linz, Austria
- Division of Infectious Diseases and Tropical Medicine, Department of Pulmonary Medicine, Kepler University Hospital, Linz, Austria
- Ignaz-Semmelweis-Institute, Interuniversity Institute for Infection Research, Vienna, Austria
| | - Jens Meier
- Medical Faculty, Johannes Kepler University, Linz, Austria
- Department of Anesthesiology and Intensive Care Medicine, Kepler University Hospital, Linz, Austria
| | - Bernd Lamprecht
- Medical Faculty, Johannes Kepler University, Linz, Austria
- Department of Pulmonary Medicine, Kepler University Hospital, Linz, Austria
| | - Clemens A Schmitt
- Medical Faculty, Johannes Kepler University, Linz, Austria
- Department of Hematology and Medical Oncology, Kepler University Hospital, Linz, Austria
| | - Rupert Langer
- Institute of Clinical Pathology, Kepler University Hospital, Krankenhausstr. 9, 4021, Linz, Austria.
- Medical Faculty, Johannes Kepler University, Linz, Austria.
| |
Collapse
|
18
|
Ranieri EM, Denicolò S, Stolfa S, Dalfino L, Bavaro DF, Saracino A, Ronga L, Del Prete R, Mosca A. Looking for Stenotrophomonas maltophilia treatment: in vitro activity of ceftazidime/avibactam alone and in combination with aztreonam. J Chemother 2023; 35:610-613. [PMID: 37615040 DOI: 10.1080/1120009x.2023.2247199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/30/2023] [Accepted: 05/02/2023] [Indexed: 08/25/2023]
Abstract
During the Sars-Cov-2 pandemic, Stenotrophomonas maltophilia (S.maltophilia) secondary pulmonary infections have increased, especially in critically ill patients, highlighting the need for new therapeutic options. Trimethoprim-sulfamethoxazole (SXT) is the treatment of choice but the increase of resistant strains or adverse drug reactions limited its clinical use. Recently ceftazidime/avibactam (CZA) has been approved for the treatment of multi drug resistant (MDR) Gram-negative bacteria infections, including hospital acquired pneumonia. The aim of this study was to evaluate the in vitro activity of ceftazidime/avibactam (CZA) alone and in combination with aztreonam (ATM) against S. maltophilia clinical isolates by E-test method. Susceptibility of SXT and levofloxacin (LEV) was also investigated. Our results showed 22% of resistance to CZA, 2% to SXT and 26% to LEV. CZA in combination with ATM demonstrated synergistic activity against 86% of the strains, including all those resistant to CZA. The combination of CZA with ATM provides a new therapeutic option for the treatment of severe respiratory infections in critically ill patients.
Collapse
Affiliation(s)
| | - Sofia Denicolò
- Section of Microbiology and Virology, University of Bari, Bari, Italy
| | - Stefania Stolfa
- Section of Microbiology and Virology, University of Bari, Bari, Italy
| | - Lidia Dalfino
- Anesthesia and Intensive Care Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | | | | | - Luigi Ronga
- Section of Microbiology and Virology, University of Bari, Bari, Italy
| | | | - Adriana Mosca
- Section of Microbiology and Virology, University of Bari, Bari, Italy
| |
Collapse
|
19
|
Silveira MAD, Menezes MDA, de Souza SP, Galvão EBDS, Berretta AA, Caldas J, Teixeira MB, Gomes MMD, Damiani LP, Bahiense BA, Cabral JB, De Oliveira CWLM, Mascarenhas TR, Pinheiro PCG, Alves MS, de Melo RMV, Leite FM, Nonaka CKV, Souza BSDF, Baptista NU, Teles F, da Guarda SF, Mendes AVA, Passos RDH. Standardized Brazilian green propolis extract (EPP-AF®) in COVID-19 outcomes: a randomized double-blind placebo-controlled trial. Sci Rep 2023; 13:18405. [PMID: 37891178 PMCID: PMC10611696 DOI: 10.1038/s41598-023-43764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
SARS-CoV-2 and its different variants caused a "wave and wave" pandemic pattern. During the first wave we demonstrated that standardized Brazilian green propolis extract (EPP-AF®) reduces length of hospital stay in adult patients with COVID-19. Afterwards, we decided to evaluate the impact of EPP-AF in hospitalized patients during the third wave of the pandemic. BeeCovid2 was a randomized, double-blind, placebo-controlled clinical trial in hospitalized COVID-19 adult patients. Patients were allocated to receive an oral dose of 900 mg/day of EPP-AF® or placebo for 10 days. The primary outcome was length of hospital stay. Secondary outcomes included safety, secondary infection rate, duration of oxygen therapy dependency, acute kidney injury and need for intensive care. Patients were followed up for 28 days after admission. We enrolled 188 patients; 98 were assigned to the propolis group and 90 to the placebo group. The post-intervention length of hospital stay was of 6.5 ± 6.0 days in the propolis group versus 7.7 ± 7.1 days in the control group (95% CI - 0.74 [- 1.94 to 0.42]; p = 0.22). Propolis did not have significant impact on the need for oxygen supplementation or frequency of AKI. There was a significant difference in the incidence of secondary infection between groups, with 6.1% in the propolis group versus 18.9% in the control group (95% CI - 0.28 [0.1-0.76], p = 0.01). The use of EPP-AF was considered safe and associated with a decrease in secondary infections. The drug was not associated with a significant reduction in length of hospital stay. ClinicalTrials.gov (NCT04800224).
Collapse
Affiliation(s)
- Marcelo Augusto Duarte Silveira
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil.
| | - Matheus de Alencar Menezes
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Sergio Pinto de Souza
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Erica Batista Dos Santos Galvão
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Andresa Aparecida Berretta
- Development and Innovation Department, Apis Flora Indl. Coml. Ltda, Rua Triunfo 945, Subsetor Sul 3, Ribeirão Preto, SP, 14020-670, Brazil
| | - Juliana Caldas
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Maurício Brito Teixeira
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Marcel Miranda Dantas Gomes
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Lucas Petri Damiani
- Academic Research Organization, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, Morumbi, São Paulo, SP, 05652-000, Brazil
| | - Bruno Andrade Bahiense
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Julia Barros Cabral
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | | | - Talita Rocha Mascarenhas
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Priscila Carvalho Guedes Pinheiro
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Milena Souza Alves
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Rodrigo Morel Vieira de Melo
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
- School of Medicine, Federal University of Bahia, Rua Augusto Viana s/n, Canela, Salvador, BA, 40110-909, Brazil
| | - Flávia Mendes Leite
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Carolina Kymie Vasques Nonaka
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia, 40296-710, Brazil
| | - Bruno Solano de Freitas Souza
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia, 40296-710, Brazil
| | - Nathália Ursoli Baptista
- Development and Innovation Department, Apis Flora Indl. Coml. Ltda, Rua Triunfo 945, Subsetor Sul 3, Ribeirão Preto, SP, 14020-670, Brazil
| | - Flávio Teles
- School of Medicine, Federal University of Alagoas, Av. Lourival de Melo Mota S/N, Tabuleiro do Martins, Maceió, Alagoas, 57072-900, Brazil
| | - Suzete Farias da Guarda
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
- School of Medicine, Federal University of Bahia, Rua Augusto Viana s/n, Canela, Salvador, BA, 40110-909, Brazil
| | - Ana Verena Almeida Mendes
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| | - Rogério da Hora Passos
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador, BA, 41253-190, Brazil
| |
Collapse
|
20
|
Burzio C, Balzani E, Corcione S, Montrucchio G, Trompeo AC, Brazzi L. Pneumocystis jirovecii Pneumonia after Heart Transplantation: Two Case Reports and a Review of the Literature. Pathogens 2023; 12:1265. [PMID: 37887781 PMCID: PMC10610317 DOI: 10.3390/pathogens12101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Post-transplant Pneumocystis jirovecii pneumonia (PcP) is an uncommon but increasingly reported disease among solid organ transplantation (SOT) recipients, associated with significant morbidity and mortality. Although the introduction of PcP prophylaxis has reduced its overall incidence, its prevalence continues to be high, especially during the second year after transplant, the period following prophylaxis discontinuation. We recently described two cases of PcP occurring more than one year after heart transplantation (HT) in patients who were no longer receiving PcP prophylaxis according to the local protocol. In both cases, the disease was diagnosed following the diagnosis of a viral illness, resulting in a significantly increased risk for PcP. While current heart transplantation guidelines recommend Pneumocystis jirovecii prophylaxis for up to 6-12 months after transplantation, after that period they only suggest an extended prophylaxis regimen in high-risk patients. Recent studies have identified several new risk factors that may be linked to an increased risk of PcP infection, including medication regimens and patient characteristics. Similarly, the indication for PcP prophylaxis in non-HIV patients has been expanded in relation to the introduction of new medications and therapeutic regimens for immune-mediated diseases. In our experience, the first patient was successfully treated with non-invasive ventilation, while the second required tracheal intubation, invasive ventilation, and extracorporeal CO2 removal due to severe respiratory failure. The aim of this double case report is to review the current timing of PcP prophylaxis after HT, the specific potential risk factors for PcP after HT, and the determinants of a prompt diagnosis and therapeutic approach in critically ill patients. We will also present a possible proposal for future investigations on indications for long-term prophylaxis.
Collapse
Affiliation(s)
- Carlo Burzio
- Department of Anesthesia, Intensive Care and Emergency, Città della Salute e della Scienza di Torino Hospital, 10126 Torino, Italy; (C.B.); (G.M.); (A.C.T.); (L.B.)
| | - Eleonora Balzani
- Department of Surgical Science, University of Turin, 10124 Torino, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10124 Turin, Italy;
- School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Giorgia Montrucchio
- Department of Anesthesia, Intensive Care and Emergency, Città della Salute e della Scienza di Torino Hospital, 10126 Torino, Italy; (C.B.); (G.M.); (A.C.T.); (L.B.)
- Department of Surgical Science, University of Turin, 10124 Torino, Italy
| | - Anna Chiara Trompeo
- Department of Anesthesia, Intensive Care and Emergency, Città della Salute e della Scienza di Torino Hospital, 10126 Torino, Italy; (C.B.); (G.M.); (A.C.T.); (L.B.)
| | - Luca Brazzi
- Department of Anesthesia, Intensive Care and Emergency, Città della Salute e della Scienza di Torino Hospital, 10126 Torino, Italy; (C.B.); (G.M.); (A.C.T.); (L.B.)
- Department of Surgical Science, University of Turin, 10124 Torino, Italy
| |
Collapse
|
21
|
Zhou C, Jiang Y, Sun L, Li H, Liu X, Huang L. Secondary pulmonary infection and co-infection in elderly COVID-19 patients during the pandemics in a tertiary general hospital in Beijing, China. Front Microbiol 2023; 14:1280026. [PMID: 37901822 PMCID: PMC10600495 DOI: 10.3389/fmicb.2023.1280026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Background Most people are infected with COVID-19 during pandemics at the end of 2022. Older patients were more vulnerable. However, the incidence of secondary bacterial, fungal or viral pulmonary infection and co-infection is not well described in elderly hospitalized COVID-19 patients. Methods We retrospectively reviewed the medical records of all elderly (≥65 years) hospitalized patients with laboratory-confirmed COVID-19 from December 1, 2022 to January 31, 2023. Demographics, underlying diseases, treatments, and laboratory data were collected. Univariate and multivariate logistic regression models were used to explore the risk factors associated with secondary bacterial, fungal or viral pulmonary infection and co-infection. Results A total of 322 older patients with COVID-19 were enrolled. The incidence of secondary bacterial, fungal or viral pulmonary infection and co-infection was 27.3% (88/322) and 7.5% (24/322), respectively. The overall in-hospital mortality of all patients was 32.9% (106/322), and the in-hospital mortality among patients who acquired with secondary pulmonary infection and co-infection was 57.0% (57/100). A total of 23.9% (77/322) of patients were admitted to ICU within 48 h of hospitalization. The incidence of secondary pulmonary infection and co-infection among patients admitted to the ICU was 50.6% (39/77) and 13.0% (10/77), respectively. The overall in-hospital mortality of ICU patients was 48.1% (37/77), and the in-hospital mortality of ICU patients acquired with secondary pulmonary infection and co-infection was 61.4% (27/44). A total of 83.5% (269/322) of the included patients received empirical antibiotic therapy before positive Clinical Microbiology results. Influenza A virus (the vast majority were the H3N2 subtype) was the most common community acquired pathogen for co-infection. While A. baumannii, K. pneumoniae, and P. aeruginosa were the common hospital acquired pathogens for co-infection and secondary pulmonary infection. The incidence of Carbapenem-resistant Gram-negative bacilli (CR-GNB) infections was high, and the mortality reached 76.9%. Predictors of secondary pulmonary infection and co-infection were ICU admission within 48 h of hospitalization, cerebrovascular diseases, critical COVID-19, and PCT > 0.5 ng/mL. Conclusion The prognosis for elderly hospitalized COVID-19 patients with secondary pulmonary infection or co-infection is poor. The inflammatory biomarker PCT > 0.5 ng/mL played an important role in the early prediction of secondary pulmonary infection and co-infection in COVID-19 patients.
Collapse
Affiliation(s)
- Chaoe Zhou
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Yaping Jiang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Liying Sun
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Xinmin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Lei Huang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| |
Collapse
|
22
|
Estella Á, Martín-Loeches I, Núñez MR, García CG, Pesaresi LM, Escors AA, Prieto MDL, Calvo JMS. Microbiological diagnosis of pulmonary invasive aspergillosis in critically ill patients with severe SARS-CoV-2 pneumonia: a bronchoalveolar study. Ann Clin Microbiol Antimicrob 2023; 22:90. [PMID: 37817167 PMCID: PMC10566150 DOI: 10.1186/s12941-023-00626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/29/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Diagnosing COVID-19-associated pulmonary aspergillosis (CAPA) can be challenging since radiological and clinical criteria in the critically ill patient are nonspecific. Microbiological diagnostic support is therefore crucial. The aim of this study was to document the incidence of aspergillosis using bronchoalveolar lavage (BAL) as the diagnostic method and to determine the performance of the current mycological diagnostic tests most widely used for the diagnosis of CAPA, together with evaluation of the Asp lateral flow device (LFD). METHODS Prospective cohort study conducted between March 2020 and June 2022. Inclusion criteria were critically ill patients admitted to the ICU with SARS-CoV-2 pneumonia requiring invasive mechanical ventilation. Diagnostic bronchoscopy and BAL were performed at the beginning of invasive mechanical ventilation. The sensitivity, specificity, positive and negative predictive value (PPV and NPV), positive and negative likelihood ratio (LR + and LR-) of BAL culture, direct examination with calcofluor white stain, ELISA (Platelia) and LFD (AspLFD) for detection of galactomannan (GM) were evaluated. Aspergillus-qPCR was applied when discrepancies between diagnostic tests arose. RESULTS Of the 244 critically ill patients with SARS-CoV-2 pneumonia admitted to the ICU, the majority (n = 200, 82%) required invasive mechanical ventilation. Diagnostic bronchoscopic procedures were performed in 160 patients (80%), who were enrolled in this study. The incidence of CAPA was 18.7% (n = 30). LFD-GM demonstrated a sensitivity of 84%, specificity of 99%, PPV 94%, NPV 97%, LR(+) of 84, and LR(-) of 0.16. At GM-ELISA indices of ≥ 0.5 and ≥ 1.0, sensitivity was 92% and 79%, specificity was 95% and 99%, PPV 76% and 91%, NPV 99% and 96%, LR(+) 18 and 79, and LR(-) 0.08 and 0.21, respectively. The optimal cut-off index from the ROC curve was 0.48, with sensitivity of 95% and specificity of 95%. CONCLUSIONS Using a diagnostic strategy based on bronchoscopy and BAL, we documented a high incidence of pulmonary aspergillosis in patients with severe SARS-CoV-2 pneumonia. Asp-LFD showed moderate sensitivity and excellent specificity, with a high PPV, and could be used for rapid diagnosis of patients with suspected CAPA.
Collapse
Affiliation(s)
- Ángel Estella
- Intensive Care Unit University Hospital of Jerez, University of Cádiz. INIBiCA, Jerez de la Frontera, Spain.
| | - Ignacio Martín-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James' Hospital, Dublin, Ireland
| | - María Recuerda Núñez
- Intensive Care Unit University Hospital of Jerez, INIBiCA, Jerez de la Frontera, Spain
| | | | - Liliana Marcela Pesaresi
- Infectious diseases and Microbiology, Unit Hospital Universitario de Jerez, INIBiCA, Jerez de la Frontera, Spain
| | | | - Maria Dolores López Prieto
- Infectious diseases and Microbiology, Unit Hospital Universitario de Jerez, INIBiCA, Jerez de la Frontera, Spain
| | - Juan Manuel Sánchez Calvo
- Infectious diseases and Microbiology, Unit Hospital Universitario de Jerez, INIBiCA, Jerez de la Frontera, Spain
| |
Collapse
|
23
|
Obradović D, Milovančev A, Plećaš Đurić A, Sovilj-Gmizić S, Đurović V, Šović J, Đurđević M, Tubić S, Bulajić J, Mišić M, Jojić J, Pušara M, Lazić I, Đurković M, Bek Pupovac R, Vulić A, Jozing M. High-Flow Nasal Cannula oxygen therapy in COVID-19: retrospective analysis of clinical outcomes - single center experience. Front Med (Lausanne) 2023; 10:1244650. [PMID: 37849487 PMCID: PMC10577378 DOI: 10.3389/fmed.2023.1244650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Background High-Flow Nasal Cannula (HFNC) oxygen therapy emerged as the therapy of choice in COVID-19-related pneumonia and moderate to severe acute hypoxemic respiratory failure (AHRF). HFNC oxygen therapy in COVID-19 has been recommended based its use to treat AHRF of other etiologies, and studies on assessing outcomes in COVID-19 patients are highly needed. This study aimed to examine outcomes in COVID-19 patients with pneumonia and severe AHRF treated with HFNC. Materials and methods The study included 235 COVID-19 patients with pneumonia treated with HFNC. Data extracted from medical records included demographic characteristics, comorbidities, laboratory parameters, clinical and oxygenation status, clinical complications, as well as the length of hospital stay. Patients were segregated into two groups based on their oxygen therapy needs: HDU group, those who exclusively required HFNC and ICU group, those whose oxygen therapy needed to be escalated at some point of hospital stay. The primary outcome was the need for respiratory support escalation (noninvasive or invasive mechanical ventilation) and the secondary outcome was the in-hospital all-cause mortality. Results The primary outcome was met in 113 (48%) of patients. The overall mortality was 70%, significantly higher in the ICU group [102 (90.2%) vs. 62 (50.1%), p < 0.001]. The rate of intrahospital infections was significantly higher in the ICU group while there were no significant differences in the length of hospital stay between the groups. The ICU group exhibited significant increases in D-dimer, NLR, and NEWS values, accompanied by a significant decrease in the SaO2/FiO2 ratio. The multivariable COX proportional regression analysis identified malignancy, higher levels of 4C Mortality Score and NEWS2 as significant predictors of mortality. Conclusion High-Flow Nasal Cannula oxygen therapy is a safe type of respiratory support in patients with COVID-19 pneumonia and acute hypoxemic respiratory failure with significantly less possibility for emergence of intrahospital infections. In 52% of patients, HFNC was successful in treating AHRF in COVID-19 patients. Overall, mortality in COVID-19 pneumonia with AHRF is still very high, especially in patients treated with noninvasive/invasive mechanical ventilation.
Collapse
Affiliation(s)
- Dušanka Obradović
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Aleksandra Milovančev
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Institute for Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Aleksandra Plećaš Đurić
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Clinic of Anesthesiology, Intensive Care and Pain Therapy, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | | | - Vladimir Đurović
- Clinic of Nephrology and Clinical Immunology, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jovica Šović
- Urgent Care Center, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Miloš Đurđević
- Urgent Care Center, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Stevan Tubić
- Urgent Care Center, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jelena Bulajić
- Urgent Care Center, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Milena Mišić
- Urgent Care Center, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jovana Jojić
- Urgent Care Center, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Miroslava Pušara
- Urgent Care Center, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Ivana Lazić
- Urgent Care Center, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Mladen Đurković
- Urgent Care Center, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Renata Bek Pupovac
- Urgent Care Center, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Aleksandra Vulić
- Urgent Care Center, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Marija Jozing
- Urgent Care Center, University Clinical Center of Vojvodina, Novi Sad, Serbia
| |
Collapse
|
24
|
M Abd El-Halim R, Hafez H, Albahet I, Sherif B. Respiratory co-infections in COVID-19-positive patients. Eur J Med Res 2023; 28:317. [PMID: 37660059 PMCID: PMC10474635 DOI: 10.1186/s40001-023-01305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 08/19/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Opportunistic respiratory infections may complicate critically ill patients with COVID-19. Early detection of co-infections helps to administrate the appropriate antimicrobial agent, to guard against patient deterioration. This study aimed at estimating co-infections in COVID-19-positive patients. METHODS Eighty-nine COVID-19-positive patients confirmed by SARS-COV-2 PCR were tested for post-COVID-19 lower respiratory tract co-infections through bacterial culture, fungal culture and galactomannan (GM) testing. RESULTS Fourteen patients showed positive coinfection with Klebsiella, nine with Acinetobacter, six with Pseudomonas and three with E. coli. As for fungal infections, nine showed coinfection with Aspergillus, two with Zygomycetes and four with Candida. Galactomannan was positive among one patient with Aspergillus coinfection, one with Zygomycetes coinfection and three with Candida, 13 samples with negative fungal culture were positive for GM. Ten samples showed positive fungal growth, however, GM test was negative. CONCLUSION In our study, SARS-COV-2 respiratory coinfections were mainly implicated by bacterial pathogens; most commonly Klebsiella species (spp.), Aspergillus spp. were the most common cause of fungal coinfections, GM test showed low positive predictive value for fungal infection. Respiratory coinfections may complicate SARS-COV-2 probably due to the prolonged intensive care units (ICU) hospitalization, extensive empiric antimicrobial therapy, steroid therapy, mechanical ventilation during the COVID-19 outbreak. Antimicrobial stewardship programs are required so that antibiotics are prescribed judiciously according to the culture results.
Collapse
Affiliation(s)
- Rania M Abd El-Halim
- Clinical Pathology Department, Faculty of Medicine Ain Shams University, Cairo, 11566, Egypt
| | - Hala Hafez
- Clinical Pathology Department, Faculty of Medicine Ain Shams University, Cairo, 11566, Egypt
| | - Ibrahim Albahet
- Anaesthesia, Intensive Care and pain management department, Faculty of Medicine-Ain Shams University, Cairo, Egypt
| | - Basma Sherif
- Clinical Pathology Department, Faculty of Medicine Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
25
|
Hanks J, Unai S, Bribriesco A, Insler S, Yu E, Banzon J, Mireles-Cabodevila E, Adi A, Elgharably H, Yun J, Krishnan S. Successful treatment of pulmonary mucormycosis ( Lichtheimia spp.) in a post-partum patient with COVID-19 ARDS requiring extra-corporeal membrane oxygenation using salvage therapy. Perfusion 2023; 38:1315-1318. [PMID: 35979585 PMCID: PMC9389274 DOI: 10.1177/02676591221111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Case Summary: A 31-year-old female presented to a regional hospital at 27 weeks pregnant and was found to have COVID-19 ARDS. She underwent intubation and caesarian section for worsening hypoxia and non-reassuring fetal heart tones. Hypoxemia was refractory to proning requiring ECMO and transfer to a tertiary care center. Admission chest radiography showed a new right lower lobe cavitating lesion with computed tomography scan revealing a large multi-loculated cavity in the right lung and extensive bilateral ground-glass opacities. The patient was started on amphotericin and posaconazole, with final respiratory cultures growing Lichtheimia spp. Source control was discussed via possible open thoracostomy, but medical management alone was continued. Total ECMO support was 3 weeks. At the time of discharge to acute rehab, 1 month of amphotericin and posaconazole had been completed, with continuation of posaconazole. At last update, she had been discharged from rehab and was back home with her infant. Conclusion: Pulmonary mucormycosis, even in the non-ECLS population, carries a high mortality. Treatment in pulmonary disease with surgery improves mortality but is not always feasible. Salvage therapy with extended course antifungal medications may be an option for those not amendable.
Collapse
Affiliation(s)
- Justin Hanks
- Department of Internal Medicine, Cleveland Clinic
Foundation, Cleveland OH, USA
| | - Shinya Unai
- Department of Thoracic and
Cardiovascular Surgery, Cleveland Clinic
Foundation, Cleveland OH, USA
| | - Alejandro Bribriesco
- Department of Thoracic and
Cardiovascular Surgery, Cleveland Clinic
Foundation, Cleveland OH, USA
| | - Steven Insler
- Department of Intensive Care and
Resuscitation, Cleveland Clinic
Foundation, Cleveland OH, USA
| | - Eileen Yu
- Case Western Reserve
University, Cleveland OH, USA
| | - Jona Banzon
- Department of Infectious Disease, Cleveland Clinic
Foundation, Cleveland OH, USA
| | | | - Ahmad Adi
- Department of Intensive Care and
Resuscitation, Cleveland Clinic
Foundation, Cleveland OH, USA
| | - Haytham Elgharably
- Department of Thoracic and
Cardiovascular Surgery, Cleveland Clinic
Foundation, Cleveland OH, USA
| | - James Yun
- Case Western Reserve
University, Cleveland OH, USA
| | - Sudhir Krishnan
- Department of Critical Care
Medicine, Cleveland Clinic
Foundation, Cleveland OH, USA
| |
Collapse
|
26
|
Villalva C, Patil G, Narayanan S, Chanda D, Ghimire R, Snider T, Ramachandran A, Channappanavar R, More S. Klebsiella pneumoniae C o-infection Leads to Fatal Pneumonia in SARS-CoV-2-infected Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551035. [PMID: 37577517 PMCID: PMC10418095 DOI: 10.1101/2023.07.28.551035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
SARS-CoV-2 patients have been reported to have high rates of secondary Klebsiella pneumoniae infections. Klebsiella pneumoniae is a commensal that is typically found in the respiratory and gastrointestinal tracts. However, it can cause severe disease when a person's immune system is compromised. Despite a high number of K. pneumoniae cases reported in SARS-CoV-2 patients, a co-infection animal model evaluating the pathogenesis is not available. We describe a mouse model to study disease pathogenesis of SARS-CoV-2 and K. pneumoniae co-infection. BALB/cJ mice were inoculated with mouse-adapted SARS-CoV-2 followed by a challenge with K. pneumoniae . Mice were monitored for body weight change, clinical signs, and survival during infection. The bacterial load, viral titers, immune cell accumulation and phenotype, and histopathology were evaluated in the lungs. The co-infected mice showed severe clinical disease and a higher mortality rate within 48 h of K. pneumoniae infection. The co-infected mice had significantly elevated bacterial load in the lungs, however, viral loads were similar between co-infected and single-infected mice. Histopathology of co-infected mice showed severe bronchointerstitial pneumonia with copious intralesional bacteria. Flow cytometry analysis showed significantly higher numbers of neutrophils and macrophages in the lungs. Collectively, our results demonstrated that co-infection of SARS-CoV-2 with K. pneumoniae causes severe disease with increased mortality in mice.
Collapse
|
27
|
Zhang S, Shi J, Zhuo Y, Wang T. Impact of COVID-19 on the distribution of pathogenic bacteria in the lower respiratory tract of the elderly. Immun Inflamm Dis 2023; 11:e931. [PMID: 37506149 PMCID: PMC10336659 DOI: 10.1002/iid3.931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND To investigate the distribution of bacterial pathogens of lower respiratory tract infection (LRTI) in hospitalized elderly patients during the COVID-19 epidemic and to explore the influence of COVID-19 on the distribution of bacterial pathogens, to provide guidance for clinical diagnosis. METHODS Specimens of sputum from elderly LRTIs patients at Fuding Hospital of China were consecutively collected from October 2022 to January 2023. Cultures and identification were done, and RT-PCR was employed to detect SARS-Cov-2 nucleic acid. RESULTS A total of 195 isolates were characterized in 163 sputum samples of consecutive hospitalized elderly patients, of which 11.3% were Gram-positive bacteria and 88.7% were Gram-negative. The top of frequently isolated pathogens was Klebsiella pneumonia (30.3%), Pseudomonas aeruginosa (19.0%), Acinetobacter baumannii (12.8%), Stenotrophomonas maltophili, (7.7%), Escherichia coli (7.2%). According to the results of novel coronavirus nucleic acid detection, the 163 patients were divided into COVID-19 group and non-COVID control (CNT) group. The comparison of bacterial distribution between the groups revealed that Stenotrophomonas maltophilia was lower in the COVID-19 than in the CNT group, while A. baumannii was higher in the COVID-19 group, and the difference was statistically significant (p < .05). CONCLUSION The major bacteria identified in sputum culture of hospitalized elderly patients were K. pneumonia, P. aeruginosa, A. baumannii, S. maltophilia, and E. coli. Furthermore, the distribution of S. maltophilia and A. baumannii between the COVID-19 and CNT groups was found to be significantly different (p < .05), while there were no significant differences in the distribution of other bacteria.
Collapse
Affiliation(s)
- Shi‐Yan Zhang
- Department of Clinical Laboratory, Fuding HospitalFujian University of Traditional Chinese MedicineFudingFujianChina
| | - Jing Shi
- Department of Clinical Laboratory, Fuding HospitalFujian University of Traditional Chinese MedicineFudingFujianChina
| | - Ying Zhuo
- Department of Clinical Laboratory, Fuding HospitalFujian University of Traditional Chinese MedicineFudingFujianChina
| | - Ting‐Qiang Wang
- Department of Clinical Laboratory, Fuding HospitalFujian University of Traditional Chinese MedicineFudingFujianChina
| |
Collapse
|
28
|
Zeylabi F, Nameh Goshay Fard N, Parsi A, Pezeshki SMS. Bone marrow alterations in COVID-19 infection: The root of hematological problems. Curr Res Transl Med 2023; 71:103407. [PMID: 37544028 DOI: 10.1016/j.retram.2023.103407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION The 2019 coronavirus disease (COVID-19) is a respiratory infection caused by the SARS-CoV-2 virus with a significant impact on the hematopoietic system and homeostasis. The effect of the virus on blood cells indicates the involvement of the bone marrow (BM) as the place of production and maturation of these cells by the virus and it reminds the necessity of investigating the effect of the virus on the bone marrow. METHOD To investigate the effects of COVID-19 infection in BM, we reviewed literature from the Google Scholar search engine and PubMed database up to 2022 using the terms "COVID-19; SARS-CoV-2; Bone marrow; Thrombocytopenia; Hemophagocytosis; Pancytopenia and Thrombocytopenia. RESULTS Infection with the SARS-CoV-2 virus is accompanied by alterations such as single-line cytopenia, pancytopenia, hemophagocytosis, and BM necrosis. The presence of factors such as cytokine release syndrome, the direct effect of the virus on cells through different receptors, and the side effects of current treatments such as corticosteroids are some of the important mechanisms in the occurrence of these alterations. CONCLUSION To our knowledge, this review is the first study to comprehensively investigate BM alterations caused by SAR-CoV-2 virus infection. The available findings show that the significant impact of this viral infection on blood cells and the clinical consequences resulting from them are deeper than previously thought and it may be rooted in the changes that the virus causes in the BM of patients.
Collapse
Affiliation(s)
- Fatemeh Zeylabi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abazar Parsi
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
29
|
De Francesco MA, Signorini L, Piva S, Pellizzeri S, Fumarola B, Corbellini S, Piccinelli G, Simonetti F, Carta V, Mangeri L, Padovani M, Vecchiati D, Latronico N, Castelli F, Caruso A. Bacterial and fungal superinfections are detected at higher frequency in critically ill patients affected by SARS CoV-2 infection than negative patients and are associated to a worse outcome. J Med Virol 2023; 95:e28892. [PMID: 37394790 DOI: 10.1002/jmv.28892] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 07/04/2023]
Abstract
Patients with viral infections are at higher risk to acquire bacterial and fungal superinfections associated with a worse prognosis. We explored this critical point in the setting of patients with severe COVID-19 disease. The study included 1911 patients admitted to intensive care unit (ICU) during a 2-year study period (March 2020-March 2022). Of them, 713 (37.3%) were infected with SARS-CoV-2 and 1198 were negative (62.7%). Regression analysis was performed to determine risk factors associated with the presence of bacterial and/or fungal superinfections in SARS-CoV-2 patients and to evaluate predictors of ICU mortality. Of the 713 patients with SARS-CoV-2 infection, 473 (66.3%) had respiratory and/or bloodstream bacterial and/or fungal superinfections, while of the 1198 COVID-19-negative patients, only 369 (30%) showed respiratory and/or bloodstream bacterial and/or fungal superinfections (p < 0.0001). Baseline characteristics of COVID-19 patients included a median age of 66 (interquartile range [IQR], 58-73), a predominance of males (72.7%), and the presence of a BMI higher than 24 (median 26; IQR, 24.5-30.4). Seventy-four percent (527, 73.9%) had one or more comorbidities and 135 (18.9%) of them had received previous antibiotic therapy. Furthermore, most of them (473, 66.3%) exhibited severe radiological pictures and needed invasive mechanical ventilation. Multivariate logistic regression analysis showed that 1 unit increment in BMI rises the risk of bacterial and/or fungal superinfections acquisition by 3% and 1-day increment in ICU stays rises the risk of bacterial and/or fungal superinfections acquisition by 11%. Furthermore, 1-day increment in mechanical ventilation rises the risk of bacterial and/or fungal superinfection acquisition by 2.7 times. Furthermore, patients with both bacterial and fungal infections had a significantly higher mortality rate than patients without superinfections (45.8% vs. 26.2%, p < 0.0001). Therefore, bacterial and fungal superinfections are frequent in COVID-19 patients admitted to ICU and their presence is associated with a worse outcome. This is an important consideration for targeted therapies in critically ill SARS-CoV-2 infected patients to improve their clinical course.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Institute of Microbiology, Department of Molecular and Translational Medicine, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Liana Signorini
- Division of Infectious and Tropical Diseases, ASST Spedali Civili, University of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Simone Piva
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Anesthesia, Intensive Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Simone Pellizzeri
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Benedetta Fumarola
- Division of Infectious and Tropical Diseases, ASST Spedali Civili, University of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvia Corbellini
- Institute of Microbiology, Department of Molecular and Translational Medicine, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Giorgio Piccinelli
- Institute of Microbiology, Department of Molecular and Translational Medicine, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Francesca Simonetti
- Institute of Microbiology, Department of Molecular and Translational Medicine, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Valentina Carta
- Institute of Microbiology, Department of Molecular and Translational Medicine, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Lucia Mangeri
- Institute of Microbiology, Department of Molecular and Translational Medicine, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Michela Padovani
- Institute of Microbiology, Department of Molecular and Translational Medicine, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Daniela Vecchiati
- First Division of Anesthesiology and Intensive Care Unit, ASST Spedali Civili di Brescia, Brescia, 25123, Italy
| | - Nicola Latronico
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Anesthesia, Intensive Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Francesco Castelli
- Division of Infectious and Tropical Diseases, ASST Spedali Civili, University of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Arnaldo Caruso
- Institute of Microbiology, Department of Molecular and Translational Medicine, ASST Spedali Civili, University of Brescia, Brescia, Italy
| |
Collapse
|
30
|
Pichon M, Cremniter J, Burucoa C. French national epidemiology of bacterial superinfections in ventilator-associated pneumonia in patients infected with COVID-19: the COVAP study. Ann Clin Microbiol Antimicrob 2023; 22:50. [PMID: 37381046 DOI: 10.1186/s12941-023-00603-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Description and comparison of bacterial characteristics of ventilator-associated pneumonia (VAP) between critically ill intensive care unit (ICU) patients with COVID-19-positive, COVID + ; and non-COVID-19, COVID-. METHODS Retrospective, observational, multicenter study that focused on French patients during the first wave of the pandemic (March-April 2020). RESULTS 935 patients with identification of at least one bacteriologically proven VAP were included (including 802 COVID +). Among Gram-positive bacteria, S. aureus accounted for more than two-thirds of the bacteria involved, followed by Streptococcaceae and enterococci without difference between clinical groups regarding antibiotic resistance. Among Gram-negative bacteria, Klebsiella spp. was the most frequently observed bacterial genus in both groups, with K. oxytoca overrepresented in the COVID- group (14.3% vs. 5.3%; p < 0.05). Cotrimoxazole-resistant bacteria were over-observed in the COVID + group (18.5% vs. 6.1%; p <0.05), and after stratification for K. pneumoniae (39.6% vs. 0%; p <0.05). In contrast, overrepresentation of aminoglycoside-resistant strains was observed in the COVID- group (20% vs. 13.9%; p < 0.01). Pseudomonas sp. was more frequently isolated from COVID + VAPs (23.9% vs. 16.7%; p <0.01) but in COVID- showed more carbapenem resistance (11.1% vs. 0.8%; p <0.05) and greater resistance to at least two aminoglycosides (11.8% vs. 1.4%; p < 0.05) and to quinolones (53.6% vs. 7.0%; p <0.05). These patients were more frequently infected with multidrug-resistant bacteria than COVID + (40.1% vs. 13.8%; p < 0.01). CONCLUSIONS The present study demonstrated that the bacterial epidemiology and antibiotic resistance of VAP in COVID + is different from that of COVID- patients. These features call for further study to tailor antibiotic therapies in VAP patients.
Collapse
Affiliation(s)
- Maxime Pichon
- CHU Poitiers , Infectious Agents Department. Bacteriology and Infection Control Laboratory, 2 rue de la Milétrie, 86021, Poitiers, France.
- Université de Poitiers, INSERM. U1070 Pharmacology of Antimicrobial Agents and Antibiotic Resistance, Medicine and Pharmacy University, Poitiers, France.
| | - Julie Cremniter
- CHU Poitiers , Infectious Agents Department. Bacteriology and Infection Control Laboratory, 2 rue de la Milétrie, 86021, Poitiers, France
- Université de Poitiers, INSERM. U1070 Pharmacology of Antimicrobial Agents and Antibiotic Resistance, Medicine and Pharmacy University, Poitiers, France
| | - Christophe Burucoa
- CHU Poitiers , Infectious Agents Department. Bacteriology and Infection Control Laboratory, 2 rue de la Milétrie, 86021, Poitiers, France
- Université de Poitiers, INSERM. U1070 Pharmacology of Antimicrobial Agents and Antibiotic Resistance, Medicine and Pharmacy University, Poitiers, France
| |
Collapse
|
31
|
Papi M, De Spirito M, Palmieri V. Nanotechnology in the COVID-19 era: Carbon-based nanomaterials as a promising solution. CARBON 2023; 210:118058. [PMID: 37151958 PMCID: PMC10148660 DOI: 10.1016/j.carbon.2023.118058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has led to collaboration between nanotechnology scientists, industry stakeholders, and clinicians to develop solutions for diagnostics, prevention, and treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections. Nanomaterials, including carbon-based materials (CBM) such as graphene and carbon nanotubes, have been studied for their potential in viral research. CBM unique effects on microorganisms, immune interaction, and sensitivity in diagnostics have made them a promising subject of SARS-CoV-2 research. This review discusses the interaction of CBM with SARS-CoV-2 and their applicability, including CBM physical and chemical properties, the known interactions between CBM and viral components, and the proposed prevention, treatment, and diagnostics uses.
Collapse
Affiliation(s)
- Massimiliano Papi
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185, Rome, Italy
| |
Collapse
|
32
|
Kang JS. Changing Trends in the Incidence and Clinical Features of Pneumocystis jirovecii Pneumonia in Non-HIV Patients before and during the COVID-19 Era and Risk Factors for Mortality between 2016 and 2022. Life (Basel) 2023; 13:1335. [PMID: 37374118 DOI: 10.3390/life13061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Fungal superinfections have been reported in patients with coronavirus disease 2019 (COVID-19). We analyzed the incidence and clinical characteristics of Pneumocystis jirovecii pneumonia (PCP) in non-human immunodeficiency virus patients at a tertiary hospital between 2016 and 2022 to evaluate the impact of the COVID-19 pandemic on PCP. The study period was divided into pre-COVID-19 and COVID-19 eras based on the pandemic declaration by the World Health Organization. Among the 113 patients included, the incidence of PCP in the COVID-19 era (37/1000 patient-years) was significantly higher than that in the pre-COVID-19 era (13.1/1000 patient-years) (p < 0.001). Co-infection with invasive pulmonary aspergillosis (IPA) also increased (2.4% vs. 18.3%, p = 0.013). Independent risk factors for PCP-related mortality were previous glucocorticoid use, hypoxemia, acute kidney injury, and IPA co-infection. Risk factors for IPA in patients with PCP included previous use of tyrosine kinase inhibitors, COVID-19 infection within 30 days, leukopenia, and intensive care unit admission. In the COVID-19 era, 12 (16.9%) patients with PCP had a history of COVID-19 infection within 90 days; however, infection was not associated with mortality. Active evaluation of patients with suspected PCP and assessment of IPA co-infection risk may help improve the outcomes of patients with PCP.
Collapse
Affiliation(s)
- Jin Suk Kang
- Division of Infectious Diseases, Department of Internal Medicine, Inje University College of Medicine, Inje University Busan Paik Hospital, 75, Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea
| |
Collapse
|
33
|
Euler CW, Raz A, Hernandez A, Serrano A, Xu S, Andersson M, Zou G, Zhang Y, Fischetti VA, Li J. PlyKp104, a Novel Phage Lysin for the Treatment of Klebsiella pneumoniae, Pseudomonas aeruginosa, and Other Gram-Negative ESKAPE Pathogens. Antimicrob Agents Chemother 2023; 67:e0151922. [PMID: 37098944 PMCID: PMC10190635 DOI: 10.1128/aac.01519-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/30/2023] [Indexed: 04/27/2023] Open
Abstract
Klebsiella pneumoniae and Pseudomonas aeruginosa are two leading causes of burn and wound infections, pneumonia, urinary tract infections, and more severe invasive diseases, which are often multidrug resistant (MDR) or extensively drug resistant. Due to this, it is critical to discover alternative antimicrobials, such as bacteriophage lysins, against these pathogens. Unfortunately, most lysins that target Gram-negative bacteria require additional modifications or outer membrane permeabilizing agents to be bactericidal. We identified four putative lysins through bioinformatic analysis of Pseudomonas and Klebsiella phage genomes in the NCBI database and then expressed and tested their intrinsic lytic activity in vitro. The most active lysin, PlyKp104, exhibited >5-log killing against K. pneumoniae, P. aeruginosa, and other Gram-negative representatives of the multidrug-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, K. pneumonia, Acinetobacter baumannii, P. aeruginosa, and Enterobacter species) without further modification. PlyKp104 displayed rapid killing and high activity over a wide pH range and in high concentrations of salt and urea. Additionally, pulmonary surfactants and low concentrations of human serum did not inhibit PlyKp104 activity in vitro. PlyKp104 also significantly reduced drug-resistant K. pneumoniae >2 logs in a murine skin infection model after one treatment of the wound, suggesting that this lysin could be used as a topical antimicrobial against K. pneumoniae and other MDR Gram-negative infections.
Collapse
Affiliation(s)
- Chad W. Euler
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Assaf Raz
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
| | - Anaise Hernandez
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
| | - Anna Serrano
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Siyue Xu
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Martin Andersson
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
34
|
Scendoni R, Bury E, Lima Arrais Ribeiro I, Cingolani M, Cameriere R, De Benedictis A, De Micco F. Leading Pathogens Involved in Co-Infection and Super-Infection with COVID-19: Forensic Medicine Considerations after a Systematic Review and Meta-Analysis. Pathogens 2023; 12:pathogens12050646. [PMID: 37242315 DOI: 10.3390/pathogens12050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The COVID-19 pandemic raised concerns about the potential for co-infection or over-infection with other respiratory infections, as they can complicate the diagnosis, treatment and prognosis of the disease. This is also a challenge for forensic pathologists, who may come across cases where the presence of co-infection or over-infection is suspected or confirmed, and it is important that they take this into account when determining the cause of death. The aim of this systematic review is to analyse the prevalence of each specific pathogen co-infecting or over-infecting patients with SARS-CoV-2 infection. In total, 575 studies were selected from the Scopus and Pub-Med online databases and 8 studies were included in a meta-analysis. Male gender, advanced age and nursing home care are risk factors associated with the development of co-infection, whereas age, tachypnoea, hypoxaemia and bacterial infection are predictors of mortality. Overall, however, having a SARS-CoV-2 infection does not represent a real risk for the development of co-infections/super-infections.
Collapse
Affiliation(s)
- Roberto Scendoni
- Department of Law, University of Macerata, 62100 Macerata, Italy
| | - Emanuele Bury
- Department of Law, University of Macerata, 62100 Macerata, Italy
| | | | | | - Roberto Cameriere
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Anna De Benedictis
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Roma, Italy
- Research Unit of Nursing Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Francesco De Micco
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Roma, Italy
- Research Unit of Bioethics and Humanities, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| |
Collapse
|
35
|
Hawsawi NM, Hamad AM, Rashid SN, Alshehri F, Sharaf M, Zakai SA, Al Yousef SA, Ali AM, Abou-Elnour A, Alkhudhayri A, Elrefaei NG, Elkelish A. Biogenic silver nanoparticles eradicate of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) isolated from the sputum of COVID-19 patients. Front Microbiol 2023; 14:1142646. [PMID: 37143540 PMCID: PMC10153441 DOI: 10.3389/fmicb.2023.1142646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
In recent investigations, secondary bacterial infections were found to be strongly related to mortality in COVID-19 patients. In addition, Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria played an important role in the series of bacterial infections that accompany infection in COVID-19. The objective of the present study was to investigate the ability of biosynthesized silver nanoparticles from strawberries (Fragaria ananassa L.) leaf extract without a chemical catalyst to inhibit Gram-negative P. aeruginosa and Gram-positive Staph aureus isolated from COVID-19 patient’s sputum. A wide range of measurements was performed on the synthesized AgNPs, including UV–vis, SEM, TEM, EDX, DLS, ζ -potential, XRD, and FTIR. UV-Visible spectral showed the absorbance at the wavelength 398 nm with an increase in the color intensity of the mixture after 8 h passed at the time of preparation confirming the high stability of the FA-AgNPs in the dark at room temperature. SEM and TEM measurements confirmed AgNPs with size ranges of ∼40-∼50 nm, whereas the DLS study confirmed their average hydrodynamic size as ∼53 nm. Furthermore, Ag NPs. EDX analysis showed the presence of the following elements: oxygen (40.46%), and silver (59.54%). Biosynthesized FA-AgNPs (ζ = −17.5 ± 3.1 mV) showed concentration-dependent antimicrobial activity for 48 h in both pathogenic strains. MTT tests showed concentration-dependent and line-specific effects of FA-AgNPs on cancer MCF-7 and normal liver WRL-68 cell cultures. According to the results, synthetic FA-AgNPs obtained through an environmentally friendly biological process are inexpensive and may inhibit the growth of bacteria isolated from COVID-19 patients.
Collapse
|
36
|
Campos-Gómez J, Fernandez Petty C, Mazur M, Tang L, Solomon GM, Joseph R, Li Q, Peabody Lever JE, Hussain SS, Harrod KS, Onuoha EE, Kim H, Rowe SM. Mucociliary clearance augmenting drugs block SARS-CoV-2 replication in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2023; 324:L493-L506. [PMID: 36809189 PMCID: PMC10042606 DOI: 10.1152/ajplung.00285.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
The coronavirus disease (COVID-19) pandemic, caused by SARS-CoV-2 coronavirus, is devastatingly impacting human health. A prominent component of COVID-19 is the infection and destruction of the ciliated respiratory cells, which perpetuates dissemination and disrupts protective mucociliary transport (MCT) function, an innate defense of the respiratory tract. Thus, drugs that augment MCT could improve the barrier function of the airway epithelium and reduce viral replication and, ultimately, COVID-19 outcomes. We tested five agents known to increase MCT through distinct mechanisms for activity against SARS-CoV-2 infection using a model of human respiratory epithelial cells terminally differentiated in an air/liquid interphase. Three of the five mucoactive compounds tested showed significant inhibitory activity against SARS-CoV-2 replication. An archetype mucoactive agent, ARINA-1, blocked viral replication and therefore epithelial cell injury; thus, it was further studied using biochemical, genetic, and biophysical methods to ascertain the mechanism of action via the improvement of MCT. ARINA-1 antiviral activity was dependent on enhancing the MCT cellular response, since terminal differentiation, intact ciliary expression, and motion were required for ARINA-1-mediated anti-SARS-CoV2 protection. Ultimately, we showed that the improvement of cilia movement was caused by ARINA-1-mediated regulation of the redox state of the intracellular environment, which benefited MCT. Our study indicates that intact MCT reduces SARS-CoV-2 infection, and its pharmacologic activation may be effective as an anti-COVID-19 treatment.
Collapse
Affiliation(s)
- Javier Campos-Gómez
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | | | - Marina Mazur
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | - Liping Tang
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | - George M Solomon
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | - Reny Joseph
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | - Qian Li
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| | - Jacelyn E Peabody Lever
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
- Medical Scientist Training Program, Heersink School of Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Shah Saddad Hussain
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Kevin S Harrod
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Alabama, United States
| | - Ezinwanne E Onuoha
- Department of Biomedical Engineering, University of Alabama at Birmingham, Alabama, United States
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Alabama, United States
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Alabama, United States
| |
Collapse
|
37
|
Recommendations and guidelines for the diagnosis and management of Coronavirus Disease-19 (COVID-19) associated bacterial and fungal infections in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:207-235. [PMID: 36586743 PMCID: PMC9767873 DOI: 10.1016/j.jmii.2022.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus disease-19 (COVID-19) is an emerging infectious disease caused by SARS-CoV-2 that has rapidly evolved into a pandemic to cause over 600 million infections and more than 6.6 million deaths up to Nov 25, 2022. COVID-19 carries a high mortality rate in severe cases. Co-infections and secondary infections with other micro-organisms, such as bacterial and fungus, further increases the mortality and complicates the diagnosis and management of COVID-19. The current guideline provides guidance to physicians for the management and treatment of patients with COVID-19 associated bacterial and fungal infections, including COVID-19 associated bacterial infections (CABI), pulmonary aspergillosis (CAPA), candidiasis (CAC) and mucormycosis (CAM). Recommendations were drafted by the 7th Guidelines Recommendations for Evidence-based Antimicrobial agents use Taiwan (GREAT) working group after review of the current evidence, using the grading of recommendations assessment, development, and evaluation (GRADE) methodology. A nationwide expert panel reviewed the recommendations in March 2022, and the guideline was endorsed by the Infectious Diseases Society of Taiwan (IDST). This guideline includes the epidemiology, diagnostic methods and treatment recommendations for COVID-19 associated infections. The aim of this guideline is to provide guidance to physicians who are involved in the medical care for patients with COVID-19 during the ongoing COVID-19 pandemic.
Collapse
|
38
|
Tanii R, Harada S, Saito H, Okamoto K, Doi Y, Suzuki M. A case report of fatal COVID-19 complicated by rapidly progressive sepsis caused by Klebsiella variicola. BMC Infect Dis 2023; 23:184. [PMID: 36991335 DOI: 10.1186/s12879-023-08128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/27/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND There is a growing interest in Klebsiella variicola as a causative pathogen in humans, though its clinical features and the impact of co-infection or secondary infection with COVID-19 remain unknown. CASE PRESENTATION A 71-year-old man presented with fever, altered mental status and generalized weakness and was admitted to ICU due to severe COVID-19 pneumonia. He was newly diagnosed with type II diabetes mellitus upon admission. On hospital day 3, his respiratory status deteriorated, requiring invasive mechanical ventilation. On hospital day 10, superimposed bacterial pneumonia was suspected and subsequently, broad-spectrum antibiotics were administered for the associated bloodstream infection. On hospital day 13, despite administration of active antibiotics and appropriate source control, he decompensated and died. The causative organism isolated from blood cultures was initially reported as K. pneumoniae, but it was identified as K. variicola by a genetic analysis. A representative isolate (FUJ01370) had a novel multilocus sequence typing allelic profile (gapA-infB-mdh-pgi-phoE-rpoB-tonB: 16-24-21-27-52-17-152), to which sequence type 5794 was assigned (GenBank assembly accession: GCA_019042755.1). CONCLUSIONS We report a fatal case of respiratory and bloodstream infection due to K. variicola complicating severe COVID-19. Co-infection or secondary infection of K. variicola in COVID-19 is likely under-recognized and can be fulminant as in this case.
Collapse
Affiliation(s)
- Rimi Tanii
- Department of Emergency and Critical Care Medicine, St. Marianna University Yokohama Seibu Hospital, 1197-1, Yasashi-cho, Asahi-ku, Yokohama, Kanagawa, Japan.
| | - Sohei Harada
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroki Saito
- Department of Emergency and Critical Care Medicine, St. Marianna University Yokohama Seibu Hospital, 1197-1, Yasashi-cho, Asahi-ku, Yokohama, Kanagawa, Japan
| | - Koh Okamoto
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
39
|
Development of a Novel Antibacterial Peptide, PAM-5, via Combination of Phage Display Selection and Computer-Assisted Modification. Biomolecules 2023; 13:biom13030466. [PMID: 36979401 PMCID: PMC10046784 DOI: 10.3390/biom13030466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Antibacterial peptides (ABPs) have been proposed as potential candidates for alternative antibacterial agents due to the extensive dissemination of antibiotic resistance. However, ABP isolation from natural resources can be tedious without consistent yield. Moreover, many natural ABPs are not developed for clinical application due to potential toxicity to mammalian cells. Therefore, the objective of this study was to develop a potent ABP with minimal toxicity via phage display selection followed by computer-assisted modification. Briefly, a 12-mer phage-displayed peptide library was used to isolate peptides that bound to the cell surface of Pseudomonas aeruginosa with high affinity. The affinity-selected peptide with the highest selection frequency was modified to PAM-5 (KWKWRPLKRKLVLRM) with enhanced antibacterial features by using an online peptide database. Using in vitro microbroth dilution assay, PAM-5 was shown to be active against a panel of Gram-negative bacteria and selected Gram-positive bacteria. Interestingly, the peptide was stable in human plasma by exhibiting a similar bactericidal effect via ex vivo assay. Scanning electron microscopy and SYTOX Green uptake assay revealed that PAM-5 was able to cause membrane disruption and permeabilization of the bacteria. Additionally, the peptide was also able to bind to bacterial DNA as demonstrated by gel retardation assay. In the time-kill assay, PAM-5 was shown to kill the bacteria rapidly in 10 min. More importantly, PAM-5 was non-cytotoxic to Vero cells and non-haemolytic to human erythrocytes at all concentrations tested for the antibacterial assays. Thus, this study showed that the combination of phage display screening and computer-assisted modification could be used to develop potent novel ABPs, and PAM-5 derived from these approaches is worth to be further elucidated for its potential clinical use.
Collapse
|
40
|
Pseudomonas aeruginosa Promotes Persistence of Stenotrophomonas maltophilia via Increased Adherence to Depolarized Respiratory Epithelium. Microbiol Spectr 2023; 11:e0384622. [PMID: 36472421 PMCID: PMC9927254 DOI: 10.1128/spectrum.03846-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stenotrophomonas maltophilia is an emerging opportunistic respiratory pathogen in people with cystic fibrosis (CF). S. maltophilia is frequently observed in polymicrobial infections, and we have previously shown that Pseudomonas aeruginosa promotes colonization and persistence of S. maltophilia in mouse respiratory infections. In this study, we used host and bacterial RNA sequencing to further understand the molecular underpinnings of this interaction. To evaluate S. maltophilia transcript profiles, we used a recently described method for selective capture of bacterial mRNA transcripts with strain-specific RNA probes. We found that factors associated with the type IV pilus, including the histidine kinase subunit of a chemotactic two-component signaling system (chpA), had increased transcript levels during dual-species infection. Using immortalized CF respiratory epithelial cells, we found that infection with P. aeruginosa increases adherence of S. maltophilia, at least in part due to disruption of epithelial tight junctions. In contrast, an isogenic S. maltophilia chpA mutant strain lacked cooperative adherence to CF epithelia and decreased bacterial burden in vivo in dual-species infections with P. aeruginosa. Similarly, P. aeruginosa lacking elastase (lasB) failed to promote S. maltophilia adherence or bacterial colonization and persistence in vivo. Based on these results, we propose that disruption of lung tissue integrity by P. aeruginosa facilitates adherence of S. maltophilia to the lung epithelia, likely in a type IV pilus-dependent manner. These data lend insight into S. maltophilia colonization and persistence in people in later stages of CF disease and may have implications for interactions with other bacterial opportunists. IMPORTANCE Despite advances in treatment options for people with CF, complications of bacterial infections remain the greatest driver of morbidity and mortality in this patient population. These infections often involve more than one bacterial pathogen, and our understanding of how interspecies interactions impact disease progression is lacking. Previous work in our lab found that two CF pathogens, Stenotrophomonas maltophilia and Pseudomonas aeruginosa, can work together in the lung to cause more severe infection. In the present study, we found that infection with P. aeruginosa promotes persistence of S. maltophilia by interfering with epithelial barrier integrity. Depolarization of the epithelial cell layer by P. aeruginosa-secreted elastase increased S. maltophilia adherence, likely in a type IV pilus-dependent manner. Ultimately, this work sheds light on the molecular mechanisms governing an important multispecies interaction seen in pulmonary diseases such as CF.
Collapse
|
41
|
Umamoto K, Horiba M. Lung abscess as a secondary infection of COVID-19: A case report and literature review. J Infect Chemother 2023; 29:700-702. [PMID: 36791990 PMCID: PMC9925194 DOI: 10.1016/j.jiac.2023.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
A 16-year-old male was admitted with persistent fever, diarrhea, and anorexia 8 days after the diagnosis of coronavirus disease-2019 (COVID-19). Radiological examination of the lungs showed a cavitary lesion with an air-fluid level, but no apparent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. The lesion was diagnosed as a lung abscess after COVID-19. Treatment with antimicrobials was initiated, which attenuated symptoms and the lung lesion. Specific pathogens were not detected despite repeated sputum cultures, which suggested that lung abscess was caused by oral bacteria as a secondary infection of COVID-19. To date, several cases of lung abscess as a complication of COVID-19 have been reported. However, the majority of cases occurred after intubation to treat COVID-19, and there have been no cases involving young adults. This healthy young patient may have developed lung abscess due to COVID-19.
Collapse
Affiliation(s)
- Kotaro Umamoto
- Department of Respiratory Medicine, National Hospital Organization, Higashisaitama National Hospital, 4147 Kurohama, Hasuda, Saitama, 349-0196, Japan.
| | - Masahide Horiba
- Department of Respiratory Medicine, National Hospital Organization, Higashisaitama National Hospital, 4147 Kurohama, Hasuda, Saitama, 349-0196, Japan
| |
Collapse
|
42
|
Impact of Bacterial Infections on COVID-19 Patients: Is Timing Important? Antibiotics (Basel) 2023; 12:antibiotics12020379. [PMID: 36830290 PMCID: PMC9952118 DOI: 10.3390/antibiotics12020379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Along with important factors that worsen the clinical outcome of COVID-19, it has been described that bacterial infections among patients positive for a SARS-CoV-2 infection can play a dramatic role in the disease process. Co-infections or community-acquired infections are recognized within the first 48 h after the admission of patients. Superinfections occur at least 48 h after admission and are considered to contribute to a worse prognosis. Microbiologic parameters differentiate infections that happen after the fifth day of hospitalization from those appearing earlier. Specifically, after the fifth day, the detection of resistant bacteria increases and difficult microorganisms emerge. OBJECTIVES The aim of the study was to evaluate the impact of bacterial infections in patients with COVID-19 on the length of the hospital stay and mortality. METHODS A total of 177 patients hospitalized due to COVID-19 pneumonia were consecutively sampled during the third and fourth wave of the pandemic at a University Hospital in Greece. A confirmed bacterial infection was defined as positive blood, urinary, bronchoalveolar lavage (BAL) or any other infected body fluid. Patients with confirmed infections were further divided into subgroups according to the time from admission to the positive culture result. RESULTS When comparing the groups of patients, those with a confirmed infection had increased odds of death (odds ratio: 3.634; CI 95%: 1.795-7.358; p < 0.001) and a longer length of hospital stay (median 13 vs. 7 days). A late onset of infection was the most common finding in our cohort and was an independent risk factor for in-hospital death. Mortality and the length of hospital stay significantly differed between the subgroups. CONCLUSION In this case series, microbial infections were an independent risk factor for a worse outcome among patients with COVID-19. Further, a correlation between the onset of infection and a negative outcome in terms of non-infected, community-acquired, early hospital-acquired and late hospital-acquired infections was identified. Late hospital-acquired infections increased the mortality of COVID-19 patients whilst superinfections were responsible for an extended length of hospital stay.
Collapse
|
43
|
Campos-Gomez J, Petty CF, Mazur M, Tang L, Solomon GM, Joseph R, Li Q, Lever JEP, Hussain S, Harrod K, Onuoha E, Kim H, Rowe SM. Mucociliary Clearance Augmenting Drugs Block SARS-Cov-2 Replication in Human Airway Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526308. [PMID: 36778446 PMCID: PMC9915467 DOI: 10.1101/2023.01.30.526308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The coronavirus disease (COVID-19) pandemic, caused by SARS-CoV-2 coronavirus, is devastatingly impacting human health. A prominent component of COVID-19 is the infection and destruction of the ciliated respiratory cells, which perpetuates dissemination and disrupts protective mucociliary transport (MCT) function, an innate defense of the respiratory tract. Thus, drugs that augment MCT could improve barrier function of the airway epithelium, reduce viral replication and, ultimately, COVID-19 outcomes. We tested five agents known to increase MCT through distinct mechanisms for activity against SARS-CoV-2 infection using a model of human respiratory epithelial cells terminally differentiated in an air/liquid interphase. Three of the five mucoactive compounds tested showed significant inhibitory activity against SARS-CoV-2 replication. An archetype mucoactive agent, ARINA-1, blocked viral replication and therefore epithelial cell injury, thus, it was further studied using biochemical, genetic and biophysical methods to ascertain mechanism of action via improvement of MCT. ARINA-1 antiviral activity was dependent on enhancing the MCT cellular response, since terminal differentiation, intact ciliary expression and motion was required for ARINA-1-mediated anti-SARS-CoV2 protection. Ultimately, we showed that improvement of cilia movement was caused by ARINA-1-mediated regulation of the redox state of the intracellular environment, which benefited MCT. Our study indicates that Intact MCT reduces SARS-CoV-2 infection, and its pharmacologic activation may be effective as an anti-COVID-19 treatment.
Collapse
Affiliation(s)
- Javier Campos-Gomez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Marina Mazur
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liping Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - George M. Solomon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Reny Joseph
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Qian Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jacelyn E. Peabody Lever
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- Medical Scientist Training Program, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shah Hussain
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin Harrod
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ezinwanne Onuoha
- Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven M. Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
44
|
Chen JZ, Hoang HL, Yaskina M, Kabbani D, Doucette KE, Smith SW, Lau C, Stewart J, Remtulla S, Zurek K, Schultz M, Koriyama-McKenzie H, Cervera C. Efficacy and safety of antimicrobial stewardship prospective audit and feedback in patients hospitalised with COVID-19 (COVASP): a pragmatic, cluster-randomised, non-inferiority trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:673-682. [PMID: 36716763 PMCID: PMC9977404 DOI: 10.1016/s1473-3099(22)00832-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND The COVID-19 pandemic has been associated with increased antimicrobial use despite low rates of bacterial co-infection. Prospective audit and feedback is recommended to optimise antibiotic prescribing, but high-quality evidence supporting its use for COVID-19 is absent. We aimed to study the efficacy and safety of prospective audit and feedback in patients admitted to hospital for the treatment of COVID-19. METHODS COVASP was a prospective, pragmatic, non-inferiority, small-unit, cluster-randomised trial comparing prospective audit and feedback plus standard of care with standard of care alone in adults admitted to three hospitals in Edmonton, AB, Canada, with COVID-19 pneumonia. All patients aged at least 18 years who were admitted from the community to a designated study bed with microbiologically confirmed SARS-CoV-2 infection in the preceding 14 days were included if they had an oxygen saturation of 94% or lower on room air, required supplemental oxygen, or had chest-imaging findings compatible with COVID-19 pneumonia. Patients were excluded if they were transferred in from another acute care centre, enrolled in another clinical trial that involved antibiotic therapy, expected to progress to palliative care or death within 48 h of hospital admission, or managed by any member of the research team within 30 days of enrolment. COVID-19 unit and critical care unit beds were stratified and randomly assigned (1:1) to the prospective audit and feedback plus standard of care group or the standard of care group. Patients were masked to their bed assignment but the attending physician and study team were not. The primary outcome was clinical status on postadmission day 15, measured using a seven-point ordinal scale. We used a non-inferiority margin of 0·5. Analysis was by intention to treat. The trial is registered with ClinicalTrials.gov, NCT04896866, and is now closed. FINDINGS Between March 1 and Oct 29, 2021, 1411 patients were screened and 886 were enrolled: 457 into the prospective audit and feedback plus standard of care group, of whom 429 completed the study, and 429 into the standard of care group, of whom 404 completed the study. Baseline characteristics were similar for both groups, with an overall mean age of 56·7 years (SD 17·3) and a median baseline ordinal scale of 4·0 (IQR 4·0-5·0). 301 audit and feedback events were recorded in the intervention group and 215 recommendations were made, of which 181 (84%) were accepted. Despite lower antibiotic use in the intervention group than in the control group (length of therapy 364·9 vs 384·2 days per 1000 patient days), clinical status at postadmission day 15 was non-inferior (median ordinal score 2·0 [IQR 2·0-3·0] vs 2·0 [IQR 2·0-4·0]; p=0·37, Mann-Whitney U test). Neutropenia was uncommon in both the intervention group (13 [3%] of 420 patients) and the control group (20 [5%] of 396 patients), and acute kidney injury occurred at a similar rate in both groups (74 [18%] of 421 patients in the intervention group and 76 [19%] of 399 patients in the control group). No intervention-related deaths were recorded. INTERPRETATION This cluster-randomised clinical trial shows that prospective audit and feedback is safe and effective in optimising and reducing antibiotic use in adults admitted to hospital with COVID-19. Despite many competing priorities during the COVID-19 pandemic, antimicrobial stewardship should remain a priority to mitigate the overuse of antibiotics in this population. FUNDING None.
Collapse
Affiliation(s)
- Justin Z Chen
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Holly L Hoang
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| | - Maryna Yaskina
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Dima Kabbani
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Karen E Doucette
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Stephanie W Smith
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cecilia Lau
- Pharmacy Services, Alberta Health Services, Edmonton, AB, Canada
| | - Jackson Stewart
- Pharmacy Services, Alberta Health Services, Edmonton, AB, Canada
| | | | - Karen Zurek
- Pharmacy Services, Covenant Health, Edmonton, AB, Canada
| | - Morgan Schultz
- Pharmacy Services, Covenant Health, Edmonton, AB, Canada
| | | | - Carlos Cervera
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
Iacovelli A, Oliva A, Siccardi G, Tramontano A, Pellegrino D, Mastroianni CM, Venditti M, Palange P. Risk factors and effect on mortality of superinfections in a newly established COVID-19 respiratory sub-intensive care unit at University Hospital in Rome. BMC Pulm Med 2023; 23:30. [PMID: 36670381 PMCID: PMC9854038 DOI: 10.1186/s12890-023-02315-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Little is known on the burden of co-infections and superinfections in a specific setting such as the respiratory COVID-19 sub-intensive care unit. This study aims to (i) assess the prevalence of concurrent and superinfections in a respiratory sub-intensive care unit, (ii) evaluate the risk factors for superinfections development and (iii) assess the impact of superinfections on in-hospital mortality. METHODS Single-center retrospective analysis of prospectively collected data including COVID-19 patients hospitalized in a newly established respiratory sub-intensive care unit managed by pneumologists which has been set up from September 2020 at a large (1200 beds) University Hospital in Rome. Inclusion criteria were: (i) COVID-19 respiratory failure and/or ARDS; (ii) hospitalization in respiratory sub-intensive care unit and (iii) age > 18 years. Survival was analyzed by Kaplan-Meier curves and the statistical significance of the differences between the two groups was assessed using the log-rank test. Multivariable logistic regression and Cox regression model were performed to tease out the independent predictors for superinfections' development and for mortality, respectively. RESULTS A total of 201 patients were included. The majority (106, 52%) presented severe COVID-19. Co-infections were 4 (1.9%), whereas 46 patients (22%) developed superinfections, mostly primary bloodstream infections and pneumonia. In 40.6% of cases, multi-drug resistant pathogens were detected, with carbapenem-resistant Acinetobacter baumannii (CR-Ab) isolated in 47%. Overall mortality rate was 30%. Prior (30-d) infection and exposure to antibiotic therapy were independent risk factors for superinfection development whereas the development of superinfections was an independent risk factors for in-hospital mortality. CR-Ab resulted independently associated with 14-d mortality. CONCLUSION In a COVID-19 respiratory sub-intensive care unit, superinfections were common and represented an independent predictor of mortality. CR-Ab infections occurred in almost half of patients and were associated with high mortality. Infection control rules and antimicrobial stewardship are crucial in this specific setting to limit the spread of multi-drug resistant organisms.
Collapse
Affiliation(s)
- Alessandra Iacovelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
- Infective Diseases Unit, Policlinico Umberto I Hospital Rome, 00185, Rome, Lazio, Italy.
| | - Guido Siccardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Infective Diseases Unit, Policlinico Umberto I Hospital Rome, 00185, Rome, Lazio, Italy
| | - Angela Tramontano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Daniela Pellegrino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Infective Diseases Unit, Policlinico Umberto I Hospital Rome, 00185, Rome, Lazio, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Infective Diseases Unit, Policlinico Umberto I Hospital Rome, 00185, Rome, Lazio, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| |
Collapse
|
46
|
Alsayed AR, Hasoun L, Khader HA, Abu-Samak MS, Al-Shdifat LM, Al-Shammari B, Maqbali MA. Co-infection of COVID-19 patients with atypical bacteria: A study based in Jordan. Pharm Pract (Granada) 2023; 21:2753. [PMID: 37090467 PMCID: PMC10117357 DOI: 10.18549/pharmpract.2023.1.2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 04/25/2023] Open
Abstract
Objective The aim of this work was to know the prevalence of Chlamydophila pneumoniae and Mycoplasma pneumoniae in coronavirus disease 2019 (COVID-19) patients in Jordan. Also, to assess a TaqMan real-time polymerase chain reaction (PCR) assay in detecting these two bacteria. Methods This is a retrospective study performed over the last five months of the 2021. All nasopharyngeal specimens from COVID-19 patients were tested for C. pneumonia, and M. pneumoniae. The C. pneumoniae Pst-1 gene and M. pneumoniae P1 cytadhesin protein gene were the targets. Results In this study, 14 out of 175 individuals with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (8.0%) were co-infected with C. pneumoniae or M. pneumoniae. Co-infection with SARS-CoV-2 and C. pneumoniae was reported in 5 (2.9%) patients, while 9 (5.1%) patients had M. pneumoniae and SARS-CoV-2 co-infection. The mean (± std) of the correlation coefficient of the calibration curve for real-time PCR analysis was -0.993 (± 0.001) for C. pneumoniae and -0.994 (± 0.003) for M. pneumoniae. The mean amplification efficiencies of C. pneumoniae and M. Pneumoniae were 187.62% and 136.86%, respectively. Conclusion In this first study based in Jordan, patients infected with COVID-19 have a low rate of atypical bacterial co-infection. However, clinicians should suspect co-infections with both common and uncommon bacteria in COVID-19 patients. Large prospective investigations are needed to give additional insight on the true prevalence of these co-infections and their impact on the clinical course of COVID-19 patients.
Collapse
Affiliation(s)
- Ahmad R Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931-166, Jordan. ,
| | - Luai Hasoun
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931-166, Jordan.
| | - Heba A Khader
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, PO Box 330127, Zarqa 13133, Jordan.
| | - Mahmoud S Abu-Samak
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931-166, Jordan.
| | - Laith Mh Al-Shdifat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931-166, Jordan.
| | - Basheer Al-Shammari
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931-166, Jordan.
| | - Mohammed Al Maqbali
- Department of Nursing Midwifery and Health, Northumbria University, Newcastle-Upon-Tyne, UK.
| |
Collapse
|
47
|
Lu T, Man Q, Yu X, Xia S, Lu L, Jiang S, Xiong L. Development and validation of a prognostic model based on immune variables to early predict severe cases of SARS-CoV-2 Omicron variant infection. Front Immunol 2023; 14:1157892. [PMID: 36936976 PMCID: PMC10014461 DOI: 10.3389/fimmu.2023.1157892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has prevailed globally since November 2021. The extremely high transmissibility and occult manifestations were notable, but the severity and mortality associated with the Omicron variant and subvariants cannot be ignored, especially for immunocompromised populations. However, no prognostic model for specially predicting the severity of the Omicron variant infection is available yet. In this study, we aim to develop and validate a prognostic model based on immune variables to early recognize potentially severe cases of Omicron variant-infected patients. Methods This was a single-center prognostic study involving patients with SARS-CoV-2 Omicron variant infection. Eligible patients were randomly divided into the training and validation cohorts. Variables were collected immediately after admission. Candidate variables were selected by three variable-selecting methods and were used to construct Cox regression as the prognostic model. Discrimination, calibration, and net benefit of the model were evaluated in both training and validation cohorts. Results Six hundred eighty-nine of the involved 2,645 patients were eligible, consisting of 630 non-ICU cases and 59 ICU cases. Six predictors were finally selected to establish the prognostic model: age, neutrophils, lymphocytes, procalcitonin, IL-2, and IL-10. For discrimination, concordance indexes in the training and validation cohorts were 0.822 (95% CI: 0.748-0.896) and 0.853 (95% CI: 0.769-0.942). For calibration, predicted probabilities and observed proportions displayed high agreements. In the 21-day decision curve analysis, the threshold probability ranges with positive net benefit were 0~1 and nearly 0~0.75 in the training and validation cohorts, correspondingly. Conclusions This model had satisfactory high discrimination, calibration, and net benefit. It can be used to early recognize potentially severe cases of Omicron variant-infected patients so that they can be treated timely and rationally to reduce the severity and mortality of Omicron variant infection.
Collapse
Affiliation(s)
- Tianyu Lu
- Key Laboratory of Medical Molecular Virology Ministry of Education (MOE)/National Health Commission of China (NHC)/Chinese Academy of Medical Sciences (CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiuhong Man
- Department of Laboratory Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xueying Yu
- Department of Laboratory Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology Ministry of Education (MOE)/National Health Commission of China (NHC)/Chinese Academy of Medical Sciences (CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology Ministry of Education (MOE)/National Health Commission of China (NHC)/Chinese Academy of Medical Sciences (CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology Ministry of Education (MOE)/National Health Commission of China (NHC)/Chinese Academy of Medical Sciences (CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
- *Correspondence: Shibo Jiang, ; Lize Xiong,
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Shibo Jiang, ; Lize Xiong,
| |
Collapse
|
48
|
Metatranscriptomic Analysis Reveals Disordered Alterations in Oropharyngeal Microbiome during the Infection and Clearance Processes of SARS-CoV-2: A Warning for Secondary Infections. Biomolecules 2022; 13:biom13010006. [PMID: 36671391 PMCID: PMC9856197 DOI: 10.3390/biom13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
This study was conducted to investigate oropharyngeal microbiota alterations during the progression of coronavirus disease 2019 (COVID-19) by analyzing these alterations during the infection and clearance processes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The diagnosis of COVID-19 was confirmed by using positive SARS-CoV-2 quantitative reverse transcription polymerase chain reaction (RT-qPCR). The alterations in abundance, diversity, and potential function of the oropharyngeal microbiome were identified using metatranscriptomic sequencing analyses of oropharyngeal swab specimens from 47 patients with COVID-19 (within a week after diagnosis and within two months after recovery from COVID-19) and 40 healthy individuals. As a result, in the infection process of SARS-CoV-2, compared to the healthy individuals, the relative abundances of Prevotella, Aspergillus, and Epstein-Barr virus were elevated; the alpha diversity was decreased; the beta diversity was disordered; the relative abundance of Gram-negative bacteria was increased; and the relative abundance of Gram-positive bacteria was decreased. After the clearance of SARS-CoV-2, compared to the healthy individuals and patients with COVID-19, the above disordered alterations persisted in the patients who had recovered from COVID-19 and did not return to the normal level observed in the healthy individuals. Additionally, the expressions of several antibiotic resistance genes (especially multi-drug resistance, glycopeptide, and tetracycline) in the patients with COVID-19 were higher than those in the healthy individuals. After SARS-CoV-2 was cleared, the expressions of these genes in the patients who had recovered from COVID-19 were lower than those in the patients with COVID-19, and they were different from those in the healthy individuals. In conclusion, our findings provide evidence that potential secondary infections with oropharyngeal bacteria, fungi, and viruses in patients who have recovered from COVID-19 should not be ignored; this evidence also highlights the clinical significance of the oropharyngeal microbiome in the early prevention of potential secondary infections of COVID-19 and suggests that it is imperative to choose appropriate antibiotics for subsequent bacterial secondary infection in patients with COVID-19.
Collapse
|
49
|
Stenotrophomonas maltophilia Epidemiology, Resistance Characteristics, and Clinical Outcomes: Understanding of the Recent Three Years' Trends. Microorganisms 2022; 10:microorganisms10122506. [PMID: 36557759 PMCID: PMC9786049 DOI: 10.3390/microorganisms10122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Stenotrophomonas maltophilia is an emerging pathogen classified as a public health concern, that infects critically ill patients and has expressed resistance against antimicrobial therapy. The aim of this study was to examine the epidemiological pattern, resistance characteristics and clinical outcomes of S. maltophilia infections in hospitalized patients. METHODS The study included 393 S. maltophilia isolates from different clinical specimens as well as the clinical data of 209 Intensive Care Unit (ICU) patients. The patients' data were obtained from medical and laboratory files. Descriptive statistics and a univariate analysis were used to report and compare the demographics, clinical data, and outcomes. RESULTS The S. maltophilia was mostly isolated from the respiratory specimens of ICU patients. The adult patients were more likely to develop serious infections and worse outcomes than were pediatric patients. The most common co-infecting pathogens were SARS-CoV2 and Pseudomonas aeruginosa. The death rate was 44.5% and increased to 47.1% in the case of a respiratory infection. Septic shock was the most significant predictor of mortality. Older age and mechanical ventilation were independent and significant risk factors that worsened the outcomes in patients with respiratory infections. CONCLUSIONS The identification of S. maltophilia as a threat highlights the importance of surveillance studies in this region.
Collapse
|
50
|
de Carvalho Patricio BF, da Silva Lopes Pereira JO, Sarcinelli MA, de Moraes BPT, Rocha HVA, Gonçalves-de-Albuquerque CF. Could the Lung Be a Gateway for Amphotericin B to Attack the Army of Fungi? Pharmaceutics 2022; 14:2707. [PMID: 36559201 PMCID: PMC9784761 DOI: 10.3390/pharmaceutics14122707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
Fungal diseases are a significant cause of morbidity and mortality worldwide, primarily affecting immunocompromised patients. Aspergillus, Pneumocystis, and Cryptococcus are opportunistic fungi and may cause severe lung disease. They can develop mechanisms to evade the host immune system and colonize or cause lung disease. Current fungal infection treatments constitute a few classes of antifungal drugs with significant fungi resistance development. Amphotericin B (AmB) has a broad-spectrum antifungal effect with a low incidence of resistance. However, AmB is a highly lipophilic antifungal with low solubility and permeability and is unstable in light, heat, and oxygen. Due to the difficulty of achieving adequate concentrations of AmB in the lung by intravenous administration and seeking to minimize adverse effects, nebulized AmB has been used. The pulmonary pathway has advantages such as its rapid onset of action, low metabolic activity at the site of action, ability to avoid first-pass hepatic metabolism, lower risk of adverse effects, and thin thickness of the alveolar epithelium. This paper presented different strategies for pulmonary AmB delivery, detailing the potential of nanoformulation and hoping to foster research in the field. Our finds indicate that despite an optimistic scenario for the pulmonary formulation of AmB based on the encouraging results discussed here, there is still no product registration on the FDA nor any clinical trial undergoing ClinicalTrial.gov.
Collapse
Affiliation(s)
- Beatriz Ferreira de Carvalho Patricio
- Pharmacology Laboratory, Biomedical Institute, Federal University of State of Rio de Janeiro, 94 Frei Caneca Street, Rio de Janeiro 20211-010, Brazil
- Postgraduate Program in Molecular and Cell Biology, Biomedical Institute, Federal University of State of Rio de Janeiro, 94 Frei Caneca Street, Rio de Janeiro 20211-010, Brazil
| | | | - Michelle Alvares Sarcinelli
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs, Oswaldo Cruz Foundation, Brazil Av., 4036, Rio de Janeiro 213040-361, Brazil
| | - Bianca Portugal Tavares de Moraes
- Postgraduate Program in Biotechnology, Biology Institute, Federal Fluminense University, Rua Prof. Marcos Waldemar de Freitas Reis, Niterói 24210-201, Brazil
- Immunopharmacology Laboratory, Biomedical Institute, Federal University of State of Rio de Janeiro, 94 Frei Caneca Street, Rio de Janeiro 20211-010, Brazil
| | - Helvécio Vinicius Antunes Rocha
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs, Oswaldo Cruz Foundation, Brazil Av., 4036, Rio de Janeiro 213040-361, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Postgraduate Program in Molecular and Cell Biology, Biomedical Institute, Federal University of State of Rio de Janeiro, 94 Frei Caneca Street, Rio de Janeiro 20211-010, Brazil
- Postgraduate Program in Biotechnology, Biology Institute, Federal Fluminense University, Rua Prof. Marcos Waldemar de Freitas Reis, Niterói 24210-201, Brazil
- Immunopharmacology Laboratory, Biomedical Institute, Federal University of State of Rio de Janeiro, 94 Frei Caneca Street, Rio de Janeiro 20211-010, Brazil
| |
Collapse
|