1
|
Joyce JL, Chapman S, Waltrip L, Caes D, Gottesman R, Rizer S, Haque H, Golfer L, Mayeux RP, D'Alton ME, Marder K, Rosser M, Cosentino S. Confronting Alzheimer's Disease Risk in Women: A Feasibility Study of Memory Screening as Part of the Annual Gynecological Well-Woman Visit. J Womens Health (Larchmt) 2024; 33:1211-1218. [PMID: 38968392 DOI: 10.1089/jwh.2023.0843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024] Open
Abstract
Objective: Routine health care visits offer the opportunity to screen older adults for symptoms of Alzheimer's disease (AD). Many women see their gynecologist as their primary health care provider. Given this unique relationship, the Women's Preventive Services Initiative and the American College of Obstetrics and Gynecology advocate for integrated care of women at all ages. It is well-established that women are at increased risk for AD, and memory screening of older women should be paramount in this effort. Research is needed to determine the feasibility and value of memory screening among older women at the well-woman visit. Materials and Methods: Women aged 60 and above completed a 5-item subjective memory screener at their well-woman visit at the Columbia University Integrated Women's Health Program. Women who endorsed any item were considered to have a positive screen and were given the option to pursue clinical evaluation. Rates of positive screens, item endorsement, and referral preferences were examined. Results: Of the 530 women approached, 521 agreed to complete the screener. Of those, 17.5% (n = 91) were classified as positive. The most frequently endorsed item was difficulty with memory or thinking compared with others the same age. Among women with positive screens, 57.5% were interested in pursuing clinical referrals to a memory specialist. Conclusion: Results support the feasibility and potential value of including subjective memory screening as part of a comprehensive well-woman program. Early identification of memory loss will enable investigation into the cause of memory symptoms and longitudinal monitoring of cognitive change.
Collapse
Affiliation(s)
- Jillian L Joyce
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | - Silvia Chapman
- Gertrude H. Sergievsky Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Leah Waltrip
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | - Dorota Caes
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, USA
| | - Reena Gottesman
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Sandra Rizer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | - Hoosna Haque
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, USA
| | - Lauren Golfer
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, USA
| | - Richard P Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
- Gertrude H. Sergievsky Center, Columbia University Irving Medical Center, New York, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Mary E D'Alton
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, USA
| | - Karen Marder
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
- Gertrude H. Sergievsky Center, Columbia University Irving Medical Center, New York, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Mary Rosser
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, USA
| | - Stephanie Cosentino
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
- Gertrude H. Sergievsky Center, Columbia University Irving Medical Center, New York, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Dei Cas A, Micheli MM, Aldigeri R, Gardini S, Ferrari-Pellegrini F, Perini M, Messa G, Antonini M, Spigoni V, Cinquegrani G, Vazzana A, Moretti V, Caffarra P, Bonadonna RC. Long-acting exenatide does not prevent cognitive decline in mild cognitive impairment: a proof-of-concept clinical trial. J Endocrinol Invest 2024; 47:2339-2349. [PMID: 38565814 PMCID: PMC11368991 DOI: 10.1007/s40618-024-02320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE According to preclinical evidence, GLP-1 receptor may be an actionable target in neurodegenerative disorders, including Alzheimer's disease (AD). Previous clinical trials of GLP-1 receptor agonists were conducted in patients with early AD, yielding mixed results. The aim was to assess in a proof-of-concept study whether slow-release exenatide, a long-acting GLP-1 agonist, can benefit the cognitive performance of people with mild cognitive impairment (MCI). METHODS Thirty-two (16 females) patients were randomized to either slow-release exenatide (n = 17; 2 mg s.c. once a week) or no treatment (n = 15) for 32 weeks. The primary endpoint was the change in ADAS-Cog11 cognitive test score at 32 weeks vs baseline. Secondary endpoints herein reported included additional cognitive tests and plasma readouts of GLP-1 receptor engagement. Statistical analysis was conducted by intention to treat. RESULTS No significant between-group effects of exenatide on ADAS-Cog11 score (p = 0.17) were detected. A gender interaction with treatment was observed (p = 0.04), due to worsening of the ADAS-Cog11 score in women randomized to exenatide (p = 0.018), after correction for age, scholar level, dysglycemia, and ADAS-Cog score baseline value. Fasting plasma glucose (p = 0.02) and body weight (p = 0.03) decreased in patients randomized to exenatide. CONCLUSION In patients with MCI, a 32-week trial with slow-release exenatide had no beneficial effect on cognitive performance. TRIAL REGISTRATION NUMBER NCT03881371, registered on 21 July, 2016.
Collapse
Affiliation(s)
- A Dei Cas
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - M M Micheli
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - R Aldigeri
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - S Gardini
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - F Ferrari-Pellegrini
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - M Perini
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - G Messa
- Center for Cognitive Disorders, AUSL Parma, Via Verona 36, Parma, Italy
| | - M Antonini
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - V Spigoni
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - G Cinquegrani
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - A Vazzana
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - V Moretti
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - P Caffarra
- Department of Medicine and Surgery, Section of Neuroscience, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - R C Bonadonna
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126, Parma, Italy
| |
Collapse
|
3
|
Meng W, Xu J, Huang Y, Wang C, Song Q, Ma A, Song L, Bian J, Ma Q, Yin R. Autoencoder to Identify Sex-Specific Sub-phenotypes in Alzheimer's Disease Progression Using Longitudinal Electronic Health Records. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.07.24310055. [PMID: 39040206 PMCID: PMC11261930 DOI: 10.1101/2024.07.07.24310055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Alzheimer's Disease (AD) is a complex neurodegenerative disorder significantly influenced by sex differences, with approximately two-thirds of AD patients being women. Characterizing the sex-specific AD progression and identifying its progression trajectory is a crucial step to developing effective risk stratification and prevention strategies. In this study, we developed an autoencoder to uncover sex-specific sub-phenotypes in AD progression leveraging longitudinal electronic health record (EHR) data from OneFlorida+ Clinical Research Consortium. Specifically, we first constructed temporal patient representation using longitudinal EHRs from a sex-stratified AD cohort. We used a long short-term memory (LSTM)-based autoencoder to extract and generate latent representation embeddings from sequential clinical records of patients. We then applied hierarchical agglomerative clustering to the learned representations, grouping patients based on their progression sub-phenotypes. The experimental results show we successfully identified five primary sex-based AD sub-phenotypes with corresponding progression pathways with high confidence. These sex-specific sub-phenotypes not only illustrated distinct AD progression patterns but also revealed differences in clinical characteristics and comorbidities between females and males in AD development. These findings could provide valuable insights for advancing personalized AD intervention and treatment strategies.
Collapse
Affiliation(s)
- Weimin Meng
- Department of Health Outcomes &Biomedical Informatics, University of Florida, Gainesville, FL, 32610, USA
| | - Jie Xu
- Department of Health Outcomes &Biomedical Informatics, University of Florida, Gainesville, FL, 32610, USA
| | - Yu Huang
- Department of Health Outcomes &Biomedical Informatics, University of Florida, Gainesville, FL, 32610, USA
| | - Cankun Wang
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, 43210, USA
| | - Qianqian Song
- Department of Health Outcomes &Biomedical Informatics, University of Florida, Gainesville, FL, 32610, USA
| | - Anjun Ma
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, 43210, USA
| | - Lixin Song
- School of Nursing, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jiang Bian
- Department of Health Outcomes &Biomedical Informatics, University of Florida, Gainesville, FL, 32610, USA
| | - Qin Ma
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, 43210, USA
| | - Rui Yin
- Department of Health Outcomes &Biomedical Informatics, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
4
|
Wang YT, Therriault J, Servaes S, Tissot C, Rahmouni N, Macedo AC, Fernandez-Arias J, Mathotaarachchi SS, Benedet AL, Stevenson J, Ashton NJ, Lussier FZ, Pascoal TA, Zetterberg H, Rajah MN, Blennow K, Gauthier S, Rosa-Neto P. Sex-specific modulation of amyloid-β on tau phosphorylation underlies faster tangle accumulation in females. Brain 2024; 147:1497-1510. [PMID: 37988283 PMCID: PMC10994548 DOI: 10.1093/brain/awad397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023] Open
Abstract
Females are disproportionately affected by dementia due to Alzheimer's disease. Despite a similar amyloid-β (Aβ) load, a higher load of neurofibrillary tangles (NFTs) is seen in females than males. Previous literature has proposed that Aβ and phosphorylated-tau (p-tau) synergism accelerates tau tangle formation, yet the effect of biological sex in this process has been overlooked. In this observational study, we examined longitudinal neuroimaging data from the TRIAD and ADNI cohorts from Canada and USA, respectively. We assessed 457 participants across the clinical spectrum of Alzheimer's disease. All participants underwent baseline multimodal imaging assessment, including MRI and PET, with radioligands targeting Aβ plaques and tau tangles, respectively. CSF data were also collected. Follow-up imaging assessments were conducted at 1- and 2-year intervals for the TRIAD cohort and 1-, 2- and 4-year intervals for the ADNI cohort. The upstream pathological events contributing to faster tau progression in females were investigated-specifically, whether the contribution of Aβ and p-tau synergism to accelerated tau tangle formation is modulated by biological sex. We hypothesized that cortical Aβ predisposes tau phosphorylation and tangle accumulation in a sex-specific manner. Findings revealed that Aβ-positive females presented higher CSF p-tau181 concentrations compared with Aβ-positive males in both the TRIAD (P = 0.04, Cohen's d = 0.51) and ADNI (P = 0.027, Cohen's d = 0.41) cohorts. In addition, Aβ-positive females presented faster NFT accumulation compared with their male counterparts (TRIAD: P = 0.026, Cohen's d = 0.52; ADNI: P = 0.049, Cohen's d = 1.14). Finally, the triple interaction between female sex, Aβ and CSF p-tau181 was revealed as a significant predictor of accelerated tau accumulation at the 2-year follow-up visit (Braak I: P = 0.0067, t = 2.81; Braak III: P = 0.017, t = 2.45; Braak IV: P = 0.002, t = 3.17; Braak V: P = 0.006, t = 2.88; Braak VI: P = 0.0049, t = 2.93). Overall, we report sex-specific modulation of cortical Aβ in tau phosphorylation, consequently facilitating faster NFT progression in female individuals over time. This presents important clinical implications and suggests that early intervention that targets Aβ plaques and tau phosphorylation may be a promising therapeutic strategy in females to prevent the further accumulation and spread of tau aggregates.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Arthur Cassa Macedo
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Jaime Fernandez-Arias
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Sulantha S Mathotaarachchi
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011 Stavanger, Norway
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London SE5 9RX, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London SE5 8AF, UK
| | - Firoza Z Lussier
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tharick A Pascoal
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Montreal Neurological Institute, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
5
|
Thompson LI, Cummings M, Emrani S, Libon DJ, Ang A, Karjadi C, Au R, Liu C. Digital Clock Drawing as an Alzheimer's Disease Susceptibility Biomarker: Associations with Genetic Risk Score and APOE in Older Adults. J Prev Alzheimers Dis 2024; 11:79-87. [PMID: 38230720 PMCID: PMC10794851 DOI: 10.14283/jpad.2023.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/15/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the leading cause of dementia in older adults, but most people are not diagnosed until significant neuronal loss has likely occurred along with a decline in cognition. Non-invasive and cost-effective digital biomarkers for AD have the potential to improve early detection. OBJECTIVE We examined the validity of DCTclockTM (a digitized clock drawing task) as an AD susceptibility biomarker. DESIGN We used two primary independent variables, Apolipoprotein E (APOE) ε4 allele carrier status and polygenic risk score (PRS). We examined APOE and PRS associations with DCTclockTM composite scores as dependent measures. SETTING We used existing data from the Framingham Heart Study (FHS), a community-based study with the largest dataset of digital clock drawing data to date. PARTICIPANTS The sample consisted of 2,398 older adults ages 60-94 with DCTclockTM data (mean age of 72.3, 55% female and 92% White). MEASUREMENTS PRS was calculated using 38 variants identified in a recent large genome-wide association study (GWAS) and meta-analysis of late-onset AD (LOAD). RESULTS Results showed that DCTclockTM performance decreased with advancing age, lower education, and the presence of one or more copies of APOE ε4. Lower DCTclockTM Total Score as well as lower composite scores for Information Processing Speed (both command and copy conditions) and Drawing Efficiency (command condition) were significantly associated with higher PRS levels and more copies of APOE ε4. APOE and PRS associations displayed similar effect sizes in both men and women. CONCLUSIONS Our results indicate that higher AD genetic risk is associated with poorer DCTclockTM performance in older adults without dementia. This is the first study to demonstrate significant differences in clock drawing performance on the basis of APOE status or PRS.
Collapse
Affiliation(s)
- L I Thompson
- Louisa Thompson, Department of Psychiatry, Alpert Medical School, Brown University, Providence, RI. Address: 345 Blackstone Blvd., Providence, RI 02906, USA. Phone: 401-455-6402. E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
7
|
Reed EG, Keller-Norrell PR. Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. Int J Mol Sci 2023; 24:17377. [PMID: 38139206 PMCID: PMC10743742 DOI: 10.3390/ijms242417377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Research into Alzheimer's Disease (AD) describes a link between AD and the resident immune cells of the brain, the microglia. Further, this suspected link is thought to have underlying sex effects, although the mechanisms of these effects are only just beginning to be understood. Many of these insights are the result of policies put in place by funding agencies such as the National Institutes of Health (NIH) to consider sex as a biological variable (SABV) and the move towards precision medicine due to continued lackluster therapeutic options. The purpose of this review is to provide an updated assessment of the current research that summarizes sex differences and the research pertaining to microglia and their varied responses in AD.
Collapse
Affiliation(s)
- Erin G. Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44242, USA
| | | |
Collapse
|
8
|
Parsaei M, Sanjari Moghaddam H, Aarabi MH. Sex differences in brain structures throughout the lifetime. AGING BRAIN 2023; 4:100098. [PMID: 37809276 PMCID: PMC10550774 DOI: 10.1016/j.nbas.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
| | - Hossein Sanjari Moghaddam
- Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience (DNS), Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
9
|
Lutshumba J, Wilcock DM, Monson NL, Stowe AM. Sex-based differences in effector cells of the adaptive immune system during Alzheimer's disease and related dementias. Neurobiol Dis 2023; 184:106202. [PMID: 37330146 PMCID: PMC10481581 DOI: 10.1016/j.nbd.2023.106202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
Neurological conditions such as Alzheimer's disease (AD) and related dementias (ADRD) present with many challenges due to the heterogeneity of the related disease(s), making it difficult to develop effective treatments. Additionally, the progression of ADRD-related pathologies presents differently between men and women. With two-thirds of the population affected with ADRD being women, ADRD has presented itself with a bias toward the female population. However, studies of ADRD generally do not incorporate sex-based differences in investigating the development and progression of the disease, which is detrimental to understanding and treating dementia. Additionally, recent implications for the adaptive immune system in the development of ADRD bring in new factors to be considered as part of the disease, including sex-based differences in immune response(s) during ADRD development. Here, we review the sex-based differences of pathological hallmarks of ADRD presentation and progression, sex-based differences in the adaptive immune system and how it changes with ADRD, and the importance of precision medicine in the development of a more targeted and personalized treatment for this devastating and prevalent neurodegenerative condition.
Collapse
Affiliation(s)
- Jenny Lutshumba
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States of America; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Nancy L Monson
- Department of Neurology and Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Ann M Stowe
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States of America; Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
10
|
Gong J, Harris K, Lipnicki DM, Castro‐Costa E, Lima‐Costa MF, Diniz BS, Xiao S, Lipton RB, Katz MJ, Wang C, Preux P, Guerchet M, Gbessemehlan A, Ritchie K, Ancelin M, Skoog I, Najar J, Sterner TR, Scarmeas N, Yannakoulia M, Kosmidis MH, Guaita A, Rolandi E, Davin A, Gureje O, Trompet S, Gussekloo J, Riedel‐Heller S, Pabst A, Röhr S, Shahar S, Singh DKA, Rivan NFM, van Boxtel M, Köhler S, Ganguli M, Chang C, Jacobsen E, Haan M, Ding D, Zhao Q, Xiao Z, Narazaki K, Chen T, Chen S, Ng TP, Gwee X, Numbers K, Mather KA, Scazufca M, Lobo A, De‐la‐Cámara C, Lobo E, Sachdev PS, Brodaty H, Hackett ML, Peters SAE, Woodward M. Sex differences in dementia risk and risk factors: Individual-participant data analysis using 21 cohorts across six continents from the COSMIC consortium. Alzheimers Dement 2023; 19:3365-3378. [PMID: 36790027 PMCID: PMC10955774 DOI: 10.1002/alz.12962] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Sex differences in dementia risk, and risk factor (RF) associations with dementia, remain uncertain across diverse ethno-regional groups. METHODS A total of 29,850 participants (58% women) from 21 cohorts across six continents were included in an individual participant data meta-analysis. Sex-specific hazard ratios (HRs), and women-to-men ratio of hazard ratios (RHRs) for associations between RFs and all-cause dementia were derived from mixed-effect Cox models. RESULTS Incident dementia occurred in 2089 (66% women) participants over 4.6 years (median). Women had higher dementia risk (HR, 1.12 [1.02, 1.23]) than men, particularly in low- and lower-middle-income economies. Associations between longer education and former alcohol use with dementia risk (RHR, 1.01 [1.00, 1.03] per year, and 0.55 [0.38, 0.79], respectively) were stronger for men than women; otherwise, there were no discernible sex differences in other RFs. DISCUSSION Dementia risk was higher in women than men, with possible variations by country-level income settings, but most RFs appear to work similarly in women and men.
Collapse
Affiliation(s)
- Jessica Gong
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
- The George Institute for Global HealthImperial College LondonLondonUK
| | - Katie Harris
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
| | - Darren M. Lipnicki
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthFaculty of Medicine and HealthUNSW SydneySydneyAustralia
| | - Erico Castro‐Costa
- Center for Studies in Public Health and Aging Rene Rachou InstituteOswaldo Cruz FoundationBelo HorizonteBrazil
| | - Maria Fernanda Lima‐Costa
- Center for Studies in Public Health and Aging Rene Rachou InstituteOswaldo Cruz FoundationBelo HorizonteBrazil
| | - Breno S. Diniz
- UConn Center on AgingDepartment of PsychiatrySchool of MedicineUniversity of Connecticut Health CenterFarmingtonConnecticutUSA
| | - Shifu Xiao
- Department of Geriatric PsychiatryShanghai Mental Health CentreShanghai Jiaotong University School of MedicineShanghaiChina
| | - Richard B. Lipton
- Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Mindy J. Katz
- Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Cuiling Wang
- Department of Epidemiology and Community HeathAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Pierre‐Marie Preux
- Inserm U1094, IRD U270, Univ. LimogesCHU Limoges, EpiMaCT ‐ Epidemiology of chronic diseases in tropical zoneInstitute of Epidemiology and Tropical NeurologyOmegaHealthLimogesFrance
| | - Maëlenn Guerchet
- Inserm U1094, IRD U270, Univ. LimogesCHU Limoges, EpiMaCT ‐ Epidemiology of chronic diseases in tropical zoneInstitute of Epidemiology and Tropical NeurologyOmegaHealthLimogesFrance
| | - Antoine Gbessemehlan
- Inserm U1094, IRD U270, Univ. LimogesCHU Limoges, EpiMaCT ‐ Epidemiology of chronic diseases in tropical zoneInstitute of Epidemiology and Tropical NeurologyOmegaHealthLimogesFrance
| | - Karen Ritchie
- INM Institute for Neurosciences of MontpellierUniv MontpellierINSERMMontpellierFrance
| | - Marie‐Laure Ancelin
- INM Institute for Neurosciences of MontpellierUniv MontpellierINSERMMontpellierFrance
| | - Ingmar Skoog
- Department of Psychiatry and NeurochemistryCenter for Ageing and Health (Age Cap)University of GothenburgGothenburgSweden
| | - Jenna Najar
- Department of Psychiatry and NeurochemistryCenter for Ageing and Health (Age Cap)University of GothenburgGothenburgSweden
| | - Therese Rydberg Sterner
- Department of Psychiatry and NeurochemistryCenter for Ageing and Health (Age Cap)University of GothenburgGothenburgSweden
| | - Nikolaos Scarmeas
- 1st Department of NeurologyAiginition HospitalNational and Kapodistrian University of Athens Medical SchoolAthensGreece
- Department of NeurologyColumbia UniversityNew YorkNew YorkUSA
| | - Mary Yannakoulia
- Department of Nutrition and DieteticsHarokopio UniversityAthensGreece
| | - Mary H. Kosmidis
- Lab of Cognitive NeuroscienceSchool of PsychologyAristotle University of ThessalonikiThessalonikiGreece
| | | | - Elena Rolandi
- Golgi Cenci FoundationAbbiategrassoItaly
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | | | - Oye Gureje
- WHO Collaborating Centre for Research and Training in Mental HealthNeurosciences and Substance AbuseDepartment of PsychiatryUniversity of IbadanIbadanNigeria
| | - Stella Trompet
- Section of Gerontology and GeriatricsDepartment of Internal MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Jacobijn Gussekloo
- Section of Gerontology and GeriatricsDepartment of Internal MedicineLeiden University Medical CenterLeidenthe Netherlands
- Department of Public Health and Primary CareLeidenthe Netherlands
| | - Steffi Riedel‐Heller
- Institute of Social MedicineOccupational Health and Public Health (ISAP)University of LeipzigLeipzigGermany
| | - Alexander Pabst
- Institute of Social MedicineOccupational Health and Public Health (ISAP)University of LeipzigLeipzigGermany
| | - Susanne Röhr
- Institute of Social MedicineOccupational Health and Public Health (ISAP)University of LeipzigLeipzigGermany
| | - Suzana Shahar
- Centre for Healthy Ageing and WellnessUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | | | | | - Martin van Boxtel
- Alzheimer Centrum LimburgSchool for Mental Health and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Sebastian Köhler
- Alzheimer Centrum LimburgSchool for Mental Health and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Mary Ganguli
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Chung‐Chou Chang
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Erin Jacobsen
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Mary Haan
- Department of Epidemiology and BiostatisticsSchool of MedicineUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ding Ding
- Institute of NeurologyNational Center for Neurological DisordersNational Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Qianhua Zhao
- Institute of NeurologyNational Center for Neurological DisordersNational Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Zhenxu Xiao
- Institute of NeurologyNational Center for Neurological DisordersNational Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Kenji Narazaki
- Center for Liberal ArtsFukuoka Institute of TechnologyFukuokaJapan
| | - Tao Chen
- Sports and Health Research CenterDepartment of Physical EducationTongji UniversityShanghaiChina
| | - Sanmei Chen
- Global Health NursingDepartment of Health SciencesGraduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tze Pin Ng
- Gerontology Research ProgrammeDepartment of Psychological MedicineYong Loo Lin School of MedicineNational University of SingaporeQueenstownSingapore
| | - Xinyi Gwee
- Gerontology Research ProgrammeDepartment of Psychological MedicineYong Loo Lin School of MedicineNational University of SingaporeQueenstownSingapore
| | - Katya Numbers
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthFaculty of Medicine and HealthUNSW SydneySydneyAustralia
| | - Karen A. Mather
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthFaculty of Medicine and HealthUNSW SydneySydneyAustralia
| | - Marcia Scazufca
- Instituto de Psiquiátria e LIM‐23Hospital da ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Antonio Lobo
- Department of Medicine and Psychiatry Universidad de ZaragozaZaragozaSpain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón)ZaragozaSpain
- n°33 CIBERSAMMadridSpain
| | - Concepción De‐la‐Cámara
- Department of Medicine and Psychiatry Universidad de ZaragozaZaragozaSpain
- n°33 CIBERSAMMadridSpain
| | - Elena Lobo
- Instituto de Investigación Sanitaria Aragón (IIS Aragón)ZaragozaSpain
- n°33 CIBERSAMMadridSpain
- Department of Public Health Universidad de ZaragozaZaragozaSpain
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthFaculty of Medicine and HealthUNSW SydneySydneyAustralia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthFaculty of Medicine and HealthUNSW SydneySydneyAustralia
| | - Maree L. Hackett
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
- Faculty of Health and WellbeingUniversity of Central LancashireLancashireUK
| | - Sanne A. E. Peters
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
- The George Institute for Global HealthImperial College LondonLondonUK
- Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Mark Woodward
- The George Institute for Global HealthUniversity of New South WalesSydneyAustralia
- The George Institute for Global HealthImperial College LondonLondonUK
| | | |
Collapse
|
11
|
Mei T, Li Y, Orduña Dolado A, Li Z, Andersson R, Berliocchi L, Rasmussen LJ. Pooled analysis of frontal lobe transcriptomic data identifies key mitophagy gene changes in Alzheimer's disease brain. Front Aging Neurosci 2023; 15:1101216. [PMID: 37358952 PMCID: PMC10288858 DOI: 10.3389/fnagi.2023.1101216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Background The growing prevalence of Alzheimer's disease (AD) is becoming a global health challenge without effective treatments. Defective mitochondrial function and mitophagy have recently been suggested as etiological factors in AD, in association with abnormalities in components of the autophagic machinery like lysosomes and phagosomes. Several large transcriptomic studies have been performed on different brain regions from AD and healthy patients, and their data represent a vast source of important information that can be utilized to understand this condition. However, large integration analyses of these publicly available data, such as AD RNA-Seq data, are still missing. In addition, large-scale focused analysis on mitophagy, which seems to be relevant for the aetiology of the disease, has not yet been performed. Methods In this study, publicly available raw RNA-Seq data generated from healthy control and sporadic AD post-mortem human samples of the brain frontal lobe were collected and integrated. Sex-specific differential expression analysis was performed on the combined data set after batch effect correction. From the resulting set of differentially expressed genes, candidate mitophagy-related genes were identified based on their known functional roles in mitophagy, the lysosome, or the phagosome, followed by Protein-Protein Interaction (PPI) and microRNA-mRNA network analysis. The expression changes of candidate genes were further validated in human skin fibroblast and induced pluripotent stem cells (iPSCs)-derived cortical neurons from AD patients and matching healthy controls. Results From a large dataset (AD: 589; control: 246) based on three different datasets (i.e., ROSMAP, MSBB, & GSE110731), we identified 299 candidate mitophagy-related differentially expressed genes (DEG) in sporadic AD patients (male: 195, female: 188). Among these, the AAA ATPase VCP, the GTPase ARF1, the autophagic vesicle forming protein GABARAPL1 and the cytoskeleton protein actin beta ACTB were selected based on network degrees and existing literature. Changes in their expression were further validated in AD-relevant human in vitro models, which confirmed their down-regulation in AD conditions. Conclusion Through the joint analysis of multiple publicly available data sets, we identify four differentially expressed key mitophagy-related genes potentially relevant for the pathogenesis of sporadic AD. Changes in expression of these four genes were validated using two AD-relevant human in vitro models, primary human fibroblasts and iPSC-derived neurons. Our results provide foundation for further investigation of these genes as potential biomarkers or disease-modifying pharmacological targets.
Collapse
Affiliation(s)
- Taoyu Mei
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yuan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna Orduña Dolado
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Robin Andersson
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laura Berliocchi
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Abu-El-Haija A, Reddi HV, Wand H, Rose NC, Mori M, Qian E, Murray MF. The clinical application of polygenic risk scores: A points to consider statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100803. [PMID: 36920474 DOI: 10.1016/j.gim.2023.100803] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/16/2023] Open
Affiliation(s)
- Aya Abu-El-Haija
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Honey V Reddi
- Department of Pathology & Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Hannah Wand
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Medicine, Stanford, CA
| | - Nancy C Rose
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, School of Medicine, University of Utah Health, Salt Lake City, UT
| | - Mari Mori
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Emily Qian
- Department of Genetics, Yale University, New Haven, CT
| | | |
Collapse
|
13
|
Arbeev KG, Bagley O, Yashkin AP, Duan H, Akushevich I, Ukraintseva SV, Yashin AI. Understanding Alzheimer's disease in the context of aging: Findings from applications of stochastic process models to the Health and Retirement Study. Mech Ageing Dev 2023; 211:111791. [PMID: 36796730 PMCID: PMC10085865 DOI: 10.1016/j.mad.2023.111791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
There is growing literature on applications of biodemographic models, including stochastic process models (SPM), to studying regularities of age dynamics of biological variables in relation to aging and disease development. Alzheimer's disease (AD) is especially good candidate for SPM applications because age is a major risk factor for this heterogeneous complex trait. However, such applications are largely lacking. This paper starts filling this gap and applies SPM to data on onset of AD and longitudinal trajectories of body mass index (BMI) constructed from the Health and Retirement Study surveys and Medicare-linked data. We found that APOE e4 carriers are less robust to deviations of trajectories of BMI from the optimal levels compared to non-carriers. We also observed age-related decline in adaptive response (resilience) related to deviations of BMI from optimal levels as well as APOE- and age-dependence in other components related to variability of BMI around the mean allostatic values and accumulation of allostatic load. SPM applications thus allow revealing novel connections between age, genetic factors and longitudinal trajectories of risk factors in the context of AD and aging creating new opportunities for understanding AD development, forecasting trends in AD incidence and prevalence in populations, and studying disparities in those.
Collapse
Affiliation(s)
- Konstantin G Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA.
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Arseniy P Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Hongzhe Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Svetlana V Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Anatoliy I Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| |
Collapse
|
14
|
Eissman JM, Dumitrescu L, Mahoney ER, Smith AN, Mukherjee S, Lee ML, Scollard P, Choi SE, Bush WS, Engelman CD, Lu Q, Fardo DW, Trittschuh EH, Mez J, Kaczorowski CC, Hernandez Saucedo H, Widaman KF, Buckley RF, Properzi MJ, Mormino EC, Yang HS, Harrison TM, Hedden T, Nho K, Andrews SJ, Tommet D, Hadad N, Sanders RE, Ruderfer DM, Gifford KA, Zhong X, Raghavan NS, Vardarajan BN, Pericak-Vance MA, Farrer LA, Wang LS, Cruchaga C, Schellenberg GD, Cox NJ, Haines JL, Keene CD, Saykin AJ, Larson EB, Sperling RA, Mayeux R, Cuccaro ML, Bennett DA, Schneider JA, Crane PK, Jefferson AL, Hohman TJ. Sex differences in the genetic architecture of cognitive resilience to Alzheimer's disease. Brain 2022; 145:2541-2554. [PMID: 35552371 PMCID: PMC9337804 DOI: 10.1093/brain/awac177] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Approximately 30% of elderly adults are cognitively unimpaired at time of death despite the presence of Alzheimer's disease neuropathology at autopsy. Studying individuals who are resilient to the cognitive consequences of Alzheimer's disease neuropathology may uncover novel therapeutic targets to treat Alzheimer's disease. It is well established that there are sex differences in response to Alzheimer's disease pathology, and growing evidence suggests that genetic factors may contribute to these differences. Taken together, we sought to elucidate sex-specific genetic drivers of resilience. We extended our recent large scale genomic analysis of resilience in which we harmonized cognitive data across four cohorts of cognitive ageing, in vivo amyloid PET across two cohorts, and autopsy measures of amyloid neuritic plaque burden across two cohorts. These data were leveraged to build robust, continuous resilience phenotypes. With these phenotypes, we performed sex-stratified [n (males) = 2093, n (females) = 2931] and sex-interaction [n (both sexes) = 5024] genome-wide association studies (GWAS), gene and pathway-based tests, and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to resilience in a sex-specific manner. Estimated among cognitively normal individuals of both sexes, resilience was 20-25% heritable, and when estimated in either sex among cognitively normal individuals, resilience was 15-44% heritable. In our GWAS, we identified a female-specific locus on chromosome 10 [rs827389, β (females) = 0.08, P (females) = 5.76 × 10-09, β (males) = -0.01, P(males) = 0.70, β (interaction) = 0.09, P (interaction) = 1.01 × 10-04] in which the minor allele was associated with higher resilience scores among females. This locus is located within chromatin loops that interact with promoters of genes involved in RNA processing, including GATA3. Finally, our genetic correlation analyses revealed shared genetic architecture between resilience phenotypes and other complex traits, including a female-specific association with frontotemporal dementia and male-specific associations with heart rate variability traits. We also observed opposing associations between sexes for multiple sclerosis, such that more resilient females had a lower genetic susceptibility to multiple sclerosis, and more resilient males had a higher genetic susceptibility to multiple sclerosis. Overall, we identified sex differences in the genetic architecture of resilience, identified a female-specific resilience locus and highlighted numerous sex-specific molecular pathways that may underly resilience to Alzheimer's disease pathology. This study illustrates the need to conduct sex-aware genomic analyses to identify novel targets that are unidentified in sex-agnostic models. Our findings support the theory that the most successful treatment for an individual with Alzheimer's disease may be personalized based on their biological sex and genetic context.
Collapse
Affiliation(s)
- Jaclyn M Eissman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Emily R Mahoney
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Alexandra N Smith
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | | | - Michael L Lee
- Department of Medicine, University of Washington,
Seattle, WA, USA
| | - Phoebe Scollard
- Department of Medicine, University of Washington,
Seattle, WA, USA
| | - Seo Eun Choi
- Department of Medicine, University of Washington,
Seattle, WA, USA
| | - William S Bush
- Cleveland Institute for Computational Biology, Department of Population and
Quantitative Health Sciences, Case Western Reserve University,
Cleveland, OH, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, School of Medicine and Public
Health, University of Wisconsin-Madison, Madison,
WI, USA
| | - Qiongshi Lu
- Department of Statistics, University of Wisconsin-Madison,
Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of
Wisconsin-Madison, Madison, WI, USA
| | - David W Fardo
- Department of Biostatistics, College of Public Health, University of
Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky,
Lexington, KY, USA
| | - Emily H Trittschuh
- Department of Psychiatry and Behavioral Sciences, University of Washington
School of Medicine, Seattle, WA, USA
- VA Puget Sound Health Care System, GRECC, Seattle,
WA, USA
| | - Jesse Mez
- Department of Neurology, Boston University School of
Medicine, Boston, MA, USA
| | | | - Hector Hernandez Saucedo
- UC Davis Alzheimer's Disease Research Center, Department of Neurology,
University of California Davis Medical Center, Sacramento,
CA, USA
| | | | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical
School, Boston, MA, USA
- Center for Alzheimer's Research and Treatment, Department of Neurology,
Brigham and Women’s Hospital/Harvard Medical School, Boston,
MA, USA
- Melbourne School of Psychological Sciences, University of
Melbourne, Melbourne, Australia
| | - Michael J Properzi
- Department of Neurology, Massachusetts General Hospital/Harvard Medical
School, Boston, MA, USA
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford
University, Stanford, CA, USA
| | - Hyun Sik Yang
- Department of Neurology, Massachusetts General Hospital/Harvard Medical
School, Boston, MA, USA
- Center for Alzheimer's Research and Treatment, Department of Neurology,
Brigham and Women’s Hospital/Harvard Medical School, Boston,
MA, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California
Berkeley, Berkeley, CA, USA
| | - Trey Hedden
- Icahn School of Medicine at Mount Sinai, New York
City, NY, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana Alzheimer Disease
Center, Indiana University School of Medicine, Indianapolis,
IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University
School of Medicine, Indianapolis, IN, USA
| | - Shea J Andrews
- Icahn School of Medicine at Mount Sinai, New York
City, NY, USA
| | - Douglas Tommet
- Department of Psychiatry and Human Behavior, Brown University School of
Medicine, Providence, RI, USA
| | | | | | - Douglas M Ruderfer
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Xiaoyuan Zhong
- Department of Statistics, University of Wisconsin-Madison,
Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of
Wisconsin-Madison, Madison, WI, USA
| | - Neha S Raghavan
- Department of Neurology, Columbia University, New
York, NY, USA
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain,
Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and
The New York Presbyterian Hospital, New York, NY,
USA
| | - Badri N Vardarajan
- Department of Neurology, Columbia University, New
York, NY, USA
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain,
Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and
The New York Presbyterian Hospital, New York, NY,
USA
| | | | | | | | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami School of
Medicine, Miami, FL, USA
| | - Lindsay A Farrer
- Department of Neurology, Boston University School of
Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public
Health, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of
Medicine, Boston, MA, USA
| | - Li San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and
Laboratory Medicine, University of Pennsylvania Perelman School of
Medicine, Philadelphia, PA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of
Medicine, St. Louis, MO, USA
| | - Gerard D Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and
Laboratory Medicine, University of Pennsylvania Perelman School of
Medicine, Philadelphia, PA, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, Department of Population and
Quantitative Health Sciences, Case Western Reserve University,
Cleveland, OH, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington,
Seattle, WA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of
Medicine, Indianapolis, IN, USA
| | - Eric B Larson
- Department of Medicine, University of Washington,
Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute,
Seattle, WA, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital/Harvard Medical
School, Boston, MA, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University, New
York, NY, USA
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain,
Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and
The New York Presbyterian Hospital, New York, NY,
USA
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami School of
Medicine, Miami, FL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical
Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical
Center, Chicago, IL, USA
| | - Paul K Crane
- Department of Medicine, University of Washington,
Seattle, WA, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| |
Collapse
|
15
|
Heath L, Earls JC, Magis AT, Kornilov SA, Lovejoy JC, Funk CC, Rappaport N, Logsdon BA, Mangravite LM, Kunkle BW, Martin ER, Naj AC, Ertekin-Taner N, Golde TE, Hood L, Price ND. Manifestations of Alzheimer's disease genetic risk in the blood are evident in a multiomic analysis in healthy adults aged 18 to 90. Sci Rep 2022; 12:6117. [PMID: 35413975 PMCID: PMC9005657 DOI: 10.1038/s41598-022-09825-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
Genetics play an important role in late-onset Alzheimer's Disease (AD) etiology and dozens of genetic variants have been implicated in AD risk through large-scale GWAS meta-analyses. However, the precise mechanistic effects of most of these variants have yet to be determined. Deeply phenotyped cohort data can reveal physiological changes associated with genetic risk for AD across an age spectrum that may provide clues to the biology of the disease. We utilized over 2000 high-quality quantitative measurements obtained from blood of 2831 cognitively normal adult clients of a consumer-based scientific wellness company, each with CLIA-certified whole-genome sequencing data. Measurements included: clinical laboratory blood tests, targeted chip-based proteomics, and metabolomics. We performed a phenome-wide association study utilizing this diverse blood marker data and 25 known AD genetic variants and an AD-specific polygenic risk score (PGRS), adjusting for sex, age, vendor (for clinical labs), and the first four genetic principal components; sex-SNP interactions were also assessed. We observed statistically significant SNP-analyte associations for five genetic variants after correction for multiple testing (for SNPs in or near NYAP1, ABCA7, INPP5D, and APOE), with effects detectable from early adulthood. The ABCA7 SNP and the APOE2 and APOE4 encoding alleles were associated with lipid variability, as seen in previous studies; in addition, six novel proteins were associated with the e2 allele. The most statistically significant finding was between the NYAP1 variant and PILRA and PILRB protein levels, supporting previous functional genomic studies in the identification of a putative causal variant within the PILRA gene. We did not observe associations between the PGRS and any analyte. Sex modified the effects of four genetic variants, with multiple interrelated immune-modulating effects associated with the PICALM variant. In post-hoc analysis, sex-stratified GWAS results from an independent AD case-control meta-analysis supported sex-specific disease effects of the PICALM variant, highlighting the importance of sex as a biological variable. Known AD genetic variation influenced lipid metabolism and immune response systems in a population of non-AD individuals, with associations observed from early adulthood onward. Further research is needed to determine whether and how these effects are implicated in early-stage biological pathways to AD. These analyses aim to complement ongoing work on the functional interpretation of AD-associated genetic variants.
Collapse
Affiliation(s)
- Laura Heath
- Institute for Systems Biology, Seattle, WA, USA.
- Sage Bionetworks, Seattle, WA, USA.
| | - John C Earls
- Institute for Systems Biology, Seattle, WA, USA
- Thorne HealthTech, New York, NY, USA
| | | | | | | | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | - Brian W Kunkle
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adam C Naj
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nilüfer Ertekin-Taner
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Todd E Golde
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease University of Florida, Gainesville, FL, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, USA
- Providence St. Joseph Health, Renton, WA, USA
| | - Nathan D Price
- Institute for Systems Biology, Seattle, WA, USA.
- Thorne HealthTech, New York, NY, USA.
| |
Collapse
|
16
|
Machlovi SI, Neuner SM, Hemmer BM, Khan R, Liu Y, Huang M, Zhu JD, Castellano JM, Cai D, Marcora E, Goate AM. APOE4 confers transcriptomic and functional alterations to primary mouse microglia. Neurobiol Dis 2022; 164:105615. [PMID: 35031484 PMCID: PMC8934202 DOI: 10.1016/j.nbd.2022.105615] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Common genetic variants in more than forty loci modulate risk for Alzheimer's disease (AD). AD risk alleles are enriched within enhancers active in myeloid cells, suggesting that microglia, the brain-resident macrophages, may play a key role in the etiology of AD. A major genetic risk factor for AD is Apolipoprotein E (APOE) genotype, with the ε4/ε4 (E4) genotype increasing risk for AD by approximately 15 fold compared to the most common ε3/ε3 (E3) genotype. However, the impact of APOE genotype on microglial function has not been thoroughly investigated. To address this, we cultured primary microglia from mice in which both alleles of the mouse Apoe gene have been humanized to encode either human APOE ε3 or APOE ε4. Relative to E3 microglia, E4 microglia exhibit altered morphology, increased endolysosomal mass, increased cytokine/chemokine production, and increased lipid and lipid droplet accumulation at baseline. These changes were accompanied by decreased translation and increased phosphorylation of eIF2ɑ and eIF2ɑ-kinases that participate in the integrated stress response, suggesting that E4 genotype leads to elevated levels of cellular stress in microglia relative to E3 genotype. Using live-cell imaging and flow cytometry, we also show that E4 microglia exhibited increased phagocytic uptake of myelin and other substrates compared to E3 microglia. While transcriptomic profiling of myelin-challenged microglia revealed a largely overlapping response profile across genotypes, differential enrichment of genes in interferon signaling, extracellular matrix and translation-related pathways was identified in E4 versus E3 microglia both at baseline and following myelin challenge. Together, our results suggest E4 genotype confers several important functional alterations to microglia even prior to myelin challenge, providing insight into the molecular and cellular mechanisms by which APOE4 may increase risk for AD.
Collapse
Affiliation(s)
- Saima I Machlovi
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah M Neuner
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brittany M Hemmer
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Riana Khan
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiyuan Liu
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Min Huang
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA; Department of Neurology, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey D Zhu
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph M Castellano
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Neurology, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dongming Cai
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; James J Peters VA Medical Center, Research & Development, Bronx, NY, USA; Department of Neurology, New York, NY, USA; Alzheimer Disease Research Center, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Department of Neurology, New York, NY, USA; Alzheimer Disease Research Center, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Lopez-Lee C, Kodama L, Gan L. Sex Differences in Neurodegeneration: The Role of the Immune System in Humans. Biol Psychiatry 2022; 91:72-80. [PMID: 33715827 PMCID: PMC8263798 DOI: 10.1016/j.biopsych.2021.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/03/2023]
Abstract
Growing evidence supports significant involvement of immune dysfunction in the etiology of neurodegenerative diseases, several of which also display prominent sex differences across prevalence, pathology, and symptomology. In this review, we summarize evidence from human studies of established and recent findings of sex differences in multiple sclerosis, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis and discuss how sex-specific central nervous system innate immune activity could contribute to downstream sex differences in these diseases. We examine human genomic and transcriptomics studies in each neurodegenerative disease through the lens of sex differences in the neuroimmune system and highlight the importance of stratifying sex in clinical and translational research studies. Finally, we discuss the limitations of the existing studies and outline recommendations for further advancing sex-based analyses to uncover novel disease mechanisms that could ultimately help treat both sexes.
Collapse
Affiliation(s)
- Chloe Lopez-Lee
- Neuroscience Graduate Program, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York; Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Lay Kodama
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York; Medical Scientist Training Program and Neuroscience Graduate Program, University of California San Francisco, San Francisco, California.
| | - Li Gan
- Neuroscience Graduate Program, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York; Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
18
|
Duan J, Zhang J, Liu L, Wen Y. A guidance of model selection for genomic prediction based on linear mixed models for complex traits. Front Genet 2022; 13:1017380. [PMID: 36276959 PMCID: PMC9581223 DOI: 10.3389/fgene.2022.1017380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
Brain imaging outcomes are important for Alzheimer's disease (AD) detection, and their prediction based on both genetic and demographic risk factors can facilitate the ongoing prevention and treatment of AD. Existing studies have identified numerous significantly AD-associated SNPs. However, how to make the best use of them for prediction analyses remains unknown. In this research, we first explored the relationship between genetic architecture and prediction accuracy of linear mixed models via visualizing the Manhattan plots generated based on the data obtained from the Wellcome Trust Case Control Consortium, and then constructed prediction models for eleven AD-related brain imaging outcomes using data from United Kingdom Biobank and Alzheimer's Disease Neuroimaging Initiative studies. We found that the simple Manhattan plots can be informative for the selection of prediction models. For traits that do not exhibit any significant signals from the Manhattan plots, the simple genomic best linear unbiased prediction (gBLUP) model is recommended due to its robust and accurate prediction performance as well as its computational efficiency. For diseases and traits that show spiked signals on the Manhattan plots, the latent Dirichlet process regression is preferred, as it can flexibly accommodate both the oligogenic and omnigenic models. For the prediction of AD-related traits, the Manhattan plots suggest their polygenic nature, and gBLUP has achieved robust performance for all these traits. We found that for these AD-related traits, genetic factors themselves only explain a very small proportion of the heritability, and the well-known AD risk factors can substantially improve the prediction model.
Collapse
Affiliation(s)
- Jiefang Duan
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiayu Zhang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Long Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yalu Wen
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Statistics, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Guo L, Zhong MB, Zhang L, Zhang B, Cai D. Sex Differences in Alzheimer's Disease: Insights From the Multiomics Landscape. Biol Psychiatry 2022; 91:61-71. [PMID: 33896621 PMCID: PMC8996342 DOI: 10.1016/j.biopsych.2021.02.968] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) has complex etiologies, and the impact of sex on AD varies over the course of disease development. The literature provides some evidence of sex-specific contributions to AD. However, molecular mechanisms of sex-biased differences in AD remain elusive. Multiomics data in tandem with systems biology approaches offer a new avenue to dissect sex-stratified molecular mechanisms of AD and to develop sex-specific diagnostic and therapeutic strategies for AD. Single-cell transcriptomic datasets and cell deconvolution of bulk tissue transcriptomic data provide additional insights into brain cell type-specific impact on sex-biased differences in AD. In this review, we summarize the impact of sex chromosomes and sex hormones on AD, the impact of sex-biased differences during AD development, and the interplay between sex and a major AD genetic risk factor, the APOE ε4 genotype, through the multiomics landscape. Several sex-biased molecular pathways such as neuroinflammation and bioenergetic metabolism have been identified. The importance of sex chromosome and sex hormones, as well as the associated pathways in AD pathogenesis, is further strengthened by findings from omics studies. Future research efforts should integrate the multiomics data from different brain regions and different cell types using systems biology approaches, and leverage the knowledge into a holistic examination of sex differences in AD. Advances in systems biology technologies and increasingly available large-scale multiomics datasets will facilitate future studies dissecting such complex signaling mechanisms to better understand AD pathogenesis in both sexes, with the ultimate goals of developing efficacious sex- and APOE-stratified preventive and therapeutic interventions for AD.
Collapse
Affiliation(s)
- Lei Guo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Margaret B Zhong
- Department of Neuroscience, Barnard College of Columbia University, New York, New York
| | - Larry Zhang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Research and Development Service, James J. Peters VA Medical Center, Bronx, New York
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, New York; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York; Research and Development Service, James J. Peters VA Medical Center, Bronx, New York.
| |
Collapse
|
20
|
Wang H, Rosenthal BS, Makowski C, Lo M, Andreassen OA, Salem RM, McEvoy LK, Fiecas M, Chen C. Causal association of cognitive reserve on Alzheimer's disease with putative sex difference. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12270. [PMID: 35005200 PMCID: PMC8719428 DOI: 10.1002/dad2.12270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/13/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Sex-dependent risk factors may underlie sex differences in Alzheimer's disease (AD). METHODS Using sex-stratified genome-wide association studies (GWAS) of AD, we evaluated associations of 12 traits with AD through polygenic risk scores (PRS) and Mendelian randomization (MR), and explored joint genetic architecture among significant traits by genomic structural equation modeling and network analysis. RESULTS AD was associated with lower PRS for premorbid cognitive performance, intelligence, and educational attainment. MR showed a causal role for the cognition-related traits in AD, particularly among females. Their joint genetic components encompassed RNA processing, neuron projection development, and cell cycle pathways that overlap with cellular senescence. Cholesterol and C-reactive protein showed pleiotropy but no causality with AD. DISCUSSION Lower cognitive reserve is causally related to AD. The stronger causal link between cognitive performance and AD in females, despite similar PRS between sexes, suggest these differences may result from gene-environmental interactions accumulated over the lifespan.
Collapse
Affiliation(s)
- Hao Wang
- Center for Multimodal Imaging and GeneticsDepartment of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Brin Sara Rosenthal
- Center for Computational Biology and BioinformaticsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Carolina Makowski
- Center for Multimodal Imaging and GeneticsDepartment of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Min‐Tzu Lo
- Center for Multimodal Imaging and GeneticsDepartment of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ole A. Andreassen
- NORMENT CentreDivision of Mental Health and AddictionUniversity of Oslo and Oslo University HospitalOsloNorway
| | - Rany M. Salem
- Department of Family Medicine and Public HealthDivision of EpidemiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Linda K. McEvoy
- Center for Multimodal Imaging and GeneticsDepartment of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
- Herbert Wertheim School of Public Health and Human Longevity ScienceUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Mark Fiecas
- School of Public HealthDivision of BiostatisticsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Chi‐Hua Chen
- Center for Multimodal Imaging and GeneticsDepartment of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
21
|
Bruña R, Maestú F, López-Sanz D, Bagic A, Cohen AD, Chang YF, Cheng Y, Doman J, Huppert T, Kim T, Roush RE, Snitz BE, Becker JT. Sex Differences in Magnetoencephalography-Identified Functional Connectivity in the Human Connectome Project Connectomics of Brain Aging and Dementia Cohort. Brain Connect 2021; 12:561-570. [PMID: 34726478 PMCID: PMC9419974 DOI: 10.1089/brain.2021.0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: The human brain shows modest traits of sexual dimorphism, with the female brain, on average, 10% smaller than the male brain. These differences do not imply a lowered cognitive performance, but suggest a more optimal brain organization in women. Here we evaluate the patterns of functional connectivity (FC) in women and men from the Connectomics of Brain Aging and Dementia sample. Methods: We used phase locking values to calculate FC from the magnetoencephalography time series in a sample of 138 old adults (87 females and 51 males). We compared the FC patterns between sexes, with the intention of detecting regions with different levels of connectivity. Results: We found a frontal cluster, involving anterior cingulate and the medial frontal lobe, where women showed higher FC values than men. Involved connections included the following: (1) medial parietal areas, such as posterior cingulate cortices and precunei; (2) right insula; and (3) medium cingulate and paracingulate cortices. Moreover, these differences persisted when considering only cognitively intact individuals, but not when considering only cognitively impaired individuals. Discussion: Increased anteroposterior FC has been identified as a biomarker for increased risk of developing cognitive impairment or dementia. In our study, cognitively intact women showed higher levels of FC than their male counterparts. This result suggests that neurodegenerative processes could be taking place in these women, but the changes are undetected by current diagnosis tools. FC, as measured here, might be valuable for early identification of this neurodegeneration.
Collapse
Affiliation(s)
- Ricardo Bruña
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Experimental Psychology, Universidad Complutense de Madrid, Pozuelo de Alarcón, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Experimental Psychology, Universidad Complutense de Madrid, Pozuelo de Alarcón, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Psychobiology, Universidad Complutense de Madrid, Madrid, Spain
| | - Anto Bagic
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Statistics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ann D Cohen
- Department of Neurosurgery, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yue-Fang Chang
- Department of Neurosurgery, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu Cheng
- Department of Statistics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Biostatistics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jack Doman
- Department of Neurosurgery, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ted Huppert
- Department of Electrical Engineering, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tae Kim
- Department of Radiology, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebecca E Roush
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Beth E Snitz
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James T Becker
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurology, and The University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Psychology, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Seto M, Weiner RL, Dumitrescu L, Hohman TJ. Protective genes and pathways in Alzheimer's disease: moving towards precision interventions. Mol Neurodegener 2021; 16:29. [PMID: 33926499 PMCID: PMC8086309 DOI: 10.1186/s13024-021-00452-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder that is characterized by neurodegeneration, cognitive impairment, and an eventual inability to perform daily tasks. The etiology of Alzheimer's is complex, with numerous environmental and genetic factors contributing to the disease. Late-onset AD is highly heritable (60 to 80%), and over 40 risk loci for AD have been identified via large genome-wide association studies, most of which are common variants with small effect sizes. Although these discoveries have provided novel insight on biological contributors to AD, disease-modifying treatments remain elusive. Recently, the concepts of resistance to pathology and resilience against the downstream consequences of pathology have been of particular interest in the Alzheimer's field as studies continue to identify individuals who evade the pathology of the disease even into late life and individuals who have all of the neuropathological features of AD but evade downstream neurodegeneration and cognitive impairment. It has been hypothesized that a shift in focus from Alzheimer's risk to resilience presents an opportunity to uncover novel biological mechanisms of AD and to identify promising therapeutic targets for the disease. This review will highlight a selection of genes and variants that have been reported to confer protection from AD within the literature and will also discuss evidence for the biological underpinnings behind their protective effect with a focus on genes involved in lipid metabolism, cellular trafficking, endosomal and lysosomal function, synaptic function, and inflammation. Finally, we offer some recommendations in areas where the field can rapidly advance towards precision interventions that leverage the ideas of protection and resilience for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mabel Seto
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Rebecca L. Weiner
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
23
|
Biamonti G, Amato A, Belloni E, Di Matteo A, Infantino L, Pradella D, Ghigna C. Alternative splicing in Alzheimer's disease. Aging Clin Exp Res 2021; 33:747-758. [PMID: 31583531 DOI: 10.1007/s40520-019-01360-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most frequent neurodegenerative disorder in the elderly, occurring in approximately 20% of people older than 80. The molecular causes of AD are still poorly understood. However, recent studies have shown that Alternative Splicing (AS) is involved in the gene expression reprogramming associated with the functional changes observed in AD patients. In particular, mutations in cis-acting regulatory sequences as well as alterations in the activity and sub-cellular localization of trans-acting splicing factors and components of the spliceosome machinery are associated with splicing abnormalities in AD tissues, which may influence the onset and progression of the disease. In this review, we discuss the current molecular understanding of how alterations in the AS process contribute to AD pathogenesis. Finally, recent therapeutic approaches targeting aberrant AS regulation in AD are also reviewed.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy.
| | - Angela Amato
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Anna Di Matteo
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Lucia Infantino
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Claudia Ghigna
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso, 207, 27100, Pavia, Italy
| |
Collapse
|
24
|
Shaw C, Hayes-Larson E, Glymour MM, Dufouil C, Hohman TJ, Whitmer RA, Kobayashi LC, Brookmeyer R, Mayeda ER. Evaluation of Selective Survival and Sex/Gender Differences in Dementia Incidence Using a Simulation Model. JAMA Netw Open 2021; 4:e211001. [PMID: 33687445 PMCID: PMC7944377 DOI: 10.1001/jamanetworkopen.2021.1001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE Dementia research is susceptible to bias arising from selective survival, a process that results in individuals with certain characteristics disproportionately surviving to old age. Spurious associations between risk factors and dementia may be induced when factors associated with longer survival also influence dementia incidence. OBJECTIVE To assess the role of selective survival in explaining reported sex/gender differences in dementia incidence. DESIGN, SETTING, AND PARTICIPANTS This decision analytical model used a simulated cohort of US participants aged 50 years and without dementia at baseline followed up for incident dementia through age 95 years. Selective survival was induced by a selection characteristic (eg, childhood social disadvantage or Alzheimer genetic risk) that influenced both mortality and dementia incidence at varying magnitudes. Data analysis was performed from April 2018 to May 2020. EXPOSURE Sex/gender, conceptualized as the combination of biological sex and social consequences of gender. MAIN OUTCOMES AND MEASURES Dementia incidence rate ratios (IRRs) for women compared with men. In all simulations, it was assumed that there would be no true effect of sex/gender on dementia incidence; all observed sex/gender differences were due to selective survival. RESULTS At baseline, the simulation included 100 000 participants aged 50 years (51 000 [51%] women, mirroring the 1919-1921 US birth cohort of non-Latino White individuals at age 50 years); distributions of the selection characteristic were standard normal (mean [SD], 0.0 [1.0]). Observed sex/gender differences in dementia incidence in individuals aged 85 years or older ranged from insignificant (IRR, 1.00; 95% CI, 0.91-1.11) to consistent with sex/gender differences (20% higher risk for women [IRR, 1.20; 95% CI, 1.08-1.32]) reported in an extant study. Simulations in which bias was large enough to explain prior findings required moderate to large differential effects of selective survival (eg, hazard ratio for selection characteristic on mortality at least 2.0 among men, no effect among women). CONCLUSIONS AND RELEVANCE These results suggest that selective survival may contribute to observed sex/gender differences in dementia incidence but do not preclude potential contributions of sex/gender-specific mechanisms. Further research on plausibility of selection characteristics with outcomes of the magnitude required for selective survival to explain sex/gender differences in dementia incidence and sex/gender-specific mechanisms represent an opportunity to understand prevention and treatment of dementia.
Collapse
Affiliation(s)
- Crystal Shaw
- Fielding School of Public Health, Department of Epidemiology, University of California, Los Angeles
- Fielding School of Public Health, Department of Biostatistics, University of California, Los Angeles
| | - Eleanor Hayes-Larson
- Fielding School of Public Health, Department of Epidemiology, University of California, Los Angeles
| | - M. Maria Glymour
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Carole Dufouil
- Centre Inserm U1219, d’Epidémiologie et de Développement, Bordeaux School of Public Health, Institut de Santé Publique Université de Bordeaux, Bordeaux, France
- Pole de sante publique, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rachel A. Whitmer
- Alzheimer’s Disease Research Center, University of California, Davis
- Department of Public Health Sciences, University of California, Davis
| | - Lindsay C. Kobayashi
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Ron Brookmeyer
- Fielding School of Public Health, Department of Biostatistics, University of California, Los Angeles
| | - Elizabeth Rose Mayeda
- Fielding School of Public Health, Department of Epidemiology, University of California, Los Angeles
| |
Collapse
|
25
|
Neuner SM, Tcw J, Goate AM. Genetic architecture of Alzheimer's disease. Neurobiol Dis 2020; 143:104976. [PMID: 32565066 PMCID: PMC7409822 DOI: 10.1016/j.nbd.2020.104976] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Advances in genetic and genomic technologies over the last thirty years have greatly enhanced our knowledge concerning the genetic architecture of Alzheimer's disease (AD). Several genes including APP, PSEN1, PSEN2, and APOE have been shown to exhibit large effects on disease susceptibility, with the remaining risk loci having much smaller effects on AD risk. Notably, common genetic variants impacting AD are not randomly distributed across the genome. Instead, these variants are enriched within regulatory elements active in human myeloid cells, and to a lesser extent liver cells, implicating these cell and tissue types as critical to disease etiology. Integrative approaches are emerging as highly effective for identifying the specific target genes through which AD risk variants act and will likely yield important insights related to potential therapeutic targets in the coming years. In the future, additional consideration of sex- and ethnicity-specific contributions to risk as well as the contribution of complex gene-gene and gene-environment interactions will likely be necessary to further improve our understanding of AD genetic architecture.
Collapse
Affiliation(s)
- Sarah M Neuner
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Julia Tcw
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alison M Goate
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
26
|
Dumitrescu L, Mahoney ER, Mukherjee S, Lee ML, Bush WS, Engelman CD, Lu Q, Fardo DW, Trittschuh EH, Mez J, Kaczorowski C, Hernandez Saucedo H, Widaman KF, Buckley R, Properzi M, Mormino E, Yang HS, Harrison T, Hedden T, Nho K, Andrews SJ, Tommet D, Hadad N, Sanders RE, Ruderfer DM, Gifford KA, Moore AM, Cambronero F, Zhong X, Raghavan NS, Vardarajan B, Pericak-Vance MA, Farrer LA, Wang LS, Cruchaga C, Schellenberg G, Cox NJ, Haines JL, Keene CD, Saykin AJ, Larson EB, Sperling RA, Mayeux R, Bennett DA, Schneider JA, Crane PK, Jefferson AL, Hohman TJ. Genetic variants and functional pathways associated with resilience to Alzheimer's disease. Brain 2020; 143:2561-2575. [PMID: 32844198 PMCID: PMC7447518 DOI: 10.1093/brain/awaa209] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/22/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
Approximately 30% of older adults exhibit the neuropathological features of Alzheimer's disease without signs of cognitive impairment. Yet, little is known about the genetic factors that allow these potentially resilient individuals to remain cognitively unimpaired in the face of substantial neuropathology. We performed a large, genome-wide association study (GWAS) of two previously validated metrics of cognitive resilience quantified using a latent variable modelling approach and representing better-than-predicted cognitive performance for a given level of neuropathology. Data were harmonized across 5108 participants from a clinical trial of Alzheimer's disease and three longitudinal cohort studies of cognitive ageing. All analyses were run across all participants and repeated restricting the sample to individuals with unimpaired cognition to identify variants at the earliest stages of disease. As expected, all resilience metrics were genetically correlated with cognitive performance and education attainment traits (P-values < 2.5 × 10-20), and we observed novel correlations with neuropsychiatric conditions (P-values < 7.9 × 10-4). Notably, neither resilience metric was genetically correlated with clinical Alzheimer's disease (P-values > 0.42) nor associated with APOE (P-values > 0.13). In single variant analyses, we observed a genome-wide significant locus among participants with unimpaired cognition on chromosome 18 upstream of ATP8B1 (index single nucleotide polymorphism rs2571244, minor allele frequency = 0.08, P = 2.3 × 10-8). The top variant at this locus (rs2571244) was significantly associated with methylation in prefrontal cortex tissue at multiple CpG sites, including one just upstream of ATPB81 (cg19596477; P = 2 × 10-13). Overall, this comprehensive genetic analysis of resilience implicates a putative role of vascular risk, metabolism, and mental health in protection from the cognitive consequences of neuropathology, while also providing evidence for a novel resilience gene along the bile acid metabolism pathway. Furthermore, the genetic architecture of resilience appears to be distinct from that of clinical Alzheimer's disease, suggesting that a shift in focus to molecular contributors to resilience may identify novel pathways for therapeutic targets.
Collapse
Affiliation(s)
- Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily R Mahoney
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Michael L Lee
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - William S Bush
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Qiongshi Lu
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - David W Fardo
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Emily H Trittschuh
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- VA Puget Sound Health Care System, GRECC, Seattle, WA, USA
| | - Jesse Mez
- Deparment of Neurology, Boston University School of Medicine, Boston, MA, USA
| | | | - Hector Hernandez Saucedo
- UC Davis Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis Medical Center, Sacramento, CA, USA
| | | | - Rachel Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Center for Alzheimer’s Research and Treatment, Department of Neurology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Michael Properzi
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Elizabeth Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Center for Alzheimer’s Research and Treatment, Department of Neurology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Tessa Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Trey Hedden
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shea J Andrews
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Doug Tommet
- Department of Psychiatry and Human Behavior, Brown University School of Medicine, Providence, RI, USA
| | | | | | - Douglas M Ruderfer
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annah M Moore
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Francis Cambronero
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaoyuan Zhong
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Neha S Raghavan
- Department of Neurology, Columbia University, New York, NY, USA
- The Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and The New York Presbyterian Hospital, New York, NY, USA
| | - Badri Vardarajan
- Department of Neurology, Columbia University, New York, NY, USA
- The Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and The New York Presbyterian Hospital, New York, NY, USA
| | | | | | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami School of Medicine, Miami, FL, USA
| | - Lindsay A Farrer
- Deparment of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Gerard Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University, New York, NY, USA
- The Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and The New York Presbyterian Hospital, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|