1
|
Sinha A, Gupta M, Bhaskar SMM. Evolucollateral dynamics in stroke: Evolutionary pathophysiology, remodelling and emerging therapeutic strategies. Eur J Neurosci 2024. [PMID: 39498733 DOI: 10.1111/ejn.16585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024]
Abstract
Leptomeningeal collaterals (LMCs) are crucial in mitigating the impact of acute ischemic stroke (AIS) by providing alternate blood flow routes when primary arteries are obstructed. This article explores the evolutionary pathophysiology of LMCs, highlighting their critical function in stroke and the genetic and molecular mechanisms governing their development and remodelling. We address the translational challenges of applying animal model findings to human clinical scenarios, emphasizing the need for further research to validate emerging therapies-such as pharmacological agents, gene therapy and mechanical interventions-in clinical settings, aimed at enhancing collateral perfusion. Computational modelling emerges as a promising method for integrating experimental data, which requires precise parameterization and empirical validation. We introduce the 'Evolucollateral Dynamics' hypothesis, proposing a novel framework that incorporates evolutionary biology principles into therapeutic strategies, offering new perspectives on enhancing collateral circulation. This hypothesis emphasizes the role of genetic predispositions and environmental influences on collateral circulation, which may impact therapeutic strategies and optimize treatment outcomes. Future research must incorporate human clinical data to create robust treatment protocols, thereby maximizing the therapeutic potential of LMCs and improving outcomes for stroke patients.
Collapse
Affiliation(s)
- Akansha Sinha
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
| | - Muskaan Gupta
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
| | - Sonu M M Bhaskar
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
- NSW Brain Clot Bank, NSW Health Pathology, Sydney, NSW, Australia
- Department of Neurology & Neurophysiology, Liverpool Hospital and South West Sydney Local Health District, Liverpool, NSW, Australia
- Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Department of Neurology, Division of Cerebrovascular Medicine and Neurology, National Cerebral and Cardiovascular Center (NCVC), Suita, Osaka, Japan
| |
Collapse
|
2
|
Zapata-Lopera YM, Trejo-Tapia G, Cano-Europa E, Rodríguez-Hernández AA, Rojas-Franco P, Herrera-Ruiz M, Jiménez-Ferrer E. Neuroprotective effect of Bouvardia ternifolia (Cav.) Schltdl via inhibition of TLR4/NF-κB, caspase-3/Bax/Bcl-2 pathways in ischemia/reperfusion injury in rats. Front Pharmacol 2024; 15:1471542. [PMID: 39376599 PMCID: PMC11456924 DOI: 10.3389/fphar.2024.1471542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Bouvardia ternifolia is a plant known for its traditional medicinal uses, particularly in treating inflammation and oxidative stress. Recent studies have explored its potential in neuroprotection, especially in the context of cerebral ischemia/reperfusion injury, a condition where blood supply returns to the brain after a period of ischemia, leading to oxidative stress and inflammation. This damage is a major contributor to neuronal death and neurodegenerative diseases. Methods A BCCAO/reperfusion model was induced, followed by treatment with B. ternifolia extract. Various molecular biology methods were employed, including Western blot analysis, gene expression assessment via RT-qPCR, and the measurement of oxidative stress mediators. Results In the BCCAO/reperfusion model, the compounds in the dichloromethane extract work by targeting various signaling pathways. They prevent the activation of iNOS and nNOS, reducing harmful reactive oxygen and nitrogen species, and boosting antioxidant enzymes like catalase and superoxide dismutase. This lowers oxidative stress and decreases the expression of proteins and genes linked to cell death, such as Bax, Bcl-2, and caspase-3. The extract also blocks the TLR4 receptor, preventing NF-κB from triggering inflammation. Additionally, it reduces the activation of microglia and astrocytes, as shown by lower levels of glial activation genes like GFAP and AiF1. Conclusion The dichloromethane extract of B. ternifolia demonstrated significant neuroprotective effects in the BCCAO/reperfusion model by modulating multiple signaling pathways. It effectively reduced oxidative stress, inhibited inflammation, and attenuated apoptosis, primarily through the downregulation of key proteins and genes associated with these processes. These findings suggest that the extract holds therapeutic potential for mitigating ischemia/reperfusion-induced neuronal damage.
Collapse
Affiliation(s)
- Yury Maritza Zapata-Lopera
- Centro de investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, Mexico
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec, Morelos, Mexico
| | - Gabriela Trejo-Tapia
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec, Morelos, Mexico
| | - Edgar Cano-Europa
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - Placido Rojas-Franco
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Maribel Herrera-Ruiz
- Centro de investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, Mexico
| | - Enrique Jiménez-Ferrer
- Centro de investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, Mexico
| |
Collapse
|
3
|
Heyns I, Faunce AF, Mumba MN, Kumar MNVR, Arora M. Nanotechnology-Enhanced Naloxone and Alternative Treatments for Opioid Addiction. ACS Pharmacol Transl Sci 2024; 7:2237-2250. [PMID: 39144549 PMCID: PMC11320732 DOI: 10.1021/acsptsci.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 08/16/2024]
Abstract
Opioids are commonly prescribed to address intense, ongoing pain associated with cancer, as well as long-lasting noncancer-related pain when alternative methods have proven ineffective. Individuals who exhibit both chronic pain and misuse of opioids face a significant danger of experiencing adverse health outcomes and the potential loss of life related to opioid use. Thus, there is a current movement to prescribe naloxone to those considered high-risk for opioid overdose. Naloxone has been explored as an antidote to reverse acute respiratory depression. Conversely, naloxone can give rise to other problems, including hypertension and cardiac arrhythmias. Thus, the importance of nanotechnology-enabled drug delivery strategies and their role in mitigating naloxone side-effects are significant. In this review, we explore the latest advancements in nanotechnology-enabled naloxone and alternative methods for addressing the opioid crisis through the utilization of non-opioid natural alternatives for chronic pain management.
Collapse
Affiliation(s)
- Ingrid
Marie Heyns
- The
Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Translational Science and Medicine, College of Community Health
Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Alabama
Life Research Institute, The University
of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Alina Farah Faunce
- Research
Department, Alabama College of Osteopathic
Medicine, Dothan, Alabama 36303, United States
| | - Mercy Ngosa Mumba
- Center
for Substance Use Research and Related Conditions, Capstone College
of Nursing, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - M. N. V. Ravi Kumar
- The
Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Translational Science and Medicine, College of Community Health
Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Alabama
Life Research Institute, The University
of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Biological Sciences, The University of
Alabama, Tuscaloosa, Alabama 35487, United States
- Chemical
and Biological Engineering, University of
Alabama, Tuscaloosa, Alabama 35487, United States
- Center for
Free Radical Biology, University of Alabama
at Birmingham, Birmingham, Alabama 35294, United States
- Nephrology
Research and Training Center, Division of Nephrology, Department of
Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Meenakshi Arora
- The
Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Translational Science and Medicine, College of Community Health
Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Alabama
Life Research Institute, The University
of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Biological Sciences, The University of
Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
4
|
Chowdhury A, Killingsworth MC, Calic Z, Bhaskar SM. Meta-analysis of clinical and safety profiles after reperfusion therapy in acute posterior circulation strokes: insights and implications. Acta Radiol 2024; 65:982-998. [PMID: 38839085 DOI: 10.1177/02841851241255313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Posterior circulation stroke (PCS) accounts for approximately 20% of all acute ischemic strokes. The optimal reperfusion therapy for PCS management remains uncertain. PURPOSE To evaluate the prevalence and outcomes of intravenous thrombolysis (IVT), endovascular thrombectomy (EVT), and bridging therapy in PCS patients. MATERIAL AND METHODS We conducted a meta-analysis of 19 studies examining reperfusion therapy outcomes in PCS patients, including 9765 individuals. We pooled prevalence data and assessed associations between reperfusion therapies and clinical, safety, and recanalization outcomes using random-effects models. RESULTS The pooled prevalence of reperfusion therapies post-acute PCS was 39% for IVT, 54% for EVT, and 48% for bridging therapy. EVT was associated with significantly higher odds of favorable functional outcomes (modified Rankin Score [mRS] 0-3) at 90 days compared to standard medical therapy (odds ratio [OR] = 5.68; 95% confidence interval [CI]=2.07-15.59; P = 0.001). Conversely, bridging therapy was linked to reduced odds of favorable functional outcomes at 90 days compared to EVT (OR = 0.35; 95% CI=0.26-0.47; P < 0.001). Bridging therapy was also significantly associated with lower odds of good functional outcomes (mRS 0-2) (OR = 0.25; 95% CI=0.11-0.54; P < 0.001), reduced risk of symptomatic intracranial hemorrhage (OR = 0.26; 95% CI=0.07-0.68; P = 0.009), lower mortality (OR = 0.13; 95% CI=0.04-0.44; P = 0.001), and less successful recanalization (OR = 0.35; 95% CI=0.13-0.94; P = 0.038) relative to EVT. CONCLUSION Our meta-analysis underscores the favorable outcomes associated with EVT in PCS cases. With notable reperfusion rates, understanding factors influencing PCS outcomes can inform patient selection and prognostic considerations.
Collapse
Affiliation(s)
- Ashek Chowdhury
- Global Health Neurology Lab, Sydney, NSW, Australia
- South Western Sydney Clinical Campuses, UNSW Medicine and Health, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Murray C Killingsworth
- Global Health Neurology Lab, Sydney, NSW, Australia
- South Western Sydney Clinical Campuses, UNSW Medicine and Health, University of New South Wales (UNSW), Sydney, NSW, Australia
- Cell-Based Disease Intervention Group, Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- NSW Health Pathology, NSW Brain Clot Bank, Sydney, NSW, Australia
- Department of Anatomical Pathology, NSW Health Pathology; Cell-Based Disease Intervention Research Group, Ingham Institute for Applied Medical Research and Liverpool Hospital, Liverpool, NSW, Australia
| | - Zeljka Calic
- Global Health Neurology Lab, Sydney, NSW, Australia
- South Western Sydney Clinical Campuses, UNSW Medicine and Health, University of New South Wales (UNSW), Sydney, NSW, Australia
- Cell-Based Disease Intervention Group, Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- NSW Health Pathology, NSW Brain Clot Bank, Sydney, NSW, Australia
- Department of Neurology & Neurophysiology, Liverpool Hospital & South Western Sydney Local Health District, Sydney, NSW, Australia
| | - Sonu Mm Bhaskar
- Global Health Neurology Lab, Sydney, NSW, Australia
- South Western Sydney Clinical Campuses, UNSW Medicine and Health, University of New South Wales (UNSW), Sydney, NSW, Australia
- Cell-Based Disease Intervention Group, Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- NSW Health Pathology, NSW Brain Clot Bank, Sydney, NSW, Australia
- Department of Neurology & Neurophysiology, Liverpool Hospital & South Western Sydney Local Health District, Sydney, NSW, Australia
- Department of Neurology, Division of Cerebrovascular Medicine and Neurology, National Cerebral and Cardiovascular Center (NCVC), Suita, Osaka, Japan
| |
Collapse
|
5
|
Song C, Fang X, Fang N, Hu F. Buyang Huanwu Decoction suppresses ischemic stroke by suppressing glycolysis and cell apoptosis in rat brain microvascular endothelial cells. Brain Res Bull 2024; 215:111032. [PMID: 39029715 DOI: 10.1016/j.brainresbull.2024.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Buyang Huanwu Decoction (BHD) is widely used in Chinese clinical practice for the treatment and prevention of ischemic cerebral vascular diseases. This study was designed to investigate the effects of BHD on ischemic stroke (IS) and its underlying mechanism. METHODS The middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation and reoxygenation (OGD/R) rat brain microvascular endothelial cell (RBMVEC) models were established. Brain infarction size and neurological score were calculated following MCAO surgery. Evans blue was used to measure blood brain barrier (BBB) permeability. Cell counting kit-8 (CCK-8) and TUNEL assays were performed to evaluate the cell viability and apoptosis of RBMVECs. Dual-luciferase reporter assay was used to analyze the transcriptional activities of apoptosis-related genes. RESULTS Results showed that higher infarction volume, neurological scores, and BBB permeability in the MCAO group rats were reduced after BHD treatment. Drug serum (DS) treatment had no impact on the normal RBMVECs' cell viability and cell apoptosis. Besides, DS treatment decreased the lactate production, glucose uptake, and extracellular acidification rate in normal and OGD/R-induced RBMVECs. DS treatment downregulated the protein levels of pan-lysine lactylation (kla), histone H3 lysine 18 lactylation (H3K18la), and the transcriptional of apoptotic protease activating factor-1 (Apaf-1) in OGD/R-treated RBMVECs. In addition, Apaf-1 overexpression decreased cell viability and increased apoptosis and glycolysis activity of OGD/R-treated RBMVECs. CONCLUSION In summary, BHD inhibited glycolysis and apoptosis via suppressing the pan-kla and H3K18la protein levels and the Apaf-1 transcriptional activity, thus restraining the progression of IS.
Collapse
Affiliation(s)
- Ci Song
- Union Jiangbei Hospital of Huazhong University of Science and Technology, No. 111, Chenggong Avenue, Caidian District, Wuhan, Hubei 430100, China.
| | - Xia Fang
- Union Jiangbei Hospital of Huazhong University of Science and Technology, No. 111, Chenggong Avenue, Caidian District, Wuhan, Hubei 430100, China
| | - Ni Fang
- Union Jiangbei Hospital of Huazhong University of Science and Technology, No. 111, Chenggong Avenue, Caidian District, Wuhan, Hubei 430100, China
| | - Fang Hu
- Union Jiangbei Hospital of Huazhong University of Science and Technology, No. 111, Chenggong Avenue, Caidian District, Wuhan, Hubei 430100, China
| |
Collapse
|
6
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
7
|
Qin J, Chen K, Wang X, He S, Chen J, Zhu Q, He Z, Lv P, Chen K. Investigating the Pharmacological Mechanisms of Total Flavonoids from Eucommia ulmoides Oliver Leaves for Ischemic Stroke Protection. Int J Mol Sci 2024; 25:6271. [PMID: 38892459 PMCID: PMC11172844 DOI: 10.3390/ijms25116271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The aim of this study was to explore how the total flavonoids from Eucommia ulmoides leaves (EULs) regulate ischemia-induced nerve damage, as well as the protective effects mediated by oxidative stress. The cell survival rate was significantly improved compared to the ischemic group (p < 0.05) after treatment with the total flavonoids of EULs. The levels of reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA) decreased, while catalase (CAT) and glutathione (GSH) increased, indicating that the total flavonoids of EULs can significantly alleviate neurological damage caused by ischemic stroke by inhibiting oxidative stress (p < 0.01). The mRNA expression level of VEGF increased (p < 0.01), which was consistent with the protein expression results. Meanwhile, the protein expression of ERK and CCND1 increased (p < 0.01), suggesting that the total flavonoids of EULs could protect PC12 cells from ischemic injury via VEGF-related pathways. MCAO rat models indicated that the total flavonoids of EULs could reduce brain ischemia-reperfusion injury. In conclusion, this study demonstrates the potential mechanisms of the total flavonoids of EULs in treating ischemic stroke and their potential therapeutic effects in reducing ischemic injury, which provides useful information for ischemic stroke drug discovery.
Collapse
Affiliation(s)
- Jing Qin
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| | - Kewei Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| | - Xiaomin Wang
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| | - Sirong He
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| | - Jiaqi Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| | - Qianlin Zhu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| | - Zhizhou He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Pengcheng Lv
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| | - Kun Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| |
Collapse
|
8
|
Balaji PG, Bhimrao LS, Yadav AK. Revolutionizing Stroke Care: Nanotechnology-Based Brain Delivery as a Novel Paradigm for Treatment and Diagnosis. Mol Neurobiol 2024:10.1007/s12035-024-04215-3. [PMID: 38829514 DOI: 10.1007/s12035-024-04215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a severe medical condition arising from abnormalities in the coagulation-fibrinolysis cycle and metabolic processes, results in brain cell impairment and injury due to blood flow obstruction within the brain. Prompt and efficient therapeutic approaches are imperative to control and preserve brain functions. Conventional stroke medications, including fibrinolytic agents, play a crucial role in facilitating reperfusion to the ischemic brain. However, their clinical efficacy is hampered by short plasma half-lives, limited brain tissue distribution attributed to the blood-brain barrier (BBB), and lack of targeted drug delivery to the ischemic region. To address these challenges, diverse nanomedicine strategies, such as vesicular systems, polymeric nanoparticles, dendrimers, exosomes, inorganic nanoparticles, and biomimetic nanoparticles, have emerged. These platforms enhance drug pharmacokinetics by facilitating targeted drug accumulation at the ischemic site. By leveraging nanocarriers, engineered drug delivery systems hold the potential to overcome challenges associated with conventional stroke medications. This comprehensive review explores the pathophysiological mechanism underlying stroke and BBB disruption in stroke. Additionally, this review investigates the utilization of nanocarriers for current therapeutic and diagnostic interventions in stroke management. By addressing these aspects, the review aims to provide insight into potential strategies for improving stroke treatment and diagnosis through a nanomedicine approach.
Collapse
Affiliation(s)
- Paul Gajanan Balaji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Londhe Sachin Bhimrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
9
|
Yaqubi S, Karimian M. Stem cell therapy as a promising approach for ischemic stroke treatment. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100183. [PMID: 38831867 PMCID: PMC11144755 DOI: 10.1016/j.crphar.2024.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Ischemia as the most common type of stroke is the main cause of death and disability in the world. However, there are few therapeutic approaches to treat ischemic stroke. The common approach to the treatment of ischemia includes surgery-cum-chemical drugs. Surgery and chemical drugs are used to remove blood clots to prevent the deterioration of the nervous system. Given the surgical hazards and the challenges associated with chemical drugs, these cannot be considered safe approaches to the treatment of brain ischemia. Besides surgery-cum-chemical drugs, different types of stem cells including mesenchymal stem cells and neurological stem cells have been considered to treat ischemic stroke. Therapeutic approaches utilizing stem cells to treat strokes are promising because of their neuroprotective and regenerative benefits. However, the mechanisms by which the transplanted stem cells perform their precisely actions are unknown. The purpose of this study is to critically review stem cell-based therapeutic approaches for ischemia along with related challenges.
Collapse
Affiliation(s)
- Sahar Yaqubi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
10
|
Zou X, Wang L, Wang S, Zhang Y, Ma J, Chen L, Li Y, Yao TX, Zhou H, Wu L, Tang Q, Ma S, Zhang X, Tang R, Yi Y, Liu R, Zeng Y, Zhang L. Promising therapeutic targets for ischemic stroke identified from plasma and cerebrospinal fluid proteomes: a multicenter Mendelian randomization study. Int J Surg 2024; 110:766-776. [PMID: 38016292 PMCID: PMC10871597 DOI: 10.1097/js9.0000000000000922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Ischemic stroke (IS) is more common every year, the condition is serious, and have a poor prognosis. New, efficient, and safe therapeutic targets are desperately needed as early treatment especially prevention and reperfusion is the key to lowering the occurrence of poorer prognosis. Generally circulating proteins are attractive therapeutic targets, this study aims to identify potential pharmacological targets among plasma and cerebrospinal fluid (CSF) proteins for the prevention and treatment of IS using a multicenter Mendelian randomization (MR) approach. METHODS First, the genetic instruments of 734 plasma and 151 CSF proteins were assessed for causative connections with IS from MEGASTROKE consortium by MR to identify prospective therapeutic targets. Then, for additional validation, plasma proteins from the deCODE consortium and the Fenland consortium, as well as IS GWAS data from the FinnGen cohort, the ISGC consortium and UK biobank, were employed. A thorough evaluation of the aforementioned possible pharmacological targets was carried out using meta-analysis. The robustness of MR results was then confirmed through sensitivity analysis using several techniques, such as bidirectional MR analysis, Steiger filtering, and Bayesian colocalization. Finally, methods like Protein-Protein Interaction (PPI) Networking were utilized to investigate the relationship between putative drug targets and therapeutic agents. RESULTS The authors discovered three proteins that may function as promising therapeutic targets for IS and meet the Bonferroni correction ( P <0.05/885=5.65×10 -5 ). Prekallikrein (OR=0.41, 95% CI: 0.27-0.63, P =3.61×10 -5 ), a protein found in CSF, has a 10-fold protective impact in IS, while the plasma proteins SWAP70 (OR=0.85, 95% CI: 0.80-0.91, P =1.64×10 -6 ) and MMP-12 (OR=0.92, 95% CI: 0.89-0.95, P =4.49×10 -6 ) of each SD play a protective role in IS. Prekallikrein, MMP-12, SWAP70 was replicated in the FinnGen cohort and ISGC database. MMP-12 (OR=0.93, 95% CI: 0.91-0.94, P <0.001), SWAP70 (OR=0.92, 95% CI: 0.90-0.94, P <0.001), and prekallikrein (OR=0.53, 95% CI: 0.33-0.72, P <0.001) may all be viable targets for IS, according to the combined meta-analysis results. Additionally, no evidence of reverse causality was identified, and Bayesian colocalization revealed MMP-12 (PPH 4 =0.995), SWAP70 (PPH 4 =0.987), and prekallikrein (PPH 4 =0.894) shared the same variant with IS, supporting the robustness of the aforementioned causation. Prekallikrein and MMP-12 were associated with the target protein of the current treatment of IS. Among them, Lanadelumab, a new drug whose target protein is a prekallikrein, may be a promising new drug for the treatment of IS. CONCLUSION The prekallikrein, MMP-12, and SWAP70 are causally associated with the risk of IS. Moreover, MMP-12 and prekallikrein may be treated as promising therapeutic targets for medical intervention of IS.
Collapse
Affiliation(s)
- Xuelun Zou
- Department of Neurology, Xiangya Hospital, Central South University
| | - Leiyun Wang
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, Hubei, People’s Republic of China
| | - Sai Wang
- Department of Neurology, Xiangya Hospital, Central South University
| | - Yupeng Zhang
- Department of Neurology, Xiangya Hospital, Central South University
| | - Junyi Ma
- Department of Neurology, Xiangya Hospital, Central South University
| | - Lei Chen
- Department of Neurology, Xiangya Hospital, Central South University
| | - Ye Li
- Department of Neurology, Xiangya Hospital, Central South University
| | - Tian-Xing Yao
- Department of Neurology, Xiangya Hospital, Central South University
| | - Huifang Zhou
- Department of Neurology, Xiangya Hospital, Central South University
| | - Lianxu Wu
- Department of Neurology, Xiangya Hospital, Central South University
| | - Qiaoling Tang
- Department of Neurology, Xiangya Hospital, Central South University
| | - Siyuan Ma
- Department of Neurology, Xiangya Hospital, Central South University
| | - Xiangbin Zhang
- Department of Neurology, Xiangya Hospital, Central South University
| | - Rongmei Tang
- Department of Neurology, Xiangya Hospital, Central South University
| | - Yexiang Yi
- Department of Neurology, Xiangya Hospital, Central South University
| | - Ran Liu
- Department of Neurology, Xiangya Hospital, Central South University
| | - Yi Zeng
- Department of Geriatrics, Second Xiangya Hospital
| | - Le Zhang
- Department of Neurology, Xiangya Hospital, Central South University
- Human Brain Disease Biological Resources Platform of Hunan Province, Xiangya Hospital
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital
- Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, Xiangya Hospital
- Brain Health Center of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan
| |
Collapse
|
11
|
Su D, Zhang R, Wang X, Ding Q, Che F, Liu Z, Xu J, Zhao Y, Ji K, Wu W, Yan C, Li P, Tang B. Shedding Light on Lysosomal Malondialdehyde Affecting Vitamin B 12 Transport during Cerebral Ischemia/Reperfusion Injury. J Am Chem Soc 2023; 145:22609-22619. [PMID: 37803879 DOI: 10.1021/jacs.3c07809] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is often accompanied by upregulation of homocysteine (Hcy). Excessive Hcy damages cerebral vascular endothelial cells and neurons, inducing neurotoxicity and even neurodegeneration. Normally, supplementation of vitamin B12 is an ideal intervention to reduce Hcy. However, vitamin B12 therapy is clinically inefficacious for CIRI. Considering oxidative stress is closely related to CIRI, the lysosome is the pivotal site for vitamin B12 transport. Lysosomal oxidative stress might hinder the transport of vitamin B12. Whether lysosomal malondialdehyde (lysosomal MDA), as the authoritative biomarker of lysosomal oxidative stress, interferes with the transport of vitamin B12 has not been elucidated. This is ascribed to the absence of effective methods for real-time and in situ measurement of lysosomal MDA within living brains. Herein, a fluorescence imaging agent, Lyso-MCBH, was constructed to specifically monitor lysosomal MDA by entering the brain and targeting the lysosome. Erupting the lysosomal MDA level in living brains of mice under CIRI was first observed using Lyso-MCBH. Excessive lysosomal MDA was found to affect the efficacy of vitamin B12 by blocking the transport of vitamin B12 from the lysosome to the cytoplasm. More importantly, the expression and function of the vitamin B12 transporter LMBD1 were proved to be associated with excessive lysosomal MDA. Altogether, the revealing of the lysosomal MDA-LMBD1 axis provides a cogent interpretation of the inefficacy of vitamin B12 in CIRI, which could be a prospective therapeutic target.
Collapse
Affiliation(s)
- Di Su
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Ran Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Qi Ding
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Feida Che
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Zhenzhen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Jingwen Xu
- Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Yuying Zhao
- Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Kunqian Ji
- Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Wei Wu
- Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Brain Science Research Institute, Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Chuanzhu Yan
- Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Brain Science Research Institute, Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
- Laoshan Laboratory, Qingdao 266237, Shandong, People's Republic of China
| |
Collapse
|
12
|
Teder T, Haeggström JZ, Airavaara M, Lõhelaid H. Cross-talk between bioactive lipid mediators and the unfolded protein response in ischemic stroke. Prostaglandins Other Lipid Mediat 2023; 168:106760. [PMID: 37331425 DOI: 10.1016/j.prostaglandins.2023.106760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Ischemic cerebral stroke is a severe medical condition that affects about 15 million people every year and is the second leading cause of death and disability globally. Ischemic stroke results in neuronal cell death and neurological impairment. Current therapies may not adequately address the deleterious metabolic changes and may increase neurological damage. Oxygen and nutrient depletion along with the tissue damage result in endoplasmic reticulum (ER) stress, including the Unfolded Protein Response (UPR), and neuroinflammation in the affected area and cause cell death in the lesion core. The spatio-temporal production of lipid mediators, either pro-inflammatory or pro-resolving, decides the course and outcome of stroke. The modulation of the UPR as well as the resolution of inflammation promotes post-stroke cellular viability and neuroprotection. However, studies about the interplay between the UPR and bioactive lipid mediators remain elusive and this review gives insights about the crosstalk between lipid mediators and the UPR in ischemic stroke. Overall, the treatment of ischemic stroke is often inadequate due to lack of effective drugs, thus, this review will provide novel therapeutical strategies that could promote the functional recovery from ischemic stroke.
Collapse
Affiliation(s)
- Tarvi Teder
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Helike Lõhelaid
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
13
|
Sharma H, Reeta KH, Sharma U, Suri V. Decanoic acid mitigates ischemia reperfusion injury by modulating neuroprotective, inflammatory and oxidative pathways in middle cerebral artery occlusion model of stroke in rats. J Stroke Cerebrovasc Dis 2023; 32:107184. [PMID: 37276786 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
OBJECTIVE Amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) is an ionotropic transmembrane receptor for glutamate. AMPA receptor blockers have been reported to prevent neurological damage and enhance the post stroke recovery in rats. Decanoic acid, a medium-chain fatty acid, has been reported to exhibit non-competitive AMPA receptor antagonism. This study evaluated the effect of decanoic acid administered before and after ischemia reperfusion injury on neurological damage and post stroke recovery in rats. METHODS Middle cerebral artery occlusion (MCAo) was performed by using the intraluminal method to induce focal cerebral ischemia. Decanoic acid (120 mg/kg) was administered orally for 1 day (5-10 min post reperfusion) in one group and for 2 days (24 h pre and 5-10 min post reperfusion) in the other group. Effect on neurological damage and post stroke recovery was assessed by neurobehavioral parameters, MRI and TTC staining along with inflammatory, oxidative, apoptotic, and neuroprotective biomarkers. RESULTS Decanoic acid significantly reduced the MCAo induced neurological damage and infarct size. Decanoic acid treatment increased the motor coordination and grip strength. Furthermore, levels of inflammatory (TNFα, IL-1β and IL-6), oxidative stress (MDA), apoptotic (TUNEL positive cells) and neurological injury (GFAP) biomarkers were reduced after decanoic acid treatment. Anti-inflammatory cytokine (IL-10) and neuroprotective markers (NT-3, BDNF and TrkB) were found to be significantly increased with decanoic acid treatment. CONCLUSION This study showed protective effects of decanoic acid against ischemia reperfusion injury in rats. Anti-inflammatory, antioxidant, neuroprotective, and anti-apoptotic properties may be responsible for the beneficial effects of decanoic acid observed in the study.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - K H Reeta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Uma Sharma
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Norat P, Sokolowski JD, Gorick CM, Soldozy S, Kumar JS, Chae Y, Yagmurlu K, Nilak J, Sharifi KA, Walker M, Levitt MR, Klibanov AL, Yan Z, Price RJ, Tvrdik P, Kalani MYS. Intraarterial Transplantation of Mitochondria After Ischemic Stroke Reduces Cerebral Infarction. STROKE (HOBOKEN, N.J.) 2023; 3:e000644. [PMID: 37545759 PMCID: PMC10399028 DOI: 10.1161/svin.122.000644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/03/2023] [Indexed: 08/08/2023]
Abstract
Background- Transplantation of autologous mitochondria into ischemic tissue may mitigate injury caused by ischemia and reperfusion. Methods- Using murine stroke models of middle cerebral artery occlusion, we sought to evaluate feasibility of delivery of viable mitochondria to ischemic brain parenchyma. We evaluated the effects of concurrent focused ultrasound activation of microbubbles, which serves to open the blood-brain barrier, on efficacy of delivery of mitochondria. Results- Following intra-arterial delivery, mitochondria distribute through the stroked hemisphere and integrate into neural and glial cells in the brain parenchyma. Consistent with functional integration in the ischemic tissue, the transplanted mitochondria elevate concentration of adenosine triphosphate in the stroked hemisphere, reduce infarct volume and increase cell viability. Additional of focused ultrasound leads to improved blood brain barrier opening without hemorrhagic complications. Conclusions- Our results have implications for the development of interventional strategies after ischemic stroke and suggest a novel potential modality of therapy after mechanical thrombectomy.
Collapse
Affiliation(s)
- Pedro Norat
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jennifer D. Sokolowski
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Catherine M. Gorick
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sauson Soldozy
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jeyan S. Kumar
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Youngrok Chae
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kaan Yagmurlu
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Joelle Nilak
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Khadijeh A. Sharifi
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Melanie Walker
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Michael R. Levitt
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Alexander L. Klibanov
- Cardiovascular Division, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Zhen Yan
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Richard J. Price
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Petr Tvrdik
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia
| | - M. Yashar S. Kalani
- St. John’s Neuroscience Institute and the University of Oklahoma School of Medicine, Tulsa, Oklahoma
| |
Collapse
|
15
|
Hey G, Bhutani S, Woolridge M, Patel A, Walls A, Lucke-Wold B. Immunologic Implications for Stroke Recovery: Unveiling the Role of the Immune System in Pathogenesis, Neurorepair, and Rehabilitation. JOURNAL OF CELLULAR IMMUNOLOGY 2023; 5:65-81. [PMID: 37854481 PMCID: PMC10583807 DOI: 10.33696/immunology.5.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Stroke is a debilitating neurologic condition characterized by an interruption or complete blockage of blood flow to certain areas of the brain. While the primary injury occurs at the time of the initial ischemic event or hemorrhage, secondary injury mechanisms contribute to neuroinflammation, disruption of the blood-brain barrier (BBB), excitotoxicity, and cerebral edema in the days and hours after stroke. Of these secondary mechanisms of injury, significant dysregulation of various immune populations within the body plays a crucial role in exacerbating brain damage after stroke. Pathological activity of glial cells, infiltrating leukocytes, and the adaptive immune system promote neuroinflammation, BBB damage, and neuronal death. Chronic immune activation can additionally encourage the development of neurologic deficits, immunosuppression, and dysregulation of the gut microbiome. As such, immunotherapy has emerged as a promising strategy for the clinical management of stroke in a highly patient-specific manner. These strategies include regulatory T cells (Tregs), cell adhesion molecules, cytokines, and monoclonal antibodies. However, the use of immunotherapy for stroke remains largely in the early stages, highlighting the need for continued research efforts before widespread clinical use.
Collapse
Affiliation(s)
- Grace Hey
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Siya Bhutani
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Maxwell Woolridge
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Anna Walls
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
Pharmacological Strategies for Stroke Intervention: Assessment of Pathophysiological Relevance and Clinical Trials. Clin Neuropharmacol 2023; 46:17-30. [PMID: 36515293 DOI: 10.1097/wnf.0000000000000534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The present review describes stroke pathophysiology in brief and discusses the spectrum of available treatments with different promising interventions that are in clinical settings or are in clinical trials. METHODS Relevant articles were searched using Google Scholar, Cochrane Library, and PubMed. Keywords for the search included ischemic stroke, mechanisms, stroke interventions, clinical trials, and stem cell therapy. RESULTS AND CONCLUSION Stroke accounts to a high burden of mortality and morbidity around the globe. Time is an important factor in treating stroke. Treatment options are limited; however, agents with considerable efficacy and tolerability are being continuously explored. With the advances in stroke interventions, new therapies are being formulated with a hope that these may aid the ongoing protective and reparative processes. Such therapies may have an extended therapeutic time window in hours, days, weeks, or longer and may have the advantage to be accessible by a majority of the patients.
Collapse
|
17
|
Fan Y, Li Y, Yang Y, Lin K, Lin Q, Luo S, Zhou X, Lin Q, Zhang F. Chlorogenic acid promotes angiogenesis and attenuates apoptosis following cerebral ischaemia-reperfusion injury by regulating the PI3K-Akt signalling. PHARMACEUTICAL BIOLOGY 2022; 60:1646-1655. [PMID: 35981220 PMCID: PMC9448406 DOI: 10.1080/13880209.2022.2110599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Chlorogenic acid (CGA) has good antioxidant effects, but its explicit mechanism in cerebral ischaemia-reperfusion injury is still uncertain. OBJECTIVE We studied the effect of CGA in human brain microvascular endothelial cells (HBMECs) under OGD/R damage. MATERIALS AND METHODS HBMECs in 4 groups were treated with oxygen-glucose deprivation/re-oxygenation (OGD/R) (4 + 24 h), normal no CGA treatment and different concentrations (20, 40 or 80 μM) of CGA. Male C57BL/6J mice were classified as sham, middle cerebral artery occlusion (MCAO), and MCAO + CGA (30 mg/kg/day) groups. Mice in the sham group were not subjected to MCAO. Cell viability, apoptosis, angiogenesis and related protein levels were investigated by CCK-8, flow cytometry, TUNEL staining, tube formation and western blot assays. Infarct volume of brain tissues was analyzed by TTC staining. RESULTS CGA curbed apoptosis (from 32.87% to 13.12% in flow cytometry; from 34.46% to 17.8% in TUNEL assay) but accelerated cell angiogenesis of HBMECs with OGD/R treatment. Moreover, CGA augmented activation of the PI3K-Akt signalling (p-PI3K/PI3K level, from 0.39 to 0.49; p-Akt/Akt level, from 0.52 to 0.81), and the effect of CGA on apoptosis and angiogenesis was abolished by an inhibitor of PI3K-Akt signalling. Furthermore, CGA attenuated infarct (from 41.26% to 22.21%) and apoptosis and promoted angiogenesis and activation of the PI3K/Akt signalling in MCAO-induced mice. CONCLUSIONS CGA effectively repressed apoptosis and promoted angiogenesis in OGD/R-treated HBMECs and MCAO-treated mice by modulating PI3K-Akt signalling. Our research provides a theoretical basis for the use of CGA in the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Yong Fan
- Central Laboratory, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Yongkun Li
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yongkai Yang
- Department of Neurosurgery, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Kunzhe Lin
- Department of Neurosurgery, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Qingqiang Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Shenghui Luo
- Department of Neurology, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaohui Zhou
- Department of Neurosurgery, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Qun Lin
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fan Zhang
- Department of Neurosurgery, Affiliated Fuzhou Second Hospital of Xiamen University, Fuzhou, China
| |
Collapse
|
18
|
Wang L, Dai M, Ge Y, Chen J, Wang C, Yao C, Lin Y. EGCG protects the mouse brain against cerebral ischemia/reperfusion injury by suppressing autophagy via the AKT/AMPK/mTOR phosphorylation pathway. Front Pharmacol 2022; 13:921394. [PMID: 36147330 PMCID: PMC9489224 DOI: 10.3389/fphar.2022.921394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains one of the leading reasons of mortality and physical disability worldwide. The treatment of cerebral ischemic stroke faces challenges, partly due to a lack of effective treatments. In this study, we demonstrated that autophagy was stimulated by transient middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R). Treatment with (−)-epigallocatechin-3-gallate (EGCG), a bioactive ingredient in green tea, was able to mitigate cerebral ischemia/reperfusion injury (CIRI), given the evidence that EGCG administration could reduce the infarct volume and protect poststroke neuronal loss in MCAO/R mice in vivo and attenuate cell loss in OGD/R-challenged HT22 cells in vitro through suppressing autophagy activity. Mechanistically, EGCG inhibited autophagy via modulating the AKT/AMPK/mTOR phosphorylation pathway both in vivo and in vitro models of stroke, which was further confirmed by the results that the administration of GSK690693, an AKT/AMPK inhibitor, and rapamycin, an inhibitor of mTOR, reversed aforementioned changes in autophagy and AKT/AMPK/mTOR signaling pathway. Overall, the application of EGCG relieved CIRI by suppressing autophagy via the AKT/AMPK/mTOR phosphorylation pathway.
Collapse
Affiliation(s)
- Li Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenchen Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengye Yao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chengye Yao, ; Yun Lin,
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chengye Yao, ; Yun Lin,
| |
Collapse
|
19
|
Wicks EE, Ran KR, Kim JE, Xu R, Lee RP, Jackson CM. The Translational Potential of Microglia and Monocyte-Derived Macrophages in Ischemic Stroke. Front Immunol 2022; 13:897022. [PMID: 35795678 PMCID: PMC9251541 DOI: 10.3389/fimmu.2022.897022] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune response to ischemic stroke is an area of study that is at the forefront of stroke research and presents promising new avenues for treatment development. Upon cerebral vessel occlusion, the innate immune system is activated by danger-associated molecular signals from stressed and dying neurons. Microglia, an immune cell population within the central nervous system which phagocytose cell debris and modulate the immune response via cytokine signaling, are the first cell population to become activated. Soon after, monocytes arrive from the peripheral immune system, differentiate into macrophages, and further aid in the immune response. Upon activation, both microglia and monocyte-derived macrophages are capable of polarizing into phenotypes which can either promote or attenuate the inflammatory response. Phenotypes which promote the inflammatory response are hypothesized to increase neuronal damage and impair recovery of neuronal function during the later phases of ischemic stroke. Therefore, modulating neuroimmune cells to adopt an anti-inflammatory response post ischemic stroke is an area of current research interest and potential treatment development. In this review, we outline the biology of microglia and monocyte-derived macrophages, further explain their roles in the acute, subacute, and chronic stages of ischemic stroke, and highlight current treatment development efforts which target these cells in the context of ischemic stroke.
Collapse
|
20
|
Nathan J, Shameera R, Palanivel G. Studying molecular signaling in major angiogenic diseases. Mol Cell Biochem 2022; 477:2433-2450. [PMID: 35581517 DOI: 10.1007/s11010-022-04452-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
Abstract
The growth of blood vessels from already existing vasculature is angiogenesis and it is one of the fundamental processes in fetal development, tissue damage or repair, and the reproductive cycle. In a healthy person, angiogenesis is regulated by the balance between pro- and anti-angiogenic factors. However, when the balance is disturbed, it results in various diseases or disorders. The angiogenesis pathway is a sequential cascade and differs based on the stimuli. Therefore, targeting one of the factors involved in the process can help us find a therapeutic strategy to treat irregular angiogenesis. In the past three decades of cancer research, angiogenesis has been at its peak, where an anti-angiogenic agent inhibiting vascular endothelial growth factor acts as a promising substance to treat cancer. In addition, cancer can be assessed based on the expression of angiogenic factors and its response to therapies. Angiogenesis is important for all tissues, which might be normal or pathologically changed and occur through ages. In clinical therapeutics, target therapy focusing on discovery of novel anti-angiogenic agents like bevacizumab, cetuximab, sunitinib, imatinib, lenvatinib, thalidomide, everolimus etc., to block or inhibit the angiogenesis pathway is well explored in recent times. In this review, we will discuss about the molecular signaling pathways involved in major angiogenic diseases in detail.
Collapse
Affiliation(s)
- Jhansi Nathan
- Zebrafish Developmental Biology Laboratory, AUKBC Research Centre, Anna University, Chennai, Tamil Nadu, 600044, India.
| | - Rabiathul Shameera
- Zebrafish Developmental Biology Laboratory, AUKBC Research Centre, Anna University, Chennai, Tamil Nadu, 600044, India
| | - Gajalakshmi Palanivel
- Zebrafish Developmental Biology Laboratory, AUKBC Research Centre, Anna University, Chennai, Tamil Nadu, 600044, India
| |
Collapse
|
21
|
Peyravian N, Sun E, Dikici E, Deo S, Daunert S, Toborek M. Opioid Antagonist Nanodrugs Successfully Attenuate the Severity of Ischemic Stroke. Mol Pharm 2022; 19:2254-2267. [PMID: 35506882 PMCID: PMC9257743 DOI: 10.1021/acs.molpharmaceut.2c00079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The United States
is in the midst of an opioid epidemic that is
linked to a number of serious health issues, including an increase
in cerebrovascular events, namely, stroke. Chronic prescription opioid
use exacerbates the risk and severity of ischemic stroke, contributing
to stroke as the fifth overall cause of death in the United States
and costing the US health care system over $30 billion annually. Pathologically,
opioids challenge the integrity of the blood–brain barrier
(BBB), resulting in a dysregulation of tight junction (TJ) proteins
that are crucial in maintaining barrier homeostasis. Despite this,
treatment options for ischemic stroke are limited, and there are no
pharmacological options to attenuate TJ damage, including in incidents
that are linked to opioid use. Herein, we have generated carrier-free,
pure “nanodrugs” or nanoparticles of naloxone and naltrexone
with enhanced therapeutic properties compared to the original (parent)
drugs. The generated nanoformulations of both opioid antagonists exhibited
successful attenuation of morphine- or oxycodone-induced alterations
of TJ protein expression and reduced oxidative stress to a greater
extent than the parent drugs (non-nano). As a proof of concept, we
then proceeded to evaluate the therapeutic effectiveness of the generated
nanodrugs in an ischemic stroke model of mice exposed to morphine
or oxycodone. Our results demonstrate that the opioid antagonist nanoformulations
reduced stroke severity in mice. Overall, this research implements
advances in nanotechnology-based repurposing of FDA-approved therapeutics,
and the obtained results also suggest underlying pharmacological mechanisms
of opioid antagonists, further supporting these opioid antagonists
and their respective nanoformulations as potential therapeutic agents
for ischemic stroke.
Collapse
Affiliation(s)
- Nadia Peyravian
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, Florida 33136, United States
| | - Enze Sun
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, Florida 33136, United States
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, Florida 33136, United States.,University of Miami Clinical and Translational Science Institute, Miami, Florida 33136, United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, Florida 33136, United States.,University of Miami Clinical and Translational Science Institute, Miami, Florida 33136, United States
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, Florida 33136, United States
| |
Collapse
|
22
|
Mosconi MG, Paciaroni M, Ageno W. Investigational drugs for ischemic stroke: what's in the clinical development pipeline for acute phase and prevention? Expert Opin Investig Drugs 2022; 31:645-667. [PMID: 35486110 DOI: 10.1080/13543784.2022.2072725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Stroke is a leading cause of disability and mortality and its burden expected to increase. The only approved drug for acute ischemic stroke is the intravenous thrombolytic alteplase. The risk of bleeding complications is one of the reasons for the undertreatment of eligible patients. Numerous drugs are currently being developed to improve safety-efficacy. AREAS COVERED We reviewed literature from January 1st, 2000, to 15th January 2022 for the development and testing of novel drugs with the aim of targeting treatment at prevention of ischemic stroke: PubMed, MEDLINE, Google Scholar, and ClinicalTrial.gov. EXPERT OPINION The pathophysiology of ischemic stroke involves multiple pathways causing cerebral artery obstruction and brain tissue ischemia. Data suggest that tenecteplase is a more promising fibrinolytic agent with a superior efficacy-safety profile, compared to the currently approved alteplase. Current guidelines consider a short-term cycle of mannitol or hypertonic saline to be advisable in patients with space-occupying hemispheric infarction. Regarding primary and secondary prevention, research is primarily focused on identifying mechanisms to improve the safety-efficacy profile using a "hemostasis-sparing" approach. Further evaluation on those agents that have already shown promise for their risk/benefit profiles, would benefit greatly a neurologist's capacity to successfully prevent and treat ischemic stroke patients.
Collapse
Affiliation(s)
- Maria Giulia Mosconi
- Emergency and vascular medicine Stroke Unit University of Perugia, Perugia, Italy
| | - Maurizio Paciaroni
- Emergency and vascular medicine Stroke Unit University of Perugia, Perugia, Italy
| | - Walter Ageno
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
23
|
Pharmacokinetic and Pharmacodynamic Properties of Indole-3-carbinol in Experimental Focal Ischemic Injury. Eur J Drug Metab Pharmacokinet 2022; 47:593-605. [PMID: 35482227 DOI: 10.1007/s13318-022-00771-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES Indole-3-carbinol (I3C) is reported to have neuroprotective properties in an animal model of ischemic stroke. However, the pharmacokinetics of I3C in stroke animals are unknown. Furthermore, the most effective method of I3C delivery for the treatment of stroke has yet to be determined. Therefore, the objective of this study was to evaluate pharmacokinetics and pharmacodynamics of I3C to discover the most effective delivery route for protecting the brain from ischemic injury. METHODS With oral and intravenous administration, the pharmacokinetics and pharmacodynamics of I3C in sham and middle cerebral artery occluded (MCAO) rats were investigated. RESULTS I3C administration in sham and MCAO rats did not alter the pharmacokinetic parameters such as maximum plasma concentration (Cmax), time to reach Cmax, half-life, area under the curve, mean residential time, volume of distribution, clearance, bioavailability, and tissue distribution. A higher amount of diindolylmethane (DIM) was observed with oral administration of I3C compared to intravenous administration in the plasma (5 fold), brain (4 fold), and cerebrospinal fluid (CSF) (2-3 fold). Orally delivered I3C significantly reduced neurological deficits, brain infarction (20%), blood-brain barrier leakage (15 μg/g), and brain water content (75%) in MCAO rats compared to intravenous administration of I3C. CONCLUSIONS I3C pharmacokinetic parameters were similar in sham and MCAO rats, but I3C and DIM penetration in the brain and CSF was significantly higher in MCAO rats than in sham animals, and I3C oral intake significantly reduced MCAO-induced neurological impairments. Consequently, compared to intravenous treatment, I3C oral delivery is more effective in treating ischemic stroke.
Collapse
|
24
|
Kaplan-Arabaci O, Acari A, Ciftci P, Gozuacik D. Glutamate Scavenging as a Neuroreparative Strategy in Ischemic Stroke. Front Pharmacol 2022; 13:866738. [PMID: 35401202 PMCID: PMC8984161 DOI: 10.3389/fphar.2022.866738] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/17/2022] Open
Abstract
Stroke is the second highest reason of death in the world and the leading cause of disability. The ischemic stroke makes up the majority of stroke cases that occur due to the blockage of blood vessels. Therapeutic applications for ischemic stroke include thrombolytic treatments that are in limited usage and only applicable to less than 10% of the total stroke patients, but there are promising new approaches. The main cause of ischemic neuronal death is glutamate excitotoxicity. There have been multiple studies focusing on neuroprotection via reduction of glutamate both in ischemic stroke and other neurodegenerative diseases that ultimately failed due to the obstacles in delivery. At that point, systemic glutamate grabbing, or scavenging is an ingenious way of decreasing glutamate levels upon ischemic stroke. The main advantage of this new therapeutic method is the scavengers working in the circulating blood so that there is no interference with the natural brain neurophysiology. In this review, we explain the molecular mechanisms of ischemic stroke, provide brief information about existing drugs and approaches, and present novel systemic glutamate scavenging methods. This review hopefully will elucidate the potential usage of the introduced therapeutic approaches in stroke patients.
Collapse
Affiliation(s)
- Oykum Kaplan-Arabaci
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Alperen Acari
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Pinar Ciftci
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Devrim Gozuacik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey.,School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
25
|
Vasina M, Velecký J, Planas-Iglesias J, Marques SM, Skarupova J, Damborsky J, Bednar D, Mazurenko S, Prokop Z. Tools for computational design and high-throughput screening of therapeutic enzymes. Adv Drug Deliv Rev 2022; 183:114143. [PMID: 35167900 DOI: 10.1016/j.addr.2022.114143] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 12/16/2022]
Abstract
Therapeutic enzymes are valuable biopharmaceuticals in various biomedical applications. They have been successfully applied for fibrinolysis, cancer treatment, enzyme replacement therapies, and the treatment of rare diseases. Still, there is a permanent demand to find new or better therapeutic enzymes, which would be sufficiently soluble, stable, and active to meet specific medical needs. Here, we highlight the benefits of coupling computational approaches with high-throughput experimental technologies, which significantly accelerate the identification and engineering of catalytic therapeutic agents. New enzymes can be identified in genomic and metagenomic databases, which grow thanks to next-generation sequencing technologies exponentially. Computational design and machine learning methods are being developed to improve catalytically potent enzymes and predict their properties to guide the selection of target enzymes. High-throughput experimental pipelines, increasingly relying on microfluidics, ensure functional screening and biochemical characterization of target enzymes to reach efficient therapeutic enzymes.
Collapse
Affiliation(s)
- Michal Vasina
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic
| | - Jan Velecký
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic
| | - Sergio M Marques
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic
| | - Jana Skarupova
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic; Enantis, INBIT, Kamenice 34, Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.
| | - Stanislav Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.
| |
Collapse
|
26
|
Clinical Significance of PAC-1, CD62P, and Platelet-Leukocyte Aggregates in Acute Ischemic Stroke. Bull Exp Biol Med 2022; 172:543-548. [DOI: 10.1007/s10517-022-05429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 10/18/2022]
|
27
|
Fan JL, Nogueira RC, Brassard P, Rickards CA, Page M, Nasr N, Tzeng YC. Integrative physiological assessment of cerebral hemodynamics and metabolism in acute ischemic stroke. J Cereb Blood Flow Metab 2022; 42:454-470. [PMID: 34304623 PMCID: PMC8985442 DOI: 10.1177/0271678x211033732] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Restoring perfusion to ischemic tissue is the primary goal of acute ischemic stroke care, yet only a small portion of patients receive reperfusion treatment. Since blood pressure (BP) is an important determinant of cerebral perfusion, effective BP management could facilitate reperfusion. But how BP should be managed in very early phase of ischemic stroke remains a contentious issue, due to the lack of clear evidence. Given the complex relationship between BP and cerebral blood flow (CBF)-termed cerebral autoregulation (CA)-bedside monitoring of cerebral perfusion and oxygenation could help guide BP management, thereby improve stroke patient outcome. The aim of INFOMATAS is to 'identify novel therapeutic targets for treatment and management in acute ischemic stroke'. In this review, we identify novel physiological parameters which could be used to guide BP management in acute stroke, and explore methodologies for monitoring them at the bedside. We outline the challenges in translating these potential prognostic markers into clinical use.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Matthew Page
- Department of Radiology, Wellington Regional Hospital, Wellington, New Zealand
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
28
|
Prather A, Aifaoui A, Shaman JA. Idiopathic Symptoms Resolved by Pharmacogenomics-Enriched Comprehensive Medication Management: A Case Report. Cureus 2022; 14:e21834. [PMID: 35145831 PMCID: PMC8809208 DOI: 10.7759/cureus.21834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/05/2022] Open
Abstract
Clinical manifestations of biological aging can be remarkably similar to the side effects of frequently used medications. Fatigue, muscle pain, and confusion are common and often not shared as part of proper geriatric patient history. When patients report them, a root cause is usually confounding. These symptoms not only negatively impact health and wellness outcomes, patient quality of life, and increase costs to the healthcare system, but also may be a limitation on provider best practices. The patient, a 71-year-old female of European descent, enrolled in pharmacogenomics-enriched comprehensive medication management (PGx+CMM) program through her retirement benefit. At the time of testing, she was approximately 18 months post cerebrovascular accident and was being observed by her primary care provider for common chronic conditions. Of interest, she had been manifesting unreported clinical symptoms of fatigue, hypotension, and myalgia. Addressing these patient concerns and specifically focusing on an individual's goals, fears, and basic needs, rather than concentrating merely on the absence of disease, is the crux of personalized medicine and programs that address the notion of healthy aging. The patient's therapeutic regimen was adjusted based on PGx+CMM pharmacist review, use of a clinical decision support system (CDSS), and communication of recommendations to the prescribing physician. The patient saw rapid improvements in symptoms, suggesting they were caused by medication side effects. Her blood pressure and cholesterol levels remained controlled while noticeable side effects were eliminated. This case study demonstrates the positive impacts of personalized medicine and shows how pharmacists can be empowered with a CDSS to positively impact healthcare.
Collapse
Affiliation(s)
- April Prather
- Clinical Pharmacy, Know Your Rx Coalition, Lexington, USA
| | - Aissa Aifaoui
- Clinical Sciences, Coriell Life Sciences, Philadelphia, USA
| | | |
Collapse
|
29
|
Parvez S, Kaushik M, Ali M, Alam MM, Ali J, Tabassum H, Kaushik P. Dodging blood brain barrier with "nano" warriors: Novel strategy against ischemic stroke. Theranostics 2022; 12:689-719. [PMID: 34976208 PMCID: PMC8692911 DOI: 10.7150/thno.64806] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of death and disability resulting in inevitable burden globally. Ischemic injury initiates cascade of pathological events comprising energy dwindling, failure of ionic gradients, failure of blood brain barrier (BBB), vasogenic edema, calcium over accumulation, excitotoxicity, increased oxidative stress, mitochondrial dysfunction, inflammation and eventually cell death. In spite of such complexity of the disease, the only treatment approved by US Food and Drug Administration (FDA) is tissue plasminogen activator (t-PA). This therapy overcome blood deficiency in the brain along with side effects of reperfusion which are responsible for considerable tissue injury. Therefore, there is urgent need of novel therapeutic perspectives that can protect the integrity of BBB and salvageable brain tissue. Advancement in nanomedicine is empowering new approaches that are potent to improve the understanding and treatment of the IS. Herein, we focus nanomaterial mediated drug delivery systems (DDSs) and their role to bypass and cross BBB especially via intranasal drug delivery. The various nanocarriers used in DDSs are also discussed. In a nut shell, the objective is to provide an overview of use of nanomedicine in the diagnosis and treatment of IS to facilitate the research from benchtop to bedside.
Collapse
|
30
|
Lee S, Hung A, Li H, Yang AWH. Mechanisms of Action of a Herbal Formula Huangqi Guizhi Wuwu Tang for the Management of Post-Stroke Related Numbness and Weakness: A Computational Molecular Docking Study. J Evid Based Integr Med 2022; 27:2515690X221082989. [PMID: 35369720 PMCID: PMC8984862 DOI: 10.1177/2515690x221082989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stroke-related numbness and weakness (SRNW) are resultant symptoms of post-stroke sufferers. Existing research has supported the use of Huangqi Guizhi Wuwu Tang (HGWT) particularly for SRNW; however, their mechanisms of action have not been fully elucidated. Therefore, this study aimed to investigate the mechanisms of action of HGWT components targeting SRNW-related proteins through a computational molecular docking approach. Target proteins associated with SRNW were identified through DrugBank database and Open Targets database. Chemical compounds from each herb of HGWT were identified from the Traditional Chinese Medicine Systems Pharmacology and Analysis Platform (TCMSP). Autodock Vina was utilized and the cut-off criterion applied for protein-ligand complexes was a binding affinity score of ≤ -9.5 kcal/mol; selected protein-ligand complexes were identified using 3D and 2D structural analyses. The protein targets PDE5A and ESR1 have highlighted interactions with compounds (BS040, DZ006, DZ058, DZ118, and HQ066) which are the key molecules in the management of SRNW. PDE5A have bioactivity with the amino acid residues (Val230, Asn252, Gln133 and Thr166) throughout PDE5A-cGMP-PKG pathways which involved reduction in myofilament responsiveness. ESR1 were predicted to be critical active with site residue (Leu346, Glu419 and Leu387) and its proteoglycans pathway involving CD44v3/CD44 that activates rho-associated protein kinase 1 (ROCK1) and ankyrin increasing vascular smooth muscle. In conclusion, HGWT may provide therapeutic benefits through strong interactions between herbal compounds and target proteins of PDE5A and ESR1. Further experimental studies are needed to unequivocally support this result which can be valuable to increase the quality of life of post-stroke patients. Keywords Herbal medicine, Complementary and alternative medicine, Natural product, Post-stroke, Computational analysis.
Collapse
Affiliation(s)
- Sanghyun Lee
- School of Health and Biomedical Sciences, 5376RMIT University, Bundoora, Victoria 3083, Australia
| | - Andrew Hung
- Science, 5376RMIT University, Melbourne, Victoria 3000, Australia
| | - Hong Li
- Science, 5376RMIT University, Melbourne, Victoria 3000, Australia.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, 70570Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Angela Wei Hong Yang
- School of Health and Biomedical Sciences, 5376RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
31
|
Mohammadi H, Sariaslani P, Asgharzadeh S, Ghanbari A, Hezarkhani L, Shahbazi F, Mirzaeei S. Does resveratrol enhance recovery from acute ischemic stroke? A randomized, double-blinded, placebo-controlled trial. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2022. [DOI: 10.4103/jrptps.jrptps_95_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Hosseini SA, Gharib MH, Mirheidari SB, Ghanbarzade B, Hosseini PS. Acute Ischemic Stroke in a 10-Month-Old Baby Recovered With Aspirin. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1722928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractAcute ischemic stroke is rare in children and often brings enduring and permanent morbidity in pediatric population. While there are numerous recommendations for initial treatment, evidence on effectiveness of different therapies among children is limited. Here, we describe a 10-month-old male child patient who presented with fever, restlessness, seizure and postictal left limb weakness. Examination revealed left hemiplegia and hemiparesthesia. Computed tomography (CT) head showed loss of gray–white matter distinction with diffuse hypodensity in the right temporoparietal lobes and right caudate nucleus. Magnetic resonance imaging (MRI) brain demonstrated diffusion restriction in favor of acute ischemic stroke in the right middle cerebral artery (MCA) territory. Brain MR angiography (MRA) demonstrated complete occlusion of proximal aspect of M1 segment of right MCA. Genetic testing determined a homozygous 4G/4G polymorphism of the PAI-1 gene. Antiplatelet therapy was started after diagnosis and continued for 8 days with antibiotic therapy. Stroke in children and infants is an infrequent condition associated with substantial morbidity and mortality that needs clinicians' care. This case highlights the significance of awareness about stroke in children and emphasizes on further research to compile evidence-based guidelines for acute stroke therapy in children.
Collapse
Affiliation(s)
- Seyed A. Hosseini
- Department of Pediatrics, Golestan University of Medical Sciences, Taleghani Hospital of Gorgan, Golestan, Iran
| | - Mohammad H. Gharib
- Department of Radiology, Golestan University of Medical Sciences, Taleghani Hospital of Gorgan, Golestan, Iran
| | - Seyed B. Mirheidari
- Department of Medicine, Golestan University of Medical Sciences, Taleghani Hospital of Gorgan, Golestan, Iran
| | - Bahar Ghanbarzade
- Golestan University of Medical Sciences, Taleghani Hospital of Gorgan, Golestan, Iran
| | - Parnian S. Hosseini
- Department of Medicine, Golestan University of Medical Sciences, Taleghani Hospital of Gorgan, Golestan, Iran
| |
Collapse
|
33
|
MiRNA: Involvement of the MAPK Pathway in Ischemic Stroke. A Promising Therapeutic Target. MEDICINA-LITHUANIA 2021; 57:medicina57101053. [PMID: 34684090 PMCID: PMC8539390 DOI: 10.3390/medicina57101053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022]
Abstract
Ischemic stroke (IS) is a cerebrovascular disease with a high rate of disability and mortality. It is classified as the second leading cause of death that arises from the sudden occlusion of small vessels in the brain with consequent lack of oxygen and nutrients in the brain tissue. Following an acute ischemic event, the cascade of events promotes the activation of multiple signaling pathways responsible for irreversible neuronal damage. The mitogen-activated protein kinase (MAPK) signaling pathway transmits signals from the cell membrane to the nucleus in response to different stimuli, regulating proliferation, differentiation, inflammation, and apoptosis. Several lines of evidence showed that MAPK is an important regulator of ischemic and hemorrhagic cerebral vascular disease; indeed, it can impair blood–brain barrier (BBB) integrity and exacerbate neuroinflammation through the release of pro-inflammatory mediators implementing neurovascular damage after ischemic stroke. This review aims to illustrate the miRNAs involved in the regulation of MAPK in IS, in order to highlight possible targets for potential neuroprotective treatments. We also discuss some miRNAs (miR), including miR-145, miR-137, miR-493, and miR-126, that are important as they modulate processes such as apoptosis, neuroinflammation, neurogenesis, and angiogenesis through the regulation of the MAPK pathway in cerebral IS. To date, limited drug therapies are available for the treatment of IS; therefore, it is necessary to implement preclinical and clinical studies aimed at discovering novel therapeutic approaches to minimize post-stroke neurological damage.
Collapse
|
34
|
Chavda V, Chaurasia B, Deora H, Umana GE. Chronic Kidney disease and stroke: A Bi-directional risk cascade and therapeutic update. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
35
|
Systematic Investigation of the Effect of Powerful Tianma Eucommia Capsule on Ischemic Stroke Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8897313. [PMID: 34194527 PMCID: PMC8203382 DOI: 10.1155/2021/8897313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Background Ischemic stroke (IS) is a serious disease with a high rate of death and disability, and a growing number of people are becoming victims. Existing drugs not only have limited therapeutic effects but also have obvious side effects. Most importantly, drug resistance due to long-term or improper use of drugs is detrimental to patients. Therefore, it is urgent to find some alternative or supplementary medicines to alleviate the current embarrassment. Powerful Tianma Eucommia Capsule (PTEC) is mainly used to treat IS in China for thousands of years; however, the molecular mechanism is not clear. Methods Pharmacology ingredients and target genes were filtered and downloaded from websites. A pharmacology ingredient-target gene network was constructed to predict the molecular interactions between ingredients and target genes. Enrichment analysis was performed to explore the possible signal pathways. LeDock was used to simulate the interaction form between proteins and main active ingredients and to deduce key amino acid positions. Results Two hundred eighty-nine target genes and seventy-four pharmacological ingredients were obtained from public databases. Several key ingredients (quercetin, kaempferol, and stigmasterol) and primary core target genes (PTGS1, NCOA2, and PRSS1) were detected through ingredient-target gene network analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrated that ingredients affect networks mainly in nuclear receptor activity and G protein-coupled amine receptor activity; besides, fluid shear stress and atherosclerosis, human cytomegalovirus infection, and hepatitis B signaling pathways might be the principal therapy ways. A series of presumed key amino acid sites (189ASP, 190SER, 192GLN, 57HIS, and 99TYE) were calculated in PRSS1. Six of the target genes were differentially expressed between male and female patients. Conclusions Seven new putative target genes (ACHE, ADRA1A, AR, CHRM3, F7, GABRA1, and PRSS1) were observed in this work. Based on the result of GO and KEGG analysis, this work will be helpful to further demonstrate the molecular mechanism of PTEC treatment of IS.
Collapse
|
36
|
Evaluating the Impact of Viola spathulata in A Rat Model of Brain Ischemia/Reperfusion by Influencing Expression Level of Caspase-3 and Cyclooxygenase-2. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
|
38
|
Kawadkar M, Mandloi AS, Saxena V, Tamadaddi C, Sahi C, Dhote VV. Noscapine alleviates cerebral damage in ischemia-reperfusion injury in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:669-683. [PMID: 33106921 DOI: 10.1007/s00210-020-02005-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
With high unmet medical needs, stroke remains an intensely focused research area. Although noscapine is a neuroprotective agent, its mechanism of action in ischemic-reperfusion (I-R) injury is yet to be ascertained. We investigated the effect of noscapine on the molecular mechanisms of cell damage using yeast, and its neuroprotection on cerebral I-R injury in rats. Yeast, both wild-type and Δtrx2 strains, was evaluated for cell growth and viability, and oxidative stress to assess the noscapine effect at 8, 10, 12, and 20 μg/ml concentrations. The neuroprotective activity of noscapine (5 and 10 mg/kg; po for 8 days) was investigated in rats using middle cerebral artery occlusion-induced I-R injury. Infarct volume, neurological deficit, oxidative stress, myeloperoxidase activity, and histological alterations were determined in I-R rats. In vitro yeast assays exhibited significant antioxidant activity and enhanced cell tolerance against oxidative stress after noscapine treatment. Similarly, noscapine pretreatment significantly reduced infarct volume and edema in the brain. The neurological deficit was decreased and oxidative stress biomarkers, superoxide dismutase activity and glutathione levels, were significantly increased while lipid peroxidation showed significant decrease in comparison to vehicle-treated I-R rats. Myeloperoxidase activity, an indicator of inflammation, was also reduced significantly in treated rats; histological changes were attenuated with noscapine. The study demonstrates the protective effect of noscapine in yeast and I-R rats by improving cell viability and attenuating neuronal damage, respectively. This protective activity of noscapine could be attributed to potent free radical scavenging and inhibition of inflammation in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Manisha Kawadkar
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, VidyaVihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Avinash S Mandloi
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, VidyaVihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Vidhu Saxena
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, VidyaVihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Chetana Tamadaddi
- Chaperone and Stress Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, 462066, India
| | - Chandan Sahi
- Chaperone and Stress Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, 462066, India
| | - Vipin V Dhote
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, VidyaVihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India.
| |
Collapse
|
39
|
Chavda V, Madhwani K. Coding and non-coding nucleotides': The future of stroke gene therapeutics. Genomics 2021; 113:1291-1307. [PMID: 33677059 DOI: 10.1016/j.ygeno.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/01/2020] [Accepted: 03/02/2021] [Indexed: 01/05/2023]
Abstract
Stroke is the foremost cause of death ranked after heart disease and cancer. It is the fatal life-threatening event that requires immediate medical admissions to overcome following morbidity and mortality. The therapeutic advances in stroke therapy have been manipulated with diverse paths for last 5 years. Recent research and clinical trials have investigated a variety of anti-stroke agents including anti-coagulants, cerebro-protective agents, antiplatelet therapy, stem-cell therapy, and specified gene therapy. In recent advanced studies, genetic therapies including noncoding RNAs (ncRNAs), long non-coding RNAs (LncRNAs), small interfering RNAs (siRNAs), microRNAs (miRNAs), Piwi interacting RNAs (PiWi RNAs) have shown better potential as targeted future therapeutics with a better outcome than conventional stroke therapeutics. The potential of targeted gene therapy is much more advanced in not only the induction of neuroprotection but also safer non-toxic targeted therapeutics. In the current state of the art review, we have focused on the recent advancements made towards the stroke with RNA modifications and targeted gene therapeutics.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, India.
| | - Kajal Madhwani
- Department of Microbiology, Nirma University, Ahmadabad, Gujarat, India
| |
Collapse
|
40
|
Khirug S, Soni S, Saez Garcia M, Tessier M, Zhou L, Kulesskaya N, Rauvala H, Lindholm D, Ludwig A, Molinari F, Rivera C. Protective Role of Low Ethanol Administration Following Ischemic Stroke via Recovery of KCC2 and p75 NTR Expression. Mol Neurobiol 2021; 58:1145-1161. [PMID: 33099743 PMCID: PMC7878264 DOI: 10.1007/s12035-020-02176-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/14/2020] [Indexed: 01/31/2023]
Abstract
A striking result from epidemiological studies show a correlation between low alcohol intake and lower incidence for ischemic stroke and severity of derived brain injury. Although reduced apoptosis and inflammation has been suggested to be involved, little is known about the mechanism mediating this effect in vivo. Increase in intracellular chloride concentration and derived depolarizing GABAAR-mediated transmission are common consequences following various brain injuries and are caused by the abnormal expression levels of the chloride cotransporters NKCC1 and KCC2. Downstream pro-apoptotic signaling through p75NTR may link GABAA depolarization with post-injury neuronal apoptosis. Here, we show that changes in GABAergic signaling, Cl- homeostasis, and expression of chloride cotransporters in the post-traumatic mouse brain can be significantly reduced by administration of 3% ethanol to the drinking water. Ethanol-induced upregulation of KCC2 has a positive impact on neuronal survival, preserving a large part of the cortical peri-infarct zone, as well as preventing the massive post-ischemic upregulation of the pro-apoptotic protein p75NTR. Importantly, intracortical multisite in vivo recordings showed that ethanol treatment could significantly ameliorate stroke-induced reduction in cortical activity. This surprising finding discloses a pathway triggered by low concentration of ethanol as a novel therapeutically relevant target.
Collapse
Affiliation(s)
- Stanislav Khirug
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland.
| | - Shetal Soni
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Marta Saez Garcia
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Marine Tessier
- INMED (INSERM U1249), Aix-Marseille Université, Marseille, France
| | - Liang Zhou
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Natalia Kulesskaya
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Heikki Rauvala
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland
| | - Anastasia Ludwig
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | | | - Claudio Rivera
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland.
- INMED (INSERM U1249), Aix-Marseille Université, Marseille, France.
| |
Collapse
|
41
|
Nian K, Harding IC, Herman IM, Ebong EE. Blood-Brain Barrier Damage in Ischemic Stroke and Its Regulation by Endothelial Mechanotransduction. Front Physiol 2020; 11:605398. [PMID: 33424628 PMCID: PMC7793645 DOI: 10.3389/fphys.2020.605398] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke, a major cause of mortality in the United States, often contributes to disruption of the blood-brain barrier (BBB). The BBB along with its supportive cells, collectively referred to as the “neurovascular unit,” is the brain’s multicellular microvasculature that bi-directionally regulates the transport of blood, ions, oxygen, and cells from the circulation into the brain. It is thus vital for the maintenance of central nervous system homeostasis. BBB disruption, which is associated with the altered expression of tight junction proteins and BBB transporters, is believed to exacerbate brain injury caused by ischemic stroke and limits the therapeutic potential of current clinical therapies, such as recombinant tissue plasminogen activator. Accumulating evidence suggests that endothelial mechanobiology, the conversion of mechanical forces into biochemical signals, helps regulate function of the peripheral vasculature and may similarly maintain BBB integrity. For example, the endothelial glycocalyx (GCX), a glycoprotein-proteoglycan layer extending into the lumen of bloods vessel, is abundantly expressed on endothelial cells of the BBB and has been shown to regulate BBB permeability. In this review, we will focus on our understanding of the mechanisms underlying BBB damage after ischemic stroke, highlighting current and potential future novel pharmacological strategies for BBB protection and recovery. Finally, we will address the current knowledge of endothelial mechanotransduction in BBB maintenance, specifically focusing on a potential role of the endothelial GCX.
Collapse
Affiliation(s)
- Keqing Nian
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ian C Harding
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ira M Herman
- Department of Development, Molecular, and Chemical Biology, Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA, United States.,Center for Innovations in Wound Healing Research, Tufts University School of Medicine, Boston, MA, United States
| | - Eno E Ebong
- Department of Bioengineering, Northeastern University, Boston, MA, United States.,Department of Chemical Engineering, Northeastern University, Boston, MA, United States.,Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
42
|
Liu Y, Guo Y. Activation of nucleotide-binding oligomerization domain-containing protein 1 by diaminopimelic acid contributes to cerebral ischemia-induced cognitive impairment. Neurosci Lett 2020; 743:135547. [PMID: 33352290 DOI: 10.1016/j.neulet.2020.135547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 01/18/2023]
Abstract
Cerebral ischemia-reperfusion (I/R)-induced brain tissue injury is a major obstacle for acute stroke management. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is reported to play a critical role in the regulation of myocardial or hepatic I/R injury. However, its role in cerebral I/R remains elusive. The mouse model of middle cerebral artery occlusion (MCAO) was applied in the study. The cerebral I/R mice were received either PBS or diaminopimelic acid (DAP)-pretreatment. All sham, MCAO, and MCAO + DAP mice were subject to the neurological behavior tests. The proinflammatory cytokines and autophagy-related proteins were determined by ELISA, RT-qPCR, and Western blot analysis, respectively. We found that NOD1 was substantially upregulated in the hippocampus of MCAO mice. DAP treatment significantly enhanced proinflammatory cytokine production and autophagy-related protein expression, leading to enlarged cerebral infarction size and poor neurological performance in MCAO + DAP mice compared to MCAO mice. We concluded that activation of NOD1 promotes cerebral I/R injury suggesting that NOD1 may serve as a promising target for alleviating the adverse effects of cerebral I/R.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, Dongzhimen Hospital Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100000, China
| | - Ying Guo
- Department of Anesthesiology, Dongzhimen Hospital Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100000, China.
| |
Collapse
|
43
|
Tao T, Liu M, Chen M, Luo Y, Wang C, Xu T, Jiang Y, Guo Y, Zhang JH. Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective. Pharmacol Ther 2020; 216:107695. [DOI: 10.1016/j.pharmthera.2020.107695] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
|
44
|
Hasnain MG, Attia JR, Akter S, Rahman T, Hall A, Hubbard IJ, Levi CR, Paul CL. Effectiveness of interventions to improve rates of intravenous thrombolysis using behaviour change wheel functions: a systematic review and meta-analysis. Implement Sci 2020; 15:98. [PMID: 33148294 PMCID: PMC7641813 DOI: 10.1186/s13012-020-01054-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite being one of the few evidence-based treatments for acute ischemic stroke, intravenous thrombolysis has low implementation rates-mainly due to a narrow therapeutic window and the health system changes required to deliver it within the recommended time. This systematic review and meta-analyses explores the differential effectiveness of intervention strategies aimed at improving the rates of intravenous thrombolysis based on the number and type of behaviour change wheel functions employed. METHOD The following databases were searched: MEDLINE, EMBASE, PsycINFO, CINAHL and SCOPUS. Multiple authors independently completed study selection and extraction of data. The review included studies that investigated the effects of intervention strategies aimed at improving the rates of intravenous thrombolysis and/or onset-to-needle, onset-to-door and door-to-needle time for thrombolysis in patients with acute ischemic stroke. Interventions were coded according to the behaviour change wheel nomenclature. Study quality was assessed using the QualSyst scoring system for quantitative research methodologies. Random effects meta-analyses were used to examine effectiveness of interventions based on the behaviour change wheel model in improving rates of thrombolysis, while meta-regression was used to examine the association between the number of behaviour change wheel intervention strategies and intervention effectiveness. RESULTS Results from 77 studies were included. Five behaviour change wheel interventions, 'Education', 'Persuasion', 'Training', 'Environmental restructuring' and 'Enablement', were found to be employed among the included studies. Effects were similar across all intervention approaches regardless of type or number of behaviour change wheel-based strategies employed. High heterogeneity (I2 > 75%) was observed for all the pooled analyses. Publication bias was also identified. CONCLUSION There was no evidence for preferring one type of behaviour change intervention strategy, nor for including multiple strategies in improving thrombolysis rates. However, the study results should be interpreted with caution, as they display high heterogeneity and publication bias.
Collapse
Affiliation(s)
- Md Golam Hasnain
- School of Medicine and Public Health (SMPH), University of Newcastle (UoN), Callaghan, New South Wales Australia
| | - John R. Attia
- School of Medicine and Public Health (SMPH), University of Newcastle (UoN), Callaghan, New South Wales Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales Australia
- John Hunter Hospital, New Lambton Heights, New South Wales Australia
| | - Shahinoor Akter
- School of Medicine and Public Health (SMPH), University of Newcastle (UoN), Callaghan, New South Wales Australia
- Department of Anthropology, Jagannath University, Dhaka, Bangladesh
| | - Tabassum Rahman
- School of Medicine and Public Health (SMPH), University of Newcastle (UoN), Callaghan, New South Wales Australia
- Centre for Development, Economics and Sustainability, Monash University, Melbourne, Victoria Australia
| | - Alix Hall
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales Australia
| | - Isobel J. Hubbard
- School of Medicine and Public Health (SMPH), University of Newcastle (UoN), Callaghan, New South Wales Australia
| | - Christopher R. Levi
- School of Medicine and Public Health (SMPH), University of Newcastle (UoN), Callaghan, New South Wales Australia
- The Sydney Partnership for Health, Education, Research & Enterprise (SPHERE), Liverpool, New South Wales Australia
| | - Christine L. Paul
- School of Medicine and Public Health (SMPH), University of Newcastle (UoN), Callaghan, New South Wales Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales Australia
| |
Collapse
|
45
|
Chen Q, Zhang P, Xiao QX, Liu Q, Zhang Y. Protective effect of Shengmai injection on myocardial endothelial cell glycoprotein detachment after myocardial ischemia-reperfusion injury in isolated rat hearts. Perfusion 2020; 36:757-765. [PMID: 33070762 DOI: 10.1177/0267659120965921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate effects of Shengmai injection (SMI) postconditioning on myocardial ischemia-reperfusion injury (MIRI) in isolated rat hearts. MATERIALS AND METHODS A total of thirty isolated hearts were randomly divided into three groups: Sham group, I/R group and SMI group. Sham group was continuously perfused with K-H solution for 120 minutes. I/R group and SMI group were given balanced perfusion for 30 min followed by reperfusion for 60 min, with an interval of 30 min, and those in the SMI group were given postconditioning with 1% SMI during the first 10 min of reperfusion. The left ventricular function, markers of myocardial injury, endothelial cell injury and oxidative stress injury were measured at 30 minutes after equilibration (t0), 30 minutes after ischemia (t2) and 60 minutes after reperfusion (t3). RESULTS The results showed that there was no significant difference for all observation indexes at t0. Compared with the Sham group, real portfolio project and coronary arterial flow rate and the activity of superoxide dismutase were significantly decreased in the I/R group, whereas those in the SMI group were significantly higher. Left ventricular end-diastolic pressure, the concentrate of malondialdehyde, lactate dehydrogenase, cTn-I, hyaluronic acid, heparin sulphate, syndecan-1 in the I/R group were markedly higher than those in the Sham group, whereas those in the SMI group were significantly lower. CONCLUSION In summary, the present study indicated that 1% SMI postconditioning can alleviate the detachment of endothelial cell glycoprotein envelope induced by myocardial ischemia-reperfusion injury, and its mechanism is probably related to the inhibition of the oxidative stress injury.
Collapse
Affiliation(s)
- Qi Chen
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ping Zhang
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qiu-Xia Xiao
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qing Liu
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ying Zhang
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
46
|
Mesenchymal stem cells-derived mitochondria transplantation mitigates I/R-induced injury, abolishes I/R-induced apoptosis, and restores motor function in acute ischemia stroke rat model. Brain Res Bull 2020; 165:70-80. [PMID: 33010349 DOI: 10.1016/j.brainresbull.2020.09.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/24/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
Abstract
Acute ischemia stroke (AIS) is one of the leading causes of mortality and disability worldwide, and its neurological impacts are devastating and permanent. There is no efficient and real treatment for acute ischemia stroke so far. Therefore, development of efficient therapeutic strategies is under focus of investigations by basic and clinical scientists. Brain is one of the organs with high energy consumption and metabolism. Hence, its functionality is highly dependent on mitochondrial activity and integrity. Therefore, mitochondria play a vital homeostatic role in neurons physiology and mitochondrial dysfunction implications have been reported in a variety of nervous system diseases including acute ischemia stroke. In an attempt to investigate and introduce a novel potential therapeutic strategy for AIS, we isolated healthy mitochondria from human umbilical cord derived mesenchymal stem cells (hUC-MSCs) followed by their intracerebroventricular transplantation in a rat model of ischemia, i.e. middle cerebral artery occlusion (MCAO). Here we report that the mitochondrial transplantation ameliorated the reperfusion/ischemia-induced damages as reflected by declined blood creatine phosphokinase level, abolished apoptosis, decreased astroglyosis and microglia activation, reduced infarct size, and improved motor function. Although further preclinical and clinical studies are required, our findings strongly suggest that transplantation of MSCs-derived mitochondria is a suitable, potential and efficient therapeutic option for acute ischemia stroke.
Collapse
|
47
|
Kloska A, Malinowska M, Gabig-Cimińska M, Jakóbkiewicz-Banecka J. Lipids and Lipid Mediators Associated with the Risk and Pathology of Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21103618. [PMID: 32443889 PMCID: PMC7279232 DOI: 10.3390/ijms21103618] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Stroke is a severe neurological disorder in humans that results from an interruption of the blood supply to the brain. Worldwide, stoke affects over 100 million people each year and is the second largest contributor to disability. Dyslipidemia is a modifiable risk factor for stroke that is associated with an increased risk of the disease. Traditional and non-traditional lipid measures are proposed as biomarkers for the better detection of subclinical disease. In the central nervous system, lipids and lipid mediators are essential to sustain the normal brain tissue structure and function. Pathways leading to post-stroke brain deterioration include the metabolism of polyunsaturated fatty acids. A variety of lipid mediators are generated from fatty acids and these molecules may have either neuroprotective or neurodegenerative effects on the post-stroke brain tissue; therefore, they largely contribute to the outcome and recovery from stroke. In this review, we provide an overview of serum lipids associated with the risk of ischemic stroke. We also discuss the role of lipid mediators, with particular emphasis on eicosanoids, in the pathology of ischemic stroke. Finally, we summarize the latest research on potential targets in lipid metabolic pathways for ischemic stroke treatment and on the development of new stroke risk biomarkers for use in clinical practice.
Collapse
Affiliation(s)
- Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
- Correspondence: (M.G.-C.); (J.J.-B.); Tel.: +48-585-236-046 (M.G.-C.); +48-585-236-043 (J.J.-B.)
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
- Correspondence: (M.G.-C.); (J.J.-B.); Tel.: +48-585-236-046 (M.G.-C.); +48-585-236-043 (J.J.-B.)
| |
Collapse
|
48
|
Dong Y, Qu J, Zhang Z, Wang C, Dong Q. Human urinary kallidinogenase in treating acute ischemic stroke patients: analyses of pooled data from a randomized double-blind placebo-controlled phase IIb and phase III clinical trial. Neurol Res 2020; 42:286-290. [PMID: 32138624 DOI: 10.1080/01616412.2020.1711648] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objectives: Intravenous thrombolysis and thrombectomy are recommended for patients whose stroke onsets are within first 6 h, and very few options are available for patients whose stroke onset is more than 6 h, which includes most ischemic stroke patients. Human urinary kallidinogenase (HUK) showed potential clinical benefits in acute ischemic stroke patients. This study aims to investigate the safety and clinical benefits of HUK in ischemic stroke patients.Patients and methods: Patients were recruited for a multicenter double-blind, placebo-controlled phase II b and phase III trial. Neurophysiological outcomes were assessed by the European Stroke Scale (ESS) and the functional outcomes were assessed by the activity of daily living scale (ADL). Safety was monitored by recording adverse events.Results: The improvements in ESS scores and ADL scores in the HUK group were significantly greater than that in patients receiving placebo. Furthermore, HUK treatment was also associated with a lower rate of disable, according to ADL. HUK-related adverse events occurred at a low rate, in 1.73% of HUK-treated patients.Conclusion: HUK is safe and provides potential clinical benefits as a treatment for acute ischemic stroke. Further large post-marketing observational studies are needed.
Collapse
Affiliation(s)
- Yi Dong
- Department of Neurology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jiazhi Qu
- Department of Medical Affairs, Techpool Bio-Pharma Co., LTD, Chengdu, China
| | - Zhijun Zhang
- Department of Medical Affairs, Techpool Bio-Pharma Co., LTD, Chengdu, China
| | - Changjun Wang
- Department of Medical Affairs, Techpool Bio-Pharma Co., LTD, Chengdu, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
49
|
Rakkar K, Othman O, Sprigg N, Bath P, Bayraktutan U. Endothelial progenitor cells, potential biomarkers for diagnosis and prognosis of ischemic stroke: protocol for an observational case-control study. Neural Regen Res 2020; 15:1300-1307. [PMID: 31960816 PMCID: PMC7047808 DOI: 10.4103/1673-5374.269028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a devastating, life altering event which can severely reduce patient quality of life. Despite years of research there have been minimal therapeutic advances. Endothelial progenitor cells (EPCs), stem cells involved in both vasculogenesis and angiogenesis, may be a potential therapeutic target. After a stroke, EPCs migrate to the site of ischemic injury to repair cerebrovascular damage, and their numbers and functional capacity may determine patients’ outcome. This study aims to determine whether the number of circulating EPCs and their functional aspects may be used as biomarkers to identify the type (cortical or lacunar) and/or severity of ischemic stroke. The study will also investigate if there are any differences in these characteristics between healthy volunteers over and under 65 years of age. 100 stroke patients (50 lacunar and 50 cortical strokes) will be recruited in this prospective, observational case-controlled study. Blood samples will be taken from stroke patients at baseline (within 48 hours of stroke) and days 7, 30 and 90. EPCs will be counted with flow cytometry. The plasma levels of pro- and anti-angiogenic factors and inflammatory cytokines will also be determined. Outgrowth endothelial cells will be cultured to be used in tube formation, migration and proliferation functional assays. Primary outcome is disability or dependence on day 90 after stroke, assessed by the modified Rankin Scale. Secondary outcomes are changes in circulating EPC numbers and/or functional capacity between patient and healthy volunteers, between patient subgroups and between elderly and young healthy volunteers. Recruitment started in February 2017, 167 participants have been recruited. Recruitment will end in November 2019. West Midlands - Coventry & Warwickshire Research Ethics Committee approved this study (REC number: 16/WM/0304) on September 8, 2016. Protocol version: 2.0. The Bayraktutan Dunhill Medical Trust EPC Study was registered in ClinicalTrials.gov (NCT02980354) on November 15, 2016. This study will determine whether the number of EPCs can be used as a prognostic or diagnostic marker for ischemic strokes and is a step towards discovering if transplantation of EPCs may aid patient recovery.
Collapse
Affiliation(s)
- Kamini Rakkar
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, NG5 1PB, UK
| | - Othman Othman
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, NG5 1PB, UK
| | - Nikola Sprigg
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, NG5 1PB, UK
| | - Philip Bath
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, NG5 1PB, UK
| |
Collapse
|
50
|
Sabetghadam M, Mazdeh M, Abolfathi P, Mohammadi Y, Mehrpooya M. Evidence for a Beneficial Effect of Oral N-acetylcysteine on Functional Outcomes and Inflammatory Biomarkers in Patients with Acute Ischemic Stroke. Neuropsychiatr Dis Treat 2020; 16:1265-1278. [PMID: 32547030 PMCID: PMC7244239 DOI: 10.2147/ndt.s241497] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/01/2020] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Numerous preclinical studies have demonstrated the potential neuroprotective effects of N-acetylcysteine (NAC) in the treatment of brain ischemia. Accordingly, the present study aimed to assess the potential therapeutic effects of oral NAC in patients with acute ischemic stroke. PATIENTS AND METHODS In a randomized, double-blind, placebo-controlled trial study, 68 patients with acute ischemic stroke with the onset of symptoms less than 24 hours were randomly assigned to either the NAC-treated group or placebo-treated group. NAC and matched placebo were administrated by a 72-hour oral protocol (initially 4 grams loading dose and after on, 4 g in 4 equal divided doses for more 2 days). The primary outcomes were quantification of any neurologic deficit by the use of the National Institute of Health Stroke Scale (NIHSS) score and functional disability by the use of the modified Rankin scale (mRS) at 90 days after stroke. Additionally, serum levels of markers of oxidative stress and inflammation as a main mechanism of its action were assessed at baseline and the end of 3-day treatment protocol. RESULTS NAC-treated patients in comparison with placebo-treated patients showed a significantly lower mean NIHSS scores at day 90 after stroke. A favorable functional outcome which was defined as an mRS score of 0 or 1, also in favor of NAC compared to placebo was noted on day 90 after stroke (57.6% in the NAC-treated group compared with 28.6% in the placebo-treated group). Further, compared to the placebo, NAC treatment significantly decreased serum levels of proinflammatory biomarkers such as interleukin 6 (IL-6), soluble intercellular cell adhesion molecule-1 (sICAM-1), nitric oxide (NO), malondialdehyde (MDA), and neuron-specific enolase (NSE) and significantly increased serum levels of anti-oxidant biomarkers such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and total thiol groups (TTG). CONCLUSION The pattern of results suggests that oral NAC administration early after an acute ischemic stroke is associated with a better outcome profile in terms of acute neurological deficit and disability grade compared to placebo. NAC may improve neurological outcomes of patients with stroke at least in part by its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Maryam Sabetghadam
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdokht Mazdeh
- Department of Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parnaz Abolfathi
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Younes Mohammadi
- Modeling of Noncommunicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|