1
|
Ziu T, Sambur E, Ruzsics Z, Hengel H, Grabherr R, Höfinger S, Harant H. In Vitro Profiling of the Antiviral Peptide TAT-I24. Int J Mol Sci 2024; 25:10463. [PMID: 39408791 PMCID: PMC11477294 DOI: 10.3390/ijms251910463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The synthetic peptide TAT-I24 (GRKKRRQRRRPPQCLAFYACFC) exerts antiviral activity against several double-stranded (ds) DNA viruses, including herpes simplex viruses, cytomegalovirus, some adenoviruses, vaccinia virus and SV40 polyomavirus. In the present study, in vitro profiling of this peptide was performed with the aim of characterizing and improving its properties for further development. As TAT-I24 contains three free cysteine residues, a potential disadvantageous feature, peptide variants with replacements or deletions of specific residues were generated and tested in various cell systems and by biochemical analyses. Some cysteine replacements had no impact on the antiviral activity, such as the deletion of cysteine 14, which also showed improved biochemical properties, while the cyclization of cysteines 14 and 20 had the most detrimental effect on antiviral activity. At concentrations below 20 µM, TAT-I24 and selected variants did not induce hemolysis in red blood cells (RBCs) nor modulated lipopolysaccharide (LPS)-induced release of cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), in human peripheral blood mononuclear cells (PBMCs). These data indicate that TAT-I24 or its peptide variants are not expected to cause unwanted effects on blood cells.
Collapse
Affiliation(s)
- Theodhora Ziu
- Pivaris BioScience GmbH, Media Quarter Marx 3.4, Maria-Jacobi-Gasse 1, 1030 Vienna, Austria;
| | - Ezgi Sambur
- VSC Research Center, Technical University of Vienna, Operngasse 11/E057-09, 1040 Vienna, Austria; (E.S.); or (S.H.)
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Str.11, 79104 Freiburg, Germany; (Z.R.); (H.H.)
| | - Hartmut Hengel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Str.11, 79104 Freiburg, Germany; (Z.R.); (H.H.)
| | - Reingard Grabherr
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria;
| | - Siegfried Höfinger
- VSC Research Center, Technical University of Vienna, Operngasse 11/E057-09, 1040 Vienna, Austria; (E.S.); or (S.H.)
- Department of Physics, Michigan Technological University, Houghton, MI 49931, USA
| | - Hanna Harant
- Pivaris BioScience GmbH, Media Quarter Marx 3.4, Maria-Jacobi-Gasse 1, 1030 Vienna, Austria;
| |
Collapse
|
2
|
Galatola E, Agrillo B, Gogliettino M, Palmieri G, Maccaroni S, Vicenza T, Proroga YTR, Mancusi A, Di Pasquale S, Suffredini E, Cozzi L. A Reliable Multifaceted Solution against Foodborne Viral Infections: The Case of RiLK1 Decapeptide. Molecules 2024; 29:2305. [PMID: 38792166 PMCID: PMC11124387 DOI: 10.3390/molecules29102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Food-borne transmission is a recognized route for many viruses associated with gastrointestinal, hepatic, or neurological diseases. Therefore, it is essential to identify new bioactive compounds with broad-spectrum antiviral activity to exploit innovative solutions against these hazards. Recently, antimicrobial peptides (AMPs) have been recognized as promising antiviral agents. Indeed, while the antibacterial and antifungal effects of these molecules have been widely reported, their use as potential antiviral agents has not yet been fully investigated. Herein, the antiviral activity of previously identified or newly designed AMPs was evaluated against the non-enveloped RNA viruses, hepatitis A virus (HAV) and murine norovirus (MNV), a surrogate for human norovirus. Moreover, specific assays were performed to recognize at which stage of the viral infection cycle the peptides could function. The results showed that almost all peptides displayed virucidal effects, with about 90% of infectivity reduction in HAV or MNV. However, the decapeptide RiLK1 demonstrated, together with its antibacterial and antifungal properties, a notable reduction in viral infection for both HAV and MNV, possibly through direct interaction with viral particles causing their damage or hindering the recognition of cellular receptors. Hence, RiLK1 could represent a versatile antimicrobial agent effective against various foodborne pathogens including viruses, bacteria, and fungi.
Collapse
Affiliation(s)
- Emanuela Galatola
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), 80131 Naples, Italy; (E.G.); (B.A.); (M.G.)
| | - Bruna Agrillo
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), 80131 Naples, Italy; (E.G.); (B.A.); (M.G.)
| | - Marta Gogliettino
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), 80131 Naples, Italy; (E.G.); (B.A.); (M.G.)
| | - Gianna Palmieri
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), 80131 Naples, Italy; (E.G.); (B.A.); (M.G.)
- Materias Srl, 80146 Naples, Italy
| | - Serena Maccaroni
- National Reference Laboratory for Foodborne Viruses, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.M.); (T.V.); (S.D.P.); (E.S.); (L.C.)
| | - Teresa Vicenza
- National Reference Laboratory for Foodborne Viruses, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.M.); (T.V.); (S.D.P.); (E.S.); (L.C.)
| | - Yolande T. R. Proroga
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (Y.T.R.P.); (A.M.)
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (Y.T.R.P.); (A.M.)
| | - Simona Di Pasquale
- National Reference Laboratory for Foodborne Viruses, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.M.); (T.V.); (S.D.P.); (E.S.); (L.C.)
| | - Elisabetta Suffredini
- National Reference Laboratory for Foodborne Viruses, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.M.); (T.V.); (S.D.P.); (E.S.); (L.C.)
| | - Loredana Cozzi
- National Reference Laboratory for Foodborne Viruses, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.M.); (T.V.); (S.D.P.); (E.S.); (L.C.)
| |
Collapse
|
3
|
Kaur J, Sharma A, Passi G, Dey P, Khajuria A, Alajangi HK, Jaiswal PK, Barnwal RP, Singh G. Nanomedicine at the Pulmonary Frontier: Immune-Centric Approaches for Respiratory Disease Treatment. Immunol Invest 2024; 53:295-347. [PMID: 38206610 DOI: 10.1080/08820139.2023.2298398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Respiratory diseases (RD) are a group of common ailments with a rapidly increasing global prevalence, posing a significant threat to humanity, especially the elderly population, and imposing a substantial burden on society and the economy. RD represents an unmet medical need that requires the development of viable pharmacotherapies. While various promising strategies have been devised to advance potential treatments for RD, their implementation has been hindered by difficulties in drug delivery, particularly in critically ill patients. Nanotechnology offers innovative solutions for delivering medications to the inflamed organ sites, such as the lungs. Although this approach is enticing, delivering nanomedicine to the lungs presents complex challenges that require sophisticated techniques. In this context, we review the potential of novel nanomedicine-based immunomodulatory strategies that could offer therapeutic benefits in managing this pressing health condition.
Collapse
Affiliation(s)
- Jatinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Gautam Passi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Piyush Dey
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, USA
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
4
|
Fan T, Liu B, Yao H, Chen X, Yang H, Guo S, Wu B, Li X, Li X, Xun M, Wang H. Cathelicidin peptide analogues inhibit EV71 infection through blocking viral entry and uncoating. PLoS Pathog 2024; 20:e1011967. [PMID: 38271479 PMCID: PMC10846744 DOI: 10.1371/journal.ppat.1011967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Given the serious neurological complications and deaths associated with enterovirus 71 (EV71) infection, there is an urgent need to develop effective antivirals against this viral infection. In this study, we demonstrated that two Cathelicidin-derived peptides, LL-18 and FF-18 were more potent against EV71 infection than the parent peptide LL-37, which is the mature and processed form of Cathelicidin. These peptides could directly bind to the EV71 virus particles, but not to coxsackievirus, indicative of their high specificity. The binding of peptides with the virus surface occupied the viral canyon region in a way that could block virus-receptor interactions and inhibit viral uncoating. In addition, these peptide analogues could also relieve the deleterious effect of EV71 infection in vivo. Therefore, Cathelicidin-derived peptides might be excellent candidates for further development of antivirals to treat EV71 infection.
Collapse
Affiliation(s)
- Tingting Fan
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, China
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Bing Liu
- Biobank, The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, China
| | - Haoyan Yao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, China
| | - Xinrui Chen
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Hang Yang
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Shangrui Guo
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Bo Wu
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Xiaozhen Li
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Xinyu Li
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Meng Xun
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, China
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Hongliang Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, China
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| |
Collapse
|
5
|
Memariani M, Memariani H. Antifungal properties of cathelicidin LL-37: current knowledge and future research directions. World J Microbiol Biotechnol 2023; 40:34. [PMID: 38057654 DOI: 10.1007/s11274-023-03852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
The threat of fungal diseases is substantially underestimated worldwide, but they have serious consequences for humans, animals, and plants. Given the limited number of existing antifungal drugs together with the emergence of drug-resistant strains, many researchers have actively sought alternatives or adjuvants to antimycotics. The best way to tackle these issues is to unearth potential antifungal agents with new modes of action. Antimicrobial peptides are being hailed as a promising source of novel antimicrobials since they exhibit rapid and broad-spectrum microbicidal activities with a reduced likelihood of developing drug resistance. Recent years have witnessed an explosion in knowledge on microbicidal activity of LL-37, the sole human cathelicidin. Herein, we provide a summary of the current understanding about antifungal properties of LL-37, with particular emphasis on its molecular mechanisms. We further illustrate fruitful areas for future research. LL-37 is able to inhibit the growth of clinically and agronomically relevant fungi including Aspergillus, Candida, Colletotrichum, Fusarium, Malassezia, Pythium, and Trichophyton. Destruction of the cell wall integrity, membrane permeabilization, induction of oxidative stress, disruption of endoplasmic reticulum homeostasis, formation of autophagy-like structures, alterations in expression of numerous fungal genes, and inhibition of cell cycle progression are the key mechanisms underlying antifungal effects of LL-37. Burgeoning evidence also suggests that LL-37 may act as a potential anti-virulence peptide. It is hoped that this review will not only motivate researchers to conduct more detailed studies in this field, but also inspire further innovations in the design of LL-37-based drugs for the treatment of fungal infections.
Collapse
Affiliation(s)
- Mojtaba Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zhang S, Wang Z. An Emerging Role of Extracellular Traps in Chronic Rhinosinusitis. Curr Allergy Asthma Rep 2023; 23:675-688. [PMID: 37934391 PMCID: PMC10739460 DOI: 10.1007/s11882-023-01082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE OF REVIEW Chronic rhinosinusitis (CRS) is a complicated, heterogeneous disease likely caused by inflammatory and infectious factors. There is clear evidence that innate immune cells, including neutrophils and eosinophils, play a significant role in CRS. Multiple immune cells, including neutrophils and eosinophils, have been shown to release chromatin and granular proteins into the extracellular space in response to triggering extracellular traps (ETs). The formation of ETs remains controversial due to their critical function during pathogen clearance while being associated with harmful inflammatory illnesses. This article summarizes recent research on neutrophil extracellular traps (NETs) and eosinophil extracellular traps (EETs) and their possible significance in the pathophysiology of CRS. RECENT FINDINGS A novel type of programmed cell death called ETosis, which releases ETs, has been proposed by recent study. Significantly more NETs are presented in nasal polyps, and its granule proteins LL-37 induce NETs production in CRS with nasal polyps (CRSwNP) patients. Similar to NETs, developed in the tissue of nasal polyps, primarily in subepithelial regions with epithelial barrier defects, and are associated with linked to elevated tissue levels of IL-5 and S. aureus colonization. This article provides a comprehensive overview of NETs and EETs, as well as an in-depth understanding of the functions of these ETs in CRS.
Collapse
Affiliation(s)
- Siyuan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenlin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
O'Meara CH, Jafri Z, Khachigian LM. Immune Checkpoint Inhibitors, Small-Molecule Immunotherapies and the Emerging Role of Neutrophil Extracellular Traps in Therapeutic Strategies for Head and Neck Cancer. Int J Mol Sci 2023; 24:11695. [PMID: 37511453 PMCID: PMC10380483 DOI: 10.3390/ijms241411695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the treatment of many cancer types, including head and neck cancers (HNC). When checkpoint and partner proteins bind, these send an "off" signal to T cells, which prevents the immune system from destroying tumor cells. However, in HNC, and indeed many other cancers, more people do not respond and/or suffer from toxic effects than those who do respond. Hence, newer, more effective approaches are needed. The challenge to durable therapy lies in a deeper understanding of the complex interactions between immune cells, tumor cells and the tumor microenvironment. This will help develop therapies that promote lasting tumorlysis by overcoming T-cell exhaustion. Here we explore the strengths and limitations of current ICI therapy in head and neck squamous cell carcinoma (HNSCC). We also review emerging small-molecule immunotherapies and the growing promise of neutrophil extracellular traps in controlling tumor progression and metastasis.
Collapse
Affiliation(s)
- Connor H O'Meara
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Zuhayr Jafri
- Vascular Biology and Translational Research, School of Biomedical Sciences, UNSW Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Biomedical Sciences, UNSW Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Malhotra K, Buznyk O, Islam MM, Edin E, Basu S, Groleau M, Dégué DS, Fagerholm P, Fois A, Lesage S, Jangamreddy JR, Šimoliūnas E, Liszka A, Patra HK, Griffith M. Phosphorylcholine and KR12-Containing Corneal Implants in HSV-1-Infected Rabbit Corneas. Pharmaceutics 2023; 15:1658. [PMID: 37376106 DOI: 10.3390/pharmaceutics15061658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Severe HSV-1 infection can cause blindness due to tissue damage from severe inflammation. Due to the high risk of graft failure in HSV-1-infected individuals, cornea transplantation to restore vision is often contraindicated. We tested the capacity for cell-free biosynthetic implants made from recombinant human collagen type III and 2-methacryloyloxyethyl phosphorylcholine (RHCIII-MPC) to suppress inflammation and promote tissue regeneration in the damaged corneas. To block viral reactivation, we incorporated silica dioxide nanoparticles releasing KR12, the small bioactive core fragment of LL37, an innate cationic host defense peptide produced by corneal cells. KR12 is more reactive and smaller than LL37, so more KR12 molecules can be incorporated into nanoparticles for delivery. Unlike LL37, which was cytotoxic, KR12 was cell-friendly and showed little cytotoxicity at doses that blocked HSV-1 activity in vitro, instead enabling rapid wound closure in cultures of human epithelial cells. Composite implants released KR12 for up to 3 weeks in vitro. The implant was also tested in vivo on HSV-1-infected rabbit corneas where it was grafted by anterior lamellar keratoplasty. Adding KR12 to RHCIII-MPC did not reduce HSV-1 viral loads or the inflammation resulting in neovascularization. Nevertheless, the composite implants reduced viral spread sufficiently to allow stable corneal epithelium, stroma, and nerve regeneration over a 6-month observation period.
Collapse
Affiliation(s)
- Kamal Malhotra
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
| | - Oleksiy Buznyk
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine, 65061 Odessa, Ukraine
| | - Mohammad Mirazul Islam
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - Elle Edin
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Sankar Basu
- Department of Microbiology, Asutosh College, Affiliated with University of Calcutta, Kolkata 700026, India
| | - Marc Groleau
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Delali Shana Dégué
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Per Fagerholm
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - Adrien Fois
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Sylvie Lesage
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | | | - Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, 01513 Vilnius, Lithuania
| | - Aneta Liszka
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - Hirak K Patra
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| | - May Griffith
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
9
|
Othumpangat S, Noti JD. β-Defensin-1 Regulates Influenza Virus Infection in Human Bronchial Epithelial Cells through the STAT3 Signaling Pathway. Pathogens 2023; 12:pathogens12010123. [PMID: 36678471 PMCID: PMC9865356 DOI: 10.3390/pathogens12010123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Understanding the host response to influenza A virus (IAV) infection is vital for developing intervention strategies. The primary barriers for invading respiratory pathogens are the respiratory tract epithelial cells and antimicrobial proteins generated by these cells. The antimicrobial peptide, β-defensin-1, has antiviral activity against both enveloped and non-enveloped viruses. Significant downregulation of β-defensin1 gene (DEFB1) expression was observed when human bronchial epithelial cells (HBEpCs) were exposed to IAV. HBEpCs overexpressing DEFB1 caused a significant reduction in IAV, that was confirmed by IAV matrix gene analysis, plaque assay, and confocal microscopy. DEFB1 expression after transfection with two micro RNAs (miRNAs), hsa-miR-186-5p and hsa-miR-340-5p, provided evidence that DEFB1 expression could be modulated by these miRNAs and hsa-miR-186-5p had a higher binding efficiency with DEFB1. Overexpression of DEFB1 in IAV-infected HBEpCs led to increased NF-κB expression. In a PCR array analysis of 84 transcription factors, either overexpressing DEFB1 or siRNA silencing of DEFB1 expression significantly modulated the expression of signal transducer and activator of transcription 3 (STAT3). In addition, Ingenuity Pathway Analysis (IPA) integrated with PCR array data showed that the JAK1/STAT3 pathway was significantly altered in cells overexpressing DEFB1, suggesting this to be one of the pathways by which defensin regulates IAV replication in HBEpCs. In conclusion, the reduction in IAV copy number in DEFB1 overexpressing cells suggests that β-defensin-1 plays a key role in regulating IAV survival through STAT3 and is a potential target for antiviral drug development.
Collapse
|
10
|
Mousavi Maleki MS, Sardari S, Ghandehari Alavijeh A, Madanchi H. Recent Patents and FDA-Approved Drugs Based on Antiviral Peptides and Other Peptide-Related Antivirals. Int J Pept Res Ther 2022; 29:5. [PMID: 36466430 PMCID: PMC9702942 DOI: 10.1007/s10989-022-10477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
In spite of existing cases of severe viral infections with a high mortality rate, there are not enough antiviral drugs and vaccines available for the prevention and treatment of such diseases. In addition, the increasing reports of the emergence of viral epidemics highlight, the need for novel molecules with antiviral potential. Antimicrobial peptides (AMPs) with antiviral activity or antiviral peptides (AVPs) have turned into a research hotspot and already show tremendous potential to become pharmaceutically available antiviral medicines. AMPs, a diverse group of bioactive peptides act as a part of our first line of defense against pathogen inactivation. Although most of the currently reported AMPs are either antibacterial or antifungal peptides, the number of antiviral peptides is gradually increasing. Some of the AMPs that are shown as effective antivirals have been deployed against viruses such as influenza A virus, severe acute respiratory syndrome coronavirus (SARS-CoV), HIV, HSV, West Nile Virus (WNV), and other viruses. This review offers an overview of AVPs that have been approved within the past few years and will set out a few of the most essential patents and their usage within the context mentioned above during 2000-2020. Moreover, the present study will explain some of the progress in antiviral drugs based on peptides and peptide-related antivirals.
Collapse
Affiliation(s)
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Ghandehari Alavijeh
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Asghari A, Jafari F, Jameshorani M, Chiti H, Naseri M, Ghafourirankouhi A, Kooshkaki O, Abdshah A, Parsamanesh N. Vitamin D role in hepatitis B: focus on immune system and genetics mechanism. Heliyon 2022; 8:e11569. [DOI: 10.1016/j.heliyon.2022.e11569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/01/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
|
12
|
Huang J, Hong W, Wan M, Zheng L. Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm (Beijing) 2022; 3:e162. [PMID: 36000086 PMCID: PMC9390875 DOI: 10.1002/mco2.162] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Evidence shows that neutrophils can protect the host against pathogens in multiple ways, including the formation and release of neutrophil extracellular traps (NETs). NETs are web-like structures composed of fibers, DNA, histones, and various neutrophil granule proteins. NETs can capture and kill pathogens, including bacteria, viruses, fungi, and protozoa. The process of NET formation is called NETosis. According to whether they depend on nicotinamide adenine dinucleotide phosphate (NADPH), NETosis can be divided into two categories: "suicidal" NETosis and "vital" NETosis. However, NET components, including neutrophil elastase, myeloperoxidase, and cell-free DNA, cause a proinflammatory response and potentially severe diseases. Compelling evidence indicates a link between NETs and the pathogenesis of a number of diseases, including sepsis, systemic lupus erythematosus, rheumatoid arthritis, small-vessel vasculitis, inflammatory bowel disease, cancer, COVID-19, and others. Therefore, targeting the process and products of NETosis is critical for treating diseases linked with NETosis. Researchers have discovered that several NET inhibitors, such as toll-like receptor inhibitors and reactive oxygen species scavengers, can prevent uncontrolled NET development. This review summarizes the mechanism of NETosis, the receptors associated with NETosis, the pathology of NETosis-induced diseases, and NETosis-targeted therapy.
Collapse
Affiliation(s)
- Jiayu Huang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional GenesMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
13
|
Latsko KN, Jacob AT, Junod NA, Haas CE, Castiglia KR, Kastelitz SR, Huffman ER, Trombley MP, Stobart CC. Role of Differences in Respiratory Syncytial Virus F and G Glycoproteins on Susceptibility to Inactivation by Antimicrobial Peptides LL-37 and Human Beta-Defensins. Viral Immunol 2022; 35:559-565. [PMID: 35944261 DOI: 10.1089/vim.2022.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides are proteins that have been found to be an important factor in the natural immune response to a variety of pathogens. Respiratory syncytial virus (RSV) is a respiratory pathogen with the capability to cause serious upper and lower respiratory infections in infants and children and is a major viral cause of infant mortality. There is currently no functional vaccine for the virus, as recent efforts have been hindered by the virus's low immunogenicity, its ability to effectively mutate, and underlying instabilities of potential vaccines. Previous studies have shown that antimicrobial peptides may affect viral replication and spread of RSV. Our study evaluates the susceptibility of chimeric strains of RSV that express different fusion (F) and attachment (G) proteins to susceptibilities to inactivation by LL-37 and human beta-defensins (hBDs) hBD-1, hBD-3, and hBD-4. We show that LL-37 and hBD-3 result in dose-dependent, strain-independent inactivation of RSV, whereas treatment with either hBD-1 or hBD-4 appears more variable between strains. This suggests a potential role of the viral structural proteins in mitigating the inhibitory effects of the peptides. This study provides the first evidence of the sensitivity of RSV to several hBDs and indicates a role of LL-37 and beta-defensins in both limiting establishment of natural RSV infections and in the therapeutic treatment of severe RSV disease.
Collapse
Affiliation(s)
- Karina N Latsko
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, USA
| | - Andrew T Jacob
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, USA
| | - Nathan A Junod
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, USA
| | - Caitlin E Haas
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, USA
| | - Katelyn R Castiglia
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, USA
| | - Sydney R Kastelitz
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, USA
| | - Elise R Huffman
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, USA
| | - Michael P Trombley
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, USA
| | | |
Collapse
|
14
|
Falco A, Adamek M, Pereiro P, Hoole D, Encinar JA, Novoa B, Mallavia R. The Immune System of Marine Organisms as Source for Drugs against Infectious Diseases. Mar Drugs 2022; 20:md20060363. [PMID: 35736166 PMCID: PMC9230875 DOI: 10.3390/md20060363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
The high proliferation of microorganisms in aquatic environments has allowed their coevolution for billions of years with other living beings that also inhabit these niches. Among the different existing types of interaction, the eternal competition for supremacy between the susceptible species and their pathogens has selected, as part of the effector division of the immune system of the former ones, a vast and varied arsenal of efficient antimicrobial molecules, which is highly amplified by the broad biodiversity radiated, above any others, at the marine habitats. At present, the great recent scientific and technological advances already allow the massive discovery and exploitation of these defense compounds for therapeutic purposes against infectious diseases of our interest. Among them, antimicrobial peptides and antimicrobial metabolites stand out because of the wide dimensions of their structural diversities, mechanisms of action, and target pathogen ranges. This revision work contextualizes the research in this field and serves as a presentation and scope identification of the Special Issue from Marine Drugs journal “The Immune System of Marine Organisms as Source for Drugs against Infectious Diseases”.
Collapse
Affiliation(s)
- Alberto Falco
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (J.A.E.); (R.M.)
- Correspondence: (A.F.); (M.A.)
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, 30559 Hannover, Germany
- Correspondence: (A.F.); (M.A.)
| | - Patricia Pereiro
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain; (P.P.); (B.N.)
| | - David Hoole
- School of Life Sciences, Keele University, Keele ST5 5BG, UK;
| | - José Antonio Encinar
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (J.A.E.); (R.M.)
| | - Beatriz Novoa
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain; (P.P.); (B.N.)
| | - Ricardo Mallavia
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (J.A.E.); (R.M.)
| |
Collapse
|
15
|
Hong W, Yang J, Zou J, Bi Z, He C, Lei H, He X, Li X, Alu A, Ren W, Wang Z, Jiang X, Zhong K, Jia G, Yang Y, Yu W, Huang Q, Yang M, Zhou Y, Zhao Y, Kuang D, Wang J, Wang H, Chen S, Luo M, Zhang Z, Lu T, Chen L, Que H, He Z, Sun Q, Wang W, Shen G, Lu G, Zhao Z, Yang L, Yang J, Wang Z, Li J, Song X, Dai L, Chen C, Geng J, Gou M, Chen L, Dong H, Peng Y, Huang C, Qian Z, Cheng W, Fan C, Wei Y, Su Z, Tong A, Lu S, Peng X, Wei X. Histones released by NETosis enhance the infectivity of SARS-CoV-2 by bridging the spike protein subunit 2 and sialic acid on host cells. Cell Mol Immunol 2022; 19:577-587. [PMID: 35273357 PMCID: PMC8907557 DOI: 10.1038/s41423-022-00845-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/08/2023] Open
Abstract
Neutrophil extracellular traps (NETs) can capture and kill viruses, such as influenza viruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), thus contributing to host defense. Contrary to our expectation, we show here that the histones released by NETosis enhance the infectivity of SARS-CoV-2, as found by using live SARS-CoV-2 and two pseudovirus systems as well as a mouse model. The histone H3 or H4 selectively binds to subunit 2 of the spike (S) protein, as shown by a biochemical binding assay, surface plasmon resonance and binding energy calculation as well as the construction of a mutant S protein by replacing four acidic amino acids. Sialic acid on the host cell surface is the key molecule to which histones bridge subunit 2 of the S protein. Moreover, histones enhance cell–cell fusion. Finally, treatment with an inhibitor of NETosis, histone H3 or H4, or sialic acid notably affected the levels of sgRNA copies and the number of apoptotic cells in a mouse model. These findings suggest that SARS-CoV-2 could hijack histones from neutrophil NETosis to promote its host cell attachment and entry process and may be important in exploring pathogenesis and possible strategies to develop new effective therapies for COVID-19.
Collapse
Affiliation(s)
- Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Jun Zou
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Xue Li
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Wenyan Ren
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Zeng Wang
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Xiaohua Jiang
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Kunhong Zhong
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Guowen Jia
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Yun Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Qing Huang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Mengli Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yanan Zhou
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yuan Zhao
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Dexuan Kuang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Junbin Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Haixuan Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Tianqi Lu
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Zhiyao He
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Qiu Sun
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China.,Westvac Biopharm Co., Ltd. No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuan, China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China.,Westvac Biopharm Co., Ltd. No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuan, China
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China.,Westvac Biopharm Co., Ltd. No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuan, China
| | - Zhiwei Zhao
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China.,Westvac Biopharm Co., Ltd. No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuan, China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China.,Westvac Biopharm Co., Ltd. No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuan, China
| | - Jinliang Yang
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China.,Westvac Biopharm Co., Ltd. No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuan, China
| | - Zhenling Wang
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China.,Westvac Biopharm Co., Ltd. No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuan, China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China.,Westvac Biopharm Co., Ltd. No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuan, China
| | - Xiangrong Song
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Lunzhi Dai
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Chong Chen
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Jia Geng
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Maling Gou
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Lu Chen
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Haohao Dong
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Yong Peng
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Canhua Huang
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Zhiyong Qian
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Wei Cheng
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, 102629, Beijing, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China.,Westvac Biopharm Co., Ltd. No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuan, China
| | - Zhaoming Su
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Aiping Tong
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China.
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China. .,State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Targeting, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China. .,Westvac Biopharm Co., Ltd. No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Quintero-Fabián S, Bandala C, Pichardo-Macías LA, Contreras-García IJ, Gómez-Manzo S, Hernández-Ochoa B, Martínez-Orozco JA, Ignacio- Mejía I, Cárdenas-Rodríguez N. Vitamin D and its possible relationship to neuroprotection in COVID-19: evidence in the literature. Curr Top Med Chem 2022; 22:1346-1368. [DOI: 10.2174/1568026622666220401140737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Vitamin D is a hormone involved in the regulation of important biological processes such as signal transduction, immune response, metabolic regulation and also in the nervous and vascular systems. To date, coronavirus disease 2019 (COVID-19) infection does not have a specific treatment, however various drugs have been proposed, including those that attenuate the intense inflammatory response and recently the use of vitamin D, in clinical trials, as part of the treatment of COVID-19 has provided promising results. It has been observed in some clinical studies that the use of cholecalciferol (vitamin D3) and its two metabolites the circulating form, calcidiol or calcifediol (25-hydroxycalciferol, 25-(OH)-D) and the active form, calcitriol (1,25-(OH)2-D), in different doses, improve the clinical manifestations, prognosis and survival of patients infected with COVID-19 probably because of its anti-inflammatory, antiviral and lung-protective action. In relation to the central nervous system (CNS) it has been shown, in clinical studies, that vitamin D is beneficial in some neurological and psychiatric conditions because of its anti-inflammatory and antioxidant properties, modulation of neurotransmitters actions, regulation of calcium homeostasis between other mechanisms. It has been showed that COVID-19 infection induces CNS complications such as headache, anosmia, ageusia, neuropathy, encephalitis, stroke, thrombosis, cerebral hemorrhages, cytotoxic lesions and psychiatric conditions and it has been proposed that the use of dietary supplements, as vitamin and minerals, can be adjuvants in this disease. In this review the evidence of possible role of vitamin D, and its metabolites, as protector against the neurological manifestations of COVID-19 was summarized.
Collapse
Affiliation(s)
- Saray Quintero-Fabián
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City, 11200, Mexico
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, 07738, Mexico
| | | | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, 06720, Mexico
| | - José Arturo Martínez-Orozco
- Departmento de Infectología, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Secretaría de Salud, Mexico City, 14080, Mexico
| | - Iván Ignacio- Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City, 11200, Mexico
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico
| |
Collapse
|
17
|
Ramazi S, Mohammadi N, Allahverdi A, Khalili E, Abdolmaleki P. A review on antimicrobial peptides databases and the computational tools. Database (Oxford) 2022; 2022:baac011. [PMID: 35305010 PMCID: PMC9216472 DOI: 10.1093/database/baac011] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 12/29/2022]
Abstract
Antimicrobial Peptides (AMPs) have been considered as potential alternatives for infection therapeutics since antibiotic resistance has been raised as a global problem. The AMPs are a group of natural peptides that play a crucial role in the immune system in various organisms AMPs have features such as a short length and efficiency against microbes. Importantly, they have represented low toxicity in mammals which makes them potential candidates for peptide-based drugs. Nevertheless, the discovery of AMPs is accompanied by several issues which are associated with labour-intensive and time-consuming wet-lab experiments. During the last decades, numerous studies have been conducted on the investigation of AMPs, either natural or synthetic type, and relevant data are recently available in many databases. Through the advancement of computational methods, a great number of AMP data are obtained from publicly accessible databanks, which are valuable resources for mining patterns to design new models for AMP prediction. However, due to the current flaws in assessing computational methods, more interrogations are warranted for accurate evaluation/analysis. Considering the diversity of AMPs and newly reported ones, an improvement in Machine Learning algorithms are crucial. In this review, we aim to provide valuable information about different types of AMPs, their mechanism of action and a landscape of current databases and computational tools as resources to collect AMPs and beneficial tools for the prediction and design of a computational model for new active AMPs.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14115-111, Iran
| | - Neda Mohammadi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Hemmat Highway, Tehran 1449614535, Iran
- Institute of Pharmacology and Toxicology, University of Bonn, Biomedical Center, Venusberg Campus 1, Bonn 53127, Germany
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14115-111, Iran
| | - Elham Khalili
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14115-111, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14115-111, Iran
| |
Collapse
|
18
|
Broad-Spectrum Antiviral Activity of the Amphibian Antimicrobial Peptide Temporin L and Its Analogs. Int J Mol Sci 2022; 23:ijms23042060. [PMID: 35216177 PMCID: PMC8878748 DOI: 10.3390/ijms23042060] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies.
Collapse
|
19
|
Banu S, Nagaraj R, Idris MM. Defensins: Therapeutic molecules with potential to treat SARS-CoV-2 infection. Indian J Med Res 2022; 155:83-85. [PMID: 35859434 PMCID: PMC9552367 DOI: 10.4103/ijmr.ijmr_2798_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Sarena Banu
- Department of Developmental Biology, CSIR-Centre for Cellular & Molecular Biology, Hyderabad 500 007, Telangana, India
| | - Ramakrishnan Nagaraj
- Department of Structural Biology, CSIR-Centre for Cellular & Molecular Biology, Hyderabad 500 007, Telangana, India
| | - Mohammed M. Idris
- Department of Developmental Biology, CSIR-Centre for Cellular & Molecular Biology, Hyderabad 500 007, Telangana, India
| |
Collapse
|
20
|
Gao B, Zhao D, Li L, Cheng Z, Guo Y. Antiviral Peptides with in vivo Activity: Development and Modes of Action. Chempluschem 2021; 86:1547-1558. [PMID: 34755499 DOI: 10.1002/cplu.202100351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/28/2021] [Indexed: 12/25/2022]
Abstract
The viral pandemic has resulted in a growing demand for antiviral drugs. The existing small-molecule antiviral drugs are limited, due to their incidence of drug resistance and adverse side effects. As potential drugs, antiviral peptides have the benefits of high activity, high stability, and few side effects. Furthermore, the diversity of acquisition methods allows antiviral peptides to be quickly designed and yielded. The drug properties (such as high bioavailability and in vivo stability) of antiviral peptides can be improved by the developed modifications. Currently, two peptide antiviral drugs have been approved for the treatment of acquired immunodeficiency syndrome (AIDS). Many antiviral peptides have entered clinical trials for the treatment of diseases caused by viruses. In addition, new antiviral peptides are continuously being identified and validated against virus infections. Given the benefits of antiviral peptides, they will become major antiviral drugs to combat new outbreaks caused by unknown viruses in the future. This review provides an overview of recent developments in antiviral peptides with in vivo activity.
Collapse
Affiliation(s)
- Bing Gao
- School of Public Health, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Dongdong Zhao
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Lingmu Li
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Zhigang Cheng
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Ye Guo
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| |
Collapse
|
21
|
Stapleton EM, Welch JL, Ubeda EA, Xiang J, Zabner J, Thornell IM, Nonnenmann MW, Stapleton JT, Comellas AP. Urban particulate matter impairs airway-surface-liquid-mediated coronavirus inactivation. J Infect Dis 2021; 225:214-218. [PMID: 34734257 PMCID: PMC8689861 DOI: 10.1093/infdis/jiab545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/21/2021] [Indexed: 11/14/2022] Open
Abstract
Air pollution particulate matter (PM) is associated with SARS-CoV-2 infection and severity, although mechanistic studies are lacking. We tested whether airway surface liquid (ASL) from primary human airway epithelial cells is antiviral against SARS-CoV-2 and human alphacoronavirus 229E (CoV-229E) (responsible for common colds), and whether PM (urban, indoor air pollution [IAP], volcanic ash) affected ASL antiviral activity. ASL inactivated SARS-CoV-2 and CoV-229E. Independently, urban PM also decreased SARS-CoV-2 and CoV-229E infection, and IAP PM decreased CoV-229E infection. However, in combination, urban PM impaired ASL’s antiviral activity against both viruses, and the same effect occurred for IAP PM and ash against SARS-CoV-2, suggesting that PM may enhance SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Emma M Stapleton
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Division of Pulmonary, Critical Care and Occupational Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Correspondence: Emma M. Stapleton, 6310F Pappajohn Biomedical Discovery Bldg, 169 Newton Rd, Iowa City, IA 52242 ()
| | - Jennifer L Welch
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa City VA Health Care System, Iowa City, Iowa, USA
- Present affiliation: Animal and Plant Health Inspection Service, US Department of Agriculture, Ames, Iowa
| | - Erika A Ubeda
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Jinhua Xiang
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa City VA Health Care System, Iowa City, Iowa, USA
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Division of Pulmonary, Critical Care and Occupational Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ian M Thornell
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Division of Pulmonary, Critical Care and Occupational Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Matthew W Nonnenmann
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Jack T Stapleton
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa City VA Health Care System, Iowa City, Iowa, USA
| | - Alejandro P Comellas
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Division of Pulmonary, Critical Care and Occupational Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
22
|
Mutua V, Gershwin LJ. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clin Rev Allergy Immunol 2021; 61:194-211. [PMID: 32740860 PMCID: PMC7395212 DOI: 10.1007/s12016-020-08804-7] [Citation(s) in RCA: 273] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Activated neutrophils release neutrophil extracellular traps (NETs) in response to a variety of stimuli. NETosis is driven by protein-arginine deiminase type 4, with the release of intracellular granule components that function by capturing and destroying microbes, including viral, fungal, bacterial, and protozoal pathogens. The positive effects of pathogen control are countered by pro-inflammatory effects as demonstrated in a variety of diseases. Components of NETS are non-specific, and other than controlling microbes, they cause injury to surrounding tissue by themselves or by increasing the pro-inflammatory response. NETs can play a role in enhancement of the inflammation seen in autoimmune diseases including psoriasis, rheumatoid arthritis, and systemic lupus erythematosis. In addition, autoinflammatory diseases such as gout have been associated with NETosis. Inhibition of NETs may decrease the severity of many diseases improving survival. Herein, we describe NETosis in different diseases focusing on the detrimental effect of NETs and outline possible therapeutics that can be used to mitigate netosis. There is a need for more studies and clinical trials on these and other compounds that could prevent or destroy NETs, thereby decreasing damage to patients.
Collapse
Affiliation(s)
- Victoria Mutua
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, USA.
| | - Laurel J Gershwin
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, USA
| |
Collapse
|
23
|
Sumon TA, Hussain MA, Hasan M, Rashid A, Abualreesh MH, Jang WJ, Sharifuzzaman SM, Brown CL, Lee EW, Hasan MT. Antiviral peptides from aquatic organisms: Functionality and potential inhibitory effect on SARS-CoV-2. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 541:736783. [PMID: 33883784 PMCID: PMC8049179 DOI: 10.1016/j.aquaculture.2021.736783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/26/2021] [Accepted: 04/14/2021] [Indexed: 05/06/2023]
Abstract
Several antiviral peptides (AVPs) from aquatic organisms have been effective in interfering with the actions of infectious viruses, such as Human Immunodeficiency Virus-1 and Herpes Simplex Virus-1 and 2. AVPs are able to block viral attachment or entry into host cells, inhibit internal fusion or replication events by suppressing viral gene transcription, and prevent viral infections by modulating host immunity. Therefore, as promising therapeutics, the potential of aquatic AVPs for use against the COVID-19 pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is considered. At present no therapeutic drugs are yet available. A total of 32 AVPs derived from fish and shellfish species are discussed in this review paper with notes on their properties and mechanisms of action in the inhibition of viral diseases both in humans and animals, emphasizing on SARS-CoV-2. The molecular structure of novel SARS-CoV-2 with its entry mechanisms, clinical signs and symptoms are also discussed. In spite of only a few study of these AVPs against SARS-CoV-2, aquatic AVPs properties and infection pathways (entry, replication and particle release) into coronaviruses are linked in this paper to postulate an analysis of their potential but unconfirmed actions to impair SARS-CoV-2 infection in humans.
Collapse
Affiliation(s)
- Tofael Ahmed Sumon
- Department of Fish Health Management, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Ashraf Hussain
- Department of Fisheries Technology and Quality Control, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Aminur Rashid
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Muyassar Hamid Abualreesh
- Department of Marine Biology, Faculty of Marine Science, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Won Je Jang
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - S M Sharifuzzaman
- Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Christopher Lyon Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan, South Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Md Tawheed Hasan
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
24
|
Putative Role of Vitamin D for COVID-19 Vaccination. Int J Mol Sci 2021; 22:ijms22168988. [PMID: 34445700 PMCID: PMC8396570 DOI: 10.3390/ijms22168988] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 is a new, highly pathogenic virus that has recently elicited a global pandemic called the 2019 coronavirus disease (COVID-19). COVID-19 is characterized by significant immune dysfunction, which is caused by strong but unregulated innate immunity with depressed adaptive immunity. Reduced and delayed responses to interferons (IFN-I/IFN-III) can increase the synthesis of proinflammatory cytokines and extensive immune cell infiltration into the airways, leading to pulmonary disease. The development of effective treatments for severe COVID-19 patients relies on our knowledge of the pathophysiological components of this imbalanced innate immune response. Strategies to address innate response factors will be essential. Significant efforts are currently underway to develop vaccines against SARS-CoV-2. COVID-19 vaccines, such as inactivated DNA, mRNA, and protein subunit vaccines, have already been applied in clinical use. Various vaccines display different levels of effectiveness, and it is important to continue to optimize and update their composition in order to increase their effectiveness. However, due to the continuous emergence of variant viruses, improving the immunity of the general public may also increase the effectiveness of the vaccines. Many observational studies have demonstrated that serum levels of vitamin D are inversely correlated with the incidence or severity of COVID-19. Extensive evidence has shown that vitamin D supplementation could be vital in mitigating the progression of COVID-19 to reduce its severity. Vitamin D defends against SARS-CoV-2 through a complex mechanism through interactions between the modulation of innate and adaptive immune reactions, ACE2 expression, and inhibition of the renin-angiotensin system (RAS). However, it remains unclear whether Vit-D also plays an important role in the effectiveness of different COVID-19 vaccines. Based on analysis of the molecular mechanism involved, we speculated that vit-D, via various immune signaling pathways, plays a complementary role in the development of vaccine efficacy.
Collapse
|
25
|
Ogbole OO, Akinleye TE, Nkumah AO, Awogun AO, Attah AF, Adewumi MO, Adeniji AJ. In vitro antiviral activity of peptide-rich extracts from seven Nigerian plants against three non-polio enterovirus species C serotypes. Virol J 2021; 18:161. [PMID: 34348755 PMCID: PMC8335448 DOI: 10.1186/s12985-021-01628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/22/2021] [Indexed: 08/30/2023] Open
Abstract
Background As frequent viral outbreaks continue to pose threat to public health, the unavailability of antiviral drugs and challenges associated with vaccine development underscore the need for antiviral drugs discovery in emergent moments (endemic or pandemic). Plants in response to microbial and pest attacks are able to produce defence molecules such as antimicrobial peptides as components of their innate immunity, which can be explored for viral therapeutics. Methods In this study, partially purified peptide-rich fraction (P-PPf) were obtained from aqueous extracts of seven plants by reverse-phase solid-phase extraction and cysteine-rich peptides detected by a modified TLC method. The peptide-enriched fractions and the aqueous (crude polar) were screened for antiviral effect against three non-polio enterovirus species C members using cytopathic effect reduction assay. Results In this study, peptide fraction obtained from Euphorbia hirta leaf showed most potent antiviral effect against Coxsackievirus A13, Coxsackievirus A20, and Enterovirus C99 (EV-C99) with IC50 < 2.0 µg/mL and selective index ≥ 81. EV-C99 was susceptible to all partially purified peptide fractions except Allamanda blanchetii leaf. Conclusion These findings establish the antiviral potentials of plants antimicrobial peptides and provides evidence for the anti-infective use of E. hirta in ethnomedicine. This study provides basis for further scientific investigation geared towards the isolation, characterization and mechanistic pharmacological study of the detected cysteine-rich peptides.
Collapse
Affiliation(s)
- Omonike O Ogbole
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Toluwanimi E Akinleye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abraham O Nkumah
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aminat O Awogun
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Alfred F Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Moses O Adewumi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adekunle J Adeniji
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.,WHO Polio National Laboratory, Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
26
|
Golonka I, Greber KE, Oleksy-Wawrzyniak M, Paleczny J, Dryś A, Junka A, Sawicki W, Musiał W. Antimicrobial and Antioxidative Activity of Newly Synthesized Peptides Absorbed into Bacterial Cellulose Carrier against Acne vulgaris. Int J Mol Sci 2021; 22:ijms22147466. [PMID: 34299085 PMCID: PMC8306634 DOI: 10.3390/ijms22147466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
The ongoing search for effective treatment of Acne vulgaris is concentrated, i.a., on natural peptides with antimicrobial properties. The aim of this work was the development of new amino acid derivatives with potential activity on dermal infections against selected microorganisms, including the facultative anaerobe C. acne. The peptides P1–P6 were synthesized via Fmoc solid phase peptide synthesis using Rink amide AM resin, analyzed by RP-HPLC-MS, FTIR, DPPH radical scavenging activity, and evaluated against C. acne and S. aureus, both deposited and non-deposited in BC. Peptides P1–P6 presented a lack of cytotoxicity, antimicrobial activity, or antioxidative properties correlated with selected structural properties. P2 and P4–P6 sorption in BC resulted in variable data, i.a., confirming the prospective topical application of these peptides in a BC carrier.
Collapse
Affiliation(s)
- Iwona Golonka
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (I.G.); (A.D.)
| | - Katarzyna E. Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (K.E.G.); (W.S.)
| | - Monika Oleksy-Wawrzyniak
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (M.O.-W.); (J.P.); (A.J.)
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (M.O.-W.); (J.P.); (A.J.)
| | - Andrzej Dryś
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (I.G.); (A.D.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (M.O.-W.); (J.P.); (A.J.)
| | - Wiesław Sawicki
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (K.E.G.); (W.S.)
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (I.G.); (A.D.)
- Correspondence: ; Tel.: +48-717-840-231
| |
Collapse
|
27
|
Stacey HD, Golubeva D, Posca A, Ang JC, Novakowski KE, Zahoor MA, Kaushic C, Cairns E, Bowdish DME, Mullarkey CE, Miller MS. IgA potentiates NETosis in response to viral infection. Proc Natl Acad Sci U S A 2021; 118:e2101497118. [PMID: 34183391 PMCID: PMC8271757 DOI: 10.1073/pnas.2101497118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IgA is the second most abundant antibody present in circulation and is enriched at mucosal surfaces. As such, IgA plays a key role in protection against a variety of mucosal pathogens including viruses. In addition to neutralizing viruses directly, IgA can also stimulate Fc-dependent effector functions via engagement of Fc alpha receptors (Fc-αRI) expressed on the surface of certain immune effector cells. Neutrophils are the most abundant leukocyte, express Fc-αRI, and are often the first to respond to sites of injury and infection. Here, we describe a function for IgA-virus immune complexes (ICs) during viral infections. We show that IgA-virus ICs potentiate NETosis-the programmed cell-death pathway through which neutrophils release neutrophil extracellular traps (NETs). Mechanistically, IgA-virus ICs potentiated a suicidal NETosis pathway via engagement of Fc-αRI on neutrophils through a toll-like receptor-independent, NADPH oxidase complex-dependent pathway. NETs also were capable of trapping and inactivating viruses, consistent with an antiviral function.
Collapse
Affiliation(s)
- Hannah D Stacey
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada, L8S 4K1
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Diana Golubeva
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada, L8S 4K1
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Alyssa Posca
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada, L8S 4K1
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Jann C Ang
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada, L8S 4K1
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Kyle E Novakowski
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada, L8S 4K1
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Medicine, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Muhammad Atif Zahoor
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Medicine, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Charu Kaushic
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Medicine, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Ewa Cairns
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 3K7
- Department of Medicine, Division of Rheumatology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 3K7
| | - Dawn M E Bowdish
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada, L8S 4K1
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Medicine, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Caitlin E Mullarkey
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Matthew S Miller
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada, L8S 4K1;
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
28
|
Reif T, Dyckhoff G, Hohenberger R, Kolbe CC, Gruell H, Klein F, Latz E, Stolp B, Fackler OT. Contact-dependent inhibition of HIV-1 replication in ex vivo human tonsil cultures by polymorphonuclear neutrophils. CELL REPORTS MEDICINE 2021; 2:100317. [PMID: 34195682 PMCID: PMC8233696 DOI: 10.1016/j.xcrm.2021.100317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/02/2021] [Accepted: 05/20/2021] [Indexed: 12/01/2022]
Abstract
Polymorphonuclear neutrophils (PMNs), the most abundant white blood cells, are recruited rapidly to sites of infection to exert potent anti-microbial activity. Information regarding their role in infection with human immunodeficiency virus (HIV) is limited. Here we report that addition of PMNs to HIV-infected cultures of human tonsil tissue or peripheral blood mononuclear cells causes immediate and long-lasting suppression of HIV-1 spread and virus-induced depletion of CD4 T cells. This inhibition of HIV-1 spread strictly requires PMN contact with infected cells and is not mediated by soluble factors. 2-Photon (2PM) imaging visualized contacts of PMNs with HIV-1-infected CD4 T cells in tonsil tissue that do not result in lysis or uptake of infected cells. The anti-HIV activity of PMNs also does not involve degranulation, formation of neutrophil extracellular traps, or integrin-dependent cell communication. These results reveal that PMNs efficiently blunt HIV-1 replication in primary target cells and tissue by an unconventional mechanism. PMNs blunt HIV-1 spread and CD4 T cell depletion in HIV-infected human tonsils Suppression of HIV-1 replication by PMNs requires cell-cell contacts PMNs do not affect HIV via effector functions such as NETosis or degranulation PMNs exert unconventional antiviral activity
Collapse
Affiliation(s)
- Tatjana Reif
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Gerhard Dyckhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ralph Hohenberger
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Carl-Christian Kolbe
- Institute of Innate Immunity, Department of Innate Immunity and Metaflammation, University Hospital Bonn, 53127 Bonn, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Eicke Latz
- Institute of Innate Immunity, Department of Innate Immunity and Metaflammation, University Hospital Bonn, 53127 Bonn, Germany
| | - Bettina Stolp
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Verheije MH, Coorens M, Weerts EAWS, Berends AJ, Harten RM, Angel M, Kooij J, Ordonez SR, Beurden SJ, Dijk A, Haagsman HP, Veldhuizen EJA. Antiviral activity of selected cathelicidins against infectious bronchitis virus. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M. Hélène Verheije
- Department of Biomolecular Health Sciences, Division Pathology, Faculty of Veterinary Medicine Utrecht University The Netherlands
| | - Maarten Coorens
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Section Molecular Host Defence, Faculty of Veterinary Medicine Utrecht University The Netherlands
| | - Erik A. W. S. Weerts
- Department of Biomolecular Health Sciences, Division Pathology, Faculty of Veterinary Medicine Utrecht University The Netherlands
| | - Alinda J. Berends
- Department of Biomolecular Health Sciences, Division Pathology, Faculty of Veterinary Medicine Utrecht University The Netherlands
| | - Roel M. Harten
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Section Molecular Host Defence, Faculty of Veterinary Medicine Utrecht University The Netherlands
| | - Marloes Angel
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Section Molecular Host Defence, Faculty of Veterinary Medicine Utrecht University The Netherlands
| | - Jannetje Kooij
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Section Molecular Host Defence, Faculty of Veterinary Medicine Utrecht University The Netherlands
| | - Soledad R. Ordonez
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Section Molecular Host Defence, Faculty of Veterinary Medicine Utrecht University The Netherlands
| | - Steven J. Beurden
- Department of Biomolecular Health Sciences, Division Pathology, Faculty of Veterinary Medicine Utrecht University The Netherlands
| | - Albert Dijk
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Section Molecular Host Defence, Faculty of Veterinary Medicine Utrecht University The Netherlands
| | - Henk P. Haagsman
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Section Molecular Host Defence, Faculty of Veterinary Medicine Utrecht University The Netherlands
| | - Edwin J. A. Veldhuizen
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Section Immunology, Faculty of Veterinary Medicine Utrecht University The Netherlands
| |
Collapse
|
30
|
Peng MY, Liu WC, Zheng JQ, Lu CL, Hou YC, Zheng CM, Song JY, Lu KC, Chao YC. Immunological Aspects of SARS-CoV-2 Infection and the Putative Beneficial Role of Vitamin-D. Int J Mol Sci 2021; 22:5251. [PMID: 34065735 PMCID: PMC8155889 DOI: 10.3390/ijms22105251] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is still an ongoing global health crisis. Immediately after the inhalation of SARS-CoV-2 viral particles, alveolar type II epithelial cells harbor and initiate local innate immunity. These particles can infect circulating macrophages, which then present the coronavirus antigens to T cells. Subsequently, the activation and differentiation of various types of T cells, as well as uncontrollable cytokine release (also known as cytokine storms), result in tissue destruction and amplification of the immune response. Vitamin D enhances the innate immunity required for combating COVID-19 by activating toll-like receptor 2. It also enhances antimicrobial peptide synthesis, such as through the promotion of the expression and secretion of cathelicidin and β-defensin; promotes autophagy through autophagosome formation; and increases the synthesis of lysosomal degradation enzymes within macrophages. Regarding adaptive immunity, vitamin D enhances CD4+ T cells, suppresses T helper 17 cells, and promotes the production of virus-specific antibodies by activating T cell-dependent B cells. Moreover, vitamin D attenuates the release of pro-inflammatory cytokines by CD4+ T cells through nuclear factor κB signaling, thereby inhibiting the development of a cytokine storm. SARS-CoV-2 enters cells after its spike proteins are bound to angiotensin-converting enzyme 2 (ACE2) receptors. Vitamin D increases the bioavailability and expression of ACE2, which may be responsible for trapping and inactivating the virus. Activation of the renin-angiotensin-aldosterone system (RAS) is responsible for tissue destruction, inflammation, and organ failure related to SARS-CoV-2. Vitamin D inhibits renin expression and serves as a negative RAS regulator. In conclusion, vitamin D defends the body against SARS-CoV-2 through a novel complex mechanism that operates through interactions between the activation of both innate and adaptive immunity, ACE2 expression, and inhibition of the RAS system. Multiple observation studies have shown that serum concentrations of 25 hydroxyvitamin D are inversely correlated with the incidence or severity of COVID-19. The evidence gathered thus far, generally meets Hill's causality criteria in a biological system, although experimental verification is not sufficient. We speculated that adequate vitamin D supplementation may be essential for mitigating the progression and severity of COVID-19. Future studies are warranted to determine the dosage and effectiveness of vitamin D supplementation among different populations of individuals with COVID-19.
Collapse
Affiliation(s)
- Ming-Yieh Peng
- Division of Infectious Disease, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Wen-Chih Liu
- Division of Nephrology, Department of Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan;
| | - Jing-Quan Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (J.-Q.Z.); (Y.-C.H.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Yi-Chou Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (J.-Q.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 234, Taiwan
| | - Cai-Mei Zheng
- Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City 235, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jenn-Yeu Song
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - You-Chen Chao
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| |
Collapse
|
31
|
Tonk M, Růžek D, Vilcinskas A. Compelling Evidence for the Activity of Antiviral Peptides against SARS-CoV-2. Viruses 2021; 13:v13050912. [PMID: 34069206 PMCID: PMC8156787 DOI: 10.3390/v13050912] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple outbreaks of epidemic and pandemic viral diseases have occurred in the last 20 years, including those caused by Ebola virus, Zika virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The emergence or re-emergence of such diseases has revealed the deficiency in our pipeline for the discovery and development of antiviral drugs. One promising solution is the extensive library of antimicrobial peptides (AMPs) produced by all eukaryotic organisms. AMPs are widely known for their activity against bacteria, but many possess additional antifungal, antiparasitic, insecticidal, anticancer, or antiviral activities. AMPs could therefore be suitable as leads for the development of new peptide-based antiviral drugs. Sixty therapeutic peptides had been approved by the end of 2018, with at least another 150 in preclinical or clinical development. Peptides undergoing clinical trials include analogs, mimetics, and natural AMPs. The advantages of AMPs include novel mechanisms of action that hinder the evolution of resistance, low molecular weight, low toxicity toward human cells but high specificity and efficacy, the latter enhanced by the optimization of AMP sequences. In this opinion article, we summarize the evidence supporting the efficacy of antiviral AMPs and discuss their potential to treat emerging viral diseases including COVID-19.
Collapse
Affiliation(s)
- Miray Tonk
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Daniel Růžek
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic;
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- Correspondence:
| |
Collapse
|
32
|
Mousavi Maleki MS, Rostamian M, Madanchi H. Antimicrobial peptides and other peptide-like therapeutics as promising candidates to combat SARS-CoV-2. Expert Rev Anti Infect Ther 2021; 19:1205-1217. [PMID: 33844613 PMCID: PMC8054488 DOI: 10.1080/14787210.2021.1912593] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: There are currently no specific drugs and universal vaccines for Coronavirus disease 2019 (COVID-19), hence urgent effective measures are needed to discover and develop therapeutic agents. Applying peptide therapeutics and their related compounds is a promising strategy to achieve this goal. This review is written based on the literature search using several databases, previous studies, scientific reports, our current knowledge about the antimicrobial peptides (AMPs), and our personal analyses on the potential of the antiviral peptides for the treatment of COVID-19. Areas covered: In this review, we begin with a brief description of SARS-CoV2 followed by a comprehensive description of antiviral peptides (AVPs) including natural and synthetic AMPs or AVPs and peptidomimetics. Subsequently, the structural features, mechanisms of action, limitations, and therapeutic applications of these peptides are explained. Expert opinion: Regarding the lack and the limitations of drugs against COVID-19, AMPs, AVPs, and other peptide-like compounds such as peptidomimetics have captured the attention of researchers due to their potential antiviral activities. Some of these compounds comprise unique properties and have demonstrated the potential to fight SARS-CoV2, particularly melittin, lactoferrin, enfuvirtide, and rupintrivir that have the potential to enter animal and clinical trials for the treatment of COVID-19.
Collapse
Affiliation(s)
- Masoumeh Sadat Mousavi Maleki
- Department of Biotechnology and Biotechnology Research Center, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid Madanchi
- Department of Biotechnology and Biotechnology Research Center, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
33
|
Yu J, Dai Y, Fu Y, Wang K, Yang Y, Li M, Xu W, Wei L. Cathelicidin antimicrobial peptides suppress EV71 infection via regulating antiviral response and inhibiting viral binding. Antiviral Res 2021; 187:105021. [PMID: 33508330 DOI: 10.1016/j.antiviral.2021.105021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/27/2022]
Abstract
Cathelicidin antimicrobial peptides (human LL-37 and mouse CRAMP) are mainly virucidal to enveloped virus. However, the effects and relative mechanisms of LL-37 and CRAMP on non-enveloped virus are elusive. We herein found that CRAMP expression was significantly up-regulated post non-enveloped Enterovirus 71 (EV71) infection in different tissues of newborn ICR mice, while EV71 replication gradually declined post CRAMP up-regulation, indicating the antiviral potential of cathelicidin against EV71. In vitro antiviral assay showed that LL-37 and CRAMP markedly reduced cytopathic effects (CPE), intracellular viral RNA copy numbers, viral VP1 protein levels, and extracellular virons in U251 cells post EV71 infection, indicating that LL-37 and CRAMP significantly inhibited EV71 replication. Mechanism of action assay showed that LL-37 and CRAMP were not virucidal to EV71, but markedly regulated antiviral immune response in U251 cells. Co-incubation of LL-37 or CRAMP with U251 cells markedly increased the basal interferon-β (IFN-β) expression and interferon regulatory transcription factor 3 (IRF3) phosphorylation, modestly enhanced IFN-β production and IRF3 phosphorylation upon EV71 infection, and significantly reduced interleukin-6 (IL-6) production and p38 mitogen-activated protein kinase (MAPK) activation post EV71 infection. Additionally, LL-37 and CRAMP directly inhibited viral binding to U251 cells. Collectively, LL-37 and CRAMP markedly inhibited EV71 replication via regulating antiviral response and inhibiting viral binding, providing potent candidates for peptide drug development against EV71 infection.
Collapse
Affiliation(s)
- Jie Yu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yue Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yuxuan Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Kezhen Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yang Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Min Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Lin Wei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
34
|
Xiao B, Fu Q, Niu S, Zhu P, He J, Li C. Penaeidins restrict white spot syndrome virus infection by antagonizing the envelope proteins to block viral entry. Emerg Microbes Infect 2020; 9:390-412. [PMID: 32397950 PMCID: PMC7048182 DOI: 10.1080/22221751.2020.1729068] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Emerging studies have indicated that some penaeidins restrict virus infection; however, the mechanism(s) involved are poorly understood. In the present study, we uncovered that penaeidins are a novel family of antiviral effectors against white spot syndrome virus (WSSV), which antagonize the envelope proteins to block viral entry. We found that the expression levels of four identified penaeidins from Litopenaeus vannamei, including BigPEN, PEN2, PEN3, and PEN4, were significantly induced in hemocytes during the early stage of WSSV infection. Knockdown of each penaeidin in vivo via RNA interference resulted in elevated viral loads and rendered shrimp more susceptible to WSSV, while the survival rate was rescued via the injection of recombinant penaeidins. All penaeidins, except PEN4, were shown to interact with several envelope proteins of WSSV, and all four penaeidins were observed to be located on the outer surface of the WSSV virion. Co-incubation of each recombinant penaeidin with WSSV inhibited virion internalization into hemocytes. More importantly, we found that PEN2 competitively bound to the envelope protein VP24 to release it from polymeric immunoglobulin receptor (pIgR), the cellular receptor required for WSSV infection. Moreover, we also demonstrated that BigPEN was able to bind to VP28 of WSSV, which disrupted the interaction between VP28 and Rab7 – the Rab GTPase that contributes to viral entry by binding with VP28. Taken together, our results demonstrated that penaeidins interact with the envelope proteins of WSSV to block multiple viral infection processes, thereby protecting the host against WSSV.
Collapse
Affiliation(s)
- Bang Xiao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Qihui Fu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Shengwen Niu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Peng Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gluf University, Qinzhou, P. R. People's Republic of China
| | - Jianguo He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| | - Chaozheng Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China.,State Key Laboratory of Biocontrol/ School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. People's Republic of China
| |
Collapse
|
35
|
Is the oral cavity a reservoir for prolonged SARS-CoV-2 shedding? Med Hypotheses 2020; 146:110419. [PMID: 33309251 PMCID: PMC7683957 DOI: 10.1016/j.mehy.2020.110419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/25/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022]
Abstract
Limited knowledge about the contagiosity and case fatality rate of COVID-19 as well as the still enigmatic route of transmission have led to strict limitations of non-emergency health care especially in head and neck medicine and dentistry. There are theories that the oral cavity provides a favorable environment for SARS-CoV-2 entry and persistence which may be a risk for prolonged virus shedding. However, intraoral innate immune mechanisms provide antiviral effects against a myriad of pathogenic viruses. Initial hints of their efficacy against SARS-CoV-2 are surfacing. It is hypothesized that intraoral immune system activity modulates the invasion pattern of SARS-CoV-2 into oral cells. Thus, the significance of intraoral tissues for SARS-CoV-2 transmission and persistence cannot be assessed. The underlying concept for this hypothesis was developed by the critical observation of a clinically asymptomatic COVID-19 patient. Despite a positive throat swab for SARS-CoV-2, molecular pathologic analysis of an oral perisulcular tissue specimen failed to detect SARS-CoV-2 RNA. More research effort is necessary to define the true origin of the contagiosity of asymptomatic COVID-19 patients.
Collapse
|
36
|
Abdelrahman S, Alghrably M, Lachowicz JI, Emwas AH, Hauser CAE, Jaremko M. "What Doesn't Kill You Makes You Stronger": Future Applications of Amyloid Aggregates in Biomedicine. Molecules 2020; 25:E5245. [PMID: 33187056 PMCID: PMC7696280 DOI: 10.3390/molecules25225245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloid proteins are linked to the pathogenesis of several diseases including Alzheimer's disease, but at the same time a range of functional amyloids are physiologically important in humans. Although the disease pathogenies have been associated with protein aggregation, the mechanisms and factors that lead to protein aggregation are not completely understood. Paradoxically, unique characteristics of amyloids provide new opportunities for engineering innovative materials with biomedical applications. In this review, we discuss not only outstanding advances in biomedical applications of amyloid peptides, but also the mechanism of amyloid aggregation, factors affecting the process, and core sequences driving the aggregation. We aim with this review to provide a useful manual for those who engineer amyloids for innovative medicine solutions.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Policlinico Universitario, I-09042 Monserrato, Italy
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
37
|
Hartshorn KL. Innate Immunity and Influenza A Virus Pathogenesis: Lessons for COVID-19. Front Cell Infect Microbiol 2020; 10:563850. [PMID: 33194802 PMCID: PMC7642997 DOI: 10.3389/fcimb.2020.563850] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
There is abundant evidence that the innate immune response to influenza A virus (IAV) is highly complex and plays a key role in protection against IAV induced infection and illness. Unfortunately it also clear that aspects of innate immunity can lead to severe morbidity or mortality from IAV, including inflammatory lung injury, bacterial superinfection, and exacerbation of reactive airways disease. We review broadly the virus and host factors that result in adverse outcomes from IAV and show evidence that inflammatory responses can become damaging even apart from changes in viral replication per se, with special focus on the positive and adverse effects of neutrophils and monocytes. We then evaluate in detail the role of soluble innate inhibitors including surfactant protein D and antimicrobial peptides that have a potential dual capacity for down-regulating viral replication and also inhibiting excessive inflammatory responses and how these innate host factors could possibly be harnessed to treat IAV infection. Where appropriate we draw comparisons and contrasts the SARS-CoV viruses and IAV in an effort to point out where the extensive knowledge existing regarding severe IAV infection could help guide research into severe COVID 19 illness or vice versa.
Collapse
Affiliation(s)
- Kevan L Hartshorn
- Section of Hematology Oncology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
38
|
Mandal SM, Panda S. Inhaler with electrostatic sterilizer and use of cationic amphiphilic peptides may accelerate recovery from COVID-19. Biotechniques 2020; 69:206-210. [PMID: 32929995 PMCID: PMC7299243 DOI: 10.2144/btn-2020-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We explore the design of a smart inhaler with electrostatic sterilizer and propose the utilization of cationic amphiphilic peptides, independently or in conjunction with a bronchodilator, for COVID-19 patients to quickly improve wellbeing while maintaining a strategic distance to protect healthcare personnel from virus-containing aerosol or droplets during the process of inhalation.
Collapse
Affiliation(s)
- Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Souvik Panda
- Kachua, Tagaria, Contai, 721433, Purba Medinipur, West Bengal, India
| |
Collapse
|
39
|
Pahar B, Madonna S, Das A, Albanesi C, Girolomoni G. Immunomodulatory Role of the Antimicrobial LL-37 Peptide in Autoimmune Diseases and Viral Infections. Vaccines (Basel) 2020; 8:E517. [PMID: 32927756 PMCID: PMC7565865 DOI: 10.3390/vaccines8030517] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are produced by neutrophils, monocytes, and macrophages, as well as epithelial cells, and are an essential component of innate immunity system against infection, including several viral infections. AMPs, in particular the cathelicidin LL-37, also exert numerous immunomodulatory activities by inducing cytokine production and attracting and regulating the activity of immune cells. AMPs are scarcely expressed in normal skin, but their expression increases when skin is injured by external factors, such as trauma, inflammation, or infection. LL-37 complexed to self-DNA acts as autoantigen in psoriasis and lupus erythematosus (LE), where it also induces production of interferon by plasmocytoid dendritic cells and thus initiates a cascade of autocrine and paracrine processes, leading to a disease state. In these disorders, epidermal keratinocytes express high amounts of AMPs, which can lead to uncontrolled inflammation. Similarly, LL-37 had several favorable and unfavorable roles in virus replication and disease pathogenesis. Targeting the antiviral and immunomodulatory functions of LL-37 opens a new approach to limit virus dissemination and the progression of disease.
Collapse
Affiliation(s)
- Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70118, USA
| | - Stefania Madonna
- IDI-IRCCS, Dermopathic Institute of the Immaculate IDI, 00167 Rome, Italy; (S.M.); (C.A.)
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Cristina Albanesi
- IDI-IRCCS, Dermopathic Institute of the Immaculate IDI, 00167 Rome, Italy; (S.M.); (C.A.)
| | - Giampiero Girolomoni
- Section of Dermatology, Department of Medicine, University of Verona, 37126 Verona, Italy;
| |
Collapse
|
40
|
Vyas N, Kurian SJ, Bagchi D, Manu MK, Saravu K, Unnikrishnan MK, Mukhopadhyay C, Rao M, Miraj SS. Vitamin D in Prevention and Treatment of COVID-19: Current Perspective and Future Prospects. J Am Coll Nutr 2020; 40:632-645. [PMID: 32870735 DOI: 10.1080/07315724.2020.1806758] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamin D deficiency (VDD) partly explains geographical differences in COVID-19 susceptibility, severity, and mortality. VDD among African-Americans, diabetics, hypertensive, and aged populations possibly explain the higher death rate, aggravated by cocooning. Vitamin D is pleiotropic, mediating bone metabolism, calcium homeostasis, and immune functions, whereas VDD is associated with inflammatory reactions and immune dysfunction, predisposing individuals to severe infections. Vitamin D modulates innate and adaptive immunity via the expression of genes that code antimicrobial peptides (AMPs). And the expression of cluster of differentiation (CD)14, the co-receptor for epidermal toll-like receptor (TLR)4. AMPs stimulate TLR2 in macrophages, increasing the conversion of vitamin D into its active form by cytochrome P450 27B1. Antiviral properties of vitamin D-induced AMPs can shift the polarization of the adaptive immune response from helper T cells (Th)1 to the more regulatory Th2 responses that suppress immune over-reactivity by preventing cytokine storm, which is already demonstrated during the Spanish flu episode. Vitamin D induces antiviral effects by both direct and indirect mechanisms via AMPs, immunomodulation, the interplay between major cellular and viral elements, induction of autophagy and apoptosis, variation of genetic and epigenetic factors. The crosstalk between vitamin D and intracellular signaling pathways may operate as a primary regulatory action on viral gene transcription. VDD may increase the likelihood of infection with enveloped viruses, including retrovirus, hepatitis, and dengue. Global data correlates severe VDD with COVID-19 associated coagulopathy, disrupted immune response and mortality, reduced platelet count, and prolonged prothrombin time, suggesting benefits from supplementation.Key teaching pointsVitamin D induces antiviral effects by direct and indirect mechanisms via AMPs, immunomodulation, induction of autophagy, etc.Epidemiology of VDD partly explains geographical differences in COVID-19 susceptibility, severity, and mortality.Global data correlates severe VDD with COVID-19 associated coagulopathy, disrupted immune response and mortality, reduced platelet count, and prolonged prothrombin time, together suggesting benefits from supplementation.Many clinical trials are underway globally to delineate the role of vitamin D in both prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Navya Vyas
- Department of Health Policy, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shilia Jacob Kurian
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Debasis Bagchi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Mohan K Manu
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Department of Respiratory Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kavitha Saravu
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Department of Infectious Diseases, Kasturba Medical College and Hospital, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Chiranjay Mukhopadhyay
- Kasturba Medical College and Hospital, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonal Sekhar Miraj
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
41
|
A Broad-Spectrum Antiviral Peptide Blocks Infection of Viruses by Binding to Phosphatidylserine in the Viral Envelope. Cells 2020; 9:cells9091989. [PMID: 32872420 PMCID: PMC7563927 DOI: 10.3390/cells9091989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/04/2023] Open
Abstract
The ongoing threat of viral infections and the emergence of antiviral drug resistance warrants a ceaseless search for new antiviral compounds. Broadly-inhibiting compounds that act on elements shared by many viruses are promising antiviral candidates. Here, we identify a peptide derived from the cowpox virus protein CPXV012 as a broad-spectrum antiviral peptide. We found that CPXV012 peptide hampers infection by a multitude of clinically and economically important enveloped viruses, including poxviruses, herpes simplex virus-1, hepatitis B virus, HIV-1, and Rift Valley fever virus. Infections with non-enveloped viruses such as Coxsackie B3 virus and adenovirus are not affected. The results furthermore suggest that viral particles are neutralized by direct interactions with CPXV012 peptide and that this cationic peptide may specifically bind to and disrupt membranes composed of the anionic phospholipid phosphatidylserine, an important component of many viral membranes. The combined results strongly suggest that CPXV012 peptide inhibits virus infections by direct interactions with phosphatidylserine in the viral envelope. These results reiterate the potential of cationic peptides as broadly-acting virus inhibitors.
Collapse
|
42
|
Agarwal G, Gabrani R. Antiviral Peptides: Identification and Validation. Int J Pept Res Ther 2020; 27:149-168. [PMID: 32427225 PMCID: PMC7233194 DOI: 10.1007/s10989-020-10072-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022]
Abstract
Despite rapid advances in the human healthcare, the infection caused by certain viruses results in high morbidity and mortality accentuate the importance for development of new antivirals. The existing antiviral drugs are limited, due to their inadequate response, increased rate of resistance and several adverse side effects. Therefore, one of the newly emerging field “peptide-based therapeutics” against viruses is being explored and seems promising. Over the last few years, a lot of scientific effort has been made for the identification of novel and potential peptide-based therapeutics using various advanced technologies. Consequently, there are more than 60 approved peptide drugs available for sale in the market of United States, Europe, Japan, and some Asian countries. Moreover, the number of peptide drugs undergoing the clinical trials is rising gradually year by year. The peptide-based antiviral therapeutics have been approved for the Human immunodeficiency virus (HIV), Influenza virus and Hepatitis virus (B and C). This review enlightens the various peptide sources and the different approaches that have contributed to the search of potential antiviral peptides. These include computational approaches, natural and biological sources (library based high throughput screening) for the identification of lead peptide molecules against their target. Further the applications of few advanced techniques based on combinatorial chemistry and molecular biology have been illustrated to measure the binding parameters such as affinity and kinetics of the screened interacting partners. The employment of these advanced techniques can contribute to investigate antiviral peptide therapeutics for emerging infections.
Collapse
Affiliation(s)
- Garima Agarwal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| | - Reema Gabrani
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| |
Collapse
|
43
|
Sorour NE, Elesawy FM, Abdou AG, Abdelazeem SE, Akl EM. Intralesional injection of vitamin D in verruca vulgaris increases cathelicidin (LL37) expression; therapeutic and immunohistochemical study. J DERMATOL TREAT 2020; 33:291-296. [PMID: 32237947 DOI: 10.1080/09546634.2020.1750554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction: Despite the promising results of intralesional vitamin D in verruca treatment; its precise mechanism of action is not fully understood.Aim of the work: To investigate immunohistochemical expression of cathelicidin (LL 37) before and after injection of vitamin D in verruca vulgaris and to clarify its possible role in pathogenesis of verruca.Patients and methods: This study included 20 patients with multiple verrucae vulgaris. Vitamin D was intralesionally injected every 2 weeks for a maximum of 4 sessions or clearance of verrucae. Skin biopsies were taken from the patients before and at the end of the study and compared to skin samples from ten apparently healthy, age and sex matched individuals for histopathological and immunohistochemical assessment of LL37 expression.Results: Eight (40%) verrucae showed complete response, seven (35%) showed partial response and five (25%) showed no response. Decreased epidermal thickness and reduced density of inflammatory cells in dermis were observed after injection. Significant increase in LL37 intensity of expression was observed after intralesional injection of vitamin D3 (p = .003) and in verrucae showing complete clinical response (p = .022).Conclusions: Intralesional injection of vitamin D is effective and safe treatment for verruca vulgaris and causes increase in LL37 expression.
Collapse
Affiliation(s)
- Neveen E Sorour
- Faculty of Medicine, Department of Dermatology, Venereology & Andrology, Benha University, Benha, Egypt
| | - Fatma M Elesawy
- Faculty of Medicine, Department of Dermatology, Venereology & Andrology, Benha University, Benha, Egypt
| | - Asmaa G Abdou
- Faculty of Medicine, Department of Pathology, Menoufia University, Shebin El-kom, Egypt
| | - Sara E Abdelazeem
- Faculty of Medicine, Department of Dermatology, Venereology & Andrology, Benha University, Benha, Egypt
| | - Essam M Akl
- Faculty of Medicine, Department of Dermatology, Venereology & Andrology, Benha University, Benha, Egypt
| |
Collapse
|
44
|
Böffert R, Businger R, Preiß H, Ehmann D, Truffault V, Simon C, Ruetalo N, Hamprecht K, Müller P, Wehkamp J, Schindler M. The human α-defensin-derived peptide HD5(1-9) inhibits cellular attachment and entry of human cytomegalovirus. Antiviral Res 2020; 177:104779. [PMID: 32209394 DOI: 10.1016/j.antiviral.2020.104779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Human cytomegalovirus (HCMV) infection causes severe illness in newborns and immunocompromised patients. Since treatment options are limited there is an unmet need for new therapeutic approaches. Defensins are cationic peptides, produced by various human tissues, which serve as antimicrobial effectors of the immune system. Furthermore, some defensins are proteolytically cleaved, resulting in the generation of smaller fragments with increased activity. Together, this led us to hypothesize that defensin-derived peptides are natural human inhibitors of virus infection with low toxicity. We screened several human defensin HNP4- and HD5-derived peptides and found HD5(1-9) to be antiviral without toxicity at high concentrations. HD5(1-9) inhibited HCMV cellular attachment and thereby entry and was active against primary as well as a multiresistant HCMV isolate. Moreover, cysteine and arginine residues were identified to mediate the antiviral activity of HD5(1-9). Altogether, defensin-derived peptides, in particular HD5(1-9), qualify as promising candidates for further development as a novel class of HCMV entry inhibitors.
Collapse
Affiliation(s)
- Rebecca Böffert
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Ramona Businger
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Hannes Preiß
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Dirk Ehmann
- Department for Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | | | - Claudia Simon
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Natalia Ruetalo
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Klaus Hamprecht
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany; Translational Oncology Division, University Hospital Tübingen, Tübingen, Germany
| | - Jan Wehkamp
- Department for Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
45
|
Kraaij MD, van Dijk A, Scheenstra MR, van Harten RM, Haagsman HP, Veldhuizen EJA. Chicken CATH-2 Increases Antigen Presentation Markers on Chicken Monocytes and Macrophages. Protein Pept Lett 2020; 27:60-66. [PMID: 31362652 PMCID: PMC6978643 DOI: 10.2174/0929866526666190730125525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/01/2022]
Abstract
Abstract: Background Cathelicidins are a family of Host Defense Peptides (HDPs), that play an important role in the innate immune response. They exert both broad-spectrum antimicrobial activity against pathogens, and strong immunomodulatory functions that affect the response of innate and adaptive immune cells. Objective The aim of this study was to investigate immunomodulation by the chicken cathelicidin CATH-2 and compare its activities to those of the human cathelicidin LL-37. Methods Chicken macrophages and chicken monocytes were incubated with cathelicidins. Activation of immune cells was determined by measuring surface markers Mannose Receptor C-type 1 (MRC1) and MHC-II. Cytokine production was measured by qPCR and nitric oxide production was determined using the Griess assay. Finally, the effect of cathelicidins on phagocytosis was measured using carboxylate-modified polystyrene latex beads. Results CATH-2 and its all-D enantiomer D-CATH-2 increased MRC1 and MHC-II expression, markers for antigen presentation, on primary chicken monocytes, whereas LL-37 did not. D-CATH-2 also increased the MRC1 and MHC-II expression if a chicken macrophage cell line (HD11 cells) was used. In addition, LPS-induced NO production by HD11 cells was inhibited by CATH-2 and D-CATH-2. Conclusion These results are a clear indication that CATH-2 (and D-CATH-2) affect the activation state of monocytes and macrophages, which leads to optimization of the innate immune response and enhancement of the adaptive immune response.
Collapse
Affiliation(s)
- Marina D Kraaij
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| | - Albert van Dijk
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| | - Maaike R Scheenstra
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| | - Roel M van Harten
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| | - Henk P Haagsman
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| | - Edwin J A Veldhuizen
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
46
|
Parai D, Dey P, Mukherjee SK. Antimicrobial Peptides: An Approach to Combat Resilient Infections. Curr Drug Discov Technol 2020; 17:542-552. [PMID: 31250760 DOI: 10.2174/1570163816666190620114338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND It was apparent by the end of 1980s that the success against the threats of bacterial pathogens on public health was an illusion, with the rapid development of resistant strains more than the discovery of new drugs. As a consequence, the remedial services were in the backfoot position of being on the losing side of this never-ending evolutionary war. The quest for new antibiotics to overcome resistance problems has long been a top research priority for the researchers and the pharmaceutical industry. However, the resistance problems remain unresolved due to the abrupt misuse of antibiotics by common people, which has immensely worsened the scenario by disseminating antibiotic-resistant bacterial strains around the world. OBJECTIVE Thus, immediate action is needed to measure emerging and re-emerging microbial diseases having new resistance mechanisms and to manage their rapid spread among the common public by means of novel alternative metabolites. CONCLUSION Antimicrobial Peptides (AMPs) are short, cationic peptides evolved in a wide range of living organisms and serve as the essential part of the host innate immunity. For humans, these effector molecules either can directly kill the foreign microbes or modulate the host immune systems so that the human body could develop some resistance against the microbial infections. In this review, we discuss their history, structural classifications, modes of action, and explain their biological roles as anti-infective agents. We also scrutinize their clinical potentiality, current limitations in various developmental stages and strategies to overcome for their successful clinical applications.
Collapse
Affiliation(s)
- Debaprasad Parai
- Department of Microbiology, University of Kalyani, Kalyani, WB, India
| | - Pia Dey
- Department of Microbiology, University of Kalyani, Kalyani, WB, India
| | - Samir K Mukherjee
- Department of Microbiology, University of Kalyani, Kalyani, WB, India
| |
Collapse
|
47
|
Brice DC, Diamond G. Antiviral Activities of Human Host Defense Peptides. Curr Med Chem 2020; 27:1420-1443. [PMID: 31385762 PMCID: PMC9008596 DOI: 10.2174/0929867326666190805151654] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023]
Abstract
Peptides with broad-spectrum antimicrobial activity are found widely expressed throughout nature. As they participate in a number of different aspects of innate immunity in mammals, they have been termed Host Defense Peptides (HDPs). Due to their common structural features, including an amphipathic structure and cationic charge, they have been widely shown to interact with and disrupt microbial membranes. Thus, it is not surprising that human HDPs have activity against enveloped viruses as well as bacteria and fungi. However, these peptides also exhibit activity against a wide range of non-enveloped viruses as well, acting at a number of different steps in viral infection. This review focuses on the activity of human host defense peptides, including alpha- and beta-defensins and the sole human cathelicidin, LL-37, against both enveloped and non-enveloped viruses. The broad spectrum of antiviral activity of these peptides, both in vitro and in vivo suggest that they play an important role in the innate antiviral defense against viral infections. Furthermore, the literature suggests that they may be developed into antiviral therapeutic agents.
Collapse
Affiliation(s)
- David C. Brice
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, Florida 32610, USA
| | - Gill Diamond
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, Florida 32610, USA
| |
Collapse
|
48
|
Kozhikhova KV, Shilovskiy IP, Shatilov AA, Timofeeva AV, Turetskiy EA, Vishniakova LI, Nikolskii AA, Barvinskaya ED, Karthikeyan S, Smirnov VV, Kudlay DA, Andreev SM, Khaitov MR. Linear and dendrimeric antiviral peptides: design, chemical synthesis and activity against human respiratory syncytial virus. J Mater Chem B 2020; 8:2607-2617. [DOI: 10.1039/c9tb02485a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel artificial peptides possess anti-RSV activity through a combination of two mechanisms: direct nonspecific destabilization of the viral envelope and competitive interaction with the RSV cellular receptor.
Collapse
Affiliation(s)
| | | | - Artem A. Shatilov
- NRC Institute Immunology FMBA
- Moscow
- Russian Federation
- Sechenov First Moscow State Medical University
- Moscow
| | - Anastasiia V. Timofeeva
- NRC Institute Immunology FMBA
- Moscow
- Russian Federation
- Sechenov First Moscow State Medical University
- Moscow
| | - Evgeny A. Turetskiy
- NRC Institute Immunology FMBA
- Moscow
- Russian Federation
- Sechenov First Moscow State Medical University
- Moscow
| | | | | | | | | | - Valeriy V. Smirnov
- NRC Institute Immunology FMBA
- Moscow
- Russian Federation
- Sechenov First Moscow State Medical University
- Moscow
| | | | | | | |
Collapse
|
49
|
Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation. Int J Mol Sci 2019; 20:ijms20225743. [PMID: 31731751 PMCID: PMC6888698 DOI: 10.3390/ijms20225743] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
In spite of the large-scale production and widespread distribution of vaccines and antiviral drugs, viruses remain a prominent human disease. Recently, the discovery of antiviral peptides (AVPs) has become an influential antiviral agent due to their extraordinary advantages. With the avalanche of newly-found peptide sequences in the post-genomic era, there is a great demand to develop a sequence-based predictor for timely identifying AVPs as this information is very useful for both basic research and drug development. In this study, we propose a novel sequence-based meta-predictor with an effective feature representation, called Meta-iAVP, for the accurate prediction of AVPs from given peptide sequences. Herein, the effective feature representation was extracted from a set of prediction scores derived from various machine learning algorithms and types of features. To the best of our knowledge, the model proposed herein represents the first meta-based approach for the prediction of AVPs. An overall accuracy and Matthews correlation coefficient of 95.20% and 0.90, respectively, was achieved from the independent test set on an objective benchmark dataset. Comparative analysis suggested that Meta-iAVP was superior to that of existing methods and therefore represents a useful tool for AVP prediction. Finally, in an effort to facilitate high-throughput prediction of AVPs, the model was deployed as the Meta-iAVP web server and is made freely available online at http://codes.bio/meta-iavp/ where users can submit query peptide sequences for determining the likelihood of whether or not these peptides are AVPs.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; (N.S.); (C.N.)
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; (N.S.); (C.N.)
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand;
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; (N.S.); (C.N.)
- Correspondence: ; Tel.: +66-2441-4371 (ext. 2715)
| |
Collapse
|
50
|
Vilas Boas LCP, Campos ML, Berlanda RLA, de Carvalho Neves N, Franco OL. Antiviral peptides as promising therapeutic drugs. Cell Mol Life Sci 2019; 76:3525-3542. [PMID: 31101936 PMCID: PMC7079787 DOI: 10.1007/s00018-019-03138-w] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 01/28/2023]
Abstract
While scientific advances have led to large-scale production and widespread distribution of vaccines and antiviral drugs, viruses still remain a major cause of human diseases today. The ever-increasing reports of viral resistance and the emergence and re-emergence of viral epidemics pressure the health and scientific community to constantly find novel molecules with antiviral potential. This search involves numerous different approaches, and the use of antimicrobial peptides has presented itself as an interesting alternative. Even though the number of antimicrobial peptides with antiviral activity is still low, they already show immense potential to become pharmaceutically available antiviral drugs. Such peptides can originate from natural sources, such as those isolated from mammals and from animal venoms, or from artificial sources, when bioinformatics tools are used. This review aims to shed some light on antimicrobial peptides with antiviral activities against human viruses and update the data about the already well-known peptides that are still undergoing studies, emphasizing the most promising ones that may become medicines for clinical use.
Collapse
Affiliation(s)
| | - Marcelo Lattarulo Campos
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, 78060-900, Brazil
| | - Rhayfa Lorrayne Araujo Berlanda
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | - Natan de Carvalho Neves
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | - Octávio Luiz Franco
- Universidade de Brasília, Pós-Graduação em Patologia Molecular, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil.
- S-Inova Biotech, Pós-graduação em Biotecnologia Universidade Católica Dom Bosco, Campo Grande, MS, 79117-900, Brazil.
| |
Collapse
|