1
|
de Calbiac H, Imbard A, de Lonlay P. Cellular mechanisms of acute rhabdomyolysis in inherited metabolic diseases. J Inherit Metab Dis 2025; 48:e12781. [PMID: 39135340 DOI: 10.1002/jimd.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 12/28/2024]
Abstract
Acute rhabdomyolysis (RM) constitutes a life-threatening emergency resulting from the (acute) breakdown of skeletal myofibers, characterized by a plasma creatine kinase (CK) level exceeding 1000 IU/L in response to a precipitating factor. Genetic predisposition, particularly inherited metabolic diseases, often underlie RM, contributing to recurrent episodes. Both sporadic and congenital forms of RM share common triggers. Considering the skeletal muscle's urgent need to rapidly adjust to environmental cues, sustaining sufficient energy levels and functional autophagy and mitophagy processes are vital for its preservation and response to stressors. Crucially, the composition of membrane lipids, along with lipid and calcium transport, and the availability of adenosine triphosphate (ATP), influence membrane biophysical properties, membrane curvature in skeletal muscle, calcium channel signaling regulation, and determine the characteristics of autophagic organelles. Consequently, a genetic defect involving ATP depletion, aberrant calcium release, abnormal lipid metabolism and/or lipid or calcium transport, and/or impaired anterograde trafficking may disrupt autophagy resulting in RM. The complex composition of lipid membranes also alters Toll-like receptor signaling and viral replication. In response, infections, recognized triggers of RM, stimulate increased levels of inflammatory cytokines, affecting skeletal muscle integrity, energy metabolism, and cellular trafficking, while elevated temperatures can reduce the activity of thermolabile enzymes. Overall, several mechanisms can account for RMs and may be associated in the same disease-causing RM.
Collapse
Affiliation(s)
- Hortense de Calbiac
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
| | - Apolline Imbard
- Service de Biochimie, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Faculté de pharmacie, LYPSIS, Université Paris Saclay, Orsay, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| | - Pascale de Lonlay
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| |
Collapse
|
2
|
Ijaz A, Collins AJ, Moreno-Cabañas A, Bradshaw L, Hutchins K, Betts JA, Podlogar T, Wallis GA, Gonzalez JT. Exogenous Glucose Oxidation During Exercise Is Positively Related to Body Size. Int J Sport Nutr Exerc Metab 2025; 35:12-23. [PMID: 39332815 DOI: 10.1123/ijsnem.2024-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/29/2024]
Abstract
There is little evidence that body size alters exogenous glucose oxidation rates during exercise. This study assessed whether larger people oxidize more exogenous glucose during exercise than smaller people. Fifteen cyclists were allocated into two groups based on body mass (SMALL, <70 kg body mass, n = 9, two females) or (LARGE, >70 kg body mass, n = 6) matched for lactate threshold (SMALL: 2.3 ± 0.4 W/kg, LARGE: 2.3 ± 0.3 W/kg). SMALL completed 120 min of cycling at 95% of lactate threshold1. LARGE completed two trials in a random order, one at 95% of lactate threshold1 (thereby exercising at the same relative intensity [RELATIVE]) and one at an absolute intensity matched to SMALL (ABSOLUTE). In all trials, cyclists ingested 90 g/hr of 13C-enriched glucose. Total exogenous glucose oxidation was (mean ± SD) 33 ± 8 g/hr in SMALL versus 45 ± 13 g/hr in LARGE-RELATIVE (mean difference: 13 g/hr, 95% confidence interval [2, 24] g/hr, p = .03). Large positive correlations were observed for measures of exogenous carbohydrate oxidation versus body size (body mass, height, and body surface area; e.g., body surface area vs. peak exogenous glucose oxidation, r = .85, 95% confidence interval [.51, .95], p < .01). When larger athletes reduced the intensity from RELATIVE to ABSOLUTE, total exogenous glucose oxidation was 39 ± 7 g/hr (p = .43 vs. LARGE-RELATIVE). In conclusion, the capacity for exogenous glucose oxidation is, on average, higher in larger athletes than smaller athletes during exercise. The extent to which this is due to higher absolute exercise intensity requires further research, but body size may be a consideration in tailoring sports nutrition guidelines for carbohydrate intake during exercise.
Collapse
Affiliation(s)
- Abdullah Ijaz
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - Adam J Collins
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - Alfonso Moreno-Cabañas
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | - Louise Bradshaw
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - Katie Hutchins
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - James A Betts
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - Tim Podlogar
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gareth A Wallis
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Javier T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
3
|
Nielsen LLK, Lambert MNT, Jensen J, Jeppesen PB. The Effect of Ingesting Alginate-Encapsulated Carbohydrates and Branched-Chain Amino Acids During Exercise on Performance, Gastrointestinal Symptoms, and Dental Health in Athletes. Nutrients 2024; 16:4412. [PMID: 39771033 PMCID: PMC11676411 DOI: 10.3390/nu16244412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND This study aimed to compare the effects of a carbohydrate (CHO) hydrogel with (ALG-CP) or without (ALG-C) branched-chain amino acids, and a CHO-only non-hydrogel (CON), on cycling performance. The hydrogels, encapsulated in an alginate matrix, are designed to control CHO release, potentially optimising absorption, increasing substrate utilisation, and reducing gastrointestinal distress as well as carious lesions. METHODS In a randomised, double-blinded, crossover trial, 10 trained male cyclists/triathletes completed three experimental days separated by ~6 days. During the experimental days, participants completed a standardised 2 h cycling bout (EX1), followed by a time-to-exhaustion (TTE) performance test at W75%. Supplements were ingested during EX1. RESULTS Participants cycled ~8.8 (29.6%) and ~5.4 (29.1%) minutes longer during TTE with ALG-CP compared to ALG-C and CON, respectively. TTE was 65.28 ± 2.8 min with ALG-CP, 56.46 ± 10.92 min with ALG-C, and 59.89 ± 11.89 min with CON. Heart rate (HR) was lower during EX1 with ALG-CP (p = 0.03), and insulin levels increased more significantly during the first 45 min with ALG-CP. Plasma glucose and glucagon levels remained consistent across supplements, although glucagon was higher with ALG-CP before TTE. Post-exercise myoglobin levels were lower with ALG-CP compared to ALG-C (p = 0.02), indicating reduced muscle damage. CONCLUSIONS While ALG-CP improved performance duration compared to ALG-C and CON, the difference did not reach statistical significance. Additionally, there was a lower HR during the cycling session, alongside a significantly lower level of myoglobin with ALG-CP. These findings suggest that ALG-CP may offer advantages in cycling performance and recovery.
Collapse
Affiliation(s)
- Lotte L. K. Nielsen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark (M.N.T.L.)
| | - Max Norman Tandrup Lambert
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark (M.N.T.L.)
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sports Sciences, 0863 Oslo, Norway
| | - Per Bendix Jeppesen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark (M.N.T.L.)
| |
Collapse
|
4
|
Xia W, Li X, Han R, Liu X. Microbial Champions: The Influence of Gut Microbiota on Athletic Performance via the Gut-Brain Axis. Open Access J Sports Med 2024; 15:209-228. [PMID: 39691802 PMCID: PMC11651067 DOI: 10.2147/oajsm.s485703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
In recent years, exercise has shown a powerful ability to regulate the gut microbiota received with concern. For instance, compared with the sedentary group, high-level athletes showed a different gut microbiota composition and remarkable capability of physiological metabolism. In addition, different diet patterns (eg, high-fat diet, high carbohydrate diet et.al) have different effects on gut microbiota, which can also affect exercise performance. Furthermore, adaptations to exercise also might be influenced by the gut microbiota, due to its important role in the transformation and expenditure of energy obtained from the diet. Therefore, appropriate dietary supplementation is important during exercise. And exploring the mechanisms by which dietary supplements affect exercise performance by modulating gut microbiota is of considerable interest to athletes wishing to achieve health and athletic performance. In this narrative review, the relationship between gut microbiota, dietary supplements, training adaptations and performance is discussed as follows. (i) The effects of the three main nutritional supplements on gut microbiota and athlete fitness. (ii) Strategies for dietary supplements and how they exerted function through gut microbiota alteration based on the gut-brain axis. (iii) Why dietary supplement interventions on gut microbiota should be tailored to different types of exercise. Our work integrates these factors to elucidate how specific nutritional supplements can modulate gut microbiota composition and, consequently, influence training adaptations and performance outcomes, unlike previous literature that often focuses solely on the effects of exercise or diet independently. And provides a comprehensive framework for athletes seeking to optimize their health and performance through a microbiota-centric approach.
Collapse
Affiliation(s)
- Wenrui Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaoang Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Ruixuan Han
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People’s Republic of China
| | - Xiaoke Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
5
|
Miguel-Ortega Á, Calleja-González J, Mielgo-Ayuso J. Endurance in Long-Distance Swimming and the Use of Nutritional Aids. Nutrients 2024; 16:3949. [PMID: 39599736 PMCID: PMC11597455 DOI: 10.3390/nu16223949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Long-distance swimmers exert energetic, physiological, and neuromuscular demands that must be matched with adequate body composition to improve their performance in long-distance swimming. OBJECTIVES This review aims to compile all available information on energetic and physiological demands, optimal body composition, nutrition, and ergogenic supplements in long-distance swimming. This will provide an understanding of the specific challenges and needs of this sport and will help swimmers and coaches design more effective training and nutrition plans to optimise performance and achieve their goals. METHODS Databases such as Web of Science, SciELO Citation Index, MEDLINE (PubMed), Current Contents Connect, KCI-Korean Journal Database, and Scopus were searched for publications in English using keywords such as swimming, endurance, energy demands, physiological demands, nutrition, body composition, and ergogenic aids, individually or in combination. RESULTS There is convincing evidence that several physical indicators, such as propulsive surface area, technical, such as stroke rate, and functional, such as hydration strategies, are related to swimming performance and body composition. Each athlete may have a specific optimal body fat level that is associated with improved sporting performance. The nutritional needs of open water swimmers during competition are quite different from those of pool swimmers. CONCLUSIONS Swimmers with an adequate physique have a high body muscle mass and moderately related anaerobic strength both on land and in the water. These general and specific strength capacities, which are given by certain anthropometric and physiological characteristics, are seen throughout the work, as well as ergogenic and nutritional strategies, which have an important impact on long-distance swimming performance.
Collapse
Affiliation(s)
- Álvaro Miguel-Ortega
- Faculty of Education, Alfonso X “The Wise” University (UAX), 28691 Madrid, Spain
- International Doctoral School, University of Murcia (UM), 30003 Murcia, Spain
| | - Julio Calleja-González
- Physical Education and Sport Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- Faculty of Kinesiology, University of Zagreb, 10110 Zagreb, Croatia
| | - Juan Mielgo-Ayuso
- Faculty of Health Sciences, University of Burgos (UBU), 09001 Burgos, Spain;
| |
Collapse
|
6
|
Soylu Y, Chmura P, Arslan E, Kilit B. The Effects of Carbohydrate Mouth Rinse on Psychophysiological Responses and Kinematic Profiles in Intermittent and Continuous Small-Sided Games in Adolescent Soccer Players: A Randomized, Double-Blinded, Placebo-Controlled, and Crossover Trial. Nutrients 2024; 16:3910. [PMID: 39599695 PMCID: PMC11597666 DOI: 10.3390/nu16223910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Mouth rinsing (MR) with a carbohydrate solution is one of the most popular methods athletes use to improve their game-based performance due to its acute ergogenic effect. OBJECTIVES This study aimed to evaluate the effects of the carbohydrate MR intervention on psychophysiological responses and kinematic profiles during intermittent (INT) and continuous (CON) 4-a-side small-sided soccer games (SSGs). METHODS Thirty-two adolescent soccer players (age: 16.5 ± 0.5 years) played six bouts of 4-a-side SSGs with MRINT or MRCON at 3-day intervals in a randomized, double-blinded, placebo-controlled, and crossover study design. Psychophysiological responses and kinematic profiles were continuously recorded during all games. The rating of perceived exertion (RPE), the rating scale of mental effort (RSME), and the physical enjoyment scores (PES) were also determined at the end of each game. RESULTS The MRCON induced higher psychophysiological responses such as RPE, internal training load (ITL), and RSME (p ≤ 0.05, d values ranging from 0.50 to 1.04 [small to moderate effect]). Conversely, the MRINT induced higher PES (p ≤ 0.05, d values = 1.44 [large effect]) compared to MRCON. Although the MR intervention led to similar improvements in the performance of 4-a-side MRINT and MRCON, there was no significant difference between the groups. CONCLUSIONS Our results suggest that the MR intervention can be used as an effective ergogenic supplement for acute game performance enhancement, regardless of the game's structure.
Collapse
Affiliation(s)
- Yusuf Soylu
- Faculty of Sport Sciences, Tokat Gaziosmanpasa University, Tokat 60250, Türkiye; (E.A.); (B.K.)
| | - Paweł Chmura
- Department of Team Games, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland;
| | - Ersan Arslan
- Faculty of Sport Sciences, Tokat Gaziosmanpasa University, Tokat 60250, Türkiye; (E.A.); (B.K.)
| | - Bulent Kilit
- Faculty of Sport Sciences, Tokat Gaziosmanpasa University, Tokat 60250, Türkiye; (E.A.); (B.K.)
| |
Collapse
|
7
|
Montero-Carrasco K, Arias-Tellez MJ, Soto-Sánchez J. Use of Carbohydrate (CHO), Gluten-Free, and FODMAP-Free Diets to Prevent Gastrointestinal Symptoms in Endurance Athletes: A Systematic Review. Nutrients 2024; 16:3852. [PMID: 39599638 PMCID: PMC11597158 DOI: 10.3390/nu16223852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Gastrointestinal symptoms (GISs) can affect the performance of endurance athletes (EAs). This study aims to analyze the efficacy of carbohydrate (CHO), gluten-free, and low-mono-saccharide and polyol (FODMAP) diets in preventing GISs in adult EAs of both sexes. METHODS A systematic search was conducted prior to 30 June 2024 in accordance with the PRISMA statement. We searched for original studies from the last eight years, in English or Spanish, that looked at the effect of CHO, gluten-free, or FODMAP diets on the GISs of EAs. In PubMed, the MeSH (medical subject heading) categories were used. The search was repeated in EBSCO, Google Scholar, and Web of Science. The inclusion criteria were determined using the PICOS framework and the risk of bias in each paper was assessed using the PEDro scale quality criteria checklist (systematic review registration: INPLASY202490080). RESULTS Of 289 articles identified, only 3.5% met the eligibility criteria. All studies found that GISs are common in EAs. We found that 60% of the articles used an experimental method; moreover, based on 80% of the articles, following a bowel training diet, like CHO, reduced fiber and dairy products, or a low-FODMAP diet, has the potential to reduce gastrointestinal symptoms and improve the athletic performance of EA. CONCLUSIONS We found that low-FODMAP diets, gut training with CHO intake, and decreased fiber and dairy intake may have favorable effects in preventing GISs. No studies support a gluten-free diet in reducing GISs in EAs.
Collapse
Affiliation(s)
- Karen Montero-Carrasco
- Programa de Magíster en Medicina y Ciencias del Deporte, Escuela de Kinesiología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580000, Chile;
| | - Maria Jose Arias-Tellez
- Department of Nutrition, Faculty of Medicine, University of Chile, Independence 1027, Santiago 8380453, Chile
| | - Johana Soto-Sánchez
- Centro de Biomedicina, Laboratorio de Actividad Física, Ejercicio y Salud, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580000, Chile
| |
Collapse
|
8
|
Geaney TR, Sievert ZA, Branch JD, Wilson PB. Effects of food bar chewing duration on the physiologic, metabolic, and perceptual responses to moderate-intensity running. Eur J Appl Physiol 2024; 124:3125-3133. [PMID: 38831140 PMCID: PMC11467068 DOI: 10.1007/s00421-024-05521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/25/2024] [Indexed: 06/05/2024]
Abstract
PURPOSE Chewing duration can affect food particle size, gastric processing, and postprandial glycemia, but these effects have not been investigated with exercise. This study examined how the chewing duration of a food bar impacts glycemic and metabolic responses, gastrointestinal (GI) symptoms, psychological affect, and performance during endurance running. METHODS This randomized, unblinded, crossover study had 15 males (35.2 ± 7.4 years, VO2peak: 56.1 ± 5.2 ml/kg/min) attend three laboratory visits. Visit 1 required a VO2peak test, 10 min familiarization run at 60% VO2peak, and familiarization time-to-exhaustion (TTE) test (10 min at 90% VO2peak, followed by TTE at 100% VO2peak). Visits 2 and 3 consisted of a 60 min run at 60% VO2peak, followed by TTE testing. Participants were fed 45 g of a bar (180 kcal, 4 g fat, 33 g carbohydrate, 3 g protein, 1 g fiber) in 9 g servings 30 min before running, and 27 g of bar in 9 g servings at three timepoints during the 60 min run. Participants consumed the servings in 20 (20CHEW) or 40 (40CHEW) masticatory cycles, at 1 chew/second. Outcomes included blood glucose, substrate use, GI symptoms, perceived exertion (RPE), overall feeling, and TTE. RESULTS Post-prandial blood glucose, GI symptoms, and RPE increased over time, but there were no significant between-condition or condition-by-time effects. TTE showed no significant between-condition effect (20CHEW: 288 ± 133 s; 40CHEW: 335 ± 299 s; p = 0.240). Overall feeling demonstrated a time-by-condition effect (p = 0.006), suggesting possible better maintenance over time with 40CHEW. CONCLUSION Cumulatively, the results suggest that extended chewing minimally impacts physiology, perceptions, and performance during 60 min moderate-intensity running.
Collapse
Affiliation(s)
- Thomas R Geaney
- Human Performance Laboratory, School of Exercise Science, College of Health Sciences, Old Dominion University, Norfolk, VA, 23529, USA
| | - Zachary A Sievert
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - J David Branch
- Human Performance Laboratory, School of Exercise Science, College of Health Sciences, Old Dominion University, Norfolk, VA, 23529, USA
| | - Patrick B Wilson
- Human Performance Laboratory, School of Exercise Science, College of Health Sciences, Old Dominion University, Norfolk, VA, 23529, USA.
| |
Collapse
|
9
|
Rozmiarek M. The Role of Nutrition in Maintaining the Health and Physical Condition of Sports Volunteers. Nutrients 2024; 16:3336. [PMID: 39408303 PMCID: PMC11479065 DOI: 10.3390/nu16193336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Nutrition plays a key role in maintaining health and physical condition, particularly for active individuals, including athletes. It can therefore be assumed that individuals performing physically demanding tasks during the organization of sporting events, such as volunteers, should also pay attention to their nutrition. While the importance of diet for athletes has been widely studied, the impact of nutrition on sports volunteers remains under-researched. Volunteers often have to cope with varying degrees of physical and mental exertion, which may affect their nutritional needs. A qualitative study was conducted using in-depth individual interviews (IDIs) with 17 sports volunteers who had experience in organizing various sporting events. Participants were purposefully selected based on specific inclusion criteria, which included active involvement in sports volunteering (with a minimum of two years of experience in volunteer activities) as well as volunteering experience at sports events of various scales. The interviews aimed to understand the eating habits, dietary awareness, and impact of nutrition on health and physical fitness. The data were transcribed and subjected to thematic analysis, focusing on coding responses and identifying recurring themes. Most participants did not place much importance on their diet, making random food choices due to a busy lifestyle and lack of time. Only a few volunteers consciously adjusted their diet when they had knowledge of the physically demanding tasks they were expected to perform during their volunteer work. The majority of volunteers relied on less reliable sources of nutritional information, such as blogs or social media, rather than credible sources of knowledge. This study revealed that many individuals involved in sports volunteering are unaware of the impact of diet on their fitness and health. There is a need for nutritional education for this group to improve their awareness of the importance of a balanced diet in the context of increased physical activity. It is also advisable to provide better nutritional conditions during sporting events and to promote the use of professional sources of information about healthy eating.
Collapse
Affiliation(s)
- Mateusz Rozmiarek
- Department of Sports Tourism, Faculty of Physical Culture Sciences, Poznan University of Physical Education, 61-871 Poznan, Poland
| |
Collapse
|
10
|
Sun K, Choi YT, Yu CCW, Nelson EAS, Goh J, Dai S, Hui LL. The Effects of Ketogenic Diets and Ketone Supplements on the Aerobic Performance of Endurance Runners: A Systematic Review. Sports Health 2024:19417381241271547. [PMID: 39233399 PMCID: PMC11569574 DOI: 10.1177/19417381241271547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
CONTEXT Ketogenic diets and ketone supplements have gained popularity among endurance runners given their purported effects: potentially delaying the onset of fatigue by enabling the increased utilization of the body's fat reserve or external ketone bodies during prolonged running. OBJECTIVE This systematic review was conducted to evaluate the effects of ketogenic diets (>60% fat and <10% carbohydrates/<50 g carbohydrates per day) or ketone supplements (ketone esters or ketone salts, medium-chain triglycerides or 1,3-butadiol) on the aerobic performance of endurance runners. DATA SOURCES A systematic search was conducted in PubMed, Web of Science, Pro Quest, and Science Direct for publications up to October 2023. STUDY SELECTION Human studies on the effects of ketogenic diets or ketone supplements on the aerobic performance of adult endurance runners were included after independent screening by 2 reviewers. STUDY DESIGN Systematic review. LEVEL OF EVIDENCE Level 3. DATA EXTRACTION Primary outcomes were markers of aerobic performance (maximal oxygen uptake [VO2max], race time, time to exhaustion and rate of perceived exertion). RESULTS VO2max was assessed by incremental test to exhaustion. Endurance performance was assessed by time trials, 180-minute running trials, or run-to-exhaustion trials; 5 studies on ketogenic diets and 7 studies on ketone supplements involving a total of 132 endurance runners were included. Despite the heterogeneity in study design and protocol, none reported benefits of ketogenic diets or ketone supplements on selected markers of aerobic performance compared with controls. Reduction in bodyweight and fat while preserving lean mass and improved glycemic control were reported in some included studies on ketogenic diets. CONCLUSION This review did not identify any significant advantages or disadvantages of ketogenic diets or ketone supplements for the aerobic performance of endurance runners. Further trials with larger sample sizes, more gender-balanced participants, longer ketogenic diet interventions, and follow-up on metabolic health are warranted.
Collapse
Affiliation(s)
- Kexin Sun
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yee Tung Choi
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Clare Chung Wah Yu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Edmund Anthony Severn Nelson
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Jorming Goh
- Exercise Physiology & Biomarkers (EPB) Laboratory, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, NUS, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, NUS, Singapore
| | - Siyu Dai
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lai Ling Hui
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
11
|
Gregorace JI, Bellenger CR, Edwards AM, Greenham GE, Nelson MJ. Contextual factors associated with running demands in elite Australian football: a scoping review. SCI MED FOOTBALL 2024; 8:278-286. [PMID: 36940253 DOI: 10.1080/24733938.2023.2192042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2023] [Indexed: 03/22/2023]
Abstract
OBJECTIVES To identify and summarise the contextual factors associated with running demands in elite male Australian football (AF) gameplay that have been reported in the literature. DESIGN Scoping review. METHODS A contextual factor in sporting gameplay is a variable associated with the interpretation of results, yet is not the primary objective of gameplay. Systematic literature searches were performed in four databases to identify what contextual factors associated with running demands in elite male AF have been reported: Scopus, SPORTDiscus, Ovid Medline and CINAHL, for terms constructed around Australian football AND running demands AND contextual factors. The present scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), and narrative synthesis was conducted. RESULTS AND CONCLUSION A total of 36 unique articles were identified by the systematic literature search, which included 20 unique contextual factors. The most studied contextual factors were position (n = 13), time in game (n = 9), phases of play (n = 8), rotations (n = 7) and player rank (n = 6). Multiple contextual factors, such as playing position, aerobic fitness, rotations, time within a game, stoppages, and season phase appear to correlate with running demands in elite male AF. Many identified contextual factors have very limited published evidence and thus additional studies would help draw stronger conclusions.
Collapse
Affiliation(s)
- Josh I Gregorace
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- High Performance Department, Adelaide Football Club, Adelaide, South Australia Australia
| | - Clint R Bellenger
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Ashleigh M Edwards
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Grace E Greenham
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- High Performance Department, Adelaide Football Club, Adelaide, South Australia Australia
| | - Maximillian J Nelson
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| |
Collapse
|
12
|
Samanipour MH, Mohammadian S, Del Coso J, Salehian O, Jeddi FK, Khosravi M, González-Ravé JM, Ceylan Hİ, Liu H, Abou Sawan S, Jäger R. Body Composition and Dietary Intake Profiles of Elite Iranian Swimmers and Water Polo Athletes. Nutrients 2024; 16:2393. [PMID: 39125274 PMCID: PMC11313993 DOI: 10.3390/nu16152393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND This study aimed to conduct a detailed and comparative analysis of body composition and dietary habits in elite swimming and water polo athletes. Through the examination of these key parameters, this study seeks to compare the dietary intake of these two distinct aquatic sports disciplines. METHODS A total of 10 top-level swimmers and 13 water polo athletes participated in anthropometric and body composition assessments, as well as a detailed analysis of nutritional intake. To compare the two groups, an independent samples t-test was used, and variance homogeneity was checked using Levene's test. The effect size of the group differences was evaluated using Hedges' g. RESULTS Water polo athletes showed significantly greater height (189.4 ± 2.9 vs. 186.5 ± 2.0 cm, p = 0.013), body mass index (24.3 ± 1.4 vs. 22.1 ± 0.5 kg/m2, p < 0.001), fat-free mass (62.9 ± 1.4 vs. 61.1 ± 1.38 kg, p < 0.001), skeletal muscle mass (47.1 ± 1.3 vs. 43.9 ± 1.6 kg, p < 0.001), and overall weight (86.9 ± 6.9 vs. 76.7 ± 2.2 kg, p < 0.001) in comparison to swimmers. Swimmers consumed greater amounts of mean daily energy (60.0 ± 1.0 vs. 39.0 ± 1.0 kcal/kg, p < 0.001), carbohydrate (7.8 ± 0.3 vs. 4.4 ± 0.5 g/kg, p < 0.001), protein (1.7 ± 0.5 vs. 1.4 ± 0.5 g/kg, p < 0.001), and fat (2.4 ± 0.5 vs. 1.7 ± 0.5 g/kg, p < 0.001) compared to water polo athletes. CONCLUSION Our findings highlight the need for differentiated targeted nutritional interventions to enhance athletic performance in different types of water sports. Compared to water polo athletes, swimmers consumed significantly higher amounts of calories, matching their increased calorie demand from their specific training regime. However, this is an observational study and the differential needs of energy and macronutrients in water sports should be confirmed by studies with energy expenditure measurements.
Collapse
Affiliation(s)
| | - Shahzad Mohammadian
- Department of Sport Nutrition, National Paralympic Committee (NPC), Tehran 19956-13114, Iran
| | - Juan Del Coso
- Centre for Sport Studies, Universidad Rey Juan Carlos, 28922 Madrid, Spain;
| | - Omid Salehian
- Department of Sport Nutrition and Fitness, Applied and Science University, Tehran 13114-16846, Iran
| | - Fatemeh Khodakhah Jeddi
- Research Center Faculty of Nutrition, Tabriz University of Medical Science, Tabriz 51656-87386, Iran
| | - Mehdi Khosravi
- Department of Human Sciences, North Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran
| | - José M. González-Ravé
- Sports Training Laboratory, Faculty of Sports Sciences, University of Castilla La Mancha, 13071 Toledo, Spain;
| | - Halil İbrahim Ceylan
- Physical Education and Sports Teaching Department, Faculty of Sports Sciences, Atatürk University, 25030 Erzurum, Turkey;
| | - Hongyou Liu
- School of Physical Education & Sports Science, South China Normal University, Guangzhou 510631, China;
| | | | - Ralf Jäger
- Increnovo LLC, Whitefish Bay, WI 53217, USA
| |
Collapse
|
13
|
Zhang L, Li H, Song Z, Liu Y, Zhang X. Dietary Strategies to Improve Exercise Performance by Modulating the Gut Microbiota. Foods 2024; 13:1680. [PMID: 38890909 PMCID: PMC11171530 DOI: 10.3390/foods13111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Numerous research studies have shown that moderate physical exercise exerts positive effects on gastrointestinal tract health and increases the variety and relative number of beneficial microorganisms in the intestinal microbiota. Increasingly, studies have shown that the gut microbiota is critical for energy metabolism, immunological response, oxidative stress, skeletal muscle metabolism, and the regulation of the neuroendocrine system, which are significant for the physiological function of exercise. Dietary modulation targeting the gut microbiota is an effective prescription for improving exercise performance and alleviating exercise fatigue. This article discusses the connection between exercise and the makeup of the gut microbiota, as well as the detrimental effects of excessive exercise on gut health. Herein, we elaborate on the possible mechanism of the gut microbiota in improving exercise performance, which involves enhancing skeletal muscle function, reducing oxidative stress, and regulating the neuroendocrine system. The effects of dietary nutrition strategies and probiotic supplementation on exercise from the perspective of the gut microbiota are also discussed in this paper. A deeper understanding of the potential mechanism by which the gut microbiota exerts positive effects on exercise and dietary nutrition recommendations targeting the gut microbiota is significant for improving exercise performance. However, further investigation is required to fully comprehend the intricate mechanisms at work.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (H.L.)
| | - Haoyu Li
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (H.L.)
| | - Zheyi Song
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Z.S.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Z.S.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Z.S.)
| |
Collapse
|
14
|
Valenzuela PL, Santalla A, Alejo LB, Merlo A, Bustos A, Castellote-Bellés L, Ferrer-Costa R, Maffiuletti NA, Barranco-Gil D, Pinós T, Lucia A. Dose-response effect of pre-exercise carbohydrates under muscle glycogen unavailability: Insights from McArdle disease. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:398-408. [PMID: 38030066 PMCID: PMC11116998 DOI: 10.1016/j.jshs.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND This study aimed to determine the effect of different carbohydrate (CHO) doses on exercise capacity in patients with McArdle disease-the paradigm of "exercise intolerance", characterized by complete muscle glycogen unavailability-and to determine whether higher exogenous glucose levels affect metabolic responses at the McArdle muscle cell (in vitro) level. METHODS Patients with McArdle disease (n = 8) and healthy controls (n = 9) underwent a 12-min submaximal cycling constant-load bout followed by a maximal ramp test 15 min after ingesting a non-caloric placebo. In a randomized, double-blinded, cross-over design, patients repeated the tests after consuming either 75 g or 150 g of CHO (glucose:fructose = 2:1). Cardiorespiratory, biochemical, perceptual, and electromyographic (EMG) variables were assessed. Additionally, glucose uptake and lactate appearance were studied in vitro in wild-type and McArdle mouse myotubes cultured with increasing glucose concentrations (0.35, 1.00, 4.50, and 10.00 g/L). RESULTS Compared with controls, patients showed the "classical" second-wind phenomenon (after prior disproportionate tachycardia, myalgia, and excess electromyographic activity during submaximal exercise, all p < 0.05) and an impaired endurance exercise capacity (-51% ventilatory threshold and -55% peak power output, both p < 0.001). Regardless of the CHO dose (p < 0.05 for both doses compared with the placebo), CHO intake increased blood glucose and lactate levels, decreased fat oxidation rates, and attenuated the second wind in the patients. However, only the higher dose increased ventilatory threshold (+27%, p = 0.010) and peak power output (+18%, p = 0.007). In vitro analyses revealed no differences in lactate levels across glucose concentrations in wild-type myotubes, whereas a dose-response effect was observed in McArdle myotubes. CONCLUSION CHO intake exerts beneficial effects on exercise capacity in McArdle disease, a condition associated with total muscle glycogen unavailability. Some of these benefits are dose dependent.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid 28041, Spain; Department of Systems Biology, University of Alcalá, Madrid 28871, Spain.
| | - Alfredo Santalla
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Sevilla 41013, Spain; EVOPRED Research Group, Universidad Europea de Canarias, Tenerife 38300, Spain
| | - Lidia B Alejo
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid 28041, Spain; Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| | - Andrea Merlo
- Gait & Motion Analysis Laboratory, Sol et Salus Hospital, Torre Pedrera di Rimini (RN) 47922, Italy
| | - Asunción Bustos
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| | - Laura Castellote-Bellés
- Department of Clinical Biochemistry, Laboratoris Clínics, Hospital Universitari Vall d'Hebron, Barcelona 08035, Spain
| | - Roser Ferrer-Costa
- Department of Clinical Biochemistry, Laboratoris Clínics, Hospital Universitari Vall d'Hebron, Barcelona 08035, Spain
| | | | - David Barranco-Gil
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| | - Tomás Pinós
- Biomedical Research Networking Center on Rare Disorders (CIBERER), Barcelona 08035, Spain; Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.
| | - Alejandro Lucia
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid 28041, Spain; Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| |
Collapse
|
15
|
Burtscher J, Pasha Q, Chanana N, Millet GP, Burtscher M, Strasser B. Immune consequences of exercise in hypoxia: A narrative review. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:297-310. [PMID: 37734549 PMCID: PMC11116970 DOI: 10.1016/j.jshs.2023.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Immune outcomes are key mediators of many health benefits of exercise and are determined by exercise type, dose (frequency/duration, intensity), and individual characteristics. Similarly, reduced availability of ambient oxygen (hypoxia) modulates immune functions depending on the hypoxic dose and the individual capacity to respond to hypoxia. How combined exercise and hypoxia (e.g., high-altitude training) sculpts immune responses is not well understood, although such combinations are becoming increasingly popular. Therefore, in this paper, we summarize the impact on immune responses of exercise and of hypoxia, both independently and together, with a focus on specialized cells in the innate and adaptive immune system. We review the regulation of the immune system by tissue oxygen levels and the overlapping and distinct immune responses related to exercise and hypoxia, then we discuss how they may be modulated by nutritional strategies. Mitochondrial, antioxidant, and anti-inflammatory mechanisms underlie many of the adaptations that can lead to improved cellular metabolism, resilience, and overall immune functions by regulating the survival, differentiation, activation, and migration of immune cells. This review shows that exercise and hypoxia can impair or complement/synergize with each other while regulating immune system functions. Appropriate acclimatization, training, and nutritional strategies can be used to avoid risks and tap into the synergistic potentials of the poorly studied immune consequences of exercising in a hypoxic state.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
| | - Qadar Pasha
- Institute of Hypoxia Research, New Delhi 110067, India
| | - Neha Chanana
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck 6020, Austria.
| | - Barbara Strasser
- Faculty of Medicine, Sigmund Freud Private University, Vienna 1020, Austria; Ludwig Boltzmann Institute for Rehabilitation Research, Vienna 1100, Austria
| |
Collapse
|
16
|
Moitzi AM, Krššák M, Klepochova R, Triska C, Csapo R, König D. Effects of a 10-Week Exercise and Nutritional Intervention with Variable Dietary Carbohydrates and Glycaemic Indices on Substrate Metabolism, Glycogen Storage, and Endurance Performance in Men: A Randomized Controlled Trial. SPORTS MEDICINE - OPEN 2024; 10:36. [PMID: 38600291 PMCID: PMC11006643 DOI: 10.1186/s40798-024-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Daily nutrition plays an important role in supporting training adaptions and endurance performance. The objective of this 10-week study was to investigate the consequences of varying carbohydrate consumption and the glycaemic index (GI) together with an endurance training regimen on substrate oxidation, muscle energy storage and endurance performance under free-living conditions. Sixty-five moderately trained healthy men (29 ± 4 years; VO2 peak 55 ± 8 mL min-1 kg-1) were randomized to one of three different nutritional regimes (LOW-GI: 50-60% CHO with ≥ 65% of these CHO with GI < 50 per day, n = 24; HIGH-GI: 50-60% CHO with ≥ 65% CHO with GI > 70 per day, n = 20; LCHF: ≤ 50 g CHO daily, n = 21). Metabolic alterations and performance were assessed at baseline (T0) and after 10 weeks (T10) during a graded exercise treadmill test. Additionally, a 5 km time trial on a 400-m outdoor track was performed and muscle glycogen was measured by magnet resonance spectroscopy. RESULTS Total fat oxidation expressed as area under the curve (AUC) during the graded exercise test increased in LCHF (1.3 ± 2.4 g min-1 × km h-1, p < 0.001), remained unchanged in LOW-GI (p > 0.05) and decreased in HIGH-GI (- 1.7 ± 1.5 g min-1 × km h-1, p < 0.001). After the intervention, LOW-GI (- 0.4 ± 0.5 mmol L-1 × km h-1, p < 0.001) and LCHF (- 0.8 ± 0.7 mmol L-1 × km h-1, p < 0.001) showed significantly lower AUC of blood lactate concentrations. Peak running speed increased in LOW-GI (T0: 4.3 ± 0.4 vs. T10: 4.5 ± 0.3 m s-1, p < 0.001) and HIGH-GI (T0: 4.4 ± 0.5 vs. T10: 4.6 ± 0.4 m s-1), while no improvement was observed in LCHF. Yet, time trial performance improved significantly in all groups. Muscle glycogen content increased for participants in HIGH-GI (T0: 97.3 ± 18.5 vs. T10: 144.5 ± 39.8 mmol L wet-tissue-1, p = 0.027) and remained unchanged in the LOW-GI and the LCHF group. At the last examination, muscle glycogen concentration was significantly higher in LOW-GI compared to LCHF (p = 0.014). CONCLUSION Changes in fat oxidation were only present in LCHF, however, lower lactate concentrations in LOW-GI resulted in changes indicating an improved substrate metabolism. Compared to a LCHF diet, changes in peak running speed, and muscle glycogen stores were superior in LOW- and HIGH-GI diets. The low GI diet seems to have an influence on substrate metabolism without compromising performance at higher intensities, suggesting that a high-carbohydrate diet with a low GI is a viable alternative to a LCHF or a high GI diet. TRIAL REGISTRATION Clinical Trials, NCT05241730. https://clinicaltrials.gov/study/NCT05241730 . Registered 25 January 2021.
Collapse
Affiliation(s)
- Anna Maria Moitzi
- Division of Nutrition, Exercise and Health, Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria.
- Division of Nurtition, Exercise and Health, Department of Sport and Human Movement Science, University of Vienna, Vienna, Austria.
| | - Martin Krššák
- Department of Biomedical Imaging and Image Guided Therapy, High Field MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Radka Klepochova
- Department of Biomedical Imaging and Image Guided Therapy, High Field MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christoph Triska
- Leistungssport Austria, High Performance Centre, Brunn am Gebirge, Lower Austria, Austria
- Division of Training Science, Department of Sport and Human Movement Science, University of Vienna, Vienna, Austria
| | - Robert Csapo
- Division of Training Science, Department of Sport and Human Movement Science, University of Vienna, Vienna, Austria
| | - Daniel König
- Division of Nutrition, Exercise and Health, Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Division of Nurtition, Exercise and Health, Department of Sport and Human Movement Science, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Quinones MD, Weiman K, Lemon PWR. Ketone Monoester Followed by Carbohydrate Ingestion after Glycogen-Lowering Exercise Does Not Improve Subsequent Endurance Cycle Time Trial Performance. Nutrients 2024; 16:932. [PMID: 38612966 PMCID: PMC11013615 DOI: 10.3390/nu16070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Relative to carbohydrate (CHO) alone, exogenous ketones followed by CHO supplementation during recovery from glycogen-lowering exercise have been shown to increase muscle glycogen resynthesis. However, whether this strategy improves subsequent exercise performance is unknown. The objective of this study was to assess the efficacy of ketone monoester (KME) followed by CHO ingestion after glycogen-lowering exercise on subsequent 20 km (TT20km) and 5 km (TT5km) best-effort time trials. Nine recreationally active men (175.6 ± 5.3 cm, 72.9 ± 7.7 kg, 28 ± 5 y, 12.2 ± 3.2% body fat, VO2max = 56.2 ± 5.8 mL· kg BM-1·min-1; mean ± SD) completed a glycogen-lowering exercise session, followed by 4 h of recovery and subsequent TT20km and TT5km. During the first 2 h of recovery, participants ingested either KME (25 g) followed by CHO at a rate of 1.2 g·kg-1·h-1 (KME + CHO) or an iso-energetic placebo (dextrose) followed by CHO (PLAC + CHO). Blood metabolites during recovery and performance during the subsequent two-time trials were measured. In comparison to PLAC + CHO, KME + CHO displayed greater (p < 0.05) blood beta-hydroxybutyrate concentration during the first 2 h, lower (p < 0.05) blood glucose concentrations at 30 and 60 min, as well as greater (p < 0.05) blood insulin concentration 2 h following ingestion. However, no treatment differences (p > 0.05) in power output nor time to complete either time trial were observed vs. PLAC + CHO. These data indicate that the metabolic changes induced by KME + CHO ingestion following glycogen-lowering exercise are insufficient to enhance subsequent endurance time trial performance.
Collapse
Affiliation(s)
| | | | - Peter W. R. Lemon
- Exercise Nutrition Research Laboratory, School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7, Canada; (M.D.Q.); (K.W.)
| |
Collapse
|
18
|
Valenzuela PL, Santalla A, Alejo LB, Bustos A, Ozcoidi LM, Castellote-Bellés L, Ferrer-Costa R, Villarreal-Salazar M, Morán M, Barranco-Gil D, Pinós T, Lucia A. Acute ketone supplementation in the absence of muscle glycogen utilization: Insights from McArdle disease. Clin Nutr 2024; 43:692-700. [PMID: 38320460 DOI: 10.1016/j.clnu.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND & AIMS Ketone supplementation is gaining popularity. Yet, its effects on exercise performance when muscle glycogen cannot be used remain to be determined. McArdle disease can provide insight into this question, as these patients are unable to obtain energy from muscle glycogen, presenting a severely impaired physical capacity. We therefore aimed to assess the effects of acute ketone supplementation in the absence of muscle glycogen utilization (McArdle disease). METHODS In a randomized cross-over design, patients with an inherited block in muscle glycogen breakdown (i.e., McArdle disease, n = 8) and healthy controls (n = 7) underwent a submaximal (constant-load) test that was followed by a maximal ramp test, after the ingestion of a placebo or an exogenous ketone ester supplement (30 g of D-beta hydroxybutyrate/D 1,3 butanediol monoester). Patients were also assessed after carbohydrate (75 g) ingestion, which is currently considered best clinical practice in McArdle disease. RESULTS Ketone supplementation induced ketosis in all participants (blood [ketones] = 3.7 ± 0.9 mM) and modified some gas-exchange responses (notably increasing respiratory exchange ratio, especially in patients). Patients showed an impaired exercise capacity (-65 % peak power output (PPO) compared to controls, p < 0.001) and ketone supplementation resulted in a further impairment (-11.6 % vs. placebo, p = 0.001), with no effects in controls (p = 0.268). In patients, carbohydrate supplementation resulted in a higher PPO compared to ketones (+21.5 %, p = 0.001) and a similar response was observed vs. placebo (+12.6 %, p = 0.057). CONCLUSIONS In individuals who cannot utilize muscle glycogen but have a preserved ability to oxidize blood-borne glucose and fat (McArdle disease), acute ketone supplementation impairs exercise capacity, whereas carbohydrate ingestion exerts the opposite, beneficial effect.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of Hospital '12 de Octubre' ('imas12'), Madrid, Spain; Department of Systems Biology, University of Alcalá, Madrid, Spain.
| | - Alfredo Santalla
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Sevilla, Spain; EVOPRED Research Group, Universidad Europea de Canarias, Tenerife, Spain
| | - Lidia B Alejo
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of Hospital '12 de Octubre' ('imas12'), Madrid, Spain; Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Asunción Bustos
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Laureano M Ozcoidi
- Hospital Reina Sofía de Tudela, Servicio Navarro de Salud, Navarra, Spain
| | - Laura Castellote-Bellés
- Department of Clinical Biochemistry, Laboratoris Clínics, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Roser Ferrer-Costa
- Department of Clinical Biochemistry, Laboratoris Clínics, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| | - María Morán
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain; Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain.
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Flockhart M, Larsen FJ. Continuous Glucose Monitoring in Endurance Athletes: Interpretation and Relevance of Measurements for Improving Performance and Health. Sports Med 2024; 54:247-255. [PMID: 37658967 PMCID: PMC10933193 DOI: 10.1007/s40279-023-01910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
Blood glucose regulation has been studied for well over a century as it is intimately related to metabolic health. Research in glucose transport and uptake has also been substantial within the field of exercise physiology as glucose delivery to the working muscles affects exercise capacity and athletic achievements. However, although exceptions exist, less focus has been on blood glucose as a parameter to optimize training and competition outcomes in athletes with normal glucose control. During the last years, measuring glucose has gained popularity within the sports community and successful endurance athletes have been seen with skin-mounted sensors for continuous glucose monitoring (CGM). The technique offers real-time recording of glucose concentrations in the interstitium, which is assumed to be equivalent to concentrations in the blood. Although continuous measurements of a parameter that is intimately connected to metabolism and health can seem appealing, there is no current consensus on how to interpret measurements within this context. Well-defined approaches to use glucose monitoring to improve endurance athletes' performance and health are lacking. In several studies, blood glucose regulation in endurance athletes has been shown to differ from that in healthy controls. Furthermore, endurance athletes regularly perform demanding training sessions and can be exposed to high or low energy and/or carbohydrate availability, which can affect blood glucose levels and regulation. In this current opinion, we aim to discuss blood glucose regulation in endurance athletes and highlight the existing research on glucose monitoring for performance and health in this population.
Collapse
Affiliation(s)
- Mikael Flockhart
- The Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, 114 33, Stockholm, Sweden.
| | - Filip J Larsen
- The Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, 114 33, Stockholm, Sweden.
| |
Collapse
|
20
|
Prieto-Bellver G, Diaz-Lara J, Bishop DJ, Fernández-Sáez J, Abián-Vicén J, San-Millan I, Santos-Concejero J. A Five-Week Periodized Carbohydrate Diet Does Not Improve Maximal Lactate Steady-State Exercise Capacity and Substrate Oxidation in Well-Trained Cyclists compared to a High-Carbohydrate Diet. Nutrients 2024; 16:318. [PMID: 38276556 PMCID: PMC10820927 DOI: 10.3390/nu16020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
There is a growing interest in studies involving carbohydrate (CHO) manipulation and subsequent adaptations to endurance training. This study aimed to analyze whether a periodized carbohydrate feeding strategy based on a daily training session has any advantages compared to a high-carbohydrate diet in well-trained cyclists. Seventeen trained cyclists (VO2peak = 70.8 ± 6.5 mL·kg-1·min-1) were divided into two groups, a periodized (PCHO) group and a high-carbohydrate (HCHO) group. Both groups performed the same training sessions for five weeks. In the PCHO group, 13 training sessions were performed with low carbohydrate availability. In the HCHO group, all sessions were completed following previous carbohydrate intake to ensure high pre-exercise glycogen levels. In both groups, there was an increase in the maximal lactate steady state (MLSS) (PCHO: 244.1 ± 29.9 W to 253.2 ± 28.4 W; p = 0.008; HCHO: 235.8 ± 21.4 W to 246.9 ± 16.7 W; p = 0.012) but not in the time to exhaustion at MLSS intensity. Both groups increased the percentage of muscle mass (PCHO: p = 0.021; HCHO: p = 0.042) and decreased the percent body fat (PCHO: p = 0.021; HCHO: p = 0.012). We found no differences in carbohydrate or lipid oxidation, heart rate, and post-exercise lactate concentration. Periodizing the CHO intake in well-trained cyclists during a 5-week intervention did not elicit superior results to an energy intake-matched high-carbohydrate diet in any of the measured outcomes.
Collapse
Affiliation(s)
- Gorka Prieto-Bellver
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; (G.P.-B.); (J.A.-V.)
| | - Javier Diaz-Lara
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; (G.P.-B.); (J.A.-V.)
| | - David J. Bishop
- Institute for Health and Sport (IHeS), Victoria University, Footscray VIC 3011, Australia;
| | - José Fernández-Sáez
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 43500 Tortosa, Spain;
| | - Javier Abián-Vicén
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; (G.P.-B.); (J.A.-V.)
| | - Iñigo San-Millan
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO 80918, USA;
| | - Jordan Santos-Concejero
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| |
Collapse
|
21
|
Amawi A, AlKasasbeh W, Jaradat M, Almasri A, Alobaidi S, Hammad AA, Bishtawi T, Fataftah B, Turk N, Saoud HA, Jarrar A, Ghazzawi H. Athletes' nutritional demands: a narrative review of nutritional requirements. Front Nutr 2024; 10:1331854. [PMID: 38328685 PMCID: PMC10848936 DOI: 10.3389/fnut.2023.1331854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
Nutrition serves as the cornerstone of an athlete's life, exerting a profound impact on their performance and overall well-being. To unlock their full potential, athletes must adhere to a well-balanced diet tailored to their specific nutritional needs. This approach not only enables them to achieve optimal performance levels but also facilitates efficient recovery and reduces the risk of injuries. In addition to maintaining a balanced diet, many athletes also embrace the use of nutritional supplements to complement their dietary intake and support their training goals. These supplements cover a wide range of options, addressing nutrient deficiencies, enhancing recovery, promoting muscle synthesis, boosting energy levels, and optimizing performance in their respective sports or activities. The primary objective of this narrative review is to comprehensively explore the diverse nutritional requirements that athletes face to optimize their performance, recovery, and overall well-being. Through a thorough literature search across databases such as PubMed, Google Scholar, and Scopus, we aim to provide evidence-based recommendations and shed light on the optimal daily intakes of carbohydrates, protein, fats, micronutrients, hydration strategies, ergogenic aids, nutritional supplements, and nutrient timing. Furthermore, our aim is to dispel common misconceptions regarding sports nutrition, providing athletes with accurate information and empowering them in their nutritional choices.
Collapse
Affiliation(s)
- Adam Amawi
- Department of Exercise Science and Kinesiology, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Walaa AlKasasbeh
- Department of Physical and Health Education, Faculty of Educational Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Manar Jaradat
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Amani Almasri
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Sondos Alobaidi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Aya Abu Hammad
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Taqwa Bishtawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Batoul Fataftah
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Nataly Turk
- Department of Family and Community Medicine, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Hassan Al Saoud
- Department of Exercise Science and Kinesiology, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Amjad Jarrar
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Oxford Brookes Center for Nutrition and Health, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Hadeel Ghazzawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| |
Collapse
|
22
|
Gordon RE, Scrooby B, Havemann-Nel L. Physiological and nutrition-related challenges as perceived by spinal cord-injured endurance hand cyclists. Appl Physiol Nutr Metab 2024; 49:22-29. [PMID: 37793190 DOI: 10.1139/apnm-2023-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
This study explored the perceptions of spinal cord-injured (SCI) endurance hand cyclists regarding their physiological and nutrition-related challenges and the perceived impact of these challenges on nutritional intake and exercise capacity. This was an interpretive qualitative descriptive study in which semi-structured interviews were conducted with 12 adult South African national-level SCI endurance hand cyclists. Thematic analysis was used to explore perceptions regarding physiological and nutrition-related challenges and the impact thereof on nutritional practices and exercise capacity. Four themes emerged from the interviews: (i) physiological challenges experienced, (ii) nutrition-related challenges experienced, (iii) changes in nutritional practices, and (iv) compromised exercise capacity. The SCI endurance hand cyclists reported a number of physiological and nutrition-related challenges. Bowel and bladder challenges, limited hand function, muscle spasms, thermoregulatory challenges, pressure sores, menstrual periods, and low iron levels/anaemia were perceived to predominantly impact food and fluid intake (restrict intake) and compromise exercise capacity. This information can assist to devise tailored guidelines aimed to optimise fluid intake, overcome bladder challenges and ensure adequate nutritional intake in light of limited hand function.
Collapse
Affiliation(s)
- Reno Eron Gordon
- Department of Human Nutrition & DieteticsSchool of Health Care Sciences, Sefako Makgatho Health Sciences University, Ga-Rankuwa 0204, South Africa
- Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom 2520, South Africa
| | - Belinda Scrooby
- School of Nursing Science, North-West University, Potchefstroom 2520, South Africa
| | - Lize Havemann-Nel
- Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
23
|
Jagim AR, Harty PS, Tinsley GM, Kerksick CM, Gonzalez AM, Kreider RB, Arent SM, Jager R, Smith-Ryan AE, Stout JR, Campbell BI, VanDusseldorp T, Antonio J. International society of sports nutrition position stand: energy drinks and energy shots. J Int Soc Sports Nutr 2023; 20:2171314. [PMID: 36862943 PMCID: PMC9987737 DOI: 10.1080/15502783.2023.2171314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature regarding the effects of energy drink (ED) or energy shot (ES) consumption on acute exercise performance, metabolism, and cognition, along with synergistic exercise-related performance outcomes and training adaptations. The following 13 points constitute the consensus of the Society and have been approved by the Research Committee of the Society: Energy drinks (ED) commonly contain caffeine, taurine, ginseng, guarana, carnitine, choline, B vitamins (vitamins B1, B2, B3, B5, B6, B9, and B12), vitamin C, vitamin A (beta carotene), vitamin D, electrolytes (sodium, potassium, magnesium, and calcium), sugars (nutritive and non-nutritive sweeteners), tyrosine, and L-theanine, with prevalence for each ingredient ranging from 1.3 to 100%. Energy drinks can enhance acute aerobic exercise performance, largely influenced by the amount of caffeine (> 200 mg or >3 mg∙kg bodyweight [BW-1]) in the beverage. Although ED and ES contain several nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES based on scientific evidence appear to be caffeine and/or the carbohydrate provision. The ergogenic value of caffeine on mental and physical performance has been well-established, but the potential additive benefits of other nutrients contained in ED and ES remains to be determined. Consuming ED and ES 10-60 minutes before exercise can improve mental focus, alertness, anaerobic performance, and/or endurance performance with doses >3 mg∙kg BW-1. Consuming ED and ES containing at least 3 mg∙kg BW-1 caffeine is most likely to benefit maximal lower-body power production. Consuming ED and ES can improve endurance, repeat sprint performance, and sport-specific tasks in the context of team sports. Many ED and ES contain numerous ingredients that either have not been studied or evaluated in combination with other nutrients contained in the ED or ES. For this reason, these products need to be studied to demonstrate efficacy of single- and multi-nutrient formulations for physical and cognitive performance as well as for safety. Limited evidence is available to suggest that consumption of low-calorie ED and ES during training and/or weight loss trials may provide ergogenic benefit and/or promote additional weight control, potentially through enhanced training capacity. However, ingestion of higher calorie ED may promote weight gain if the energy intake from consumption of ED is not carefully considered as part of the total daily energy intake. Individuals should consider the impact of regular coingestion of high glycemic index carbohydrates from ED and ES on metabolic health, blood glucose, and insulin levels. Adolescents (aged 12 through 18) should exercise caution and seek parental guidance when considering the consumption of ED and ES, particularly in excessive amounts (e.g. > 400 mg), as limited evidence is available regarding the safety of these products among this population. Additionally, ED and ES are not recommended for children (aged 2-12), those who are pregnant, trying to become pregnant, or breastfeeding and those who are sensitive to caffeine. Diabetics and individuals with preexisting cardiovascular, metabolic, hepatorenal, and/or neurologic disease who are taking medications that may be affected by high glycemic load foods, caffeine, and/or other stimulants should exercise caution and consult with their physician prior to consuming ED. The decision to consume ED or ES should be based upon the beverage's content of carbohydrate, caffeine, and other nutrients and a thorough understanding of the potential side effects. Indiscriminate use of ED or ES, especially if multiple servings per day are consumed or when consumed with other caffeinated beverages and/or foods, may lead to adverse effects. The purpose of this review is to provide an update to the position stand of the International Society of Sports Nutrition (ISSN) integrating current literature on ED and ES in exercise, sport, and medicine. The effects of consuming these beverages on acute exercise performance, metabolism, markers of clinical health, and cognition are addressed, as well as more chronic effects when evaluating ED/ES use with exercise-related training adaptions.
Collapse
Affiliation(s)
- Andrew R. Jagim
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI, USA
- Exercise & Sport Science, University of Wisconsin – La Crosse, La Crosse, WI, USA
| | - Patrick S. Harty
- Exercise & Performance Nutrition Laboratory, Lindenwood University, St. Charles, MO, USA
| | - Grant M. Tinsley
- Energy Balance and Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Chad M. Kerksick
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI, USA
- Exercise & Performance Nutrition Laboratory, Lindenwood University, St. Charles, MO, USA
| | - Adam M. Gonzalez
- Department of Allied Health and Kinesiology, Hofstra University, Hempstead, NY, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | | | - Abbie E. Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey R. Stout
- School of Kinesiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| | - Bill I. Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, USA
| | - Trisha VanDusseldorp
- Bonafede Health, LLC, JDS Therapeutics, Harrison, NY, USA
- Department of Health and Exercise Sciences, Jacksonville University, Jacksonville, FL, USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
24
|
Jin A, Kan Z, Tan Q, Shao J, Han Q, Chang Y, An N, Yi M. Supplementation with food-derived oligopeptides promotes lipid metabolism in young male cyclists: a randomized controlled crossover trial. J Int Soc Sports Nutr 2023; 20:2254741. [PMID: 37674290 PMCID: PMC10486287 DOI: 10.1080/15502783.2023.2254741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Accumulation of body fat and dyslipidemia are associated with the development of obesity and cardiometabolic diseases. Moreover, the degree to which lipids can be metabolized has been cited as a determinant of cardiometabolic health and prolonged endurance capacity. In the backdrop of increasing obesity and cardiometabolic diseases, lipid metabolism and its modulation by physical activity, dietary adjustments, and supplementation play a significant role in maintaining health and endurance. Food-derived oligopeptides, such as rice and soybean peptides, have been shown to directly regulate abnormal lipid metabolism or promote hypolipidemia and fat oxidation in cell culture models, animal models, and human studies. However, whether supplementation with oligopeptides derived from multiple food sources can promote lipid degradation and fat oxidation in athletes remains unclear. Therefore, in a randomized controlled crossover trial, we investigated the impact of food-derived oligopeptide supplementation before and during exercise on lipid metabolism in young male cyclists. METHODS Sixteen young male cyclists (age: 17.0 ± 1.0 years; height: 178.4 ± 6.9 cm; body mass: 68.7 ± 12.7 kg, body mass index: 21.5 ± 3.4 kg/m2; maximum oxygen uptake: 56.3 ± 5.8 mL/min/kg) participated in this randomized controlled crossover trial. Each participant drank two beverages, one containing a blend of three food-derived oligopeptides (treatment, 0.5 g/kg body weight in total) and the other without (control), with a 2-week washout period between two experiments. The cyclists completed a one-day pattern protocol that consisted of intraday fasting, 30 min of sitting still, 85 min of prolonged exercise plus a 5-min sprint (PE), a short recovery period of 60 min, a 20-min time trial (TT), and recovery till next morning. Blood samples were collected for biochemical analyses of serum lipids and other biomarkers. We analyzed plasma triglyceride species (TGs), free amino acids (FAAs), and tricarboxylic acid (TCA) cycle intermediates using omics methods. In addition, exhaled gas was collected to assess the fat oxidation rate. RESULTS Five of 20 plasma FAAs were elevated pre-exercise (pre-Ex) only 20 min after oligopeptide ingestion, and most FAAs were markedly increased post PE and TT. Serum levels of TG and non-esterified fatty acids were lower in the experimental condition than in the control condition at the post PE and TT assessments, respectively. Further, the omics analysis of plasma TGs for the experimental condition demonstrated that most TGs were lower post PE and at the next fasting when compared with control levels. Simultaneously, the fat oxidation rate began to increase only 20 min after ingestion and during the preceding 85 min of PE. Levels of TCA cycle intermediates did not differ between the conditions. CONCLUSIONS The study noted that continuous ingestion of food-derived oligopeptides accelerated total body triglyceride breakdown, non-esterified fatty acid uptake, and fat oxidation during both sedentary and exercise states. Elevated circulating and intracellular FAA flux may modulate the selection of substrates for metabolic pathways in conjunction with the release of neuroendocrinological factors that slow down carbohydrate metabolism via acetyl coenzyme A feedback inhibition. This may increase the availability of fatty acids for energy production, with FAAs supplying more substrates for the TCA cycle. The findings of this study provide novel insight into strategies for promoting lipid metabolism in populations with dyslipidemia-related metabolic disorders such as obesity and for improving physiological functioning during endurance training. However, the absence of a non-exercising control group and verification of long-term supplementation effects was a limitation. Future studies will emphasize the impacts of whole protein supplementation as a control and of combined food-derived peptides or oligopeptides with probiotics and healthy food components on lipid metabolism in individuals who exercise.
Collapse
Affiliation(s)
- Aina Jin
- Beijing Sport University, Exercise Biochemistry, Beijing, China
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Zhaobo Kan
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Qiushi Tan
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Jing Shao
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Qi Han
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Yashan Chang
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Nan An
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Muqing Yi
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| |
Collapse
|
25
|
Kazemi A, Racil G, Ahmadi Hekmatikar AH, Behnam Moghadam M, Karami P, Henselmans M. Improved physical performance of elite soccer players based on GPS results after 4 days of carbohydrate loading followed by 3 days of low carbohydrate diet. J Int Soc Sports Nutr 2023; 20:2258837. [PMID: 37731274 PMCID: PMC10515665 DOI: 10.1080/15502783.2023.2258837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Carbohydrate loading is an established sports nutrition strategy for endur- 16 ance exercise performance. We tested if carbohydrate loading could improve the performance of 17 elite soccer players under ecologically valid circumstances using Global Positioning System (GPS) data. METHODS Twenty-two adult Iran Premier league soccer players were divided into a carbohydrate-loading group (CLG) and Control group (CG). The carbohydrate loading group restricted carbohydrate intake for three days to 1.5 g/kg/d while increasing exercise intensity. From days four to seven, exercise intensity was decreased and carbohydrate intake was considerably increased up to 7.5 g/kg/d on the day of the match, during which performance was analyzed using GPS data. The control group performed the same exercise training but maintained their habitual carbohydrate intake of 5-6 g/kg/d. The data were analyzed using a univariate ANCOVA with baseline data from a pre-intervention match as the control variable. RESULTS The carbohydrate loading team scored significantly higher on running distance, maximum speed and the number of top and repeated sprints; the carbohydrate loading group scored significantly lower on player load, metabolic power and running imbalance compared to the control team during their match. CONCLUSIONS Our findings suggest carbohydrate loading enabled elite soccer players to achieve greater running outputs with greater metabolic efficiency and lower fatigue compared to their habitual diets.
Collapse
Affiliation(s)
- Abdolreza Kazemi
- Vali-E-Asr University of Rafsanjan, Dept of Sports Sciences, Faculty of Literature and Humanities, Rafsanjan, Iran
| | - Ghazi Racil
- La Manouba University, Research Unit (UR 17JS01) “Sport Performance, Health & Society” Higher Institute of Sport and Physical Education of Ksar Said, Manouba, Tunis
| | | | - Mohadeseh Behnam Moghadam
- Islamic Azad University, Department of Physical Education & Sport Sciences, Faculty of Humanities, Tehran, Iran
| | - Parisa Karami
- University of Tehra, Department of Physical Education & Sport Sciences, Faculty of Humanities, Tehran, Iran
| | - Menno Henselmans
- The International Scientific Research Foundation for Fitness and Nutrition, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Klonoff DC, Nguyen KT, Xu NY, Gutierrez A, Espinoza JC, Vidmar AP. Use of Continuous Glucose Monitors by People Without Diabetes: An Idea Whose Time Has Come? J Diabetes Sci Technol 2023; 17:1686-1697. [PMID: 35856435 PMCID: PMC10658694 DOI: 10.1177/19322968221110830] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Continuous glucose monitor (CGM) systems were originally intended only for people with diabetes. Recently, there has been interest in monitoring glucose concentrations in a variety of other situations. As data accumulate to support the use of CGM systems in additional states unrelated to diabetes, the use of CGM systems is likely to increase accordingly. METHODS PubMed and Google Scholar were searched for articles about the use of CGM in individuals without diabetes. Relevant articles that included sufficient details were queried to identify what cohorts of individuals were adopting CGM use and to define trends of use. RESULTS Four clinical user cases were identified: (1) metabolic diseases related to diabetes with a primary dysregulation of the insulin-glucose axis, (2) metabolic diseases without a primary pathophysiologic derangement of the insulin-glucose axis, (3) health and wellness, and (4) elite athletics. Seven trends in the use of CGM systems in people without diabetes were idenfitied which pertained to both FDA-cleared medical grade products as well as anticipated future products, which may be regulated differently based on intended populations and indications for use. CONCLUSIONS Wearing a CGM has been used not only for diabetes, but with a goal of improving glucose patterns to avoid diabetes, improving mental or physical performance, and promoting motivate healthy behavioral changes. We expect that clinicians will become increasingly aware of (1) glycemic patterns from CGM tracings that predict an increased risk of diabetes, (2) specific metabolic glucotypes from CGM tracings that predict an increased risk of diabetes, and (3) new genetic and genomic biomarkers in the future.
Collapse
Affiliation(s)
- David C. Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| | | | - Nicole Y. Xu
- Diabetes Technology Society, Burlingame, CA, USA
| | | | - Juan C. Espinoza
- University of Southern California, Los Angeles, CA, USA
- Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Alaina P. Vidmar
- University of Southern California, Los Angeles, CA, USA
- Children’s Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
27
|
Jagim AR, Harty PS, Erickson JL, Tinsley GM, Garner D, Galpin AJ. Prevalence of adulteration in dietary supplements and recommendations for safe supplement practices in sport. Front Sports Act Living 2023; 5:1239121. [PMID: 37841887 PMCID: PMC10570429 DOI: 10.3389/fspor.2023.1239121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The prevalence of dietary supplement use among athletes continues to rise with 60-80% of athletes often reporting current or previous use of dietary supplements. While select dietary ingredients have been shown to improve acute performance and enhance training adaptations over time, it is important to still consider the risk vs. reward for athletes before opting to consume a dietary supplement. Previous work has indicated that certain dietary supplements may pose risks for inadvertent doping, may be susceptible to mislabelling, could be banned by certain governing bodies of sport, or pose health risks for certain populations. The purpose of the current narrative review is to summarize the prevalence of adulteration in dietary sport supplement products, outline the risks of inadvertent doping for athletes, and highlight best practices regarding safe supplementation strategies. Analytical studies have found anywhere from 14 to 50% of samples analyzed from dietary supplement products have tested positive for anabolic agents or other prohibited substances. It is important for the consumer to adhere to safe supplementation strategies, which include following serving size recommendations, cross-referencing ingredient profiles with the list of prohibited substances, choosing quality products that have been verified by a third-party certification program, and being cognizant of consuming multiple dietary supplement products with overlapping ingredient profiles. Once these practices have been considered, it is reasonable for an athlete to utilize dietary supplements as a strategy to optimize performance and health, with a low risk of failing a drug test (adverse analytical finding) and experiencing adverse events.
Collapse
Affiliation(s)
- Andrew R. Jagim
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI, United States
| | - Patrick S. Harty
- Exercise & Performance Nutrition Laboratory, Lindenwood University, St. Charles, MO, United States
| | - Jacob L. Erickson
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI, United States
| | - Grant M. Tinsley
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Dan Garner
- BioMolecular Athlete, LLC., Wilmington, DE, United States
| | - Andrew J. Galpin
- BioMolecular Athlete, LLC., Wilmington, DE, United States
- Department of Kinesiology, Center for Sport Performance, California State University, Fullerton, CA, United States
| |
Collapse
|
28
|
Noh KW, Oh JH, Park S. Effects of the Timing of Carbohydrate Intake on Metabolism and Performance in Soccer Players. Nutrients 2023; 15:3610. [PMID: 37630800 PMCID: PMC10457895 DOI: 10.3390/nu15163610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
This study aims to provide information to improve the performance of athletes comparing the effects of carbohydrate-electrolyte intake before and during exercise on metabolism and performance in soccer players. The study had a single-blind cross-over design. Drust's protocol is a soccer-specific intermittent exercise test. The carbohydrate-electrolyte intake experiments were divided into three timings: first, pre-exercise; second, half-time; and third, mixed. Eight participants were included in the data analysis (age: 21.32 ± 1.19 years; BMI: 22.69 ± 1.91 kg/m2; height: 176.5 ± 7.52 cm; weight: 69.5 ± 9.18 kg; Vmax: 16.75 0.71 km/h). The results of the mixed test showed a significantly lower respiratory exchange ratio than those of the placebo and half-time tests (p < 0.05). The mixed test showed significantly more fat oxidation than the half-time test (p < 0.05). The running times are placebo (422.13 ± 133.44 s) and mixed (677.38 ± 217.75 s), and the distances are placebo (1577.25 ± 517.02 m) and mixed (2530.00 ± 832.71 m) (p < 0.05). The mixed test showed a significantly lower rating of perceived exertion than the placebo test (p < 0.05). Carbohydrate oxidation and heart rate showed no significant differences between the experiments (p > 0.05). The exercise protocol in this study showed the metabolic response of soccer players to intermittent high-intensity exercise and subsequent endurance exercise. In conclusion, it can be seen that the intake of carbohydrate-electrolytes improves the performance of soccer players, and the effect varies depending on the timing of carbohydrate-electrolyte intake.
Collapse
Affiliation(s)
- Ki-Woong Noh
- Institute of Sports Medicine & Science, Kwangwoon University, Seoul 01897, Republic of Korea;
| | - Jung-Hwan Oh
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Sok Park
- Department of Convergence Sports Science, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
29
|
Yang J, Han Q, Liu Q, Li T, Shao Y, Sui X, Wang Q. Effects of carbohydrate drinks ingestion on executive function in athletes: a systematic review and meta-analysis. Front Psychol 2023; 14:1183460. [PMID: 37637918 PMCID: PMC10448191 DOI: 10.3389/fpsyg.2023.1183460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Background Carbohydrates are often used as boosters for endurance and high-intensity exercise. However, it is unclear whether carbohydrate drinks intake before or during exercise can affect specific domains of cognitive function, such as Executive Function (EF). Methods Following the guidance of PRISMA 2020, we searched six major databases including PubMed, WOS, SPORTDiscus, Cochrane, Embase, and Scopus. Outcomes were presented in the form of Reaction Time (RT), Accuracy (ACC), and Scores (Score) for performing EF tests. Effect sizes were calculated from the test results of EF and expressed as standardized mean differences (SMDs). After analyzing the overall results, we performed subgroup analyses based on the athletes' program characteristics. Results After retrieving a total of 5,355 articles, ten randomized controlled trials (RCTs) were identified and included in this review. The overall results showed that the intake of carbohydrate drinks before or during exercise did not have a significant effect on the reduction of EF after exercise (ACC (-0.05 [-0.27, 0.18]); RT (-0.18 [-0.45, 0.09]); Score (0.24 [-0.20, 0.68])). The subgroup analyses based on open skill sports and close skill sports also showed invalid results, but the results of RT ended up with different preference (ACC of open skill sports athletes (-0.10 [-0.34, 0.14]); RT of open skill athletes (-0.27 [-0.60, 0.07]); RT of close skill athletes (0.29 [-0.24, 0.82])). Conclusion The intake of 6-12% of single or mixed carbohydrates before or during exercise was not significantly effective in reducing the decline in EF after exercise. Our findings may have been influenced by the type of intervention, dose, mode of administration, or individual variability of the included subjects.
Collapse
Affiliation(s)
- Jingye Yang
- College of Exercise Science, Beijing Sport University, Beijing, China
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
| | - Qi Han
- College of Exercise Science, Beijing Sport University, Beijing, China
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
| | - Qi Liu
- College of Exercise Science, Beijing Sport University, Beijing, China
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
| | - Tieying Li
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Xuemei Sui
- Arnold School of Public Health, Department of Exercise Science, University of South Carolina, Columbia, SC, United States
| | - Qirong Wang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
| |
Collapse
|
30
|
Shoemaker ME, Gillen ZM, Fukuda DH, Cramer JT. Metabolic Flexibility and Inflexibility: Pathology Underlying Metabolism Dysfunction. J Clin Med 2023; 12:4453. [PMID: 37445488 DOI: 10.3390/jcm12134453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Metabolic flexibility can be defined as the ability of the skeletal muscle to adjust its utilization of substrate pathways [...].
Collapse
Affiliation(s)
- Marni E Shoemaker
- School of Health and Consumer Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Zachary M Gillen
- Department of Kinesiology, Mississippi State University, 180 Magruder Street, Mississippi State, MS 39762, USA
| | - David H Fukuda
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Joel T Cramer
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
31
|
Beathard KM, Georghiades N, Goulart JB, Riviere AJ, Sullivan C, Mascarro M, Riechman SE. The impact of nutrition on visual cognitive performance in the nutrition, vision, and cognition in sport study. Front Nutr 2023; 10:1208890. [PMID: 37426184 PMCID: PMC10327434 DOI: 10.3389/fnut.2023.1208890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction The purpose of this study was to examine the influence of nutritional intake on visual perceptual-cognitive performance (VCP) in young healthy adults. Methods Ninety-eight healthy men (n = 38) and women (n = 60) aged 18-33 years participated and maintained their usual dietary intake throughout the study. VCP was measured using the NeuroTracker™ CORE (NT) 3-Dimensional (3-D) software program (15 training sessions) over a 15-day period. Food logs and extensive lifestyle measures including body composition, cardiovascular health, sleep and exercise patterns, and general readiness to perform were collected. Mean intake from 10 food logs collected over the 15 days were analyzed using Nutribase software. Statistical analyses were performed in SPSS using repeated measures ANOVA including significant covariates when appropriate. Results Males consumed significantly more calories, macronutrients, cholesterol, choline, and zinc and performed significantly better on VCP than the females. Participants who consumed more than 40% of kcals from carbohydrates (p = 0.038), less than 24% of kcals from protein (p = 0.009), more than 2,000 μg/day lutein/zeaxanthin or more than 1.8 mg/ day vitamin B2 performed significantly better on VCP than those who consumed less than those amounts, respectively. Discussion VCP is an important dimension of cognitive function and in the present study is influenced by higher carbohydrate, lutein/ zeaxanthin, and vitamin B2 dietary intake while high protein consumption and the female sex negatively impacted VCP.
Collapse
Affiliation(s)
- Karen M. Beathard
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Nicos Georghiades
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Jenna B. Goulart
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Aaron J. Riviere
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Caroline Sullivan
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Melanie Mascarro
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Steven E. Riechman
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| |
Collapse
|
32
|
Armstrong M, Colberg SR, Sigal RJ. Where to Start? Physical Assessment, Readiness, and Exercise Recommendations for People With Type 1 or Type 2 Diabetes. Diabetes Spectr 2023; 36:105-113. [PMID: 37193205 PMCID: PMC10182968 DOI: 10.2337/dsi22-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Exercise plays an important role in the management of diabetes and is associated with many benefits such as decreased morbidity and mortality. For people exhibiting signs and symptoms of cardiovascular disease, pre-exercise medical clearance is warranted; however, requiring broad screening requirements can lead to unnecessary barriers to initiating an exercise program. Robust evidence supports the promotion of both aerobic and resistance training, with evidence emerging on the importance of reducing sedentary time. For people with type 1 diabetes, there are special considerations, including hypoglycemia risk and prevention, exercise timing (including prandial status), and differences in glycemic responses based on biological sex.
Collapse
Affiliation(s)
- Marni Armstrong
- Medicine Strategic Clinical Network, Alberta Health Services, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Sheri R. Colberg
- Human Movement Sciences Department, Old Dominion University, Norfolk, VA
| | - Ronald J. Sigal
- Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
van der Weyden MS, Martin J, Rodriguez J, Boolani A. An Intense Bout of Acute Aerobic Exercise, but Not a Carbohydrate Supplement, Improves Cognitive Task Performance in a Sample of Black, Indigenous, and People of Color (BIPOC) Student Athletes. Sports (Basel) 2023; 11:sports11040088. [PMID: 37104162 PMCID: PMC10146807 DOI: 10.3390/sports11040088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND There are contradictory findings in the literature on whether an acute bout of aerobic exercise leads to a post-exercise improvement in cognitive function (CF). Moreover, participants used in the published literature are not representative of the racial make-up of sport or tactical populations. METHODS A randomized crossover design was incorporated, with participants randomly consuming water or a carbohydrate sports drink within the first 3 min of a graded maximal exercise test (GMET) conducted in a laboratory. Twelve self-identified African American participants, (seven males, five females, age = 21.42 ± 2.38 years, height = 174.94 ± 12.55 cm, mass = 82.45 ± 33.09 kg) completed both testing days. Participants completed the CF tests immediately pre- and post-GMET. CF was assessed with the Stroop color and word task (SCWT) and concentration task grid (CTG). Participants completed the GMET when they reported a score of 20 on the Borg ratings of perceived exertion scale. RESULTS Time to complete the SCWT incongruent task (p < 0.001) and CTG performance (p < 0.001) significantly improved post-GMET in both conditions. VO2max was positively correlated with pre- and post-GMET SCWT performance. CONCLUSIONS The findings of our study suggest that an acute bout of maximal exercise significantly improves CF. Additionally, cardiorespiratory fitness is positively associated with CF in our sample of student athletes from a historically Black college and university.
Collapse
Affiliation(s)
- Megan Sax van der Weyden
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Manassas, VA 20110, USA
| | - Joel Martin
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Manassas, VA 20110, USA
| | - Jose Rodriguez
- Department of Public Health, Yale University, New Haven, CT 06511, USA
| | - Ali Boolani
- Honors Program, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
34
|
Pareek A, Kasvan BR, Singh N. Effect of a novel dietary supplement Khejri, and Spirulina supplementation on lipid profile in cricket players. Front Sports Act Living 2023; 4:1075388. [PMID: 36726398 PMCID: PMC9885189 DOI: 10.3389/fspor.2022.1075388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Prosopis cineraria (Fabaceae) is known as Khejri in India or the golden tree of Indian deserts. It's potential as a dietary supplement in sports nutrition and its effect on regulating lipid profile has never been investigated. Spirulina (Arthrospira platensis) is a superfood with high nutritional value and is a popular supplement among athletes. In the current study, Spirulina and Khejri were used as supplements by cricket players to improve their physical fitness and lipid profile. Both supplements were given to individual groups and in combination to see the combined effect. The intervention period was 21 days, and supplements were given in 500 mg doses daily. Lipid profile assessments were done before and after the intervention period. 40 cricket players were divided into 4 groups: Group 1 (n = 10): Both supplements, Spirulina and Khejri, Group 2 (n = 10): Supplement Spirulina, Group 3 (n = 10): Supplement Khejri, and Group 4 (n = 10): Control. When experimental groups 1, 2 and 3 were compared to the control group 4, significant reduction was observed in triglyceride levels (Group1 vs. control: 141.53 ± 14.74 vs. 199.28 ± 27.24, p < 0.05; Group 2 vs. control: 137.5 ± 14 vs. 199.28 ± 27.24, p < 0.05; Group 3 vs. control: 135.32 ± 17.34 vs. 199.28 ± 27.24, p < 0.05) and significant reduction in cholesterol levels was found post-intervention after 21 days of supplementation (Group1 vs. control: 149.75 ± 7.08 vs. 207.86 ± 11.69, p < 0.001; Group 2 vs. control: 178.28 ± 9.43 vs. 207.86 ± 11.69, p < 0.05; Group 3 vs. control: 142.92 ± 10.01 vs. 207.86 ± 11.69, p < 0.001). Cholesterol and Triglyceride levels were significantly decreased pre- vs. post-intervention by Khejri and Spirulina supplements in cricket players.
Collapse
Affiliation(s)
- Arvind Pareek
- Department of Botany, Maharshi Dayanand Saraswati University, Ajmer, India
| | - Bhanwra Ram Kasvan
- Department of Sports Bioscience, Central University of Rajasthan, Ajmer, India
| | - Neha Singh
- Department of Sports Bioscience, Central University of Rajasthan, Ajmer, India,Correspondence: Neha Singh
| |
Collapse
|
35
|
Saris CGJ, Timmers S. Ketogenic diets and Ketone suplementation: A strategy for therapeutic intervention. Front Nutr 2022; 9:947567. [PMID: 36458166 PMCID: PMC9705794 DOI: 10.3389/fnut.2022.947567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/13/2022] [Indexed: 07/24/2023] Open
Abstract
Ketogenic diets and orally administered exogenous ketone supplements are strategies to increase serum ketone bodies serving as an alternative energy fuel for high energy demanding tissues, such as the brain, muscles, and the heart. The ketogenic diet is a low-carbohydrate and fat-rich diet, whereas ketone supplements are usually supplied as esters or salts. Nutritional ketosis, defined as serum ketone concentrations of ≥ 0.5 mmol/L, has a fasting-like effect and results in all sorts of metabolic shifts and thereby enhancing the health status. In this review, we thus discuss the different interventions to reach nutritional ketosis, and summarize the effects on heart diseases, epilepsy, mitochondrial diseases, and neurodegenerative disorders. Interest in the proposed therapeutic benefits of nutritional ketosis has been growing the past recent years. The implication of this nutritional intervention is becoming more evident and has shown interesting potential. Mechanistic insights explaining the overall health effects of the ketogenic state, will lead to precision nutrition for the latter diseases.
Collapse
Affiliation(s)
- Christiaan G. J. Saris
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Nijmegen, Netherlands
| | - Silvie Timmers
- Department of Human and Animal Physiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
36
|
King A, Helms E, Zinn C, Jukic I. The Ergogenic Effects of Acute Carbohydrate Feeding on Resistance Exercise Performance: A Systematic Review and Meta-analysis. Sports Med 2022; 52:2691-2712. [PMID: 35809162 PMCID: PMC9584980 DOI: 10.1007/s40279-022-01716-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Carbohydrate (CHO) ingestion has an ergogenic effect on endurance training performance. Less is known about the effect of acute CHO ingestion on resistance training (RT) performance and equivocal results are reported in the literature. OBJECTIVE The current systematic review and meta-analysis sought to determine if and to what degree CHO ingestion influences RT performance. METHODS PubMed, MEDLINE, SportDiscus, Scopus, and CINAHL databases were searched for peer-reviewed articles written in English that used a cross-over design to assess the acute effect of CHO ingestion on RT performance outcomes (e.g., muscle strength, power, and endurance) in healthy human participants compared to a placebo or water-only conditions. The Cochrane Collaboration's risk of bias tool and GRADE approaches were used to assess risk of bias and certainty of evidence, respectively. Random effects meta-analyses were performed for total training session volume and post-exercise blood lactate and glucose. Sub-group meta-analysis and meta-regression were performed for categorical (session and fast durations) and continuous (total number of maximal effort sets, load used, and CHO dose) covariates, respectively. RESULTS Twenty-one studies met the inclusion criteria (n = 226 participants). Pooled results revealed a significant benefit of CHO ingestion in comparison to a placebo or control for total session training volume (standardised mean difference [SMD] = 0.61). Sub-group analysis revealed a significant benefit of CHO ingestion during sessions longer than 45 min (SMD = 1.02) and after a fast duration of 8 h or longer (SMD = 0.39). Pooled results revealed elevated post-exercise blood lactate (SMD = 0.58) and blood glucose (SMD = 2.36) with CHO ingestion. Meta-regression indicated that the number of maximal effort sets, but not CHO dose or load used, moderates the effect of CHO ingestion on RT performance (beta co-efficient [b] = 0.11). Carbohydrate dose does not moderate post-exercise lactate accumulation nor do maximal effort sets completed, load used, and CHO dose moderate the effect of CHO ingestion on post-exercise blood glucose. CONCLUSIONS Carbohydrate ingestion has an ergogenic effect on RT performance by enhancing volume performance, which is more likely to occur when sessions exceed 45 min and where the fast duration is ≥ 8 h. Further, the effect is moderated by the number of maximal effort sets completed, but not the load used or CHO dose. Post-exercise blood lactate is elevated following CHO ingestion but may come at the expense of an extended time-course of recovery due to the additional training volume performed. Post-exercise blood glucose is elevated when CHO is ingested during RT, but it is presently unclear if it has an impact on RT performance. PROTOCOL REGISTRATION The original protocol was prospectively registered on the Open Science Framework (Project identifier: https://doi.org/10.17605/OSF.IO/HJFBW ).
Collapse
Affiliation(s)
- Andrew King
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Mairangi Bay, Auckland, 0632, New Zealand.
| | - Eric Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Mairangi Bay, Auckland, 0632, New Zealand
| | - Caryn Zinn
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Mairangi Bay, Auckland, 0632, New Zealand
| | - Ivan Jukic
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Mairangi Bay, Auckland, 0632, New Zealand
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
37
|
Ketone Ester Supplementation Improves Some Aspects of Cognitive Function during a Simulated Soccer Match after Induced Mental Fatigue. Nutrients 2022; 14:nu14204376. [PMID: 36297060 PMCID: PMC9607595 DOI: 10.3390/nu14204376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Ketone supplementation has been proposed to enhance cognition during exercise. To assess whether any benefits are due to reduced cognitive fatigue during the latter portions of typical sport game action, we induced cognitive fatigue, provided a ketone monoester supplement (KME) vs. a non-caloric placebo (PLAC), and assessed cognitive performance during a simulated soccer match (SSM). In a double-blind, balanced, crossover design, nine recreationally active men (174.3 ± 4.2 cm, 76.6 ± 7.4 kg, 30 ± 3 y, 14.2 ± 5.5 % body fat, V˙O2 max = 55 ± 5 mL·kg BM−1·min−1; mean ± SD) completed a 45-min SSM (3 blocks of intermittent, variable intensity exercise) consuming either KME (25 g) or PLAC, after a 40-min mental fatiguing task. Cognitive function (Stroop and Choice Reaction Task [CRT]) and blood metabolites were measured throughout the match. KME reduced concentrations of both blood glucose (block 2: 4.6 vs. 5.2 mM, p = 0.02; block 3: 4.7 vs. 5.3 mM, p = 0.01) and blood lactate (block 1: 4.7 vs. 5.4 mM, p = 0.05; block 2: 4.9 vs. 5.9 mM, p = 0.01) during the SSM vs. PLAC, perhaps indicating a CHO sparing effect. Both treatments resulted in impaired CRT performance during the SSM relative to baseline, but KME displayed a reduced (p < 0.05) performance decrease compared to PLAC (1.3 vs. 3.4% reduction in correct answers, p = 0.02). No other differences in cognitive function were seen. These data suggest that KME supplementation attenuated decrements in CRT during repeated, high intensity, intermittent exercise. More study is warranted to assess fully the potential cognitive/physical benefits of KME for athletes.
Collapse
|
38
|
Naito T, Saito T, Morito A, Yamada S, Shimomasuda M, Nakamura M. Pre-cooling with ingesting a high-carbohydrate ice slurry on thermoregulatory responses and subcutaneous interstitial fluid glucose during heat exposure. J Physiol Anthropol 2022; 41:34. [PMID: 36217207 PMCID: PMC9549659 DOI: 10.1186/s40101-022-00309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study was to compare the effects of ingesting ice slurries with two different carbohydrate contents on body temperatures and the subcutaneous interstitial fluid glucose level during heat exposure. Seven physically active men underwent one of three interventions: the ingestion of 7.5 g/kg of a control beverage (CON: 26°C), a normal-carbohydrate ice slurry (NCIS: −1°C), or a high-carbohydrate ice slurry (HCIS: −5°C). The participants were monitored for a 120-min period that included 10 min of rest, 25 min of exposure to the experimental cooling intervention (during which the beverage was ingested), and 85 min of seated rest in a climate chamber (36°C, 50% relative humidity). The rectal temperature in the HCIS and NCIS trials was lower than that in the CON trial from 40 to 75 min. The infrared tympanic temperature was also lower in the HCIS and NCIS trials than in the CON trial from 20 to 50 min, whereas the deep thigh or mean skin temperatures were not significantly different among the three groups. From 90 to 120 min, the subcutaneous interstitial fluid glucose level in the NCIS trial was lower than that at 65 min; however, reductions were not seen in the HCIS and CON trials. These findings suggest that both HCIS ingestion and conventional NCIS ingestion were effective cooling strategies for reducing thermal strain, while HCIS ingestion may also enable a higher subcutaneous interstitial fluid glucose level to be maintained, ensuring an adequate supply of required muscle substrates.
Collapse
Affiliation(s)
- Takashi Naito
- grid.419627.fDepartment of Sports Research, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka Kita-ku, Tokyo, 115-0056 Japan ,grid.440874.b0000 0001 2183 8345Faculty of Law, Hokkai-Gakuen University, 4-1-40 Asahimachi Toyohira-ku, Sapporo City, Hokkaido 062-8605 Japan
| | - Tatsuya Saito
- grid.419627.fDepartment of Sports Research, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka Kita-ku, Tokyo, 115-0056 Japan ,grid.265107.70000 0001 0663 5064Faculty of Medicine, Tottori University, 4-101 Koyamachominami, Tottori City, Tottori 683-8550 Japan
| | - Akihisa Morito
- grid.419836.10000 0001 2162 3360Health Science Research R&D Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshinomachi Kita-ku, Saitama City, Saitama 331-9530 Japan
| | - Satoshi Yamada
- grid.419836.10000 0001 2162 3360Health Science Research R&D Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshinomachi Kita-ku, Saitama City, Saitama 331-9530 Japan
| | - Masatsugu Shimomasuda
- grid.419836.10000 0001 2162 3360Research & Development Headquarters, Self-Medication, Taisho Pharmaceutical Co., Ltd., 3-24-1, Takada, Toshima-ku, Tokyo, 170-8633 Japan
| | - Mariko Nakamura
- grid.419627.fDepartment of Sports Research, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka Kita-ku, Tokyo, 115-0056 Japan
| |
Collapse
|
39
|
López-Seoane J, Buitrago-Morales M, Jiménez SL, Del Coso J, Pareja-Galeano H. Synergy of carbohydrate and caffeine ingestion on physical performance and metabolic responses to exercise: A systematic review with meta-analysis. Crit Rev Food Sci Nutr 2022; 64:2941-2959. [PMID: 36178302 DOI: 10.1080/10408398.2022.2128298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carbohydrates (CHO) and caffeine (CAF) are two ergogenic aids commonly used among athletes to enhance performance. However, there is some controversy as to whether the concurrent intake of both supplements might result in an additive and synergistic improvement in exercise performance. The aim of this systematic review and meta-analysis was to determine the effect of adding CAF to a protocol of CHO ingestion, compared with the intake of each ergogenic aid alone and with placebo, on exercise performance and metabolic responses in healthy young physically active adults. This study was conducted according to PRISMA 2020 guidelines. The PubMed, Web of Science, Medline Complete, CINAHL, SPORTDiscus and CENTRAL databases were searched including randomized controlled trials (RCT) that were at least single blind. The risk of bias assessment was performed using the Cochrane Risk-of-Bias tool 2. Meta-analysis were performed on performance variables and rating of perceived exertion (RPE) using the random-effects model. Thirteen RCT with 128 participants (117 men and 11 women) were included in this study. The ingestion of CAF and CHO reduced sprint time during repeated sprint protocols in comparison with CHO isolated ingestion (SMD: -0.45; 95% CI: -0.85, -0.05) while there was a tendency for a reduction in the time employed during time trials (SMD: -0.36; 95% CI: -0.77, 0.05). The RPE tended to be lower with CAF and CHO compared with CHO isolated ingestion during steady-state exercise (SMD: -0.43; 95% CI: -0.91, 0.05) with no differences between conditions in performance trials (SMD: -0.05, 95% CI: -0.39, 0.29). Although most of the studies showed higher values of blood glucose when CHO was co-ingested with CAF compared with PLA, only two studies observed higher values with CHO and CAF co-ingestion with respect to the isolated intake of CHO. One study observed greater fat oxidation and lower glycogen use when CAF was added to CHO. In terms of cortisol levels, one study showed an increase in cortisol levels when CAF was co-ingested with CHO compared with PLA. In summary, concurrent CHO and CAF intake may produce an additive ergogenic effect respect of the isolated ingestion of CHO. This additive effect was present when CHO was provided by a 6-9% of CHO solution (maltodextrin/dextrin + fructose) and CAF is administered in a dose of 4-6.5 mg/kg.
Collapse
Affiliation(s)
- Jaime López-Seoane
- ImFINE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences-INEF, Universidad Politécnica de Madrid, Madrid, Spain
- Red Española de Investigación en Ejercicio Físico y Salud (EXERNET), Madrid, Spain
| | - Marta Buitrago-Morales
- Faculty of Sports Sciences and Physiotherapy, Universidad Europea de Madrid, Madrid, Spain
| | - Sergio L Jiménez
- Centre for Sport Studies, Universidad Rey Juan Carlos, Madrid, Spain
| | - Juan Del Coso
- Centre for Sport Studies, Universidad Rey Juan Carlos, Madrid, Spain
| | - Helios Pareja-Galeano
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
40
|
Association between Dietary Patterns and Physical Fitness among Chinese Children and Adolescents in Shaanxi Province. Nutrients 2022; 14:nu14183677. [PMID: 36145061 PMCID: PMC9503495 DOI: 10.3390/nu14183677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background: This study aims to investigate the associations between dietary patterns (breakfast, egg, dairy products, and sugared beverage intake frequencies) and physical fitness among Chinese children and adolescents in Shaanxi Province. METHODS: Data were extracted from the Chinese National Survey on Students’ Constitution and Health (CNSSCH). The study ultimately included 7305 participants (48.4% male, 51.6% female) aged 6–22 in Shaanxi Province, China. Multiple linear regression was used to examine the association of the frequency of breakfast, egg, dairy product, and sugared beverage intakes with physical fitness. RESULTS: The frequency of breakfast, egg, and dairy product intakes were all independently and positively associated with the level of physical fitness. The frequency of sugared beverage intake was negatively associated with the level of physical fitness. CONCLUSION: Healthier dietary patterns (i.e., higher breakfast, egg, and dairy product intakes and lower sugared beverage intake) were associated with greater physical fitness. Specifically, maintaining a healthy dietary pattern of breakfast, egg, and dairy product intakes can positively affect the strength and endurance performance of children and adolescents. Increased dairy product intake plays a crucial part in boosting the physical fitness total scores of children and adolescents.
Collapse
|
41
|
Fritz P, Fritz R, Mayer L, Németh B, Ressinka J, Ács P, Oláh C. Hungarian male water polo players' body composition can predict specific playing positions and highlight different nutritional needs for optimal sports performance. BMC Sports Sci Med Rehabil 2022; 14:165. [PMID: 36064634 PMCID: PMC9447334 DOI: 10.1186/s13102-022-00560-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
Background Water polo is unique among aquatic—and generally other—sports as it includes cyclic elements typical in swimming and acyclic elements occurring mainly in ball games. Moreover, water polo demands high level of technical and tactical skills. Players need an optimal nutritional and physical condition to achieve high athletic performance, which is to a great extend influenced by nutritional habits. We aim to highlight possible shortfalls in players’ nutritional intake in relation to positions played within the team. Methods In the present study, we determined the anthropometric and body composition characteristics, dietary habits and laboratory parameters of elite adult male water polo players (n = 19) before the start of the championship and at the end of the regular season, which meant a 4-month intervention period. Analyses of body composition characteristics and nutritional habits were performed using bioimpedance analyzer InBody 770 and a 3-day nutrition diary, respectively. Paired-sample t-test were used to determine the differences between the variables measured before and after the championship. Correlations between the anthropometric and body composition characteristics and different serum parameters were analyzed using linear correlation calculation. K-mean cluster analysis was performed using the anthropometric and body composition characteristics of the athletes. Results Based on anthropometric and body composition characteristics, players can be divided into two significantly different clusters that shows an association with specific playing positions. Cluster I included goalkeepers and wing players, while defenders, centers, and shooters belonged to Cluster II. We observed significant differences in the physical composition and slight but not significant differences in nutritional habits of the clusters. Cluster I players were 5 cm shorter on average, while their mean body weight, skeletal muscle mass and body fat mass data were lower by 19 kg, 7 kg, and 7 kg, respectively. We studied the correlation between initial anthropometric and body composition parameters and the changes in laboratory parameters before and after the regular season. As a result, we detected numerous significant differences between the two clusters, such as the changes in glucose and magnesium levels, which showed a strong correlation with several body composition parameters in cluster II, but did not in cluster I. Conclusions Cluster differences between anthropometric and body compositional characteristics, and the changes in laboratory parameters can help to develop position-specific training and nutritional recommendations in the future. Therefore, the results may be applicable in sport sciences for elite athletes and sports coaches. Supplementary Information The online version contains supplementary material available at 10.1186/s13102-022-00560-9.
Collapse
Affiliation(s)
- Péter Fritz
- Faculty of Health Science, University of Miskolc, Miskolc-Egyetemváros, Building Stefánia, Miskolc, 3515, Hungary.
| | - Réka Fritz
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | - Pongrác Ács
- Institute of Physiotherapy and Sport Science, University of Pécs, Pecs, Hungary
| | - Csilla Oláh
- Superfoods Ltd, Budapest, Hungary.,Department of Urology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
42
|
Hamada N, Wadazumi T, Hirata Y, Watanabe H, Hongu N, Arai N. Effects of Trehalose Solutions at Different Concentrations on High-Intensity Intermittent Exercise Performance. Nutrients 2022; 14:nu14091776. [PMID: 35565744 PMCID: PMC9101545 DOI: 10.3390/nu14091776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Trehalose solution ingested during exercise induces gradual increases in blood glucose levels and the insulin response compared with glucose solution. Trehalose solution aids in the maintenance of performance in the later stages of prolonged exercise. The purpose of this study was to identify the lowest concentration at which the properties of trehalose could be exploited. Groups of 12 healthy men (21.3 ± 1.3 years) and 10 healthy men (21.1 ± 0.7 years) with recreational training were included in experiments 1 and 2, respectively. Both experiments followed the same protocol. After fasting for 12 h, the participants performed a 60 min constant-load exercise at 40% V˙O2 peak using a bicycle ergometer and ingested 500 mL of a trial drink (experiment 1: water, 8% glucose, and 6 or 8% trehalose; experiment 2: 4 or 6% trehalose). They performed four sets of the Wingate test combined with a 30 min constant-load exercise at 40% V˙O2 peak. The experiment was conducted using a randomized cross-over design; trial drink experiments were conducted over intervals of 7 to 12 days. The exercise performance was evaluated based on mean power in the Wingate test. Blood was collected from the fingertip at 12 points during each experiment to measure blood glucose levels. During the high-intensity 5 h intermittent exercise, no differences were found between the groups in exercise performance in the later stages with concentrations of 8, 6, and 4% trehalose solution. The results suggest that trehalose could be useful for making a new type of mixed carbohydrate solution. Further studies to determine the trehalose response of individual athletes during endurance exercise are needed.
Collapse
Affiliation(s)
- Naomi Hamada
- Graduate School of Health and Well-Being, Department of Health and Well-Being, Kansai University, 1-11-1, Kaorigaoka-cho, Sakai-ku, Sakai 590-8515, Osaka, Japan; (T.W.); (Y.H.)
- Department of Applied Food Science, Higashiosaka Junior College, 3-1-1, Nishizutsumigakuen-cho, Higashiosaka 577-8567, Osaka, Japan
- Correspondence: ; Tel.: +81-6-6782-2824
| | - Tsuyoshi Wadazumi
- Graduate School of Health and Well-Being, Department of Health and Well-Being, Kansai University, 1-11-1, Kaorigaoka-cho, Sakai-ku, Sakai 590-8515, Osaka, Japan; (T.W.); (Y.H.)
| | - Yoko Hirata
- Graduate School of Health and Well-Being, Department of Health and Well-Being, Kansai University, 1-11-1, Kaorigaoka-cho, Sakai-ku, Sakai 590-8515, Osaka, Japan; (T.W.); (Y.H.)
- Department of Food and Nutritional Science, Kobe Women’s Junior College, 4-7-2, Nakamachi, Minatojima, Chuo-ku, Kobe 650-0046, Hyogo, Japan
| | - Hitoshi Watanabe
- Research Center for Urban Health and Sports, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku 558-8585, Osaka, Japan;
| | - Nobuko Hongu
- Graduate School of Human Life Science, Department of Food and Human Life Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku 558-8585, Osaka, Japan;
| | - Norie Arai
- Hayashibara, Co., Ltd., 675-1, Fujisaki, Naka-ku 702-8006, Okayama, Japan;
| |
Collapse
|
43
|
Ding T, Deng CM, Shen XF, Bai YW, Zhang XL, Liu JP, Yang LJ, Yu HT, Xie L, Chen H, Mu DL, Qu Y, Yang HX, Bao AR, Zhu SN, Wang DX. Effect of a carbohydrate-rich beverage on rate of cesarean delivery in primigravidae with epidural labor analgesia: a multicenter randomized trial. BMC Pregnancy Childbirth 2022; 22:339. [PMID: 35440017 PMCID: PMC9019984 DOI: 10.1186/s12884-022-04659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Labor represents a period of significant physical activity. Inefficient energy supply may delay labor process and even lead to cesarean delivery. Herein we investigated whether ingestion of a carbohydrate-rich beverage could reduce cesarean delivery in laboring women with epidural analgesia. METHODS This multicenter randomized trial was conducted in obstetrician-led maternity units of nine tertiary hospitals in China. Primigravidae with single term cephalic pregnancy who were preparing for vaginal birth under epidural analgesia were randomized to intake a carbohydrate-rich beverage or commercially available low-carbohydrate beverages during labor. The primary outcome was the rate of cesarean delivery. Secondary outcomes included maternal feeling of hunger, assessed with an 11-point scale where 0 indicated no hunger and 10 the most severe hunger, and maternal and neonatal blood glucose after childbirth. RESULTS Between 17 January 2018 and 20 July 2018, 2008 women were enrolled and randomized, 1953 were included in the intention-to-treat analysis. The rate of cesarean delivery did not differ between the two groups (11.3% [111/982] with carbohydrate-rich beverage vs. 10.9% [106/971] with low-carbohydrate beverages; relative risk 1.04, 95% CI 0.81 to 1.33; p = 0.79). Women in the carbohydrate-rich beverage group had lower subjective hunger score (median 3 [interquartile range 2 to 5] vs. 4 [2 to 6]; median difference - 1; 95% CI - 1 to 0; p < 0.01); their neonates had less hypoglycemia (1.0% [10/968] vs. 2.3% [22/956]; relative risk 0.45; 95% CI 0.21 to 0.94; p = 0.03) when compared with those in the low-carbohydrate beverage group. They also had higher rates of maternal hyperglycemia (6.9% [67/965] vs. 1.9% [18/953]; p < 0.01) and neonatal hyperglycemia (9.2% [89/968] vs. 5.8% [55/956]; p < 0.01), but none required special treatment. CONCLUSIONS For laboring primigravidae with epidural analgesia, ingestion of a carbohydrate-rich beverage compared with low-carbohydrate beverages did not reduce cesarean delivery, but relieved maternal hunger and reduced neonatal hypoglycemia at the expense of increased hyperglycemia of both mothers and neonates. Optimal rate of carbohydrate supplementation remains to be determined. TRIAL REGISTRATION www.chictr.org.cn ; identifier: ChiCTR-IOR-17011994 ; registered on 14 July 2017.
Collapse
Affiliation(s)
- Ting Ding
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku street, Beijing, 100034, China
| | - Chun-Mei Deng
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku street, Beijing, 100034, China
| | - Xiao-Feng Shen
- Department of Anesthesiology, Woman's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao-Wu Bai
- Department of Anesthesiology, Tangshan Maternity and Child Health Care Hospital, Tangshan, Hebei, China
| | - Xiao-Lan Zhang
- Department of Anesthesiology, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, Gansu, China
| | - Ji-Ping Liu
- Department of Anesthesiology, Foshan Maternal and Child Health Hospital, Foshan, Guangdong, China
| | - Li-Juan Yang
- Department of Anesthesiology, Urumqi Women and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Hai-Tao Yu
- Department of Anesthesiology, Linyi people's hospital, Linyi, Shandong, China
| | - Lei Xie
- Department of Anesthesiology, Anhui Women and Child Health Care Hospital, Hefei, Anhui, China
| | - Hong Chen
- Department of Anesthesiology, Women's Hospital of Zhejiang University, Zhejiang, Hangzhou, China
| | - Dong-Liang Mu
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku street, Beijing, 100034, China
| | - Yuan Qu
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku street, Beijing, 100034, China
| | - Hui-Xia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Ai-Rong Bao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Sai-Nan Zhu
- Department of Biostatistics, Peking University First Hospital, Beijing, China
| | - Dong-Xin Wang
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku street, Beijing, 100034, China. .,Outcomes Research Consortium, Cleveland, OH, USA.
| |
Collapse
|
44
|
Leonkiewicz M, Wawrzyniak A. The relationship between rigorous perception of one's own body and self, unhealthy eating behavior and a high risk of anorexic readiness: a predictor of eating disorders in the group of female ballet dancers and artistic gymnasts at the beginning of their career. J Eat Disord 2022; 10:48. [PMID: 35410315 PMCID: PMC8996514 DOI: 10.1186/s40337-022-00574-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/01/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND A group that is particularly exposed to eating disorders are young sportswomen who practice aesthetic disciplines, for whom it is important to keep a slim figure. Hence, the purpose of the study was to present the assessment of perception of one's own body and self as well as nutritional behavior in the group of ballet dancers and artistic gymnasts (BGA, n = 60) aged 10-12 against the background of the peer group (K, n = 60) and to determine the relationship between the studied elements, as well as anorexic readiness risk assessment to help diagnose premorbid stage of eating disorders with full symptoms. METHODS Anthropometric measurements (height, body weight) and the assessment of adipose tissue were performed. Using a questionnaire, data on physical activity, perception of one's own body and self, and selected eating behaviors were collected. RESULTS Underweight was observed in nearly half of the girls from the BGA group and the content of adipose tissue was significantly lower. Girls from the BGA group were characterized by overestimation of body size (p = 0.032), the need to improve their appearance/body (p = 0.025) and wanting to be the best in many areas of life (p = 0.002) significantly more often than in the K group. Moreover, they significantly more often limited the consumption of fats and carbohydrates (p = 0.044) and felt angry with themselves after too large of a meal (p = 0.050). It was shown that unhealthy eating behavior in the BGA group was significantly associated with rigorous self-perception (r = 0.42; p < 0.001). Students from the BGA group were more often exposed to a higher risk of anorexic readiness (p = 0.001). In a detailed analysis, it was found that eating behaviors, such as fasting, limiting the consumption of fats and carbohydrates, and avoiding eating under stress, were associated with feelings of dissatisfaction with oneself, the belief that appearance is extremely important in achieving life success and the need to improve appearance. CONCLUSION The obtained research results can be used as a source of information for specialists (including dietitians and psychologists), for the preparation of educational and repair programs in the group of ballet dancers or artistic gymnasts aged 10-12, including nutritional education and psychological care.
Collapse
Affiliation(s)
- Magdalena Leonkiewicz
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| | - Agata Wawrzyniak
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
45
|
Shoemaker ME, Pereira SL, Mustad VA, Gillen ZM, McKay BD, Lopez-Pedrosa JM, Rueda R, Cramer JT. Differences in muscle energy metabolism and metabolic flexibility between sarcopenic and nonsarcopenic older adults. J Cachexia Sarcopenia Muscle 2022; 13:1224-1237. [PMID: 35178889 PMCID: PMC8978004 DOI: 10.1002/jcsm.12932] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Metabolic flexibility is the ability of skeletal muscle to adapt fuel utilization to the demand for fuel sources [carbohydrates (CHO) and fats (FAT)]. The purpose of this study was to explore muscle energy metabolism and metabolic flexibility under various conditions in sarcopenic (S) versus nonsarcopenic (NS) older adults. METHODS Twenty-two older adults aged 65 years or older were categorized as NS [n = 11; mean ± standard deviation (SD); age = 73.5 ± 6.0 years (males, n = 5; females, n = 6)] or S [n = 11; 81.2 ± 10.5 years (males, n = 6; females, n = 5) based on handgrip strength, body composition and physical performance. Indirect calorimetry was recorded before and after consumption of a high-CHO meal and during aerobic and anaerobic exercise. Respiratory quotient (RQ), CHO and FAT oxidation were assessed. Venous blood samples were collected for glucose and insulin concentrations. RESULTS At rest, compared with NS, S exhibited a 5-8% higher RQ at 0 (0.72 vs. 0.76) and 120 (0.77 vs. 0.82), 150 (0.76 vs. 0.80), and 180 min (0.74 vs. 0.80) (P = 0.002-0.025); 59-195% higher CHO oxidation at 0, 120, and 180 min (0.0004-0.002 vs. 0.001-0.002 g·min-1 ·kg-1) (P = 0.010-0.047); and 20-31% lower FAT oxidation at 0, 15, and 90-180 min (0.0009-0.0022 vs. 0.0011-0.002 g·min-1 ·kg-1 ) (P = 0.004-0.038). Glucose levels were significantly elevated in S versus NS at 0, 60 and 75 min (144.64-202.78 vs. 107.70-134.20 mg·dL-1 ) but not insulin. During aerobic exercise, RQ was 5% greater (0.90 vs. 0.86) (P = 0.039), and FAT oxidation was 35% lower at 6-8 min (0.003 vs. 0.005 g·min-1 ·kg-1 ) (P = 0.033) in S versus NS. During anaerobic exercise, CHO oxidation was 31% greater in NS versus S at 60-80% time to exhaustion (0.011 vs. 0.007 g·min-1 ·kg-1 ) (P = 0.015). Per cent contribution to energy expenditure was greater in S for CHO but lower for FAT at 0 (CHO: 22% vs. 10%; FAT: 78% vs. 91%) and 120-180 min (CHO: 35-42% vs. 17-25%; FAT: 58-65% vs. 75%-84%) (P = 0.003-0.046) at rest and 6-8 min during aerobic exercise (CHO: 70% vs. 57%; FAT: 30% vs. 45%) (P = 0.046). CONCLUSIONS The data show differences in skeletal muscle energy metabolism and substrate utilization between S and NS at rest, transitioning from fasted to fed state, and during exercise. Compared with NS, S displayed a diminished ability to adapt fuel utilization in response to feeding and exercise, reflecting metabolic inflexibility. Impaired metabolic flexibility could be a mechanism underlying the losses of strength and physical function accompanying sarcopenia.
Collapse
Affiliation(s)
- Marni E Shoemaker
- College of Health Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | | | | | - Zachary M Gillen
- Department of Kinesiology, Mississippi State University, Mississippi State, MS, USA
| | - Brianna D McKay
- Department of Health Professions, Creighton University School of Medicine, Omaha, NE, USA
| | | | | | - Joel T Cramer
- College of Health Sciences, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
46
|
Reinhard C, Galloway SDR. Carbohydrate Intake Practices and Determinants of Food Choices During Training in Recreational, Amateur, and Professional Endurance Athletes: A Survey Analysis. Front Nutr 2022; 9:862396. [PMID: 35360695 PMCID: PMC8963786 DOI: 10.3389/fnut.2022.862396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Carbohydrate (CHO) intake during exercise can optimize endurance performance. However, there is limited information regarding fueling practices of endurance athletes during training. Accordingly, an anonymous German-language online survey was circulated examining the determinants of CHO choices, and intake practices among runners, triathletes, and cyclists during training. Survey questions included predefined answers, and a Likert scale with response of CHO food choice intakes from 1 = never to 5 = always. 1,081 endurance participants (58.0% male, 68.6% aged 18–39 years) of varying competitive levels were included in the analysis. Overall, most participants consumed a combination of commercial sport nutrition products and everyday foods (67.4%, n = 729) with their primary reason that food-first was preferred, but in some exercise scenarios, commercial sport nutrition products were deemed more convenient (61.3%, n = 447). Participants consuming commercial sport nutrition products only (19.3%, n = 209) most often valued their ease of intake during exercise (85.2%, n = 178). Among those consuming everyday foods only (13.2%, n = 143), the most common reason was the perceived importance of eating wholesome foods/natural ingredients (84.6%, n = 121). Between the most frequently consumed CHO sources during training at low-to-moderate intensities (n = 1032), sports drinks (mean ± SD; 2.56 ± 1.33) were consumed significantly more often than bananas (2.27 ± 1.14, p < 0.001), with no significant difference in intake frequency between bananas and traditional muesli/fruit/energy bars (2.25 ± 1.14, p = 0.616). Whereas during high intensities (n = 1,077), sports drinks (3.31 ± 1.51) were significantly more often consumed than gels (2.79 ± 1.37), and gels significantly more often than energy bars (2.43 ± 1.28), all commercial sport nutrition products (all, p < 0.001). Overall, 95.1% (n = 1028) of all participants consumed CHO during training at all exercise intensities, with males (n = 602; 2.35 ± 0.70) consuming significantly more often commercial sport nutrition products than females (n = 424; 2.14 ± 0.79, p < 0.001); females consumed significantly more often everyday foods than males (1.66 ± 0.47 vs. 1.54 ± 0.42, p < 0.001). Most participants used mixed CHO forms during low-to-moderate (87.9%), and high exercise intensities (94.7%). 67.6% (n = 731) of all participants reported guiding their CHO intake rates during training by gut feeling. These large-scale survey findings suggest a preference of endurance participants’ CHO intake during training in liquid form independent of exercise intensities and offer novel insights into CHO intake practices to guide sports nutrition strategies and education.
Collapse
|
47
|
A Food First Approach to Carbohydrate Supplementation in Endurance Exercise: A Systematic Review. Int J Sport Nutr Exerc Metab 2022; 32:296-310. [PMID: 35231883 DOI: 10.1123/ijsnem.2021-0261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
This systematic review analyzed whether carbohydrate source (food vs. supplement) influenced performance and gastrointestinal (GI) symptoms during endurance exercise. Medline, SPORTDiscus, and citations were searched from inception to July 2021. Inclusion criteria were healthy, active males and females aged >18 years, investigating endurance performance, and GI symptoms after ingestion of carbohydrate from a food or supplement, <60 min before or during endurance exercise. The van Rosendale scale was used to determine risk of bias, with seven studies having low risk of bias. A total of 151 participants from 15 studies were included in the review. Three studies provided 0.6-1 g carbohydrate/kg body mass during 5-45 min precycling exercise (duration 60-70 min) while 12 studies provided 24-80 g/hr carbohydrate during exercise (60-330 min). Except one study that suggested a likely harmful effect (magnitude-based inferences) of a bar compared to a gel consumed during exercise on cycling performance, there were no differences in running (n = 1) or cycling (n = 13) performance/capacity between food and supplemental sources. Greater GI symptoms were reported with food compared with supplemental sources. Highly heterogenous study designs for carbohydrate dose and timing, as well as exercise protocol and duration, make it difficult to compare findings between studies. A further limitation results from only one study assessing running performance. Food choices of carbohydrate consumed immediately before and during endurance exercise result in similar exercise performance/capacity responses to supplemental carbohydrate sources, but may slightly increase GI symptoms in some athletes, particularly with exercise >2 hr.
Collapse
|
48
|
Adami PE, Koutlianos N, Baggish A, Bermon S, Cavarretta E, Deligiannis A, Furlanello F, Kouidi E, Marques-Vidal P, Niebauer J, Pelliccia A, Sharma S, Solberg EE, Stuart M, Papadakis M. Cardiovascular effects of doping substances, commonly prescribed medications and ergogenic aids in relation to sports: a position statement of the sport cardiology and exercise nucleus of the European Association of Preventive Cardiology. Eur J Prev Cardiol 2022; 29:559-575. [PMID: 35081615 DOI: 10.1093/eurjpc/zwab198] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/30/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
The use of substances and medications with potential cardiovascular effects among those practicing sports and physical activity has progressively increased in recent years. This is also connected to the promotion of physical activity and exercise as core aspects of a healthy lifestyle, which has led also to an increase in sport participation across all ages. In this context, three main users' categories can be identified, (i) professional and amateur athletes using substances to enhance their performance, (ii) people with chronic conditions, which include physical activity and sport in their therapeutic plan, in association with prescribed medications, and (iii) athletes and young individuals using supplements or ergogenic aids to integrate their diet or obtaining a cognitive enhancement effect. All the substances used for these purposes have been reported to have side effects, among whom the cardiovascular consequences are the most dangerous and could lead to cardiac events. The cardiovascular effect depends on the type of substance, the amount, the duration of use, and the individual response to the substances, considering the great variability in responses. This Position Paper reviews the recent literature and represents an update to the previously published Position Paper published in 2006. The objective is to inform physicians, athletes, coaches, and those participating in sport for a health enhancement purpose, about the adverse cardiovascular effects of doping substances, commonly prescribed medications and ergogenic aids, when associated with sport and exercise.
Collapse
Affiliation(s)
- Paolo Emilio Adami
- Health and Science Department, World Athletics, 6-8 Quai Antoine 1er, Monaco 98000, Monaco
| | - Nikolaos Koutlianos
- Sports Medicine Laboratory, Aristotle University of Thessaloniki, Thermi, AUTH DPESS, 54124, Thessaloniki, Greece
| | - Aaron Baggish
- Cardiovascular Performance Program, Massachusetts General Hospital, 55 Fruit Street Boston, MA 02114, USA
| | - Stéphane Bermon
- Health and Science Department, World Athletics, 6-8 Quai Antoine 1er, Monaco 98000, Monaco
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79 - 04100 - Latina (LT), Italy.,Mediterranea Cardiocentro, Via Orazio, 2, 80122, Napoli (NA), Italy
| | - Asterios Deligiannis
- Sports Medicine Laboratory, Aristotle University of Thessaloniki, Thermi, AUTH DPESS, 54124, Thessaloniki, Greece
| | - Francesco Furlanello
- Aritmologia Clinica e Sportiva, IRCCS Gruppo MultiMedica Elettrofisiologia, Via Milanese 300, 20099, Sesto San Giovanni(MI), Italy
| | - Evangelia Kouidi
- Sports Medicine Laboratory, Aristotle University of Thessaloniki, Thermi, AUTH DPESS, 54124, Thessaloniki, Greece
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Josef Niebauer
- Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Antonio Pelliccia
- Sports Medicine and Science Institute, CONI, Largo Piero Gabrielli, 1, 00197, Rome, Italy
| | - Sanjay Sharma
- Cardiovascular Clinical Academic Group, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | | | - Mark Stuart
- International Testing Agency-ITA, Av. de Rhodanie 58, 1007 Lausanne, Switzerland
| | - Michael Papadakis
- Cardiovascular Clinical Academic Group, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
49
|
Acute Ingestion of Ketone Monoesters and Precursors Do Not Enhance Endurance Exercise Performance: A Systematic Review and Meta-Analysis. Int J Sport Nutr Exerc Metab 2022; 32:214-225. [PMID: 35042186 DOI: 10.1123/ijsnem.2021-0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022]
Abstract
There has been much consideration over whether exogenous ketone bodies have the capacity to enhance exercise performance through mechanisms such as altered substrate metabolism, accelerated recovery, or neurocognitive improvements. This systematic review aimed to determine the effects of both ketone precursors and monoesters on endurance exercise performance. A systematic search was conducted in PubMed, SPORTDiscus, and CINAHL for randomized controlled trials investigating endurance performance outcomes in response to ingestion of a ketone supplement compared to a nutritive or nonnutritive control in humans. A meta-analysis was performed to determine the standardized mean difference between interventions using a random-effects model. Hedge's g and 95% confidence intervals (CI) were reported. The search yielded 569 articles, of which eight were included in this review (80 participants; 77 men and three women). When comparing endurance performance among all studies, no significant differences were found between ketone and control trials (Hedges g = 0.136; 95% CI [-0.195, 0.467]; p = .419). Subanalyses based on type of endurance tests showed no significant differences in time to exhaustion (Hedge's g = -0.002; 95% CI [-0.312, 0.308]; p = .989) or time trial (Hedge's g = 0.057; 95% CI [-0.282, 0.395]; p = .744) values. Based on these findings, exogenous ketone precursors and monoesters do not exert significant improvements on endurance exercise performance. While all studies reported an increase in blood ketone concentrations after ingestion, ketone monoesters appear to be more effective at raising concentrations than precursors.
Collapse
|
50
|
Wei C, Zhao S, Zhang Y, Gu W, Kumar Sarker S, Liu S, Li B, Wang X, Li Y, Wang X. Effect of Multiple-Nutrient Supplement on Muscle Damage, Liver, and Kidney Function After Exercising Under Heat: Based on a Pilot Study and a Randomised Controlled Trial. Front Nutr 2022; 8:740741. [PMID: 35004797 PMCID: PMC8733564 DOI: 10.3389/fnut.2021.740741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
Objective: This study explored the effect of multiple-nutrient supplementation on muscle damage and liver and kidney function after vigorous exercise under heat. Methods: After an initial pilot trial comprising 89 male participants, 85 participants were recruited and assigned into three groups: a multiple-nutrient (M) group, a glucose (G) group, and a water (W) group. Multiple-nutrient supplements contain glucose, fructose, maltose, sodium, potassium, vitamin B1, vitamin B2, vitamin C, vitamin K, and taurine. Participants were organised to take a 3-km running test (wet-bulb globe temperature 32°C) after a short-term (7 days) supplement. Blood samples were obtained to detect biochemical parameters [glucose (GLU), aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), uric acid (UA), creatinine (Cr), creatine kinase (CK), lactate dehydrogenase (LDH), and lactic acid], inflammation factors [interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α)], and oxidative stress biomarkers [superoxide dismutase (SOD) and 8-iso-prostaglandin F (2alpha) (8-iso-PGF2α)]. Results: In the pilot trial, BUN decreased significantly in the M and G groups immediately after the running test. AST, Cr, and UA were significantly reduced 24 h after the running test with single-shot multiple-nutrient supplementation. In the short-term trial, multiple nutrients further prevented the elevation of CK (p = 0.045) and LDH (p = 0.033) levels 24 h after strenuous exercise. Moreover, we found that multiple nutrients significantly reduced IL-6 (p = 0.001) and TNF-α (p = 0.015) elevation immediately after exercise. Simultaneously, SOD elevation was significantly higher in the M group immediately after exercising than in the other two groups (p = 0.033). 8-iso-PGF2α was reduced in the M group 24 h after exercise (p = 0.036). Conclusions: This study found that multiple-nutrient supplementation promoted the recovery of muscle damage and decreased liver and kidney function caused by strenuous exercise in a hot environment, probably through the inhibition of secondary damage induced by increased inflammatory reactions and oxidative stress. In this respect, the current study has important implications for the strategy of nutritional support to accelerate recovery and potentially prevent heat-related illness. This study was prospectively registered on clinicaltrials.gov on June 21, 2019 (ID: ChiCTR1900023988).
Collapse
Affiliation(s)
- Chunbo Wei
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Shengnan Zhao
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yuntao Zhang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Wenbo Gu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Shuvan Kumar Sarker
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Shuande Liu
- Department of Neurosurgery, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Benzhang Li
- Department of Neurosurgery, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Xuanyang Wang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Li
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Xu Wang
- Department of Neurosurgery, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China
| |
Collapse
|