1
|
Pereira JD, Magalhães FMV, Tameirão FMS, Soriani FM, de O S Jorge KT, Reis FM, Cândido AL, Comim FV, Gomes KB. The possible regulatory role of miRNA-30c-5p, miRNA-545-3p and miRNA-125a-5p in women with polycystic ovary syndrome: A case-control study and signaling pathways. Mol Cell Endocrinol 2025; 599:112492. [PMID: 39952313 DOI: 10.1016/j.mce.2025.112492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION Polycystic Ovary Syndrome (PCOS) is one of the most common endocrinopathy in women of reproductive age. MicroRNA (miRNAs) are small non-coding RNAs related to the control of gene expression in biological fluids. Our study analyzed the expression of miRNAs related to inflammation in individuals with PCOS compared to controls. METHODS Twenty patients with PCOS and 20 controls, matched by body mass index and age, were included in the study. The miRNAs evaluated were miRNA-30c-5p; miRNA-545-3p and miRNA-125a-5p. RESULTS The expression of the miRNAs was similar between the two groups. A positive correlation was observed between the expression of miRNA-125a-5p and LDLc levels only in the PCOS group. Subsequent analysis of biological pathways showed that miRNA-125a -5p is significantly involved in the regulation of SREBP/SREBF pathways of cholesterol biosynthesis, glycolysis, insulin receptor signaling, oxidative stress-induced senescence and estrogen-dependent gene expression. CONCLUSION The results suggest that the miRNA-125a-5p shows a potential implication to the regulation of lipid biosynthesis and LDL-c levels in PCOS women.
Collapse
Affiliation(s)
- Jessica D Pereira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda M V Magalhães
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiana M S Tameirão
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Frederico M Soriani
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina T de O S Jorge
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando M Reis
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Lúcia Cândido
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fábio V Comim
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina B Gomes
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Wollborn L, Webber JW, Alimena S, Mishra S, Sussman CB, Comrie CE, Packard DG, Williams M, Russell T, Fendler W, Chowdhury D, Elias KM. Effects of Clinical Covariates on Serum miRNA Expression among Women without Ovarian Cancer. Cancer Epidemiol Biomarkers Prev 2025; 34:385-393. [PMID: 38780899 PMCID: PMC11873719 DOI: 10.1158/1055-9965.epi-23-1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Serum miRNAs are potential biomarkers for ovarian cancer; however, many factors may influence miRNA expression. To understand potential confounders in miRNA analysis, we examined how sociodemographic factors and comorbidities, including known ovarian cancer risk factors, influence serum miRNA levels in women without ovarian cancer. METHODS Data from 1,576 women from the Mass General Brigham Biobank collected between 2012 and 2019, excluding subjects previously or subsequently diagnosed with ovarian cancer, were examined. Using a focused panel of 179 miRNA probes optimized for serum profiling, miRNA expression was measured by flow cytometry using the Abcam FirePlex assay and correlated with subjects' electronic medical records. RESULTS The study population broadly reflected the New England population. The median age of subjects was 49 years, 34% were current or prior smokers, 33% were obese (body mass index > 30 kg/m2), 49% were postmenopausal, and 11% had undergone prior bilateral oophorectomy. Significant differences in miRNA expression were observed among ovarian risk factors such as age, obesity, menopause, BRCA1 or BRCA2 germline mutations, or existence of breast cancer in family history. Additionally, miRNA expression was significantly altered by prior bilateral oophorectomy, hypertension, and hypercholesterolemia. Other variables, such as smoking; parity; age at menarche; hormonal replacement therapy; oral contraception; breast, endometrial, or colon cancer; and diabetes, were not associated with significant changes in the panel when corrected for multiple testing. CONCLUSIONS Serum miRNA expression patterns are significantly affected by patient demographics, exposure history, and medical comorbidities. IMPACT Understanding confounders in serum miRNA expression is important for refining clinical assays for cancer screening.
Collapse
Affiliation(s)
- Laura Wollborn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - James W. Webber
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Stephanie Alimena
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Sudhanshu Mishra
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | | | | | | | | | - Wojciech Fendler
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Dipanjan Chowdhury
- Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kevin M. Elias
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
3
|
Dong H, Peng Z, Yu T, Xiong J. YB-1 Targeted by miR-509-3-5p Affects Migration and Invasion of Triple‑Negative Breast Cancer by Regulating Cellular Epithelial‑Mesenchymal Transition. Mol Biotechnol 2025; 67:1014-1026. [PMID: 38436906 DOI: 10.1007/s12033-024-01101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
The epithelial-mesenchymal transition (EMT) process is closely linked to metastasis of breast cancer. This article elucidates the role of Y-box binding protein-1 (YB-1) on the migration and invasion of triple-negative breast cancer (TNBC) cells by regulating EMT, and the related mechanism. The expression data of YB-1 and miR-509-3-5p in TNBC samples and normal samples were downloaded from the GEO database. The proliferation, migration, invasion, and EMT of TNBC cells were detected by CCK-8 assay, colony formation assay, wound-healing assay, transwell assay, and immunoblotting analyses. The targeted binding of YB-1 and miR-509-3-5p was validated by luciferase reporter experiment. A xenograft mouse model was constructed to investigate the influence of the miR-509-3-5p/YB-1 axis on TNBC tumor growth in vivo. YB-1 was overexpressed, while miR-509-3-5p was underexpressed in TNBC tumor tissues and various cell lines. Silencing YB-1 depressed cell viability, proliferation, motility, and EMT in vitro, and miR-509-3-5p upregulation exerted the same effects. YB-1 was targeted by miR-509-3-5p. The suppressive effects on the phenotypes of TNBC cells caused by overexpressed miR-509-3-5p were attenuated by YB-1 upregulation. In addition, miR-509-3-5p overexpression restrained TNBC tumor growth and downregulated the YB-1-mediated EMT process in vivo. YB-1 targeted by miR-509-3-5p affects motility of TNBC cells by regulating cellular EMT.
Collapse
Affiliation(s)
- Hanzhi Dong
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Donghu District, Nanchang, 330029, China
| | - Zhiqiang Peng
- Department of Lymphohematology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, China
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, China
| | - Jianping Xiong
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Donghu District, Nanchang, 330029, China.
| |
Collapse
|
4
|
Lim JU, Jung J, Kim YW, Kim CY, Lee SH, Park DW, Choi SI, Ji W, Yeo CD, Lee SH. Targeting the Tumor Microenvironment in EGFR-Mutant Lung Cancer: Opportunities and Challenges. Biomedicines 2025; 13:470. [PMID: 40002883 PMCID: PMC11852785 DOI: 10.3390/biomedicines13020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have transformed the treatment of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer. However, treatment resistance remains a major challenge in clinical practice. The tumor microenvironment (TME) is a complex system composed of tumor cells, immune and non-immune cells, and non-cellular components. Evidence indicates that dynamic changes in TME during TKI treatment are associated with the development of resistance. Research has focused on identifying how each component of the TME interacts with tumors and TKIs to understand therapeutic targets that could address TKI resistance. In this review, we describe how TME components, such as immune cells, fibroblasts, blood vessels, immune checkpoint proteins, and cytokines, interact with EGFR-mutant tumors and how they can promote resistance to TKIs. Furthermore, we discuss potential strategies targeting TME as a novel therapeutic approach.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Wook Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Chi Young Kim
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Won Park
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea;
| | - Sue In Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Wonjun Ji
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 44610, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03083, Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Huang Y, Zhou J, Deng Y, Li G, He S, Li H, Liu L. MiR-363: A potential biomarker of kidney diseases. Clin Chim Acta 2025; 567:120049. [PMID: 39631492 DOI: 10.1016/j.cca.2024.120049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
MicroRNAs (miRNAs), a class of endogenous small RNAs with lengths of approximately 19-24 nucleotides, play important regulatory roles in cells. In recent years, miR-363 has emerged as a prominent member of the miR-92a family, participating in various biological functions, including cellular proliferation, cycle, migration, and apoptosis. In particular, miR-363 plays a critical role in acute kidney injury, renal fibrosis, and diabetic nephropathy and can serve as a biomarker for the diagnosis of renal cell carcinoma. Ongoing research is exploring its potential as a biomarker of other kidney diseases. This review focuses on the role of miR-363 in kidney diseases, elucidating its regulatory mechanisms and exploring its possible value as a biomarker of kidney diseases.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China; School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiazhen Zhou
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China
| | - Yaotang Deng
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China
| | - Guoliang Li
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China
| | - Shuirong He
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China; School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
| | - Hecheng Li
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China; School of Public Health, Southern Medical University, Guangzhou 510145, China
| | - Lili Liu
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China.
| |
Collapse
|
6
|
Linares-Rodríguez M, Blancas I, Rodríguez-Serrano F. The Predictive Value of Blood-Derived Exosomal miRNAs as Biomarkers in Breast Cancer: A Systematic Review. Clin Breast Cancer 2025; 25:e48-e55.e15. [PMID: 39054208 DOI: 10.1016/j.clbc.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024]
Abstract
Breast cancer (BC) remains a widespread disease worldwide, despite advances in its detection and treatment. microRNAs (miRNAs) play a significant role in cancer, and their presence within exosomes may confer several advantages in terms of tumor initiation, propagation, immune evasion, and drug resistance compared to freely circulating miRNAs in the blood. The objective of this study was to conduct a systematic review to analyze the role of exosomal miRNAs present in serum or plasma as biomarkers in BC. Bibliographic sources were collected from various databases with no starting date limit until March 2023. The search terms used were related to "breast cancer," "microRNAs," and "exosomes." Following the search, inclusion and exclusion criteria were applied, resulting in a total of 46 articles. Data were extracted from the selected studies and summarized to indicate the miRNAs, type of dysregulation, sample source, number of patients and controls, and clinical relevance of the miRNAs. We carried out an enrichment study of the microRNAs that appeared in at least 3 studies, those that were suitable for selection were miR-16, miR-21 and miR-155. Exosomal miRNAs isolated from blood samples of patients diagnosed with BC could be valuable in the clinical setting. They could provide information about early diagnosis, disease progression, recurrence, treatment response, and metastases. It is crucial to reach a consensus on the specific exosomal miRNAs to detect and the most appropriate type of sample for comprehensive utilization of miRNAs as biomarkers for BC.
Collapse
Affiliation(s)
- Marina Linares-Rodríguez
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
| | - Isabel Blancas
- Department of Medicine, School of Medicine, University of Granada, Granada, Spain; Department of Medical Oncology, San Cecilio University Hospital, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| | - Fernando Rodríguez-Serrano
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Department of Human Anatomy and Embryology, University of Granada, Granada, Spain.
| |
Collapse
|
7
|
Maar S, Czuni L, Hassve JK, Takatsy A, Rendeki S, Mintal T, Gallyas F, Bock-Marquette I. Technical considerations regarding saliva sample collection to achieve comparable protein identification and detection via one- and two-dimensional gel electrophoresis among humans. Heliyon 2024; 10:e40752. [PMID: 39759277 PMCID: PMC11696668 DOI: 10.1016/j.heliyon.2024.e40752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Background and aims Recently, demands towards identifying various molecules in support of stress detection and potential clinical utilization are dramatically increasing. Moreover, the accuracy with which researchers quantify these informative molecules is now far more improved when compared to the past. As RNA or protein markers are conventionally detected via repeated invasive procedures from blood, it is critical to develop secure technologies to obtain the desired information via less stressful methodologies, such as saliva collection. Moreover, for superb interpretation, it became equally significant to obtain the information from the same exact specimen. RNA is easily degradable, thus it is paramount to supplement the samples with protective agents, such as RNAlater, to achieve accurate quantitative results. Methods In our research we investigated whether and how this commonly applied RNA protection procedure influences protein and peptide separation of the human saliva via quantitative two-dimensional protein electrophoresis. Results Our results revealed, in contrary to previously published data regarding plasma, the addition of RNAlater to saliva samples negatively influences isoelectric focusing and protein detection. We equally found the application oftentimes employed referred to as selective precipitation and reduction-alkylation, partially rescued separation, however, with a significant loss in protein yield and quality when compared to untreated samples. Conclusion Our results suggest collection of human saliva for biomarker identification must be performed with extreme diligence. We propose application of RNAlater should be avoided and snap freezing of the collected saliva is recommended when joint protein and RNA quantification is the ultimate goal.
Collapse
Affiliation(s)
- Szabolcs Maar
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs, Hungary
| | - Lilla Czuni
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs, Hungary
| | - Jørgen Kosberg Hassve
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs, Hungary
| | - Aniko Takatsy
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs, Hungary
| | - Szilard Rendeki
- Department of Anesthesiology and Intensive Therapy, University of Pecs, Medical School Pecs, Hungary
- Medical Skills Education and Innovation Centre, University of Pecs, Medical School, Pecs, Hungary
| | - Tibor Mintal
- Department of Orthopedics, University of Pecs, Medical School, Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs, Hungary
| | - Ildiko Bock-Marquette
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs, Hungary
| |
Collapse
|
8
|
Li F, Han W, Sun H. Serum miR-155-5p assists the diagnostic sensitivity and accuracy of low-dose spiral CT imaging in early lung cancer. Mol Cell Probes 2024; 78:101994. [PMID: 39613197 DOI: 10.1016/j.mcp.2024.101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Low-dose spiral CT imaging has been employed for cancer diagnosis, but its sensitivity and specificity were unsatisfactory. MicroRNAs have been considered an approach for screening cancers, and the function of miR-155-5p in lung cancer has been previously revealed. OBJECTIVES This study assessed the diagnostic value of combining low-dose spiral CT with serum miR-155-5p in lung cancer aiming to explore a novel strategy to assist the clinical cancer diagnosis. METHODS This study enrolled 115 lung cancer patients and 115 patients with benign lung diseases as control. All patients received low-dose spiral CT imaging, and serum miR-155-5p levels were analyzed by PCR. The diagnostic potential of miR-155-5p in lung cancer was evaluated by receiver operating curve (ROC), and its significance in evaluating the risk of lung cancer was evaluated by logistic regression analysis. The consistency of serum miR-155-5p and low-dose spiral CT imaging with pathological examination was assessed by the Kappa test. RESULTS Reduced serum miR-155-5p indicated the risk of lung cancer in patients with benign lung diseases. Decreased serum miR-155-5p showed significant diagnostic value in early lung cancer and was significantly associated with disease severity. Low-dose spiral CT imaging showed significant diagnostic value in early lung cancer and showed middle consistency with pathological examination. Combining low-dose spiral CT imaging with serum miR-155-5p improved the diagnostic sensitivity and accuracy in early lung cancer, reduced the false positive rate, and showed better consistency with pathological examination. CONCLUSION Serum miR-155-5p levels could assist the early detection of lung cancer by low-dose spiral CT examination.
Collapse
Affiliation(s)
- Fei Li
- Department of Medical Imaging, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, 257091, China.
| | - Wenwen Han
- Department of Medical Imaging, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, 257091, China
| | - Hailong Sun
- Department of Medical Imaging, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, 257091, China
| |
Collapse
|
9
|
Sasa GBK, He B, Chen C, Chen Z, Li S, Tan CS. A dual-targeted electrochemical aptasensor for neuroblastoma-related microRNAs detection. Talanta 2024; 280:126772. [PMID: 39197310 DOI: 10.1016/j.talanta.2024.126772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/23/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Neuroblastoma (NB) is a significant pediatric cancer associated with high mortality rates, demanding innovative and appropriate approaches for its accurate detection. This paper described the design of a dual-target electrochemical aptasensor capable of simultaneously detecting neuroblastoma-associated microRNAs (miRNA-181 and miRNA-184) with exceptional sensitivity. Screen-printed carbon electrodes (SPCEs) were utilized with gold nanorods (AuNRs), and aptamers functionalized gold nanoparticles (AuNPs) to improve sensitivity, specificity, and portable detection ability. The detection method employed in this study includes differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Our aptasensor exhibited remarkable limits of detections (LODs) of 5.10 aM for miRNA-181 and 9.39 aM for miRNA-184, respectively, along with a broad linear range spanning from 0.1 fM to 100 pM for both miRNAs. The practical significance of neuroblastoma diagnosis was shown through the validation of serum samples and comparison with quantitative polymerase chain reaction (qPCR). Our electrochemical aptasensor is user-friendly, easy to engineer, and offers a promising approach for accurately and selectively detecting important miRNA biomarkers in cancer screening and diagnosis, showing potential application in various clinical scenarios.
Collapse
Affiliation(s)
| | - Biaxun He
- Medical College, Tianjin University, Tianjin 300072, China
| | - Chong Chen
- Medical College, Tianjin University, Tianjin 300072, China; Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Zetao Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang Li
- Medical College, Tianjin University, Tianjin 300072, China
| | - Cherie S Tan
- Medical College, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
10
|
Bardill JR, Karimpour-Fard A, Breckenfelder CC, Sucharov CC, Eason CR, Gallagher LT, Khailova L, Wright CJ, Gien J, Galan HL, Derderian SC. microRNAs in congenital diaphragmatic hernia: insights into prenatal and perinatal biomarkers and altered molecular pathways. Am J Obstet Gynecol MFM 2024; 6:101535. [PMID: 39505208 DOI: 10.1016/j.ajogmf.2024.101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is characterized by a diaphragmatic defect, leading to herniation of abdominal organs into the chest, lung compression, and impaired lung development, often resulting in pulmonary hypertension and lung hypoplasia. Prenatal imaging techniques like ultrasound and MRI provide anatomical predictors of outcomes, but their limitations necessitate novel biomarkers for better prognostic accuracy. OBJECTIVE This study aims to identify unique circulating maternal, fetal, and neonatal microRNAs (miRNAs) that can distinguish CDH pregnancies from healthy controls and assess their potential as markers of disease severity. STUDY DESIGN We conducted a prospective study involving third-trimester maternal blood, amniotic fluid, cord blood, and neonatal blood samples from pregnancies complicated by CDH and healthy controls. miRNA expression was analyzed using RNA-sequencing, and random forest analysis identified miRNAs distinguishing CDH survivors from nonsurvivors. Pathway enrichment analyses were performed to explore the biological relevance of differentially expressed miRNAs. RESULTS Significant miRNA expression differences were observed between CDH and control samples across all sample types. In infant blood, 148 miRNAs were up-regulated, and 36 were down-regulated in CDH cases. Pathway analysis revealed that dysregulated miRNAs in CDH targeted pathways related to protein binding, transcription regulation, and signaling pathways implicated in pulmonary hypertension and lung hypoplasia. Random forest analysis identified miRNAs in maternal blood (miR-7850-5p_L-1R+2, miR-942-3p, and miR-197-3p) that distinguished CDH survivors from nonsurvivors, with an receiver operating characteristic area under the curve of 1.0. CONCLUSION Circulating miRNAs in maternal blood offer promising biomarkers for predicting CDH outcomes. miRNAs from infant blood provide mechanistic insights and potential targets for therapeutic intervention in critical pathways of pulmonary hypertension and lung hypoplasia. Further studies with larger cohorts are needed to validate these findings and explore the clinical application of miRNA biomarkers in CDH management.
Collapse
Affiliation(s)
- James R Bardill
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Gallagher, and Derderian); Department of Surgery, Laboratory for Fetal and Regenerative Biology, University of Colorado Denver School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Khailova, and Derderian)
| | - Anis Karimpour-Fard
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO (Karimpour-Fard)
| | - Courtney C Breckenfelder
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Gallagher, and Derderian); Department of Surgery, Laboratory for Fetal and Regenerative Biology, University of Colorado Denver School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Khailova, and Derderian)
| | - Carmen C Sucharov
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, CO (Sucharov)
| | - Caitlin R Eason
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Gallagher, and Derderian); Department of Surgery, Laboratory for Fetal and Regenerative Biology, University of Colorado Denver School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Khailova, and Derderian)
| | - Lauren T Gallagher
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Gallagher, and Derderian)
| | - Ludmila Khailova
- Department of Surgery, Laboratory for Fetal and Regenerative Biology, University of Colorado Denver School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Khailova, and Derderian)
| | - Clyde J Wright
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO (Wright and Gien)
| | - Jason Gien
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO (Wright and Gien)
| | - Henry L Galan
- Colorado Fetal Care Center, Children's Hospital Colorado, Aurora, CO (Galan and Derderian); Divison of Maternal Fetal Medicine, University of Colorado School of Medicine, Aurora, CO (Galan)
| | - Sarkis Christopher Derderian
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Gallagher, and Derderian); Department of Surgery, Laboratory for Fetal and Regenerative Biology, University of Colorado Denver School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Khailova, and Derderian); Colorado Fetal Care Center, Children's Hospital Colorado, Aurora, CO (Galan and Derderian); Division of Pediatric Surgery, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO (Derderian).
| |
Collapse
|
11
|
Zhang Y, Da Yang G, Chen QY, Zeng J, Cao Y. Microrna-342 inhibits hepatocellular carcinoma cell proliferation and promotes apoptosis through the FOXP1/MYCBP Signaling Axis. Toxicol Res (Camb) 2024; 13:tfae149. [PMID: 39698396 PMCID: PMC11649998 DOI: 10.1093/toxres/tfae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 12/20/2024] Open
Abstract
To investigate the role and mechanism of miR-342 and FOXP1 on hepatocellular carcinoma cells. QRT-PCR was applied to determine the expression of miR-342, FOXP1 and MYCBP in normal hepatocyte cell lines (NHC), hepatocellular carcinoma cell lines (HEK-293 T) and human hepatocellular carcinoma cell lines (HepG2, MHCC97-L, Huh7 and SMMC7721). After knockdown or over-expression of miR-342 and FOXP1 in HepG2 cells respectively, cell proliferation and cell viability were measured using MTT assay and colony formation assay. Flow cytometry was adopted to test for apoptosis. Dual luciferase gene reporter assays were performed to validate the target relationship between FOXP1and miR-342 or MYCBP. The level of apoptosis-related proteins cleaved-caspase-3, Bcl-2 and Bax were measured by western blot. Compared with NHC, miR-342 expression was decreased and FOXP1 expression was up-regulated in hepatocellular carcinoma cell lines. MiR-342 could target and negatively regulate FOXP1. FOXP1 could promote the proliferation of hepatocellular carcinoma cells, positively regulate the expression of c-Caspase-3, Bax, negatively regulate Bcl-2 and inhibit apoptosis. FOXP1 can also target and positively regulate MYCBP. The expression of MYCBP was up-regulated in the hepatocellular carcinoma cell lines, while overexpression of miR-342 decreased MYCBP expression promoted by overexpression of FOXP1. MiR-342 can inhibit FOXP1/MYCBP signaling axis to regulate the members of Caspase-3 and Bcl-2 family to inhibit the proliferation and promote apoptosis of hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Oncology, The Fourth Affiliated Hospital of Guangzhou Medical University, No. 232, Outer Ring East Road, Panyu District, Guangzhou 510000 Guangdong Province, China
- The First Clinical School of Guangzhou University of Chinese Medicine, No. 1 Guangming East Road, Zengcheng District, Guangzhou 510000 Guangdong Province, China
| | - Guang Da Yang
- Department of Oncology, The Fourth Affiliated Hospital of Guangzhou Medical University, No. 232, Outer Ring East Road, Panyu District, Guangzhou 510000 Guangdong Province, China
- The First Clinical School of Guangzhou University of Chinese Medicine, No. 1 Guangming East Road, Zengcheng District, Guangzhou 510000 Guangdong Province, China
| | - Qian Ya Chen
- Department of Oncology, The Fourth Affiliated Hospital of Guangzhou Medical University, No. 232, Outer Ring East Road, Panyu District, Guangzhou 510000 Guangdong Province, China
- The First Clinical School of Guangzhou University of Chinese Medicine, No. 1 Guangming East Road, Zengcheng District, Guangzhou 510000 Guangdong Province, China
| | - Jinlong Zeng
- Department of Oncology, The Fourth Affiliated Hospital of Guangzhou Medical University, No. 232, Outer Ring East Road, Panyu District, Guangzhou 510000 Guangdong Province, China
- The First Clinical School of Guangzhou University of Chinese Medicine, No. 1 Guangming East Road, Zengcheng District, Guangzhou 510000 Guangdong Province, China
| | - Yang Cao
- Department of Oncology, The Fourth Affiliated Hospital of Guangzhou Medical University, No. 232, Outer Ring East Road, Panyu District, Guangzhou 510000 Guangdong Province, China
- The First Clinical School of Guangzhou University of Chinese Medicine, No. 1 Guangming East Road, Zengcheng District, Guangzhou 510000 Guangdong Province, China
| |
Collapse
|
12
|
Su Z, Fang M, Smolnikov A, Vafaee F, Dinger ME, Oates EC. Post-transcriptional regulation supports the homeostatic expression of mature RNA. Brief Bioinform 2024; 26:bbaf027. [PMID: 39913622 PMCID: PMC11801271 DOI: 10.1093/bib/bbaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/31/2024] [Accepted: 02/05/2025] [Indexed: 02/09/2025] Open
Abstract
Gene expression regulation is a sophisticated, multi-stage process, and its robustness is critical to normal cell function and the survival of an organism. Previous studies indicate that differential gene expression at the RNA level is typically attenuated at the protein level through translational regulation. However, how post-transcriptional regulation (PTR) influences expression change during the RNA maturation process remains unclear. In this study, we investigated this by quantifying the magnitude of expression change in precursor RNA and mature RNA across a vast range of different biological conditions. We analyzed bulk tissue RNA sequencing data from 4689 samples, including healthy and diseased tissues from human, chimpanzee, rhesus macaque, and murine sources. We demonstrated that PTR tends to support homeostatic expression of mature RNA by amplifying normal tissue-specific expression of precursor RNA, while reducing expression change of precursor RNA in disease contexts. Our study provides insight into the general influence of PTR on gene expression homeostasis. Our analysis also suggests that intronic reads in RNA-seq studies may contain under-utilized information about disease associations. Additionally, our findings may assist in identifying new disease biomarkers and more effective ways of altering gene expression as a therapeutic strategy.
Collapse
Affiliation(s)
- Zheng Su
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
| | - Mingyan Fang
- BGI Research, Building 1, Future Science and Technology Innovation Mansion, No. 59, Science and Technology 3rd Road, East Lake High-tech Development Zone, Wuhan City, Hubei Province, 430074, China
- BGI Australia, L6, CBCRC, QIMR Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Andrei Smolnikov
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, F22 Life, Earth and Environmental Sciences (LEES) Building, Camperdown NSW 2050, Australia
| | - Emily C Oates
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
- Department of Neurology, Sydney Children’s Hospital, High St, Randwick NSW 2031, Australia
| |
Collapse
|
13
|
Abdel Mageed SS, Elimam H, Elesawy AE, Abulsoud AI, Raouf AA, Tabaa MME, Mohammed OA, Zaki MB, Abd-Elmawla MA, El-Dakroury WA, Mangoura SA, Elrebehy MA, Elballal MS, Mohamed AA, Ashraf A, Abdel-Reheim MA, Eleragi AMS, Abdellatif H, Doghish AS. Unraveling the impact of miRNAs on gouty arthritis: diagnostic significance and therapeutic opportunities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03603-9. [PMID: 39560752 DOI: 10.1007/s00210-024-03603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Gouty arthritis is a prevalent inflammatory illness. Gout attacks begin when there is an imbalance in the body's uric acid metabolism, which leads to urate buildup and the development of the ailment. A family of conserved, short non-coding RNAs known as microRNAs (miRNAs) can regulate post-transcriptional protein synthesis by attaching to the 3' untranslated region (UTR) of messenger RNA (mRNA). An increasing amount of research is pointing to miRNAs as potential players in several inflammatory diseases, including gouty arthritis. miRNAs may influence the progression of the disease by regulating immune function and inflammatory responses. This review mainly focused on miRNAs and how they contribute to gouty arthritis. It also looked at how miRNAs could be used as diagnostic, prognostic, and potential therapeutic targets.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Hanan Elimam
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, 43713, Suez,, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Aya A Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | | | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Department of Anatomy and Embryology, Faculty of Medicine, University of Mansoura, Mansoura, 35516, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
14
|
Pu M, Zhao H, Xu S, Gu X, Feng Q, Huang P. Urine miR-340-5p Predicts the Adverse Prognosis of Sepsis-Associated Acute Kidney Injury and Regulates Renal Tubular Epithelial Cell Injury by Targeting KDM4C. Nephron Clin Pract 2024:1-10. [PMID: 39551047 DOI: 10.1159/000541348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/19/2024] [Indexed: 11/19/2024] Open
Abstract
INTRODUCTION Sepsis-associated acute kidney injury (SA-AKI) is a common complication of sepsis. miR-340-5p has been identified as an effective biomarker of various human diseases. As the downstream target, the involvement of lysine (K)-specific demethylase 4C (KDM4C) in SA-AKI would help interpret the regulatory mechanism of miR-340-5p. The significance of miR-340-5p in the onset and progression of SA-AKI was evaluated to provide a potential therapeutic target for SA-AKI. METHODS This study enrolled 64 healthy individuals (control) and 159 sepsis patients (92 SA-AKI and 67 non-AKI) and collected urine samples. The urine level of miR-340-5p was analyzed by PCR, and a series of statistical analyses were conducted to assess the clinical significance of miR-340-5p in the occurrence and development of SA-AKI. The injured renal tubular epithelial cells were established with LPS induction. The roles of miR-340-5p in cellular processes were evaluated. RESULTS Increasing urine miR-340-5p discriminated SA-AKI patients from healthy individuals (AUC = 0.934) and non-AKI sepsis patients (AUC = 0.806) sensitively. Additionally, elevated miR-340-5p could predict the adverse prognosis (HR = 5.128, 95% CI = 1.259-20.892) and malignant development of SA-AKI patients. In vitro, lipopolysaccharide (LPS) also induced an increased level of miR-340-5p and significant cell injury in the renal tubular epithelial cell; silencing miR-340-5p could alleviate the suppressed proliferation, migration, and invasion caused by LPS. In mechanism, miR-340-5p negatively regulated KDM4C, which mediated the function of miR-340-5p. CONCLUSION miR-340-5p served as a diagnostic and prognostic biomarker of SA-AKI and regulated renal tubular epithelial cell injury via modulating KDM4C.
Collapse
Affiliation(s)
- Mengmeng Pu
- Department of Nephrology, Xingtai People's Hospital, Xingtai, China
| | - Huanhuan Zhao
- Department of Nephrology, Jinan Weigao Nephrology Hospital, Jinan, China
| | - Silei Xu
- Medical School of University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaohui Gu
- Department of Urinary Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Qiang Feng
- Department of Urinary Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Peng Huang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Research on Prevention and Control of High Incidence Diseases in Western Guangxi, Baise, China
| |
Collapse
|
15
|
Nan F, Liu B, Yao C. Discovering the role of microRNAs and exosomal microRNAs in chest and pulmonary diseases: a spotlight on chronic obstructive pulmonary disease. Mol Genet Genomics 2024; 299:107. [PMID: 39527303 DOI: 10.1007/s00438-024-02199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory condition and ranks as the fourth leading cause of mortality worldwide. Despite extensive research efforts, a reliable diagnostic or prognostic tool for COPD remains elusive. The identification of novel biomarkers may facilitate improved therapeutic strategies for patients suffering from this debilitating disease. MicroRNAs (miRNAs), which are small non-coding RNA molecules, have emerged as promising candidates for the prediction and diagnosis of COPD. Studies have demonstrated that dysregulation of miRNAs influences critical cellular and molecular pathways, including Notch, Wnt, hypoxia-inducible factor-1α, transforming growth factor, Kras, and Smad, which may contribute to the pathogenesis of COPD. Extracellular vesicles, particularly exosomes, merit further investigation due to their capacity to transport various biomolecules such as mRNAs, miRNAs, and proteins between cells. This intercellular communication can significantly impact the progression and severity of COPD by modulating signaling pathways in recipient cells. A deeper exploration of circulating miRNAs and the content of extracellular vesicles may lead to the discovery of novel diagnostic and prognostic biomarkers, ultimately enhancing the management of COPD. The current review focus on the pathogenic role of miRNAs and their exosomal counterparts in chest and respiratory diseases, centering COPD.
Collapse
Affiliation(s)
- FangYuan Nan
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Bo Liu
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Cheng Yao
- Infectious Diseases Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China.
| |
Collapse
|
16
|
Sharma M, Pal P, Gupta SK. Deciphering the role of miRNAs in Alzheimer's disease: Predictive targeting and pathway modulation - A systematic review. Ageing Res Rev 2024; 101:102483. [PMID: 39236856 DOI: 10.1016/j.arr.2024.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's Disease (AD), a multifaceted neurodegenerative disorder, is increasingly understood through the regulatory lens of microRNAs (miRNAs). This review comprehensively examines the pivotal roles of miRNAs in AD pathogenesis, shedding light on their influence across various pathways. We delve into the biogenesis and mechanisms of miRNAs, emphasizing their significant roles in brain function and regulation. The review then navigates the complex landscape of AD pathogenesis, identifying key genetic, environmental, and molecular factors, with a focus on hallmark pathological features like amyloid-beta accumulation and tau protein hyperphosphorylation. Central to our discussion is the intricate involvement of miRNAs in these processes, highlighting their altered expression patterns in AD and subsequent functional implications, from amyloid-beta metabolism to tau pathology, neuroinflammation, oxidative stress, and synaptic dysfunction. The predictive analysis of miRNA targets using computational methods, complemented by experimental validations, forms a crucial part of our discourse, unraveling the contributions of specific miRNAs to AD. Moreover, we explore the therapeutic potential of miRNAs as biomarkers and in miRNA-based interventions, while addressing the challenges in translating these findings into clinical practice. This review aims to enhance understanding of miRNAs in AD, offering a foundation for future research directions and novel therapeutic strategies.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Pankaj Pal
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, Uttar Pradesh, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
17
|
Barrera-Vázquez OS, Escobar-Ramírez JL, Magos-Guerrero GA. Network Pharmacology Approaches Used to Identify Therapeutic Molecules for Chronic Venous Disease Based on Potential miRNA Biomarkers. J Xenobiot 2024; 14:1519-1540. [PMID: 39449424 PMCID: PMC11503387 DOI: 10.3390/jox14040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic venous disease (CVD) is a prevalent condition in adults, significantly affecting the global elderly population, with a higher incidence in women than in men. The modulation of gene expression through microRNA (miRNA) partly regulated the development of cardiovascular disease (CVD). Previous research identified a functional analysis of seven genes (CDS2, HDAC5, PPP6R2, PRRC2B, TBC1D22A, WNK1, and PABPC3) as targets of miRNAs related to CVD. In this context, miRNAs emerge as essential candidates for CVD diagnosis, representing novel molecular and biological knowledge. This work aims to identify, by network analysis, the miRNAs involved in CVD as potential biomarkers, either by interacting with small molecules such as toxins and pollutants or by searching for new drugs. Our study shows an updated landscape of the signaling pathways involving miRNAs in CVD pathology. This latest research includes data found through experimental tests and uses predictions to propose both miRNAs and genes as potential biomarkers to develop diagnostic and therapeutic methods for the early detection of CVD in the clinical setting. In addition, our pharmacological network analysis has, for the first time, shown how to use these potential biomarkers to find small molecules that may regulate them. Between the small molecules in this research, toxins, pollutants, and drugs showed outstanding interactions with these miRNAs. One of them, hesperidin, a widely prescribed drug for treating CVD and modulating the gene expression associated with CVD, was used as a reference for searching for new molecules that may interact with miRNAs involved in CVD. Among the drugs that exhibit the same miRNA expression profile as hesperidin, potential candidates include desoximetasone, curcumin, flurandrenolide, trifluridine, fludrocortisone, diflorasone, gemcitabine, floxuridine, and reversine. Further investigation of these drugs is essential to improve the treatment of cardiovascular disease. Additionally, supporting the clinical use of miRNAs as biomarkers for diagnosing and predicting CVD is crucial.
Collapse
Affiliation(s)
| | | | - Gil Alfonso Magos-Guerrero
- Department of Pharmacology, Faculty of Medicine, University National Autonomous of Mexico (UNAM), Mexico City 04510, Mexico; (O.S.B.-V.); (J.L.E.-R.)
| |
Collapse
|
18
|
Szydełko J, Czop M, Petniak A, Lenart-Lipińska M, Kocki J, Zapolski T, Matyjaszek-Matuszek B. Identification of plasma miR-4505, miR-4743-5p and miR-4750-3p as novel diagnostic biomarkers for coronary artery disease in patients with type 2 diabetes mellitus: a case-control study. Cardiovasc Diabetol 2024; 23:278. [PMID: 39080630 PMCID: PMC11287982 DOI: 10.1186/s12933-024-02374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD) are commonly coexisting clinical entities with still growing incidence worldwide. Recently, circulating microRNAs (miRNAs) have emerged as novel molecular players in cardiometabolic diseases. This study aimed to identify a specific miRNA signature as a candidate biomarker for CAD in T2DM and to delineate potential miRNA-dependent mechanisms contributing to diabetic atherosclerosis. METHODS A total of 38 plasma samples from T2DM patients with and without CAD, CAD patients and healthy controls were collected for expression profiling of 2,578 miRNAs using microarrays. To investigate the regulatory role of differentially expressed (DE)-miRNA target genes, functional annotation and pathway enrichment analyses were performed utilizing multiple bioinformatics tools. Then, protein-protein interaction networks were established leveraging the STRING database in Cytoscape software, followed by cluster analysis and hub gene identification. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was carried out for microarray data validation in the larger replication cohort of 94 participants. Receiver operating characteristic analysis was applied to evaluate the diagnostic values of miRNAs. Multivariate logistic regression analysis was used to develop miRNA-based diagnostic models. RESULTS In the discovery stage, overexpression of hsa-miR-4505, hsa-miR-4743-5p, hsa-miR-6846-5p, and down-regulation of hsa-miR-3613-3p, hsa-miR-4668-5p, hsa-miR-4706, hsa-miR-6511b-5p, hsa-miR-6750-5p, hsa-miR-4750-3p, hsa-miR-320e, hsa-miR-4717-3p, hsa-miR-7850-5p were detected in T2DM-CAD patients. The DE-miRNA target genes were significantly enriched in calcium ion binding, regulation of actin cytoskeleton, and gene expression. hsa-miR-4505, hsa-miR-4743-5p, and hsa-miR-4750-3p were found to be involved in fatty acid metabolism, leukocyte transendothelial migration, and neurotrophin signaling pathway. Dysregulation of hsa-miR-4505, hsa-miR-4743-5p, and hsa-miR-4750-3p in T2DM-CAD patients compared with T2DM subjects and controls (all p < 0.001) was further confirmed by RT-qPCR. All validated miRNAs demonstrated good discriminatory values for T2DM-CAD (AUC = 0.833-0.876). The best performance in detecting CAD in T2DM was achieved for a combination of three miRNAs (AUC = 0.959, 100% sensitivity, 86.67% specificity). CONCLUSIONS Our study revealed a unique profile of plasma-derived miRNAs in T2DM patients with CAD. Potential miRNA-regulated pathways were also identified, exploring the underlying pathogenesis of CAD in T2DM. We developed a specific three-miRNA panel of hsa-miR-4505, hsa-miR-4743-5p and hsa-miR-4750-3p, that could serve as a novel non-invasive biomarker for CAD in patients with T2DM.
Collapse
Affiliation(s)
- Joanna Szydełko
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Monika Lenart-Lipińska
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Tomasz Zapolski
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Beata Matyjaszek-Matuszek
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| |
Collapse
|
19
|
Wang Q, Lu W, Lu L, Wu R, Wu D. miR-575/RIPK4 axis modulates cell cycle progression and proliferation by inactivating the Wnt/β-catenin signaling pathway through inhibiting RUNX1 in colon cancer. Mol Cell Biochem 2024; 479:1747-1766. [PMID: 38480605 DOI: 10.1007/s11010-024-04938-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/10/2024] [Indexed: 07/18/2024]
Abstract
Receptor interacting protein serine/threonine kinase 4 (RIPK4) is widely involved in human cancer development. Nevertheless, its role in colon cancer (COAD) has not been elucidated till now. Our research aimed at exploring the function and underlying molecular mechanism of RIPK4 in COAD progression. Through bioinformatic analyses and RT-qPCR, RIPK4 was discovered to be increased in COAD cells and tissues, and its high level predicted poor prognosis. Loss-of-function assays revealed that RIPK4 silencing suppressed COAD cell growth, induced cell cycle arrest, and enhanced cell apoptosis. In vivo experiments also proved that tumor growth was inhibited by silencing of RIPK4. Luciferase reporter assay validated that RIPK4 was targeted and negatively regulated by miR-575. Western blotting demonstrated that Wnt3a, phosphorylated (p)-GSK-3β, and cytoplasmic and nuclear β-catenin protein levels, β-catenin nuclear translocation, and Cyclin D1, CDK4, Cyclin E, and c-Myc protein levels were reduced by RIPK4 knockdown, which however was reversed by treatment with LiCl, the Wnt/β-catenin pathway activator. LiCl also offset the influence of RIPK4 knockdown on COAD cell growth, cell cycle process, and apoptosis. Finally, RIPK4 downregulation reduced RUNX1 level, which was upregulated in COAD and its high level predicted poor prognosis. RIPK4 is positively associated with RUNX1 in COAD. Overexpressing RUNX1 antagonized the suppression of RIPK4 knockdown on RUNX1, Wnt3a, p-GSK-3β, cytoplasmic β-catenin, nuclear β-catenin, Cyclin D1, CDK4, Cyclin E, and c-Myc levels. Collectively, miR-575/RIPK4 axis repressed COAD progression via inactivating the Wnt/β-catenin pathway through downregulating RUNX1.
Collapse
Affiliation(s)
- Qun Wang
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China.
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China.
- Colorectal Cancer Clinical Research Center of Hubei Province, Wuhan, 430079, China.
| | - Weijun Lu
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China
| | - Li Lu
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China
- Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Ruopu Wu
- Tianjin Medical University, Tianjin, 300070, China
| | - Dongde Wu
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China.
| |
Collapse
|
20
|
Niu L, Wang H, Luo G, Zhou J, Hu Z, Yan B. Advances in understanding immune homeostasis in latent tuberculosis infection. WIREs Mech Dis 2024; 16:e1643. [PMID: 38351551 DOI: 10.1002/wsbm.1643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 07/13/2024]
Abstract
Nearly one-fourth of the global population is infected by Mycobacterium tuberculosis (Mtb), and approximately 90%-95% remain asymptomatic as latent tuberculosis infection (LTBI), an estimated 5%-10% of those with latent infections will eventually progress to active tuberculosis (ATB). Although it is widely accepted that LTBI transitioning to ATB results from a disruption of host immune balance and a weakening of protective immune responses, the exact underlying immunological mechanisms that promote this conversion are not well characterized. Thus, it is difficult to accurately predict tuberculosis (TB) progression in advance, leaving the LTBI population as a significant threat to TB prevention and control. This article systematically explores three aspects related to the immunoregulatory mechanisms and translational research about LTBI: (1) the distinct immunocytological characteristics of LTBI and ATB, (2) LTBI diagnostic markers discovery related to host anti-TB immunity and metabolic pathways, and (3) vaccine development focus on LTBI. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology Infectious Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Liangfei Niu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Hao Wang
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Geyang Luo
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Jing Zhou
- Department of Pathology, Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Zhidong Hu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Bo Yan
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Guo X, Ying S, Xiao H, An H, Guo R, Dai Z, Wu W. miR-21/SMAD2 Is Involved in the Decrease in Progesterone Synthesis Caused by Lipopolysaccharide Exposure in Follicular Granulosa Cells of Laying Goose. Metabolites 2024; 14:362. [PMID: 39057685 PMCID: PMC11278936 DOI: 10.3390/metabo14070362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 07/28/2024] Open
Abstract
Lipopolysaccharide (LPS) is one of the important pathogenic substances of E. coli and Salmonella, which causes injury to the reproductive system. Ovarian dysfunction due to Gram-negative bacterial infections is a major cause of reduced reproductive performance in geese. However, the specific molecular mechanisms of LPS-induced impairment of sex steroid hormone synthesis have not been determined. The regulatory mechanism of miRNA has been proposed in many physiological and pathogenic mechanisms. Therefore, the role of miRNA in breeding geese exposed to LPS during the peak laying period was investigated. In this study, twenty Yangzhou geese at peak laying period were injected with LPS for 0 h, 24 h, and 36 h. The follicular granulosa layer was taken for RNA-seq and analyzed for differentially expressed miRNAs. It was observed that LPS changed the appearance of hierarchical follicles. miRNA sequencing analysis was applied, and miR-21 and SMAD2 (SMAD family member 2) were selected from 51 differentially expressed miRNAs through bioinformatics prediction. The results showed that miR-21 down-regulated SMAD2 expression and progesterone (P4) production in LPS-treated goose granulosa cells (GCs). It also determined that overexpression of miR-21 or silence of SMAD2 suppressed the sex steroid biosynthesis pathway by decreasing STAR and CYP11A1 expression. Down-regulation of miR-21 exacerbates the LPS-induced decline in P4 synthesis and vice versa. The findings indicated that miR-21 was involved in LPS regulation of P4 synthesis in goose granulosa cells by down-regulating SMAD2. This study provides theoretical support for the prevention of LPS-induced ovarian dysfunction in geese.
Collapse
Affiliation(s)
- Xinyi Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (S.Y.); (H.X.); (H.A.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.G.); (Z.D.)
| | - Shijia Ying
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (S.Y.); (H.X.); (H.A.)
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.G.); (Z.D.)
| | - Huiping Xiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (S.Y.); (H.X.); (H.A.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao An
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (S.Y.); (H.X.); (H.A.)
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.G.); (Z.D.)
| | - Rihong Guo
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.G.); (Z.D.)
| | - Zichun Dai
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.G.); (Z.D.)
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.); (S.Y.); (H.X.); (H.A.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
22
|
Marroncini G, Naldi L, Martinelli S, Amedei A. Gut-Liver-Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies. Biomedicines 2024; 12:1398. [PMID: 39061972 PMCID: PMC11273695 DOI: 10.3390/biomedicines12071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.
Collapse
Affiliation(s)
- Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Laura Naldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
23
|
Satake E, Krolewski B, Kobayashi H, Md Dom ZI, Ricca J, Wilson JM, Hoon DS, Duffin KL, Pezzolesi MG, Krolewski AS. Preanalytical considerations in quantifying circulating miRNAs that predict end-stage kidney disease in diabetes. JCI Insight 2024; 9:e174153. [PMID: 38912578 PMCID: PMC11383361 DOI: 10.1172/jci.insight.174153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Our previous study identified 8 risk and 9 protective plasma miRNAs associated with progression to end-stage kidney disease (ESKD) in diabetes. This study aimed to elucidate preanalytical factors that influence the quantification of circulating miRNAs. Using the EdgeSeq platform, which quantifies 2,002 miRNAs in plasma, including ESKD-associated miRNAs, we compared miRNA profiles in whole plasma versus miRNA profiles in RNA extracted from the same plasma specimens. Less than half of the miRNAs were detected in standard RNA extraction from plasma. Detection of individual and concentrations of miRNAs were much lower when RNA extracted from plasma was quantified by RNA sequencing (RNA-Seq) or quantitative reverse transcription PCR (qRT-PCR) platforms compared with EdgeSeq. Plasma profiles of miRNAs determined by the EdgeSeq platform had excellent reproducibility in assessment and had no variation with age, sex, hemoglobin A1c, BMI, and cryostorage time. The risk ESKD-associated miRNAs were detected and measured accurately only in whole plasma and using the EdgeSeq platform. Protective ESKD-associated miRNAs were detected by all platforms except qRT-PCR; however, correlations among concentrations obtained with different platforms were weak or nonexistent. In conclusion, preanalytical factors have a profound effect on detection and quantification of circulating miRNAs in ESKD in diabetes. Quantification of miRNAs in whole plasma and using the EdgeSeq platform may be the preferable method to study profiles of circulating cell-free miRNAs associated with ESKD and possibly other diseases.
Collapse
Affiliation(s)
- Eiichiro Satake
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Bozena Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroki Kobayashi
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, Tokyo, Japan
| | - Zaipul I. Md Dom
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Ricca
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | | | - Dave S.B. Hoon
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Health and Service, Santa Monica, California, USA
| | | | - Marcus G. Pezzolesi
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Andrzej S. Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Omes C, Conti A, Benedetti L, Tomasoni V, De Marchi D, Nappi RE, Cusella De Angelis MG, Ceccarelli G. Expression of miRNA from spent pre-implantation embryos culture media. Reprod Biol 2024; 24:100847. [PMID: 38776743 DOI: 10.1016/j.repbio.2023.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 05/25/2024]
Abstract
This study examines the expression of three microRNAs (hsa-miR-661, hsa-miR-21-5p, hsa-miR-372-5p) in spent pre-implantation embryos culture media to identify possible new non-invasive biomarkers of embryo competence, predictive of development to the blastocyst stage. A preliminary analysis on 16 patients undergoing IVF cycles was performed by collecting and stored spent culture media on the fifth/sixth day of embryo culture. Expression of miRNAs was evaluated according to the embryos' fate: 1) NE/DG: non-evolved or degenerate embryos; 2) BLOK: embryos developed to the blastocyst stage. Preliminary results revealed a higher miRNAs expression in NE/DG spent media. To elucidate the roles of these miRNAs, we employed a robust bioinformatics pipeline involving: 1) in-silico miRNA Target Prediction using RNAHybrid, which identified the most-likely gene targets; 2) Construction of a Protein-Protein Interaction network via GeneMania, linking genes with significant biological correlations; 3) application of modularity-based clustering with the gLay app in Cytoscape, resulting in three size-adapted subnets for focused analysis; 4) Enrichment Analysis to discern the biological pathways influenced by the miRNAs. Our bioinformatics analysis revealed that hsa-miR-661 was closely associated with pathways regulating cell shape and morphogenesis of the epithelial sheet. These data suggest the potential use of certain miRNAs to identify embryos with a higher likelihood of developing to the blastocyst stage. Further analysis will be necessary to explore the reproducibility of these findings and to understand if miRNAs here investigated can be used as biomarkers for embryo selection before implantation into the uterus or if they may be reliable predictors of IVF outcome.
Collapse
Affiliation(s)
- Claudia Omes
- Center for Reproductive Medicine - Obstetrics and Gynecology Unit 2, Woman and Child Health Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Alice Conti
- Human Anatomy Unit, Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Laura Benedetti
- Human Anatomy Unit, Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Veronica Tomasoni
- Center for Reproductive Medicine - Obstetrics and Gynecology Unit 2, Woman and Child Health Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Davide De Marchi
- Centre for Health Technologies (CHT), University of Pavia, Pavia, Italy; Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Rossella E Nappi
- Center for Reproductive Medicine - Obstetrics and Gynecology Unit 2, Woman and Child Health Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - M Gabriella Cusella De Angelis
- Human Anatomy Unit, Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy; Centre for Health Technologies (CHT), University of Pavia, Pavia, Italy
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy; Centre for Health Technologies (CHT), University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Liu X, Dong L, Jiang Z, Song M, Yan P. Identifying the differentially expressed peripheral blood microRNAs in psychiatric disorders: a systematic review and meta-analysis. Front Psychiatry 2024; 15:1390366. [PMID: 38827444 PMCID: PMC11140110 DOI: 10.3389/fpsyt.2024.1390366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 06/04/2024] Open
Abstract
Background Evidence has suggested that microRNAs (miRNAs) may play an important role in the pathogenesis of psychiatric disorders (PDs), but the results remain inconclusive. We aimed to identify specific differentially expressed miRNAs and their overlapping miRNA expression profiles in schizophrenia (SZ), major depression disorder (MDD), and bipolar disorder (BD), the three major PDs. Methods The literatures up to September 30, 2023 related to peripheral blood miRNAs and PDs were searched and screened from multiple databases. The differences in miRNA levels between groups were illustrated by the standardized mean difference (SMD) and 95% confidence interval (95% CI). Results In total, 30 peripheral blood miRNAs were included in the meta-analysis, including 16 for SZ, 12 for MDD, and 2 for BD, each was reported in more than 3 independent studies. Compared with the control group, miR-181b-5p, miR-34a-5p, miR-195-5p, miR-30e-5p, miR-7-5p, miR-132-3p, miR-212-3p, miR-206, miR-92a-3p and miR-137-3p were upregulated in SZ, while miR-134-5p, miR-107 and miR-99b-5p were downregulated. In MDD, miR-124-3p, miR-132-3p, miR-139-5p, miR-182-5p, miR-221-3p, miR-34a-5p and miR-93-5p were upregulated, while miR-144-5p and miR-135a-5p were downregulated. However, we failed to identify statistically differentially expressed miRNAs in BD. Interestingly, miR-132-3p and miR-34a-5p were upregulated in both SZ and MDD. Conclusions Our study identified 13 differentially expressed miRNAs in SZ and 9 in MDD, among which miR-132-3p and miR-34a-5p were upregulated in both SZ and MDD by systematically analyzing qualified studies. These miRNAs may be used as potential biomarkers for the diagnosis of SZ and MDD in the future. Systematic Review Registration http://www.crd.york.ac.uk/PROSPERO, identifier CRD42023486982.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Psychiatry, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liying Dong
- Internal Medicine of Traditional Chinese Medicine, The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaowei Jiang
- Internal Medicine of Traditional Chinese Medicine, The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingfen Song
- Molecular Biology Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Yan
- Molecular Biology Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Singh J, Khanna NN, Rout RK, Singh N, Laird JR, Singh IM, Kalra MK, Mantella LE, Johri AM, Isenovic ER, Fouda MM, Saba L, Fatemi M, Suri JS. GeneAI 3.0: powerful, novel, generalized hybrid and ensemble deep learning frameworks for miRNA species classification of stationary patterns from nucleotides. Sci Rep 2024; 14:7154. [PMID: 38531923 PMCID: PMC11344070 DOI: 10.1038/s41598-024-56786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Due to the intricate relationship between the small non-coding ribonucleic acid (miRNA) sequences, the classification of miRNA species, namely Human, Gorilla, Rat, and Mouse is challenging. Previous methods are not robust and accurate. In this study, we present AtheroPoint's GeneAI 3.0, a powerful, novel, and generalized method for extracting features from the fixed patterns of purines and pyrimidines in each miRNA sequence in ensemble paradigms in machine learning (EML) and convolutional neural network (CNN)-based deep learning (EDL) frameworks. GeneAI 3.0 utilized five conventional (Entropy, Dissimilarity, Energy, Homogeneity, and Contrast), and three contemporary (Shannon entropy, Hurst exponent, Fractal dimension) features, to generate a composite feature set from given miRNA sequences which were then passed into our ML and DL classification framework. A set of 11 new classifiers was designed consisting of 5 EML and 6 EDL for binary/multiclass classification. It was benchmarked against 9 solo ML (SML), 6 solo DL (SDL), 12 hybrid DL (HDL) models, resulting in a total of 11 + 27 = 38 models were designed. Four hypotheses were formulated and validated using explainable AI (XAI) as well as reliability/statistical tests. The order of the mean performance using accuracy (ACC)/area-under-the-curve (AUC) of the 24 DL classifiers was: EDL > HDL > SDL. The mean performance of EDL models with CNN layers was superior to that without CNN layers by 0.73%/0.92%. Mean performance of EML models was superior to SML models with improvements of ACC/AUC by 6.24%/6.46%. EDL models performed significantly better than EML models, with a mean increase in ACC/AUC of 7.09%/6.96%. The GeneAI 3.0 tool produced expected XAI feature plots, and the statistical tests showed significant p-values. Ensemble models with composite features are highly effective and generalized models for effectively classifying miRNA sequences.
Collapse
Affiliation(s)
- Jaskaran Singh
- Department of Computer Science, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Ranjeet K Rout
- Department of Computer Science and Engineering, NIT Srinagar, Hazratbal, Srinagar, India
| | - Narpinder Singh
- Department of Food Science, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Inder M Singh
- Advanced Cardiac and Vascular Institute, Sacramento, CA, USA
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02115, USA
| | - Laura E Mantella
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Esma R Isenovic
- Laboratory for Molecular Genetics and Radiobiology, University of Belgrade, Belgrade, Serbia
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Luca Saba
- Department of Neurology, University of Cagliari, Cagliari, Italy
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint LLC, Roseville, CA, 95661, USA.
| |
Collapse
|
27
|
Shi C, Yang D, Ma X, Pan L, Shao Y, Arya G, Ke Y, Zhang C, Wang F, Zuo X, Li M, Wang P. A Programmable DNAzyme for the Sensitive Detection of Nucleic Acids. Angew Chem Int Ed Engl 2024; 63:e202320179. [PMID: 38288561 DOI: 10.1002/anie.202320179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 02/17/2024]
Abstract
Nucleic acids in biofluids are emerging biomarkers for the molecular diagnostics of diseases, but their clinical use has been hindered by the lack of sensitive detection assays. Herein, we report the development of a sensitive nucleic acid detection assay named SPOT (sensitive loop-initiated DNAzyme biosensor for nucleic acid detection) by rationally designing a catalytic DNAzyme of endonuclease capability into a unified one-stranded allosteric biosensor. SPOT is activated once a nucleic acid target of a specific sequence binds to its allosteric module to enable continuous cleavage of molecular reporters. SPOT provides a highly robust platform for sensitive, convenient and cost-effective detection of low-abundance nucleic acids. For clinical validation, we demonstrated that SPOT could detect serum miRNAs for the diagnostics of breast cancer, gastric cancer and prostate cancer. Furthermore, SPOT exhibits potent detection performance over SARS-CoV-2 RNA from clinical swabs with high sensitivity and specificity. Finally, SPOT is compatible with point-of-care testing modalities such as lateral flow assays. Hence, we envision that SPOT may serve as a robust assay for the sensitive detection of a variety of nucleic acid targets enabling molecular diagnostics in clinics.
Collapse
Affiliation(s)
- Chenzhi Shi
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaowei Ma
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Pan
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuanchuan Shao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, 27708, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, USA
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Li
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
28
|
Chiba M, Uehara H, Kuwata H, Niiyama I. Extracellular miRNAs in the serum and feces of mice exposed to high‑dose radiation. Biomed Rep 2024; 20:55. [PMID: 38357239 PMCID: PMC10865170 DOI: 10.3892/br.2024.1744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Exposure to high-dose radiation causes life-threatening intestinal damage. Histopathology is the most accurate method of judging the extent of intestinal damage following death. However, it is difficult to predict the extent of intestinal damage. The present study investigated extracellular microRNAs (miRNAs or miRs) in serum and feces using a radiation-induced intestinal injury mouse model. A peak of 25-200 nucleotide small RNAs was detected in mouse serum and feces by bioanalyzer, indicating the presence of miRNAs. Microarray analysis detected four miRNAs expressed in the small intestine and increased by >2-fold in serum and 19 in feces following 10 Gy radiation exposure. Increased miR-375-3p in both serum and feces suggests leakage due to radiation-induced intestinal injury and may be a candidate for high-dose radiation biomarkers.
Collapse
Affiliation(s)
- Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
- Research Center for Biomedical Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Haruka Uehara
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Haruka Kuwata
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Ikumi Niiyama
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
29
|
Yabuki A, Muraoka A, Osuka S, Yokoi A, Yoshida K, Kitagawa M, Bayasura, Sonehara R, Miyake N, Nakanishi N, Nakamura T, Iwase A, Kajiyama H. Serum miRNA as a predictive biomarker for ovarian reserve after endometrioma-cystectomy. Reprod Biol 2024; 24:100821. [PMID: 37992589 DOI: 10.1016/j.repbio.2023.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Ovarian endometrioma (OE) is a common gynecological disease that is often treated with surgery and hormonal treatment. However, ovarian cystectomy can impair the ovarian reserve (OR). Previously, we showed that perioperative administration of dienogest (DNG) is an effective option for OR preservation. However, there were differences in the extent of OR preservation among patients following perioperative DNG treatment. In the current study, we performed a global examination of serum microRNAs (miRNAs) to identify accurate biomarkers that predict post-operative restoration of OR following perioperative DNG treatment. We also sought to identify specific miRNAs related to the anti-Müllerian hormone (AMH). miRNA sequencing was performed on serum samples obtained from twenty-seven patients who received perioperative DNG treatment. Candidate miRNAs were selected by comparing patients whose ORs were restored postoperatively (responder group, n = 7) with those whose ORs were not (non-responder group, n = 7). miR-370-3p and miR-1307-3p were significantly upregulated in the responder group, whereas miR-27b-3p was upregulated in the non-responder group. The pretreatment value of each miRNA could predict DNG responsiveness for OR following ovarian cystectomy (area under the curve [AUC] > 0.8). The quantitative polymerase chain reaction (qPCR) revealed only miR-1307-3p was found to be significantly upregulated in the responder group (P < 0.05). In addition, we identified miR-139-3p, miR-140-3p, and miR-629-5p as AMH-associated miRNAs. The transition of AMH showed a correlation with miR-139-3p (P < 0.05, r = -0.76). The miRNAs identified herein represent potential serum biomarkers of clinical value in predicting OR prior to DNG treatment.
Collapse
Affiliation(s)
- Atsushi Yabuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Ayako Muraoka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; Japan Science and Technology Agency (JST), FOREST, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masami Kitagawa
- Bell Research Center for Reproductive Health and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Bayasura
- Bell Research Center for Reproductive Health and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Reina Sonehara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Natsuki Miyake
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Natsuki Nakanishi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
30
|
Serra D, Garroni G, Cruciani S, Coradduzza D, Pashchenko A, Amler E, Pintore G, Satta R, Montesu MA, Kohl Y, Ventura C, Maioli M. Electrospun Nanofibers Encapsulated with Natural Products: A Novel Strategy to Counteract Skin Aging. Int J Mol Sci 2024; 25:1908. [PMID: 38339184 PMCID: PMC10856659 DOI: 10.3390/ijms25031908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The skin is the primary tissue affected by wounds and aging, significantly impacting its protective function. Natural products are widely used in cosmetics, representing a new approach to preventing age-related damage. Nanomedicine combines nanotechnology and traditional treatments to create innovative drugs. The main targets of nanotechnological approaches are wound healing, regeneration, and rejuvenation of skin tissue. The skin barrier is not easily permeable, and the creation of modern nanodevices is a way to improve the passive penetration of substances. In this study, Helichrysum italicum oil (HO) was combined with different types of electrospun nanofibers to study their protective activity on the skin and to evaluate their future application for topical treatments. In the present research, we used biodegradable polymers, including polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), which were characterized by a scanning electron microscope (SEM). All results show a positive trend in cell proliferation and viability of human skin stem cells (SSCs) and BJ fibroblasts pre-treated with combined nanofibers and then exposed to UV stress. Gene expression analysis revealed the activation of a molecular rejuvenation program in SSCs treated with functionalized nanofibers before UV exposure. Understanding the mechanisms involved in skin changes during aging allows for the future application of nanomaterials combined with HO directly to the patients.
Collapse
Affiliation(s)
- Diletta Serra
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (G.G.); (S.C.); (D.C.); (A.P.)
- R&D Laboratory Center, InoCure s.r.o., Politických Veziu 935/13, 110 00 Prague, Czech Republic
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (G.G.); (S.C.); (D.C.); (A.P.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (G.G.); (S.C.); (D.C.); (A.P.)
| | - Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (G.G.); (S.C.); (D.C.); (A.P.)
| | - Aleksei Pashchenko
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (G.G.); (S.C.); (D.C.); (A.P.)
- Department of Biophysics, Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic;
| | - Evzen Amler
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic;
| | - Giorgio Pintore
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Rosanna Satta
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Maria Antonietta Montesu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany;
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems-Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (G.G.); (S.C.); (D.C.); (A.P.)
- Center for Developmental Biology and Reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| |
Collapse
|
31
|
Carresi C, Cardamone A, Coppoletta AR, Caminiti R, Macrì R, Lorenzo F, Scarano F, Mollace R, Guarnieri L, Ruga S, Nucera S, Musolino V, Gliozzi M, Palma E, Muscoli C, Volterrani M, Mollace V. The protective effect of Bergamot Polyphenolic Fraction on reno-cardiac damage induced by DOCA-salt and unilateral renal artery ligation in rats. Biomed Pharmacother 2024; 171:116082. [PMID: 38242036 DOI: 10.1016/j.biopha.2023.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024] Open
Abstract
To date, the complex pathological interactions between renal and cardiovascular systems represent a real global epidemic in both developed and developing countries. In this context, renovascular hypertension (RVH) remains among the most prevalent, but also potentially reversible, risk factor for numerous reno-cardiac diseases in humans and pets. Here, we investigated the anti-inflammatory and reno-cardiac protective effects of a polyphenol-rich fraction of bergamot (BPF) in an experimental model of hypertension induced by unilateral renal artery ligation. Adult male Wistar rats underwent unilateral renal artery ligation and treatment with deoxycorticosterone acetate (DOCA) (20 mg/kg, s.c.), twice a week for a period of 4 weeks, and 1% sodium chloride (NaCl) water (n = 10). A subgroup of hypertensive rats received BPF (100 mg/kg/day for 28 consecutive days, n = 10) by gavage. Another group of animals was treated with a sub-cutaneous injection of vehicle (that served as control, n = 8). Unilateral renal artery ligation followed by treatment with DOCA and 1% NaCl water resulted in a significant increase in mean arterial blood pressure (MAP; p< 0.05. vs CTRL) which strongly increased the resistive index (RI; p<0.05 vs CTRL) of contralateral renal artery flow and kidney volume after 4 weeks (p<0.001 vs CTRL). Renal dysfunction also led to a dysfunction of cardiac tissue strain associated with overt dyssynchrony in cardiac wall motion when compared to CTRL group, as shown by the increased time-to-peak (T2P; p<0.05) and the decreased whole peak capacity (Pk; p<0.01) in displacement and strain rate (p<0.05, respectively) in longitudinal motion. Consequently, the hearts of RAL DOCA-Salt rats showed a larger time delay between the fastest and the lowest region (Maximum Opposite Wall Delay-MOWD) when compared to CTRL group (p<0.05 in displacement and p <0.01 in strain rate). Furthermore, a significant increase in the levels of the circulating pro-inflammatory cytokines and chemokines (p< 0.05 for IL-12(40), p< 0.01 for GM-CSF, KC, IL-13, and TNF- α) and in the NGAL expression of the ligated kidney (p< 0.001) was observed compared to CTRL group. Interestingly, this pathological condition is prevented by BPF treatment. In particular, BPF treatment prevents the increase of blood pressure in RAL DOCA-Salt rats (p< 0.05) and exerts a protective effect on the volume of the contralateral kidney (p <0.01). Moreover, BPF ameliorates cardiac tissue strain dysfunction by increasing Pk in displacement (p <0.01) and reducing the T2P in strain rate motion (p<0.05). These latter effects significantly improve MOWD (p <0.05) preventing the overt dyssynchrony in cardiac wall motion. Finally, the reno-cardiac protective effect of BPF was associated with a significant reduction in serum level of some pro-inflammatory cytokines and chemokines (p<0.05 for KC and IL-12(40), p<0.01 for GM-CSF, IL-13, and TNF- α) restoring physiological levels of renal neutrophil gelatinase-associated lipocalin (NGAL, p<0.05) protein of the tethered kidney. In conclusion, the present results show, for the first time, that BPF promotes an efficient renovascular protection preventing the progression of inflammation and reno-cardiac damage. Overall, these data point to a potential clinical and veterinary role of dietary supplementation with the polyphenol-rich fraction of citrus bergamot in counteracting hypertension-induced reno-cardiac syndrome.
Collapse
Affiliation(s)
- Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosamaria Caminiti
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Lorenzo
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Lorenza Guarnieri
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | | | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
32
|
Le Huy B, Bui Thi Phuong H, Luong Xuan H. Advantages and disadvantages of RNA therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:151-164. [PMID: 38359996 DOI: 10.1016/bs.pmbts.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA therapeutics is an innovative and rapidly evolving field at the forefront of medical research and biotechnology. Recently, many studies have shown that diverse RNA types play important roles in cells. Besides the protein translation coding, they also express and regulate a variety of cellular pathways. Indeed, along with the research and studies, many drugs and vaccines were developed from RNAs, including both coding and non-coding RNA. Some cases were approved to be medicines or under clinical trial. After years of use and application, they have shown a bright opportunity to prevent and treat many fatal and rare diseases with many strong points, such as fast production and long-term effects. Besides, they still have some drawbacks that need to be overcome, like stability or delivery to become the new generation of medicine. Therefore, this chapter focuses on providing an overview of the advantages and disadvantages of RNA therapeutics as well as some crucial points for future development.
Collapse
Affiliation(s)
- Binh Le Huy
- Center for High Technology Development, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam; School of Chemical Engineering-Hanọi University of Science and Technology, Hanoi, Vietnam
| | | | - Huy Luong Xuan
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi, Vietnam.
| |
Collapse
|
33
|
Wei H, Zhao H, Cheng D, Zhu Z, Xia Z, Lu D, Yu J, Dong R, Yue J. miR-148a and miR-551b-5p regulate inflammatory responses via regulating autophagy in acute pancreatitis. Int Immunopharmacol 2024; 127:111438. [PMID: 38159552 DOI: 10.1016/j.intimp.2023.111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Acute pancreatitis (AP) is a common inflammatory response that occurs in the pancreas with mortality rates as high as 30 %. However, there is still no consistent and effective treatment for AP now. MicroRNA-148 was reported to be involved in AP through IL-6 signaling pathway. Therefore, we aimed to further explore the detailed mechanisms of AP, to develop more therapeutic approach for AP. Exosomes were isolated from peripheral blood mononuclear cells of 20 AP patients and 20 healthy volunteers to evaluate the abnormally expressed miRNA. Then pancreatic acinar cells (PACs) were transfected with retrovirus to overexpress miR-148a/miR-551b-5p to evaluate their function. Both miR-148a and miR-551b-5p were highly expressed in AP patients than these in healthy cases. Then overexpressing miR-551b-5p in PACs could regulate autophagy through directly binding to Baculoviral IAP Repeat Containing 6, leading to the increased secretions of interleukin-1β (IL-1β) and interleukin-18 (IL-18) through interleukin-1 (IL-1) signaling pathway. Moreover, overexpressing miR-148a in PACs could decrease the secretions of IL-1β and IL-18 to modulate autophagy. The exosomal miRNA-148a and miRNA-551b-5p derived from peripheral blood mononuclear cells of AP patients may two-way mediate autophagy damage through IL-6/STAT3 signaling pathway, which participated in the AP pathogenesis. Our findings may provide new targets for the diagnosis and treatment of AP.
Collapse
Affiliation(s)
- Huiping Wei
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Hui Zhao
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China.
| | - Dongliang Cheng
- Pediatric Intensive Care Unit, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450000, Henan Province, China
| | - Zhenni Zhu
- Pediatric Gastroenterology Department, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Zhi Xia
- Pediatric Intensive Care Unit, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Dan Lu
- Department of Clinical Examination, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Jing Yu
- Department of General Surgery, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Ran Dong
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Jing Yue
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| |
Collapse
|
34
|
Hu Y, Li CY, Lu Q, Kuang Y. Multiplex miRNA reporting platform for real-time profiling of living cells. Cell Chem Biol 2024; 31:150-162.e7. [PMID: 38035883 DOI: 10.1016/j.chembiol.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Accurately characterizing cell types within complex cell structures provides invaluable information for comprehending the cellular status during biological processes. In this study, we have developed an miRNA-switch cocktail platform capable of reporting and tracking the activities of multiple miRNAs (microRNAs) at the single-cell level, while minimizing disruption to the cell culture. Drawing on the principles of traditional miRNA-sensing mRNA switches, our platform incorporates subcellular tags and employs intelligent engineering to segment three subcellular regions using two fluorescent proteins. These designs enable the quantification of multiple miRNAs within the same cell. Through our experiments, we have demonstrated the platform's ability to track marker miRNA levels during cell differentiation and provide spatial information of heterogeneity on outlier cells exhibiting extreme miRNA levels. Importantly, this platform offers real-time and in situ miRNA reporting, allowing for multidimensional evaluation of cell profile and paving the way for a comprehensive understanding of cellular events during biological processes.
Collapse
Affiliation(s)
- Yaxin Hu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Cheuk Yin Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Qiuyu Lu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
35
|
Jaglan K, Dhaka SS, Magotra A, Patil CS, Ghanghas A. Exploring MicroRNA biogenesis, applications and bioinformatics analysis in livestock: A comprehensive review. Reprod Domest Anim 2024; 59:e14529. [PMID: 38268204 DOI: 10.1111/rda.14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Small non-coding RNAs called microRNAs (miRNAs) control the expression of genes post-transcriptionally. Their correlation with commercial economic traits including milk, meat and egg production, as well as their effective role in animal productivity, fertility, embryo survival and disease resistance, make them significant in livestock research. The miRNAs exhibit distinct spatial and temporal expression patterns, offering insights into their functional roles within cells and tissues. Aberrant miRNA production can disrupt vital cellular processes and genetic networks, contributing to conditions like metabolic disorders and viral diseases. These short RNA molecules are present in extracellular fluids, displaying remarkable stability against RNA degradation enzymes and extreme environmental conditions. miRNAs preservation is facilitated through packaging in lipid vesicles or complex formation with RNA-binding proteins. Numerous studies have illuminated the roles of miRNAs in diverse physiological processes, including embryonic stem cell differentiation, haematopoietic stem cell proliferation and differentiation and the coordinated development of organ systems. The integration of miRNA profiling, next-generation sequencing and bioinformatics analysis paves the way for transformative advancements in livestock research and industry. The present review underscores the applications of miRNAs in livestock, showcasing their potential to improve breeding strategies, diagnose diseases and enhance our understanding of fundamental biological processes.
Collapse
Affiliation(s)
- Komal Jaglan
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - S S Dhaka
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - C S Patil
- Department of Animal Genetics & Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Amandeep Ghanghas
- Department of Livestock Production Management, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
36
|
Liao L, Wang H, Wei D, Yi M, Gu Y, Zhang M, Wang L. Exosomal microRNAs: implications in the pathogenesis and clinical applications of subarachnoid hemorrhage. Front Mol Neurosci 2023; 16:1300864. [PMID: 38143562 PMCID: PMC10748509 DOI: 10.3389/fnmol.2023.1300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a severe acute neurological disorder with a high fatality rate. Early brain injury (EBI) and cerebral vasospasm are two critical complications of SAH that significantly contribute to poor prognosis. Currently, surgical intervention and interventional therapy are the main treatment options for SAH, but their effectiveness is limited. Exosomes, which are a type of extracellular vesicles, play a crucial role in intercellular communication and have been extensively studied in the past decade due to their potential influence on disease progression, diagnosis, and treatment. As one of the most important components of exosomes, miRNA plays both direct and indirect roles in affecting disease progression. Previous research has found that exosomal miRNA is involved in the development of various diseases, such as tumors, chronic hepatitis, atherosclerosis, diabetes, and SAH. This review focuses on exploring the impact of exosomal miRNA on SAH, including its influence on neuronal apoptosis, inflammatory response, and immune activation following SAH. Furthermore, this review highlights the potential clinical applications of exosomal miRNA in the treatment of SAH. Although current research on this topic is limited and the clinical application of exosomal miRNA has inherent limitations, we aim to provide a concise summary of existing research progress and offer new insights for future research directions and trends in this field.
Collapse
Affiliation(s)
- Lishang Liao
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Haoran Wang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Deli Wei
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Mingliang Yi
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Yingjiang Gu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Mingwei Zhang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li Wang
- Department of Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
37
|
Wei W, Bai H, Zhang T, Cai S, Zhou Y, Liu M, Zhang Y, Chen Y, Hua J, He J, Ding N, Miao G, Wang J. Regulation of Circulating miR-342-3p Alleviates the Radiation-Induced Immune System Injury. Radiat Res 2023; 200:556-568. [PMID: 37874034 DOI: 10.1667/rade-23-00125.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Ionizing radiation in space, radiation devices or nuclear disasters are major threats to human health and public security. Expanding countermeasures for dealing with accidental or occupational radiation exposure is crucial for the protection of radiation injuries. Circulating microRNAs (miRNAs) have emerged as promising radiation biomarkers in recent years. However, the origin, distribution and functions of radiosensitive circulating miRNAs remain unclear, which obstructs their clinical applications in the future. In this study, we found that mmu-miR-342-3p (miR-342) in mouse serum presents a stable and significant decrease after X-ray total-body irradiation (TBI). Focusing on this miRNA, we investigated the influences of circulating miR-342 on the radiation-induced injury. Through tail vein injection of Cy5-labeled synthetic miR-342, we found the exogenous miR-342-Cy5 was mainly enriched in metabolic and immune organs. Besides, the bioinformatic analysis predicted that miR-342 might involve in immune-related processes or pathways. Further, mice were tail vein injected with synthetic miR-342 mimetics (Ago-miR-342) after irradiation to upregulate the level of miR-342 in circulating blood. The results showed that the upregulation of circulating miR-342 alleviated the radiation-induced depletion of CD3+CD4+ T lymphocytes and influenced the levels of IL-2 and IL-6 in irradiated mice. Moreover, the injection of Ago-miR-342 improved the survival rates of mice with acute radiation injury. Our findings demonstrate that upregulation of circulating miR-342 alleviates the radiation-induced immune system injury, which provides us new insights into the functions of circulating miRNAs and the prospect as the targets for mitigation of radiation injuries.
Collapse
Affiliation(s)
- Wenjun Wei
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hao Bai
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Tianyi Zhang
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shufan Cai
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yumeng Zhou
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Min Liu
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanan Zhang
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yaxiong Chen
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junrui Hua
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jinpeng He
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Nan Ding
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - GuoYing Miao
- Department of Radiation Oncology, Gansu Provincial Central Hospital, Lanzhou 730000, China
| | - Jufang Wang
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
38
|
Nuñez-Borque E, Fernandez-Bravo S, Rodríguez Del Rio P, Palacio-García L, Di Giannatale A, Di Paolo V, Galardi A, Colletti M, Pascucci L, Tome-Amat J, Cuesta-Herranz J, Ibañez-Sandin MD, Laguna JJ, Benito-Martin A, Esteban V. Novel mediator in anaphylaxis: decreased levels of miR-375-3p in serum and within extracellular vesicles of patients. Front Immunol 2023; 14:1209874. [PMID: 37965316 PMCID: PMC10642912 DOI: 10.3389/fimmu.2023.1209874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Anaphylaxis is among the most severe manifestations of allergic disorders, but its molecular basis remains largely unknown and reliable diagnostic markers are not currently available. MicroRNAs (miRNAs) regulate several pathophysiological processes and have been proposed as non-invasive biomarkers. Therefore, this study aims to evaluate their involvement in anaphylactic reaction and their value as biomarkers. Methods Acute (anaphylaxis) and baseline (control) serum samples from 67 patients with anaphylaxis were studied. Among them, 35 were adults with drug-induced anaphylaxis, 13 adults with food-induced anaphylaxis and 19 children with food-induced anaphylaxis. The circulating serum miRNAs profile was characterized by next-generation sequencing (NGS). For this purpose, acute and baseline samples from 5 adults with drug-induced anaphylaxis were used. RNA was extracted, retrotranscribed, sequenced and the readings obtained were mapped to the human database miRBase_20. In addition, a system biology analysis (SBA) was performed with its target genes and revealed pathways related to anaphylactic mediators signaling. Moreover, functional and molecular endothelial permeability assays were conducted with miR-375-3p-transfected cells in response to cAMP. Results A total of 334 miRNAs were identified, of which 21 were significant differentially expressed between both phases. Extracellular vesicles (EVs) were characterized by Western blot, electron microscopy and NanoSight. A decrease of miR-375-3p levels was determined by qPCR in both serum and EVs of patients with anaphylaxis (****p<.0001). Precisely, the decrease of miR-375-3p correlated with the increase of two inflammatory cytokines: monocyte chemoattractant protein-1 (MCP-1) and granulocyte macrophage colony-stimulating factor (GM-CSF). On the other hand, functional and molecular data obtained showed that miR-375-3p partially blocked the endothelial barrier maintenance and stabilization by disassembly of cell-cell junctions exhibiting low Rac1-Cdc42 levels. Discussion These findings demonstrate a differential serum profile of circulating miRNAs in patients with anaphylaxis and exhibit the miR-375-3p modulation in serum and EVs during drug- and food-mediated anaphylactic reactions. Furthermore, the in silico and in vitro studies show a negative role for miR-375-3p/Rac1-Cdc42 in the endothelial barrier stability.
Collapse
Affiliation(s)
- Emilio Nuñez-Borque
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sergio Fernandez-Bravo
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pablo Rodríguez Del Rio
- Allergy Department, Hospital Infantil Universitario Niño Jesús, Fundación Hospital Niño Jesús (HNJ), Instituto de Investigación del Hospital de La Princesa (IIS-P), Madrid, Spain
| | - Lucia Palacio-García
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Angela Di Giannatale
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Virginia Di Paolo
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Angela Galardi
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marta Colletti
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Javier Cuesta-Herranz
- Department of Allergy. Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Dolores Ibañez-Sandin
- Allergy Department, Hospital Infantil Universitario Niño Jesús, Fundación Hospital Niño Jesús (HNJ), Instituto de Investigación del Hospital de La Princesa (IIS-P), Madrid, Spain
| | - José Julio Laguna
- Allergy Unit, Allergo-Anaesthesia Unit, Cruz Roja Central Hospital, Villanueva de la Cañada, Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X el Sabio (UAX), Madrid, Spain
| | - Alberto Benito-Martin
- Faculty of Medicine and Biomedicine, Universidad Alfonso X el Sabio (UAX), Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X el Sabio (UAX), Madrid, Spain
| |
Collapse
|
39
|
Zhang R, Tao Y, Huang J. The Application of MicroRNAs in Glaucoma Research: A Bibliometric and Visualized Analysis. Int J Mol Sci 2023; 24:15377. [PMID: 37895056 PMCID: PMC10607922 DOI: 10.3390/ijms242015377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Glaucoma is similar to a neurodegenerative disorder and leads to global irreversible loss of vision. Despite extensive research, the pathophysiological mechanisms of glaucoma remain unclear, and no complete cure has yet been identified for glaucoma. Recent studies have shown that microRNAs can serve as diagnostic biomarkers or therapeutic targets for glaucoma; however, there are few bibliometric studies that focus on using microRNAs in glaucoma research. Here, we have adopted a bibliometric analysis in the field of microRNAs in glaucoma research to manifest the current tendencies and research hotspots and to present a visual map of the past and emerging tendencies in this field. In this study, we retrieved publications in the Web of Science database that centered on this field between 2007 and 2022. Next, we used VOSviewer, CiteSpace, Scimago Graphica, and Microsoft Excel to present visual representations of a co-occurrence analysis, co-citation analysis, tendencies, hotspots, and the contributions of authors, institutions, journals, and countries/regions. The United States was the main contributor. Investigative Ophthalmology and Visual Science has published the most articles in this field. Over the past 15 years, there has been exponential growth in the number of publications and citations in this field across various countries, organizations, and authors. Thus, this study illustrates the current trends, hotspots, and emerging frontiers and provides new insight and guidance for searching for new diagnostic biomarkers and clinical trials for glaucoma in the future. Furthermore, international collaborations can also be used to broaden and deepen the field of microRNAs in glaucoma research.
Collapse
Affiliation(s)
| | | | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (R.Z.); (Y.T.)
| |
Collapse
|
40
|
Lan B, Dong X, Yang Q, Luo Y, Wen H, Chen Z, Chen H. Exosomal MicroRNAs: An Emerging Important Regulator in Acute Lung Injury. ACS OMEGA 2023; 8:35523-35537. [PMID: 37810708 PMCID: PMC10551937 DOI: 10.1021/acsomega.3c04955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Acute lung injury (ALI) is a clinically life-threatening form of respiratory failure with a mortality of 30%-40%. Acute respiratory distress syndrome is the aggravated form of ALI. Exosomes are extracellular lipid vesicles ubiquitous in human biofluids with a diameter of 30-150 nm. They can serve as carriers to convey their internal cargo, particularly microRNA (miRNA), to the target cells involved in cellular communication. In disease states, the quantities of exosomes and the cargo generated by cells are altered. These exosomes subsequently function as autocrine or paracrine signals to nearby or distant cells, regulating various pathogenic processes. Moreover, exosomal miRNAs from multiple stem cells can provide therapeutic value for ALI by regulating different signaling pathways. In addition, changes in exosomal miRNAs of biofluids can serve as biomarkers for the early diagnosis of ALI. This study aimed to review the role of exosomal miRNAs produced by different sources participating in various pathological processes of ALI and explore their potential significance in the treatment and diagnosis.
Collapse
Affiliation(s)
- Bowen Lan
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Xuanchi Dong
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Qi Yang
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Department
of Traditional Chinese Medicine, The Second
Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| | - Haiyun Wen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| | - Zhe Chen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Hailong Chen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| |
Collapse
|
41
|
Wang S, Wang F, Qiao S, Zhuang Y, Zhang K, Pang S, Nowak R, Lv Z. MSHGANMDA: Meta-Subgraphs Heterogeneous Graph Attention Network for miRNA-Disease Association Prediction. IEEE J Biomed Health Inform 2023; 27:4639-4648. [PMID: 35759606 DOI: 10.1109/jbhi.2022.3186534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
MicroRNAs (miRNAs) influence several biological processes involved in human disease. Biological experiments for verifying the association between miRNA and disease are always costly in terms of both money and time. Although numerous biological experiments have identified multi-types of associations between miRNAs and diseases, existing computational methods are unable to sufficiently mine the knowledge in these associations to predict unknown associations. In this study, we innovatively propose a heterogeneous graph attention network model based on meta-subgraphs (MSHGANMDA) to predict the potential miRNA-disease associations. Firstly, we define five types of meta-subgraph from the known miRNA-disease associations. Then, we use meta-subgraph attention and meta-subgraph semantic attention to extract features of miRNA-disease pairs within and between these five meta-subgraphs, respectively. Finally, we apply a fully-connected layer (FCL) to predict the scores of unknown miRNA-disease associations and cross-entropy loss to train our model end-to-end. To evaluate the effectiveness of MSHGANMDA, we apply five-fold cross-validation to calculate the mean values of evaluation metrics Accuracy, Precision, Recall, and F1-score as 0.8595, 0.8601, 0.8596, and 0.8595, respectively. Experiments show that our model, which primarily utilizes multi-types of miRNA-disease association data, gets the greatest ROC-AUC value of 0.934 when compared to other state-of-the-art approaches. Furthermore, through case studies, we further confirm the effectiveness of MSHGANMDA in predicting unknown diseases.
Collapse
|
42
|
Cignarella A, Boscaro C, Albiero M, Bolego C, Barton M. Post-Transcriptional and Epigenetic Regulation of Estrogen Signaling. J Pharmacol Exp Ther 2023; 386:288-297. [PMID: 37391222 DOI: 10.1124/jpet.123.001613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023] Open
Abstract
Post-translational and epigenetic regulation are important mechanisms controlling functions of genes and proteins. Although the "classic" estrogen receptors (ERs) have been acknowledged to function in mediating estrogen effects via transcriptional mechanisms, estrogenic agents modulate the turnover of several proteins via post-transcriptional and post-translational pathways including epigenetics. For instance, the metabolic and angiogenic action of G-protein coupled estrogen receptor (GPER) in vascular endothelial cells has been recently elucidated. By interacting with GPER, 17β-estradiol and the GPER agonist G1 enhance endothelial stability of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and capillary tube formation by increasing ubiquitin-specific peptidase 19 levels, thereby reducing PFKFB3 ubiquitination and proteasomal degradation. In addition to ligands, the functional expression and trafficking of ERs can be modulated by post-translational modification, including palmitoylation. MicroRNAs (miRNAs), the most abundant form of endogenous small RNAs in humans, regulate multiple target genes and are at the center of the multi-target regulatory network. This review also discusses the emerging evidence of how miRNAs affect glycolytic metabolism in cancer, as well as their regulation by estrogens. Restoring dysregulated miRNA expression represents a promising strategy to counteract the progression of cancer and other disease conditions. Accordingly, estrogen post-transcriptional regulatory and epigenetic mechanisms represent novel targets for pharmacological and nonpharmacological intervention for the treatment and prevention of hormone-sensitive noncommunicable diseases, including estrogen-sensitive cancers of the reproductive system in women. SIGNIFICANCE STATEMENT: The effects of estrogen are mediated by several mechanisms that are not limited to the transcriptional regulation of target genes. Slowing down the turnover of master regulators of metabolism by estrogens allows cells to rapidly adapt to environmental cues. Identification of estrogen-targeted microRNAs may lead to the development of novel RNA therapeutics that disrupt pathological angiogenesis in estrogen-dependent cancers.
Collapse
Affiliation(s)
- Andrea Cignarella
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Carlotta Boscaro
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Mattia Albiero
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Chiara Bolego
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Matthias Barton
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| |
Collapse
|
43
|
Dong J, Wang L, Xing Y, Qian J, He X, Wu J, Zhou J, Hai L, Wang J, Yang H, Huang J, Gou X, Ju Y, Wang X, He Y, Su D, Kong L, Liang B, Wang X. Dynamic peripheral blood microRNA expression landscape during the peri-implantation stage in women with successful pregnancy achieved by single frozen-thawed blastocyst transfer. Hum Reprod Open 2023; 2023:hoad034. [PMID: 37700872 PMCID: PMC10493182 DOI: 10.1093/hropen/hoad034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
STUDY QUESTION What are the dynamic expression features of plasma microRNAs (miRNAs) during the peri-implantation period in women with successful pregnancy via single frozen-thawed blastocyst transfer? SUMMARY ANSWER There is a significant change in the plasma miRNA expression profile before and after blastocyst transfer, during the window of implantation. WHAT IS KNOWN ALREADY The expression of miRNAs in peripheral blood has indicative functions during the peri-implantation period. Nevertheless, the dynamic expression profile of circulating miRNAs during the peri-implantation stage in women with a successful pregnancy has not been studied. STUDY DESIGN SIZE DURATION Seventy-six women treated for infertility with a single frozen-thawed blastocyst transfer in a natural cycle were included in this study. Among them, 57 women had implantation success and a live birth, while 19 patients experienced implantation failure. Peripheral blood samples were collected at five different time points throughout the peri-implantation period, including D0 (ovulation day), D3, D5, D7, and D9 in this cycle of embryo transfer. The plasma miRNAs in women with blastocyst transfer were isolated, sequenced, and analyzed. PARTICIPANTS/MATERIALS SETTING METHODS Peripheral blood samples were collected in EDTA tubes and stored at -80°C until further use. miRNAs were isolated from blood, cDNA libraries were constructed, and the resulting sequences were mapped to the human genome. The plasma miRNAs were initially analyzed in a screening cohort (n = 34) with successful pregnancy. Trajectory analysis, including a global test and pairwise comparisons, was performed to detect dynamic differentially expressed (DE) miRNAs. Fuzzy c-means clustering was conducted for all dynamic DE miRNAs. The correlation between DE miRNAs and clinical characteristics of patients was investigated using a linear mixed model. Target genes of the miRNAs were predicted, and functional annotation analysis was performed. The expression of DE miRNAs was also identified in a validation set consisting of women with successful (n = 23) and unsuccessful (n = 19) pregnancies. MAIN RESULTS AND THE ROLE OF CHANCE Following small RNA sequencing, a total of 2656 miRNAs were determined as valid read values. After trajectory analysis, 26 DE miRNAs (false discovery rate < 0.05) were identified by the global test, while pairwise comparisons in addition identified 20 DE miRNAs. A total of seven distinct clusters representing different temporal patterns of miRNA expression were discovered. Nineteen DE miRNAs were further identified to be associated with at least one clinical trait. Endometrium thickness and progesterone level showed a correlation with multiple DE miRNAs (including two of the same miRNAs, hsa-miR-1-3p and hsa-miR-6741-3p). Moreover, the 19 DE miRNAs were predicted to have 403 gene targets, and there were 51 (12.7%) predicted genes likely involved in both decidualization and embryo implantation. Functional annotation for predicted targets of those clinically related DE miRNAs suggested the involvement of vascular endothelial growth factor and Wnt signaling pathways, as well as responses to hormones, immune responses, and cell adhesion-related signaling pathways during the peri-implantation stage. LARGE SCALE DATA The raw miRNA sequence data reported in this article have been deposited in the Genome Sequence Archive (GSA-Human: HRA005227) and are publicly accessible at https://ngdc.cncb.ac.cn/gsa-human/browse/HRA005227. LIMITATIONS REASONS FOR CAUTION Although the RNA sequencing results revealed the global dynamic changes of miRNA expression, further experiments examining the clinical significance of the identified DE miRNAs in embryo implantation outcome and the relevant regulatory mechanisms involved are warranted. WIDER IMPLICATIONS OF THE FINDINGS Understanding the dynamic landscape of the miRNA transcriptome could shed light on the physiological mechanisms involved from ovulation to the post-implantation stage, as well as identifying biomarkers that characterize stage-related biological process. STUDY FUNDING/COMPETING INTERESTS The study was funded by the Major clinical research project of Tangdu Hospital (2021LCYJ004) and the Discipline Platform Improvement Plan of Tangdu Hospital (2020XKPT003). The funders had no influence on the study design, data collection, and analysis, decision to publish, or preparation of the article. There are no conflicts of interest to declare.
Collapse
Affiliation(s)
- Jie Dong
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Lu Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yanru Xing
- Research Department, Basecare Medical Device Co, Suzhou, China
| | - Jun Qian
- Research Department, Basecare Medical Device Co, Suzhou, China
| | - Xiao He
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Jing Wu
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Juan Zhou
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Li Hai
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Jun Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Hongya Yang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Jianlei Huang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Xingqing Gou
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Ying Ju
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Xiyi Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yunan He
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Danjie Su
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Lingyin Kong
- Research Department, Basecare Medical Device Co, Suzhou, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohong Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
44
|
Bayramov B, Bayramov N, Aslanov H, Karimova N, Gasimov K, Shahmuradov I, Reißfelder C, Yagublu V. Association of miR-149 T>C and miR-196a2 C>T Polymorphisms with Colorectal Cancer Susceptibility: A Case-Control Study. Biomedicines 2023; 11:2341. [PMID: 37760783 PMCID: PMC10525737 DOI: 10.3390/biomedicines11092341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
The principal aim of the current study was to investigate the relationship between miR-149 T>C (rs2292832) and miR-196a2 C>T (rs11614913) small non-coding RNA polymorphisms and the risk of developing CRC in the Azerbaijani population. The study included 120 patients diagnosed with CRC and 125 healthy individuals. Peripheral blood samples were collected from all the subjects in EDTA tubes and DNA extraction was performed by salting out. Polymorphisms were determined using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. While comparing without gender distinction no statistical correlation was found between the heterozygous TC (OR = 0.66; 95% CI = 0.37-1.15; p = 0.142), mutant CC (OR = 1.23; 95% CI = 0.62-2.45; p = 0.550), and mutant C (OR = 1.03; 95% CI = 0.72-1.49; p = 0.859) alleles of the miR-149 gene and the CT (OR = 1.23; 95% CI = 0.69-2.20; p = 0.485), mutant TT (OR = 1.29; 95% CI = 0.67-2.47; p = 0.452), and mutant T (OR = 1.17; 95% CI = 0.82-1.67; p = 0.388) alleles of the miR-196a2 gene and the risk of CRC. However, among women, miR-149 TC (OR = 0.43; 95% CI = 0.19-1.01; p = 0.048) correlated with a reduced risk of CRC, whereas miR-196a2 CT (OR = 2.77; 95% CI = 1.13-6.79; p = 0.025) correlated with an increased risk of CRC. Our findings indicated that miR-149 T>C (rs2292832) might play a protective role in the development of CRC in female patients, whereas the miR-196a2 (rs11614913) polymorphism is associated with an increased risk of CRC in women in the Azerbaijani population, highlighting the importance of gender dimorphism in cancer etiology.
Collapse
Affiliation(s)
- Bayram Bayramov
- Laboratory of Human Genetics, Genetic Resources Institute of Ministry of Science and Education, Baku AZ1106, Azerbaijan; (B.B.); (N.K.)
| | - Nuru Bayramov
- Department of Surgery, Azerbaijan Medical University, Baku AZ1022, Azerbaijan;
| | - Hazi Aslanov
- Department of Surgery, Scientific Center of Surgery, Baku AZ1122, Azerbaijan;
| | - Nigar Karimova
- Laboratory of Human Genetics, Genetic Resources Institute of Ministry of Science and Education, Baku AZ1106, Azerbaijan; (B.B.); (N.K.)
| | - Karim Gasimov
- Laboratory of Molecular and Cellular Biochemistry, Institute of Biophysics of Ministry of Science and Education, Baku AZ1141, Azerbaijan;
| | - Ilham Shahmuradov
- Bioinformatics Lab, Institute of Molecular Biology and Biotechnologies of Ministry of Science and Education, Baku AZ1141, Azerbaijan;
- Integrative Biology Lab, Institute of Biophysics of Ministry of Science and Education, Baku AZ1141, Azerbaijan
| | - Christoph Reißfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Vugar Yagublu
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| |
Collapse
|
45
|
Romanos SG, Srinath A, Li Y, Xie B, Chen C, Li Y, Moore T, Bi D, Sone JY, Lightle R, Hobson N, Zhang D, Koskimäki J, Shen L, McCurdy S, Lai CC, Stadnik A, Piedad K, Carrión-Penagos J, Shkoukani A, Snellings D, Shenkar R, Sulakhe D, Ji Y, Lopez-Ramirez MA, Kahn ML, Marchuk DA, Ginsberg MH, Girard R, Awad IA. Circulating Plasma miRNA Homologs in Mice and Humans Reflect Familial Cerebral Cavernous Malformation Disease. Transl Stroke Res 2023; 14:513-529. [PMID: 35715588 PMCID: PMC9758276 DOI: 10.1007/s12975-022-01050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 01/16/2023]
Abstract
Patients with familial cerebral cavernous malformation (CCM) inherit germline loss of function mutations and are susceptible to progressive development of brain lesions and neurological sequelae during their lifetime. To date, no homologous circulating molecules have been identified that can reflect the presence of germ line pathogenetic CCM mutations, either in animal models or patients. We hypothesize that homologous differentially expressed (DE) plasma miRNAs can reflect the CCM germline mutation in preclinical murine models and patients. Herein, homologous DE plasma miRNAs with mechanistic putative gene targets within the transcriptome of preclinical and human CCM lesions were identified. Several of these gene targets were additionally found to be associated with CCM-enriched pathways identified using the Kyoto Encyclopedia of Genes and Genomes. DE miRNAs were also identified in familial-CCM patients who developed new brain lesions within the year following blood sample collection. The miRNome results were then validated in an independent cohort of human subjects with real-time-qPCR quantification, a technique facilitating plasma assays. Finally, a Bayesian-informed machine learning approach showed that a combination of plasma levels of miRNAs and circulating proteins improves the association with familial-CCM disease in human subjects to 95% accuracy. These findings act as an important proof of concept for the future development of translatable circulating biomarkers to be tested in preclinical studies and human trials aimed at monitoring and restoring gene function in CCM and other diseases.
Collapse
Affiliation(s)
- Sharbel G Romanos
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Abhinav Srinath
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Ying Li
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Bingqing Xie
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Chang Chen
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Bioinformatics Core, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Yan Li
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Bioinformatics Core, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Thomas Moore
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Dehua Bi
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Je Yeong Sone
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Rhonda Lightle
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Nick Hobson
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Dongdong Zhang
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Janne Koskimäki
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Sara McCurdy
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Catherine Chinhchu Lai
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Agnieszka Stadnik
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Kristina Piedad
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Julián Carrión-Penagos
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Abdallah Shkoukani
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Daniel Snellings
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC, USA
| | - Robert Shenkar
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Dinanath Sulakhe
- Bioinformatics Core, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Yuan Ji
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Miguel A Lopez-Ramirez
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas A Marchuk
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Romuald Girard
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Issam A Awad
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA.
| |
Collapse
|
46
|
Li Y, Ye J, Xu S, Wang J. Circulating noncoding RNAs: promising biomarkers in liquid biopsy for the diagnosis, prognosis, and therapy of NSCLC. Discov Oncol 2023; 14:142. [PMID: 37526759 PMCID: PMC10393935 DOI: 10.1007/s12672-023-00686-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 08/02/2023] Open
Abstract
As the second most common malignant tumor in the world, lung cancer is a great threat to human health. In the past several decades, the role and mechanism of ncRNAs in lung cancer as a class of regulatory RNAs have been studied intensively. In particular, ncRNAs in body fluids have attracted increasing attention as biomarkers for lung cancer diagnosis and prognosis and for the evaluation of lung cancer treatment due to their low invasiveness and accessibility. As emerging tumor biomarkers in lung cancer, circulating ncRNAs are easy to obtain, independent of tissue specimens, and can well reflect the occurrence and progression of tumors due to their correlation with some biological processes in tumors. Circulating ncRNAs have a very high potential to serve as biomarkers and hold promise for the development of ncRNA-based therapeutics. In the current study, there has been extensive evidence that circulating ncRNA has clinical significance and value as a biomarker. In this review, we summarize how ncRNAs are generated and enter the circulation, remaining stable for subsequent detection. The feasibility of circulating ncRNAs as biomarkers in the diagnosis and prognosis of non-small cell lung cancer is also summarized. In the current systematic treatment of non-small cell lung cancer, circulating ncRNAs can also predict drug resistance, adverse reactions, and other events in targeted therapy, chemotherapy, immunotherapy, and radiotherapy and have promising potential to guide the systematic treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China
| | - Jun Ye
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - Jiajun Wang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China.
| |
Collapse
|
47
|
Sweef O, Zaabout E, Bakheet A, Halawa M, Gad I, Akela M, Tousson E, Abdelghany A, Furuta S. Unraveling Therapeutic Opportunities and the Diagnostic Potential of microRNAs for Human Lung Cancer. Pharmaceutics 2023; 15:2061. [PMID: 37631277 PMCID: PMC10459057 DOI: 10.3390/pharmaceutics15082061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Lung cancer is a major public health problem and a leading cause of cancer-related deaths worldwide. Despite advances in treatment options, the five-year survival rate for lung cancer patients remains low, emphasizing the urgent need for innovative diagnostic and therapeutic strategies. MicroRNAs (miRNAs) have emerged as potential biomarkers and therapeutic targets for lung cancer due to their crucial roles in regulating cell proliferation, differentiation, and apoptosis. For example, miR-34a and miR-150, once delivered to lung cancer via liposomes or nanoparticles, can inhibit tumor growth by downregulating critical cancer promoting genes. Conversely, miR-21 and miR-155, frequently overexpressed in lung cancer, are associated with increased cell proliferation, invasion, and chemotherapy resistance. In this review, we summarize the current knowledge of the roles of miRNAs in lung carcinogenesis, especially those induced by exposure to environmental pollutants, namely, arsenic and benzopyrene, which account for up to 1/10 of lung cancer cases. We then discuss the recent advances in miRNA-based cancer therapeutics and diagnostics. Such information will provide new insights into lung cancer pathogenesis and innovative diagnostic and therapeutic modalities based on miRNAs.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Elsayed Zaabout
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ahmed Bakheet
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | - Mohamed Halawa
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ibrahim Gad
- Department of Statistics and Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Akela
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ashraf Abdelghany
- Biomedical Research Center of University of Granada, Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| |
Collapse
|
48
|
Hu Y, Cui F, Wang S, Liu C, Zhang S, Wang R, Song J, Zhang Y. MicroRNA expression profile of human umbilical vein endothelial cells in response to coxsackievirus A10 infection reveals a potential role of miR-143-3p in maintaining the integrity of the blood-brain barrier. Front Cell Infect Microbiol 2023; 13:1217984. [PMID: 37577373 PMCID: PMC10419304 DOI: 10.3389/fcimb.2023.1217984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Coxsackievirus A10 (CV-A10) has been one of the main etiologies of hand, foot, and mouth disease (HFMD) epidemics in recent years and can cause mild to severe illness and even death. Most of these severe and fatal cases were closely associated with neurological impairments, but the potential mechanism of neuropathological injury triggered by CV-A10 infection has not been elucidated. MicroRNAs (miRNAs), implicated in the regulation of gene expression in a post-transcriptional manner, play a vital role in the pathogenesis of various central nervous system (CNS) diseases; therefore, they serve as diagnostic biomarkers and are emerging as novel therapeutic targets for CNS injuries. To gain insights into the CV-A10-induced regulation of host miRNA-processing machinery, we employed high-throughput sequencing to identify differentially expressed miRNAs in CV-A10-infected human umbilical vein endothelial cells (HUVECs) and further analyzed the potential functions of these miRNAs during CV-A10 infection. The results showed that CV-A10 infection could induce 189 and 302 significantly differentially expressed miRNAs in HUVECs at 24 and 72 hpi, respectively, compared with the uninfected control. Moreover, the expression of four selected miRNAs and their relevant mRNAs was determined to verify the sequencing data by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) methods. After that, gene target prediction and functional annotation revealed that the targets of these dysregulated miRNAs were mostly enriched in cell proliferation, signal transduction, cAMP signalling pathway, cellular response to interleukin-6, ventral spinal cord interneuron differentiation, negative regulation of glial cell differentiation, neuron migration, positive regulation of neuron projection development, etc., which were primarily involved in the processes of basic physiology, host immunity, and neurological impairments and further reflected vital regulatory roles of miRNA in viral pathogenicity. Finally, the construction of a miRNA-regulated network also suggested that the complex regulatory mechanisms mediated by miRNAs might be involved in viral pathogenesis and virus-host interactions during CV-A10 infection. Furthermore, among these dysregulated miRNAs, miR-143-3p was demonstrated to be involved in the maintenance of blood-brain barrier (BBB) integrity.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Clinical Virology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Fengxian Cui
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Shenglan Wang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen Liu
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shengxiong Zhang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ruiqi Wang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
49
|
Chhuon C, Herrera-Marcos LV, Zhang SY, Charrière-Bertrand C, Jung V, Lipecka J, Savas B, Nasser N, Pawlak A, Boulmerka H, Audard V, Sahali D, Guerrera IC, Ollero M. Proteomics of Plasma and Plasma-Treated Podocytes: Application to Focal and Segmental Glomerulosclerosis. Int J Mol Sci 2023; 24:12124. [PMID: 37569500 PMCID: PMC10418338 DOI: 10.3390/ijms241512124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Focal and segmental glomerulosclerosis (FSGS) is a severe form of idiopathic nephrotic syndrome (INS), a glomerulopathy of presumably immune origin that is attributed to extrarenal pathogenic circulating factors. The recurrence of FSGS (rFSGS) after transplant occurs in 30% to 50% of cases. The direct analysis of patient plasma proteome has scarcely been addressed to date, mainly due to the methodological difficulties associated with plasma complexity and dynamic range. In this study, first, we compared different methods of plasma preparation, second, we compared the plasma proteomes of rFSGS and controls using two preparation methods, and third, we analyzed the early proximal signaling events in podocytes subjected to patient plasma, through a combination of phosphoproteomics and lipid-raft proteomics (raftomics). By combining immunodepletion and high pH fractionation, we performed a differential proteomic analysis of soluble plasma proteins and of extracellular vesicles (EV) obtained from healthy controls, non-INS patient controls, and rFSGS patients (n = 4). In both the soluble- and the EV-protein sets from the rFSGS patients, we found a statistically significant increase in a cluster of proteins involved in neutrophil degranulation. A group of lipid-binding proteins, generally associated with lipoproteins, was found to be decreased in the soluble set from the rFSGS patients. In addition, three amino acid transporters involved in mTORC1 activation were found to be significantly increased in the EV from the rFSGS. Next, we incubated human podocytes for 30 min with 10% plasma from both groups of patients. The phosphoproteomics and raftomics of the podocytes revealed profound differences in the proteins involved in the mTOR pathway, in autophagy, and in cytoskeleton organization. We analyzed the correlation between the abundance of plasma and plasma-regulated podocyte proteins. The observed changes highlight some of the mechanisms involved in FSGS recurrence and could be used as specific early markers of circulating-factor activity in podocytes.
Collapse
Affiliation(s)
- Cerina Chhuon
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Luis Vicente Herrera-Marcos
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Shao-Yu Zhang
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Cécile Charrière-Bertrand
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Jung
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Joanna Lipecka
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Berkan Savas
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Nour Nasser
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - André Pawlak
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Hocine Boulmerka
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Audard
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Dil Sahali
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Mario Ollero
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| |
Collapse
|
50
|
He XH, Xiao YT, Chen WY, Wang MJ, Wu XD, Mei LY, Gao KX, Huang QC, Huang RY, Chen XM. In silico analysis of serum miRNA profiles in seronegative and seropositive rheumatoid arthritis patients by small RNA sequencing. PeerJ 2023; 11:e15690. [PMID: 37525657 PMCID: PMC10387234 DOI: 10.7717/peerj.15690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a refractory autoimmune disease, affecting about 1% of the world's population. RA is divided into seronegative RA and seropositive RA. However, biomarkers for discriminating between seronegative and seropositive RA have not been reported. In this study, we profiled serum miRNAs in seronegative RA patients (N-RA), seropositive RA patients (P-RA) and healthy controls (HC) by small RNA sequencing. Results indicated that compared with HC group, there were one up-regulated and four downregulated miRNAs in N-RA group (fold change ≥ 2 and P value < 0.05); compared with P-RA group, there were two up-regulated and four downregulated miRNAs in N-RA group; compared with HC group, there were three up-regulated and four downregulated miRNAs in P-RA group. Among them, the level of hsa-miR-362-5p in N-RA group was up-regulated compared with that in HC group and P-RA group, and the level of hsa-miR-6855-5p and hsa-miR-187-3p in P-RA group was upregulated compared with that in N-RA group and HC group. Validation by qPCR confirmed that serum hsa-miR-362-5p level was elevated in N-RA group. Subsequently, by analyzing the target genes using RNAhybrid, PITA, Miranda and TargetScan and functions of differential miRNAs utilizing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), we found that the target genes and molecular pathways regulated by miRNAs in seronegative RA and seropositive RA were roughly the same, and miRNAs in these two diseases may participate in the occurrence and development of diseases by regulating the immune system. In conclusion, this study revealed the profiles of serum miRNAs in seronegative and seropositive RA patients for the first time, providing potential biomarkers and targets for the diagnosis and treatment of seronegative and seropositive RA.
Collapse
Affiliation(s)
- Xiao-Hong He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun-Ting Xiao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-Ying Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mao-Jie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xiao-Dong Wu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Yan Mei
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai-Xin Gao
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Chun Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Run-Yue Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xiu-Min Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| |
Collapse
|