1
|
Du S, Chien LC, Bush KF, Giri S, Richardson LA, Li M, Jin Q, Li T, Nicklett EJ, Li R, Zhang K. Short-term associations between precipitation and gastrointestinal illness-related hospital admissions: A multi-city study in Texas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175247. [PMID: 39111450 DOI: 10.1016/j.scitotenv.2024.175247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
The ongoing climate change crisis presents challenges to the global public health system. The risk of gastrointestinal illness (GI) related hospitalization increases following extreme weather events but is largely under-reported and under-investigated. This study assessed the association between precipitation and GI-related hospital admissions in four major cities in Texas. Daily data on GI-related hospital admissions and precipitation from 2004 to 2014 were captured from the Texas Department of State Health Services and the National Climate Data Center. Distributed lagged nonlinear modeling approaches were employed to examine the association between precipitation and GI-related hospital admissions. Results showed that the cumulative risk ratios (RRs) of GI-related hospital admissions were elevated in the 2 weeks following precipitation events; however, there were differences observed across study locations. The cumulative RR of GI-related hospitalizations was significantly higher when the amount of daily precipitation ranged from 3.3 mm to 13.5 mm in Dallas and from 6.0 mm to 24.5 mm in Houston. Yet, substantial increases in the cumulative RRs of GI-related hospitalizations were not observed in Austin or San Antonio. Age-specific and cause-specific GI-related hospitalizations were also found to be associated with precipitation events following the same pattern. Among them, Houston depicted the largest RR for overall GI and subgroup GI by age and cause, particularly for the overall GI among children aged 6 and under (RR = 1.35; 95 % CI = 1.11, 1.63), diarrhea-caused GI among children aged 6 and under (RR = 1.38, 95 % CI = 1.13, 1.69), and other-caused GI among children age 6 and under (RR = 1.46; 95 % CI = 1.12, 1.80). The findings underscore the need for public health interventions and adaptation strategies to address climate change-related health outcomes such as GI illness associated with extreme precipitation events.
Collapse
Affiliation(s)
- Shichao Du
- Department of Sociology, School of Social Development and Public Policy, Fudan University, Shanghai, China.
| | - Lung-Chang Chien
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada at Las Vegas, Las Vegas, NV, USA.
| | - Kathleen F Bush
- Center for Environmental Health, New York State Department of Health, Albany, NY, USA.
| | - Sharmila Giri
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA.
| | - Leigh Ann Richardson
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada at Las Vegas, Las Vegas, NV, USA.
| | - Mo Li
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA.
| | - Qingxu Jin
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA; Resilient, Intelligent, Sustainable, and Energy-efficient (RISE) Infrustructure Material Labatory, Michigan State University, East Lansing, MI, USA.
| | - Tianxing Li
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA.
| | - Emily Joy Nicklett
- Department of Social Work, College for Health, Community and Policy, The University of Texas at San Antonio, San Antonio, TX, USA.
| | - Ruosha Li
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, USA.
| |
Collapse
|
2
|
Williams NLR, Siboni N, Potts J, Scanes P, Johnson C, James M, McCann V, Reun NL, King WL, Seymour JR. Faecal contamination determines bacterial assemblages over natural environmental parameters within intermittently opened and closed lagoons (ICOLLs) during high rainfall. WATER RESEARCH 2024; 268:122670. [PMID: 39486150 DOI: 10.1016/j.watres.2024.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Intermittently closed and opened lakes and lagoons (ICOLLs) provide important ecosystem services, including food provision and nutrient cycling. These ecosystems generally experience low watershed outflow, resulting in substantial fluctuations in physicochemical parameters that are often compounded by anthropogenic contamination, however, how this impacts the patterns in microbiology within these environments remains uncharacterised. Therefore, we aimed to determine how seasonal heterogeneity in the physicochemical parameters, in comparison to faecal contamination, alter the dynamics of bacterial communities inhabiting ICOLLs on the eastern Australian coast. To address these aims, we sampled four ICOLLs on a monthly basis for one year, using 16S rRNA gene amplicon sequencing to monitor patterns in bacterial diversity and qPCR-based methods to measure faecal contamination from humans (sewage), dogs, and birds. Additionally, we used qPCR to monitor patterns of a suite of antibiotic resistance genes (ARGs) including sulI, tetA, qnrS, dfrA1, and vanB. Differences in bacterial community composition were often associated with temporal shifts in salinity, temperature, pH, dissolved oxygen, and dissolved organic matter, but following periods of high rainfall, bacterial assemblages in two of four ICOLLs changed in direct response to sewage inputs. Within these ICOLLs, indicator taxa for stormwater identified using the 16S rRNA amplicon sequencing data, as well as markers for sewage and dog faeces, and levels of the antibiotic resistance genes (ARGs) sulI, tetA, and dfrA1 were significantly more abundant after rainfall. Notably many of the stormwater indicator taxa were potential human pathogens including Arcobacter and Aeromonas hydrophilia, which also displayed significant correlations, albeit weak to moderate, with levels of the ARGs sulI, tetA, and dfrA1. This broad-scale shift in the nature of the bacterial community following rainfall will likely lead to a substantial, and perhaps detrimental, divergence in the ecosystem services provided by the bacterial assemblages within these ICOLLs. We conclude that following rainfall events, sewage was a principal driver of shifts in the microbiology of ICOLLs exposed to stormwater, while natural seasonal shifts in the physicochemical parameters controlled bacterial communities at other times. Increased occurrence of intense precipitation events is predicted as a ramification of climate change, which will lead to increased impacts of stormwater and sewage contamination on important ICOLL ecosystems in the future.
Collapse
Affiliation(s)
| | - Nachshon Siboni
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Jaimie Potts
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary and Environment, Lidcombe, NSW, Australia
| | - Peter Scanes
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary and Environment, Lidcombe, NSW, Australia
| | - Colin Johnson
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary and Environment, Lidcombe, NSW, Australia
| | - Melanie James
- Central Coast Council, Hely Street Wyong, NSW, Australia
| | - Vanessa McCann
- Central Coast Council, Hely Street Wyong, NSW, Australia
| | - Nine Le Reun
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - William L King
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, NSW, Australia
| |
Collapse
|
3
|
Martin NA, Reynolds LJ, Sala-Comorera L, Nolan TM, Stephens JH, Gitto A, Gao G, Corkery A, O'Sullivan JJ, O'Hare GMP, Meijer WG. Quantitative source apportionment of faecal indicator bacteria from anthropogenic and zoogenic sources of faecal contamination. MARINE POLLUTION BULLETIN 2024; 205:116591. [PMID: 38908189 DOI: 10.1016/j.marpolbul.2024.116591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
Recreational bathing waters are complex systems with diverse inputs from multiple anthropogenic and zoogenic sources of faecal contamination. Faecal contamination is a substantial threat to water quality and public health. Here we present a comprehensive strategy to estimate the contribution of faecal indicator bacteria (FIB) from different biological sources on two at-risk beaches in Dublin, Ireland. The daily FIB loading rate was determined for three sources of contamination: a sewage-impacted urban stream, dog and wild bird fouling. This comparative analysis determined that the stream contributed the highest daily levels of FIB, followed by dog fouling. Dog fouling may be a significant source of FIB, contributing approximately 20 % of E. coli under certain conditions, whereas wild bird fouling contributed a negligible proportion of FIB (<3 %). This study demonstrates that source-specific quantitative microbial source apportionment (QMSA) strategies are vital to identify primary public health risks and target interventions to mitigate faecal contamination.
Collapse
Affiliation(s)
- Niamh A Martin
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Liam J Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Laura Sala-Comorera
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Tristan M Nolan
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Jayne H Stephens
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Aurora Gitto
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Guanghai Gao
- UCD School of Civil Engineering, UCD Earth Institute, UCD Dooge Centre for Water Resources Research, University College Dublin, Dublin 4, Ireland
| | - Aisling Corkery
- UCD School of Civil Engineering, UCD Earth Institute, UCD Dooge Centre for Water Resources Research, University College Dublin, Dublin 4, Ireland
| | - John J O'Sullivan
- UCD School of Civil Engineering, UCD Earth Institute, UCD Dooge Centre for Water Resources Research, University College Dublin, Dublin 4, Ireland
| | - Gregory M P O'Hare
- School of Computer Science and Statistics, Trinity College Dublin, Dublin 2, Ireland
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
4
|
Lloyd SD, Carvajal G, Campey M, Taylor N, Osmond P, Roser DJ, Khan SJ. Predicting recreational water quality and public health safety in urban estuaries using Bayesian Networks. WATER RESEARCH 2024; 254:121319. [PMID: 38422692 DOI: 10.1016/j.watres.2024.121319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
To support the reactivation of urban rivers and estuaries for bathing while ensuring public safety, it is critical to have access to real-time information on microbial water quality and associated health risks. Predictive modelling can provide this information, though challenges concerning the optimal size of training data, model transferability, and communication of uncertainty still need attention. Further, urban estuaries undergo distinctive hydrological variations requiring tailored modelling approaches. This study assessed the use of Bayesian Networks (BNs) for the prediction of enterococci exceedances and extrapolation of health risks at planned bathing sites in an urban estuary in Sydney, Australia. The transferability of network structures between sites was assessed. Models were validated using a novel application of the k-fold walk-forward validation procedure and further tested using independent compliance and event-based sampling datasets. Learning curves indicated the model's sensitivity reached a minimum performance threshold of 0.8 once training data included ≥ 400 observations. It was demonstrated that Semi-Naïve BN structures can be transferred while maintaining stable predictive performance. In all sites, salinity and solar exposure had the greatest influence on Posterior Probability Distributions (PPDs), when combined with antecedent rainfall. The BNs provided a novel and transparent framework to quantify and visualise enterococci, stormwater impact, health risks, and associated uncertainty under varying environmental conditions. This study has advanced the application of BNs in predicting recreational water quality and providing decision support in urban estuarine settings, proposed for bathing, where uncertainty is high.
Collapse
Affiliation(s)
- Simon D Lloyd
- School of Built Environment, University of New South Wales, NSW, Australia.
| | - Guido Carvajal
- Facultad de Ingeniería, Universidad Andrés Bello, Antonio Varas 880, Providencia, Santiago, Chile
| | - Meredith Campey
- Beachwatch, NSW Department of Planning and Environment, NSW, Australia
| | | | - Paul Osmond
- School of Built Environment, University of New South Wales, NSW, Australia
| | - David J Roser
- School of Civil and Environmental Engineering, University of New South Wales, NSW, Australia
| | - Stuart J Khan
- School of Civil Engineering, University of Sydney, NSW, Australia
| |
Collapse
|
5
|
Haley BM, Sun Y, Jagai JS, Leibler JH, Fulweiler R, Ashmore J, Wellenius GA, Heiger-Bernays W. Association between Combined Sewer Overflow Events and Gastrointestinal Illness in Massachusetts Municipalities with and without River-Sourced Drinking Water, 2014-2019. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:57008. [PMID: 38775485 PMCID: PMC11110654 DOI: 10.1289/ehp14213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Combined sewer overflow (CSO) events release untreated wastewater into surface waterbodies during heavy precipitation and snowmelt. Combined sewer systems serve ∼ 40 million people in the United States, primarily in urban and suburban municipalities in the Midwest and Northeast. Predicted increases in heavy precipitation events driven by climate change underscore the importance of quantifying potential health risks associated with CSO events. OBJECTIVES The aims of this study were to a) estimate the association between CSO events (2014-2019) and emergency department (ED) visits for acute gastrointestinal illness (AGI) among Massachusetts municipalities that border a CSO-impacted river, and b) determine whether associations differ by municipal drinking water source. METHODS A case time-series design was used to estimate the association between daily cumulative upstream CSO discharge and ED visits for AGI over lag periods of 4, 7, and 14 days, adjusting for temporal trends, temperature, and precipitation. Associations between CSO events and AGI were also compared by municipal drinking water source (CSO-impacted river vs. other sources). RESULTS Extreme upstream CSO discharge events (> 95 th percentile by cumulative volume) were associated with a cumulative risk ratio (CRR) of AGI of 1.22 [95% confidence interval (CI): 1.05, 1.42] over the next 4 days for all municipalities, and the association was robust after adjusting for precipitation [1.17 (95% CI: 0.98, 1.39)], although the CI includes the null. In municipalities with CSO-impacted drinking water sources, the adjusted association was somewhat less pronounced following 95th percentile CSO events [CRR = 1.05 (95% CI: 0.82, 1.33)]. The adjusted CRR of AGI was 1.62 in all municipalities following 99th percentile CSO events (95% CI: 1.04, 2.51) and not statistically different when stratified by drinking water source. DISCUSSION In municipalities bordering a CSO-impacted river in Massachusetts, extreme CSO events are associated with higher risk of AGI within 4 days. The largest CSO events are associated with increased risk of AGI regardless of drinking water source. https://doi.org/10.1289/EHP14213.
Collapse
Affiliation(s)
- Beth M. Haley
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Yuantong Sun
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jyotsna S. Jagai
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois, USA
| | - Jessica H. Leibler
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Robinson Fulweiler
- Department of Earth & Environment, Boston University, Boston, Massachusetts, USA
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | | | - Gregory A. Wellenius
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Wendy Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Rytkönen A, Meriläinen P, Valkama K, Hokajärvi AM, Ruponen J, Nummela J, Mattila H, Tulonen T, Kivistö R, Pitkänen T. Scenario-based assessment of fecal pathogen sources affecting bathing water quality: novel treatment options to reduce norovirus and Campylobacter infection risks. Front Microbiol 2024; 15:1353798. [PMID: 38628869 PMCID: PMC11018956 DOI: 10.3389/fmicb.2024.1353798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Wastewater discharge and runoff waters are significant sources of human and animal fecal microbes in surface waters. Human-derived fecal contamination of water is generally estimated to pose a greater risk to human health than animal fecal contamination, but animals may serve as reservoirs of zoonotic pathogens. In this study, quantitative microbial risk assessment (QMRA) tools were used to evaluate the hygienic impact of sewage effluents and runoff water from municipalities and animal farms on surface and bathing waters. The human-specific microbial source tracking (MST) marker HF183 was used to evaluate the dilution of fecal pathogens originating from the sewage effluent discharge to the downstream watershed. As novel risk management options, the efficiency of UV-LED disinfection and wetland treatment as well as biochar filtration was tested on-site for the contamination sources. According to the dilution pattern of the MST marker HF183, microbes from wastewater were diluted (2.3-3.7 log10) in the receiving waters. The scenario-based QMRA revealed, that the health risks posed by exposure to human-specific norovirus GII and zoonotic Campylobacter jejuni during the bathing events were evaluated. The risk for gastroenteritis was found to be elevated during wastewater contamination events, where especially norovirus GII infection risk increased (1-15 cases per day among 50 bathers) compared with the business as usual (BAU) situation (1 case per day). The noted C. jejuni infection risk was associated with animal farm contamination (1 case per day, versus 0.2-0.6 cases during BAU). Tertiary treatment of wastewater with wetland treatment and UV-LED disinfection effectively reduced the waterborne gastroenteritis risks associated with bathing. Based on the experiences from this study, a QMRA-based approach for health risk evaluations at bathing sites can be useful and is recommended for bathing site risk assessments in the future. In case of low pathogen numbers at the exposure sites, the MST marker HF183 could be used as a pathogen dilution coefficient for the watershed under evaluation. The full-scale implementation of novel tertiary treatment options at wastewater treatment plants (WWTPs) as well as on-site runoff water treatment options should be considered for infection risk management at locations where scenario-based QMRA implies elevated infection risks.
Collapse
Affiliation(s)
- Annastiina Rytkönen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Päivi Meriläinen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Kristiina Valkama
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Anna-Maria Hokajärvi
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Josefiina Ruponen
- Lammi Biological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Bio Research Unit, Häme University of Applied Sciences, Hämeenlinna, Finland
| | - Jarkko Nummela
- Bio Research Unit, Häme University of Applied Sciences, Hämeenlinna, Finland
| | - Harri Mattila
- Bio Research Unit, Häme University of Applied Sciences, Hämeenlinna, Finland
| | - Tiina Tulonen
- Lammi Biological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| |
Collapse
|
7
|
Leri AC, Fassihi GE, Lundquist MJ, Khan M, Arguin ML. Vertical stratification and seasonality of fecal indicator bacteria in New York City playground sandboxes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116152. [PMID: 38417319 DOI: 10.1016/j.ecoenv.2024.116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Sandboxes in public play spaces afford a crucial opportunity for urban children to engage in naturalistic play that fosters development of cognitive, social, and motor skills. As open pits, sandboxes in New York City public playgrounds are potentially exposed to fecal inputs from various sources, including wild and domestic animals. A longitudinal study of thirteen sandboxes located in public playgrounds on the east side of Manhattan reveals ubiquity of the fecal indicator bacteria enterococci and Escherichia coli through all seasons. The highest concentrations of bacteria occur in surface sand (n = 42; mean enterococci 230 MPN/g and E. coli 182 MPN/g dry weight), with significantly lower levels at depths below the surface (n = 35; mean enterococci 21 MPN/g and E. coli 12 MPN/g dry weight), a stratification consistent with fecal loading at the surface. Generalized linear mixed models indicate that sand depth (surface vs. underlayers) is the most influential variable affecting bacterial levels (P <0.001 for both enterococci and E. coli), followed by sampling season (P <0.001 for both). Bacterial concentrations do not vary significantly as a function of playground location or ZIP code within the study area. Children's exposure while playing in sandboxes likely reaches 105 enterococci and 104E. coli in a typical play period. Microbial source tracking to identify fecal hosts reveals dog, bird, and human biomarkers in low concentrations. Open sandbox microcosms installed at ground level in the urban environment of Manhattan are fouled by enterococci and E. coli within two weeks, while adjacent closed microcosms exhibit no fecal contamination over a 33-day sampling period. Collectively, our results indicate that increasing the frequency of sand refills and covering sandboxes during times of disuse would be straightforward management strategies to mitigate fecal contamination in playground sandboxes.
Collapse
Affiliation(s)
- Alessandra C Leri
- Department of Natural Sciences, Marymount Manhattan College, 221 E 71st St., New York, NY 10021, United States.
| | - G Eliana Fassihi
- Department of Natural Sciences, Marymount Manhattan College, 221 E 71st St., New York, NY 10021, United States
| | - Matthew J Lundquist
- Department of Natural Sciences, Marymount Manhattan College, 221 E 71st St., New York, NY 10021, United States
| | - Marjan Khan
- Department of Natural Sciences, Marymount Manhattan College, 221 E 71st St., New York, NY 10021, United States
| | - Mariette L Arguin
- P.S. 77 Lower Lab School, 1700 3rd Ave., New York, NY 10128, United States
| |
Collapse
|
8
|
Cohen A, Vikesland P, Pruden A, Krometis LA, Lee LM, Darling A, Yancey M, Helmick M, Singh R, Gonzalez R, Meit M, Degen M, Taniuchi M. Making waves: The benefits and challenges of responsibly implementing wastewater-based surveillance for rural communities. WATER RESEARCH 2024; 250:121095. [PMID: 38181645 DOI: 10.1016/j.watres.2023.121095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
The sampling and analysis of sewage for pathogens and other biomarkers offers a powerful tool for monitoring and understanding community health trends and potentially predicting disease outbreaks. Since the early months of the COVID-19 pandemic, the use of wastewater-based testing for public health surveillance has increased markedly. However, these efforts have focused on urban and peri‑urban areas. In most rural regions of the world, healthcare service access is more limited than in urban areas, and rural public health agencies typically have less disease outcome surveillance data than their urban counterparts. The potential public health benefits of wastewater-based surveillance for rural communities are therefore substantial - though so too are the methodological and ethical challenges. For many rural communities, population dynamics and insufficient, aging, and inadequately maintained wastewater collection and treatment infrastructure present obstacles to the reliable and responsible implementation of wastewater-based surveillance. Practitioner observations and research findings indicate that for many rural systems, typical implementation approaches for wastewater-based surveillance will not yield sufficiently reliable or actionable results. We discuss key challenges and potential strategies to address them. However, to support and expand the implementation of responsible, reliable, and ethical wastewater-based surveillance for rural communities, best practice guidelines and standards are needed.
Collapse
Affiliation(s)
- Alasdair Cohen
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Leigh-Anne Krometis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Lisa M Lee
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Division of Scholarly Integrity and Research Compliance, Virginia Tech, Blacksburg, VA 24061, USA
| | - Amanda Darling
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michelle Yancey
- Virginia Department of Health, Office of Environmental Health Services, Richmond, VA 23219, USA
| | - Meagan Helmick
- Virginia Department of Health, Mount Rogers Health District, Marion, VA 24354, USA
| | - Rekha Singh
- Virginia Department of Health, Office of Environmental Health Services, Richmond, VA 23219, USA; Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA 23529, USA
| | - Raul Gonzalez
- Hampton Roads Sanitation District, Virginia Beach, VA 23455, USA
| | - Michael Meit
- Center for Rural Health Research, East Tennessee State University, Johnson City, TN 37614, USA
| | - Marcia Degen
- Virginia Department of Health, Office of Environmental Health Services, Richmond, VA 23219, USA
| | - Mami Taniuchi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
9
|
Hernández-Zepeda C, Negrete-Alcalde LJ, Rosiles-González G, Carrillo-Jovel VH, Abney SE, Betancourt WQ, Gerba CP, Chaidez-Quiroz C, Wilson AM. Human adenovirus-associated health risk in the recreational waters of the Yal-ku lagoon in the Mexican Caribbean. JOURNAL OF WATER AND HEALTH 2024; 22:372-384. [PMID: 38421631 PMCID: wh_2024_309 DOI: 10.2166/wh.2024.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The study objective was to evaluate human faecal contamination impacts in the Yal-ku lagoon in the Mexican Caribbean and to estimate adenovirus infection and illness risks associated with recreational exposure during water activities. A total of 20 water samples (10 from each site × two sites) (50 L) were collected monthly over a period of 12 months from two selected sampling sites in the swimming area of the Yal-ku lagoon. The occurrence of faecal-associated viruses was explored, and human adenovirus (HAdV) and pepper mild mottle virus (PMMoV) concentrations were quantified. A quantitative microbial risk assessment (QMRA) model was used to estimate exposure and subsequent adenovirus infection and illness risk for 1 h of swimming or snorkelling. Somatic and F + -specific coliphages occurred in 100% of the samples. Both HAdV and PMMoV were detected at a 60% frequency thereby indicating persistent faecal inputs. PMMoV concentrations (44-370 GC/L) were relatively lower than the concentrations of HAdV (64-1,000 GC/L). Estimated mean adenovirus risks were greater for snorkelling than for swimming by roughly one to two orders of magnitude and estimated mean illness risks for snorkelling were >32/1,000. Human faecal contamination is frequent in the Yal-ku lagoon, which is associated with human gastrointestinal illness.
Collapse
Affiliation(s)
- Cecilia Hernández-Zepeda
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán, A.C., Calle 8, No 39, Mz 29, SM 64, CP 77524, Cancún, Quintana Roo, México E-mail:
| | - Luis Jorge Negrete-Alcalde
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán, A.C., Calle 8, No 39, Mz 29, SM 64, CP 77524, Cancún, Quintana Roo, México
| | - Gabriela Rosiles-González
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán, A.C., Calle 8, No 39, Mz 29, SM 64, CP 77524, Cancún, Quintana Roo, México
| | - Victor Hugo Carrillo-Jovel
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán, A.C., Calle 8, No 39, Mz 29, SM 64, CP 77524, Cancún, Quintana Roo, México
| | - Sarah E Abney
- Water and Energy Sustainable Technology (WEST) Center, The University of Arizona, 2959 West Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Walter Q Betancourt
- Water and Energy Sustainable Technology (WEST) Center, The University of Arizona, 2959 West Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Charles P Gerba
- Water and Energy Sustainable Technology (WEST) Center, The University of Arizona, 2959 West Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Cristóbal Chaidez-Quiroz
- Centro de Investigación en Alimentación y Desarrollo A.C., Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán, Sinaloa, México
| | - Amanda M Wilson
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
Natnael T, Hassen S, Desye B, Woretaw L. Physicochemical and bacteriological quality of swimming pools water in Kombolcha Town, Northeastern Ethiopia. Front Public Health 2024; 11:1260034. [PMID: 38259766 PMCID: PMC10800402 DOI: 10.3389/fpubh.2023.1260034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction The use of swimming pool water for recreation, rehabilitation, and athletics is widespread around the world, especially in large Cities and Towns. However, poorly managed swimming pool water can facilitate the spread of illnesses connected to recreational water. Despite this, there is no evidence on quality of swimming pools water in Kombolcha Town. Therefore, this study was aimed to evaluate the physicochemical and bacteriological quality of swimming pools water in Kombolcha Town. Methods A laboratory-based cross-sectional study was conducted from February to April, 2021 in Kombolcha Town. A total of 90 water samples were collected from the three outdoor swimming pools. The collected data of both physicochemical and bacteriological parameters were entered into Microsoft Excel 2010 and analyzed using SPSS version 25.0. One-way ANOVA was used to test whether there were statistically significant differences between different swimming pools. The level of significance was declared at a p-value of <0.05. Results In this study, out of all the pool water samples that were examined, 37.8% had pH values between 7.2 and 7.8, 36.7% had temperatures between 21°C and 32°C, and 26.7% had turbidity values that were within the WHO standard. Furthermore, only 16.7% of the pool water samples showed residual chlorine levels of 2-3 mg/L. In addition, only 27.8, 35.6, and 32.2% of the samples, respectively, met the WHO criterion for total coliform, fecal coliform, and heterotrophic plate count. Conclusion The result indicates that most pool water samples did not fulfill both the physicochemical and bacteriological quality of the WHO standard limit for swimming pools. Thus, it is crucial to clean and regularly check the pool water, apply pool safety requirements, and raise pool user's awareness about the danger of pool water pollution through training.
Collapse
Affiliation(s)
- Tarikuwa Natnael
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | | | | | | |
Collapse
|
11
|
Bourli P, Eslahi AV, Tzoraki O, Karanis P. Waterborne transmission of protozoan parasites: a review of worldwide outbreaks - an update 2017-2022. JOURNAL OF WATER AND HEALTH 2023; 21:1421-1447. [PMID: 37902200 PMCID: wh_2023_094 DOI: 10.2166/wh.2023.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The current study presents a comprehensive review of worldwide waterborne parasitic protozoan outbreaks reported between 2017 and 2022. In total, 416 outbreaks were attributed to the waterborne transmission of parasitic protozoa. Cryptosporidium accounted for 77.4% (322) of outbreaks, while Giardia was identified as the etiological agent in 17.1% (71). Toxoplasma gondii and Naegleria fowleri were the primary causes in 1.4% (6) and 1% (4) of outbreaks, respectively. Blastocystis hominis, Cyclospora cayetanensis, and Dientamoeba fragilis were independently identified in 0.72% (3) of outbreaks. Moreover, Acanthamoeba spp., Entamoeba histolytica, Vittaforma corneae, and Enterocytozoon bieneusi were independently the causal agents in 0.24% (1) of the total outbreaks. The majority of the outbreaks (195, 47%) were reported in North America. The suspected sources for 313 (75.2%) waterborne parasitic outbreaks were recreational water and/or swimming pools, accounting for 92% of the total Cryptosporidium outbreaks. Furthermore, 25.3% of the outbreaks caused by Giardia were associated with recreational water and/or swimming pools. Developing countries are most likely to be impacted by such outbreaks due to the lack of reliable monitoring strategies and water treatment processes. There is still a need for international surveillance and reporting systems concerning both waterborne diseases and water contamination with parasitic protozoa.
Collapse
Affiliation(s)
- Pavlina Bourli
- School of the Environment, Department of Marine Sciences, University of the Aegean, University Hill, Mytilene, Lesvos 81100, Greece E-mail:
| | - Aida Vafae Eslahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ourania Tzoraki
- School of the Environment, Department of Marine Sciences, University of the Aegean, University Hill, Mytilene, Lesvos 81100, Greece
| | - Panagiotis Karanis
- Medical Faculty and University Hospital, University of Cologne, Cologne, Germany; Medical School, Department of Basic and Clinical Sciences, Anatomy Centre, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
12
|
Ben-Haddad M, Charroud I, Mghili B, Abelouah MR, Hajji S, Aragaw TA, Rangel-Buitrago N, Alla AA. Examining the influence of COVID-19 lockdowns on coastal water quality: A study on fecal bacteria levels in Moroccan seawaters. MARINE POLLUTION BULLETIN 2023; 195:115476. [PMID: 37677975 DOI: 10.1016/j.marpolbul.2023.115476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Fecal bacteria in bathing seawater pose a substantial public health risk and require rigorous monitoring. The unexpected beach closures during the COVID-19 lockdowns have afforded unique opportunities to evaluate the impact of human activities on bathing water quality (BWQ). This study examined the temporal changes in fecal coliforms (FC) and streptococci (FS) within bathing seawater across a popular coastal region in Morocco during two lockdown periods (2020 L and 2021 L), comparing these data with observations from pre-lockdown years (2018, 2019) and post-lockdown periods (2020, 2021, 2022). Our findings illuminate the influential role the hiatus periods played in enhancing bathing water quality, attaining an "excellent" status with marked reductions in fecal coliform and streptococci levels. Consequently, the FC/FS analysis exposed a clear preponderance of humans as the primary sources of fecal contamination, a trend that aligns with the burgeoning coastal tourism and the escalating numbers of beach visitors. Additionally, the presence of domestic animals like camels and horses used for tourist rides, coupled with an increase in wild animals such as dogs during the lockdown periods, compounded the potential sources of fecal bacteria in the study area. Furthermore, occasional sewage discharge from tourist accommodations and wastewater treatment plants may also contribute to fecal contamination. To effectively mitigate these concerns and bolster public health, a commitment to relentless surveillance efforts, leveraging novel and innovative tools, is essential. These findings underline the crucial interplay between human activities and the health of our coastal ecosystems, emphasizing the need for sustainable practices for a safer and healthier future.
Collapse
Affiliation(s)
- Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Imane Charroud
- Laboratory of Biotechnologies and Valorization of Natural Resources, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco; Laboratory of Biology and Ecology of Deep Marine Ecosystems (BEEP), UMR 6197 (UBO, CNRS, Ifremer), Plouzané, France.
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia.
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
13
|
Basili M, Perini L, Zaggia L, Luna GM, Quero GM. Integrating culture-based and molecular methods provides an improved assessment of microbial quality in a coastal lagoon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122140. [PMID: 37414126 DOI: 10.1016/j.envpol.2023.122140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Faecal pollution in aquatic environments is a worldwide public health concern, yet the reliability and comprehensiveness of the methods used to assess faecal contamination are still debated. We compared three approaches, namely a culture-based method to enumerate Faecal Indicator Bacteria (FIB), a FIB-targeting qPCR assay, and High-Throughput Sequencing (HTS) to detect faeces- and sewage-associated taxa in water and sediment samples of an impacted model lagoon and its adjacent sea across one year. Despite at different levels, all approaches agreed in showing a higher contamination in the lagoon than in the sea, and higher in sediments than water. FIB significantly correlated when considering separately sediment and water, and when using both cultivation and qPCR. Similarly, FIB correlated between cultivation and qPCR, but qPCR provided consistently higher estimates of FIB. Faeces-associated bacteria positively correlated with cultivated FIB in both compartments, whereas sewage-associated bacteria did only in water. Considering their benefits and limitations, we conclude that, in our study site, improved quali-quantitative information on contamination is provided when at least two approaches are combined (e.g., cultivation and qPCR or HTS data). Our results provide insights to move beyond the use of FIB to improve faecal pollution management in aquatic environments and to incorporate HTS analysis into routine monitoring.
Collapse
Affiliation(s)
- Marco Basili
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125, Ancona, Italy
| | - Laura Perini
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Luca Zaggia
- CNR IGG, National Research Council - Institute of Geosciences and Earth Resources, Via G. Gradenigo 6, 35131, Padova, Italy
| | - Gian Marco Luna
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125, Ancona, Italy
| | - Grazia Marina Quero
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125, Ancona, Italy.
| |
Collapse
|
14
|
Berg CJ, Alderete JP, Alderete EA. Human wastewater tracking in tropical Hawaiian island streams using qualitative and quantitative assessments of combined fecal indicating bacteria and sucralose, an organic micropollutant of emerging concern. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:966. [PMID: 37464185 PMCID: PMC10354164 DOI: 10.1007/s10661-023-11545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 06/20/2023] [Indexed: 07/20/2023]
Abstract
Prevalence of cesspools on tropical islands suggests that high concentrations of enteric bacteria in streams and coastal waters are an indicator of groundwater contamination by human wastewater. But enterococci bacteria may also be from homeothermic animals common to these watersheds or bacteria living in sediments. Sucralose, a manufactured chemical not destroyed in passage through the human gut, cesspools, septic systems, or wastewater treatment facilities, was used to test for the presence of human wastewater in streams on the island of Kauai, Hawaii. Effluent from six municipal wastewater treatment plants showed an average concentration of 39,167 ng/L of sucralose, roughly back-calculated to 9 ng/L per person, enough to present itself in cesspool effluent contaminated waters. Of 24 streams tested, 79% were positive for sucralose at least once in four sets of sampling. All streams tested positive for enterococci bacteria above established standards. Serial testing of the pair of indicators in the same location over time and applying the Multiplication Rule to the independent samples provide a probabilistic certainty level that the water is chronically polluted by human waste. When repeatedly paired with tests for enterococci, sucralose testing is a cost-effective means for assessing human health risk and for developing proper waste management programs that has been underutilized in under-developed tropical and island settings.
Collapse
Affiliation(s)
- Carl J. Berg
- Kauai Chapter of Surfrider Foundation, P.O. Box 2195, Kapa’a, Hawaii 96746 USA
| | - John P. Alderete
- Kauai Chapter of Surfrider Foundation, P.O. Box 2195, Kapa’a, Hawaii 96746 USA
| | - Ethan A. Alderete
- Kauai Chapter of Surfrider Foundation, P.O. Box 2195, Kapa’a, Hawaii 96746 USA
| |
Collapse
|
15
|
Lee SY, Yang J, Lee JH. Improvement of crAssphage detection/quantification method and its extensive application for food safety. Front Microbiol 2023; 14:1185788. [PMID: 37256047 PMCID: PMC10225732 DOI: 10.3389/fmicb.2023.1185788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Water-borne diseases are usually caused by the fecal-oral transmission of human fecal pathogens. Traditionally, coliforms and enterococci are widely used as indicator bacteria, but they do not allow to differentiate between human and animal fecal contamination. Owing to its presence only in the human gut environment, crAssphage has been suggested as an alternative indicator of human fecal contamination to overcome the above challenges. In this study, 139 human and 89 animal fecal samples (e.g., chicken, cow, dog, pig, pigeon, and mouse) were collected. For the rapid detection of human crAssphage in fecal samples, quantitative real-time PCR (qPCR) was performed using five different oligonucleotide primer/probe combinations. These included three previously reported oligonucleotide primer/probe combinations (RQ, CPQ056, and CrAssBP) and two newly developed combinations (ORF00018-targeting CrAssPFL1 and ORF00044-targeting CrAssPFL2). The detection rate (crAssphage-positive rate) in human fecal samples were 23.0, 30.2, 28.8, 20.1, and 30.9%, respectively, suggesting CrAssPFL2 showed the highest detection rate. Furthermore, the lowest copy numbers (436.16 copy numbers) could be detected using the CrAssPFL2 combination. Interestingly, no difference in crAssphage detection rates was found between healthy people and intestinal inflammatory patients. As expected, no crAssphage was detected in any animal fecal samples, indicating its human specificity. Furthermore, qPCR analysis of sewage samples collected from five different sewage treatment plants revealed that they were all contaminated with 105.71 copy numbers/mL of crAssphage on average. The simulation test of crAssphage-contaminated food samples also confirmed that the detection limit was from 107.55 copy numbers of crAssphage in foods. Therefore, the newly developed and optimized qPCR would be useful for the sensitive detection of crAssphage while identifying the source of human fecal contamination.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Jihye Yang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hoon Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Zhang N, Liang C, Kan P, Yangyao J, Lu D, Yao Z, Gan H, Zhu DZ. Indigenous microbial community governs the survival of Escherichia coli O157:H7 in constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117524. [PMID: 36801692 DOI: 10.1016/j.jenvman.2023.117524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The survival pattern of Escherichia coli O157:H7 (E. coli O157:H7) and its regulatory factors in natural environments have been widely studied. However, there is little information about the survival of E. coli O157:H7 in artificial environments, especially in wastewater treatment facilities. In this study, a contamination experiment was performed to explore the survival pattern of E. coli O157:H7 and its central control factors in two constructed wetlands (CWs) under different hydraulic loading rates (HLRs). The results showed that the survival time of E. coli O157:H7 was longer in the CW under the higher HLR. Substrate ammonium nitrogen and available phosphorus were the main factors that influenced the survival of E. coli O157:H7 in CWs. Despite the minimal effect of microbial α-diversity, some keystone taxa, such as Aeromonas, Selenomonas, and Paramecium, governed the survival of E. coli O157:H7. In addition, the prokaryotic community had a more significant impact on the survival of E. coli O157:H7 than the eukaryotic community. The biotic properties had a more substantial direct power on the survival of E. coli O157:H7 than the abiotic factors in CWs. Collectively, this study comprehensively disclosed the survival pattern of E. coli O157:H7 in CWs, which is an essential addition to the environmental behavior of E. coli O157:H7, providing a theoretical basis for the prevention and control of biological contamination in wastewater treatment processes.
Collapse
Affiliation(s)
- Nan Zhang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Chunling Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Peiying Kan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Jiannan Yangyao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Dingnan Lu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China.
| | - Huihui Gan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - David Z Zhu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
17
|
Derx J, Kılıç HS, Linke R, Cervero-Aragó S, Frick C, Schijven J, Kirschner AKT, Lindner G, Walochnik J, Stalder G, Sommer R, Saracevic E, Zessner M, Blaschke AP, Farnleitner AH. Probabilistic fecal pollution source profiling and microbial source tracking for an urban river catchment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159533. [PMID: 36270368 DOI: 10.1016/j.scitotenv.2022.159533] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
We developed an innovative approach to estimate the occurrence and extent of fecal pollution sources for urban river catchments. The methodology consists of 1) catchment surveys complemented by literature data where needed for probabilistic estimates of daily produced fecal indicator (FIBs, E. coli, enterococci) and zoonotic reference pathogen numbers (Campylobacter, Cryptosporidium and Giardia) excreted by human and animal sources in a river catchment, 2) generating a hypothesis about the dominant sources of fecal pollution and selecting a source targeted monitoring design, and 3) verifying the results by comparing measured concentrations of the informed choice of parameters (i.e. chemical tracers, C. perfringensspores, and host-associated genetic microbial source tracking (MST) markers) in the river, and by multi-parametric correlation analysis. We tested the approach at a study area in Vienna, Austria. The daily produced microbial particle numbers according to the probabilistic estimates indicated that, for the dry weather scenario, the discharge of treated wastewater (WWTP) was the primary contributor to fecal pollution. For the wet weather scenario, 80-99 % of the daily produced FIBs and pathogens resulted from combined sewer overflows (CSOs) according to the probabilistic estimates. When testing our hypothesis in the river, the measured concentrations of the human genetic fecal marker were log10 4 higher than for selected animal genetic fecal markers. Our analyses showed for the first-time statistical relationships between C. perfringens spores (used as conservative microbial tracer for communal sewage) and a human genetic fecal marker (i.e. HF183/BacR287) with the reference pathogen Giardia in river water (Spearman rank correlation: 0.78-0.83, p < 0.05. The developed approach facilitates urban water safety management and provides a robust basis for microbial fate and transport models and microbial infection risk assessment.
Collapse
Affiliation(s)
- Julia Derx
- Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Austria.
| | - H Seda Kılıç
- Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Austria
| | - Rita Linke
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, TU Wien, Austria
| | - Sílvia Cervero-Aragó
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Christina Frick
- Vienna City Administration, Municipal Department 39, Division of Hygiene, Vienna, Austria
| | - Jack Schijven
- Utrecht University, Faculty of Geosciences, Department of Earth Sciences, Utrecht, the Netherlands; National Institute for Public Health and the Environment, Department of Statistics, Informatics and Modelling, Bilthoven, the Netherlands
| | - Alexander K T Kirschner
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria; Division Water Quality and Health, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Gerhard Lindner
- Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Regina Sommer
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Ernis Saracevic
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Matthias Zessner
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Alfred P Blaschke
- Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Austria
| | - Andreas H Farnleitner
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, TU Wien, Austria.; Division Water Quality and Health, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
18
|
Avanzato VA, D’Angelo J, Okolie J, Massart A. Bacteremia With Oral Prevotella Salivae in an 18-Year-Old After a Water Skiing Fall Into a Freshwater Lake. J Investig Med High Impact Case Rep 2023; 11:23247096231159796. [PMID: 36914977 PMCID: PMC10014978 DOI: 10.1177/23247096231159796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 03/15/2023] Open
Abstract
Freshwater exposure is associated with a diverse range of infections from pathogens present in soil and water. This includes skin and soft tissue infections and wound infections, gastrointestinal infections, and central nervous system infections acquired through recreational exposure or trauma. Case reports of freshwater-associated infections typically focus on waterborne pathogens as the cause of illness; however, patients who experience significant physical trauma during freshwater exposure may also be at increased risk for infection with their own flora if the nature of the injury allows entry of bacteria through a mechanism such as mucosal injury. Here, we present a case of a healthy 18-year-old man who rapidly developed bacteremia with oral flora following several falls submerging his face into lake water while water skiing, as well as acute polymicrobial sinusitis and subsequent pre-septal cellulitis. Shortly after his water skiing falls, the patient developed sinusitis that rapidly progressed to headaches, emesis, and significant periorbital swelling. Blood cultures grew Prevotella salivae, a bacterium naturally found in the oral cavity. Sinus cultures grew Klebsiella aerogenes and Listeria monocytogenes, which may be associated with lake water. The infection improved with antibiotic therapy, and the patient was discharged on a regimen of amoxicillin/clavulanic acid and trimethoprim-sulfamethoxazole. Reports of bacteremia with oral flora following freshwater injury are not typically reported, and to our knowledge, this is the first report describing bacteremia with P salivae.
Collapse
|
19
|
Ultraviolet – Chlorine combined treatment efficiency to eliminate Naegleria fowleri in artificial surf lagoons. Heliyon 2022; 8:e11625. [PMID: 36439712 PMCID: PMC9691874 DOI: 10.1016/j.heliyon.2022.e11625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/14/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Naegleria. fowleri, a protozoa belonging to the free-living amoeba group, is the causative agent of a central nervous system affecting disease that is fatal in more than the 95% of the reported cases. This parasite can be found in warm water bodies such as lakes, rivers or inadequately disinfected swimming pools. On the other hand, chlorination and UV light treatment are two of the most extensively used disinfection methods in recreational water facilities. In this study the effect of chlorination and UV light on N. fowleri trophozoites was studied in a close water circuit with the aim to assess the efficacy of this disinfection methods in large pools. The obtained results showed that the chlorination was able to decrease the number of viable cells despite the elimination was not totally achieved. Nonetheless, the combination of the UV light with the chlorination allowed the complete removal of the N. fowleri trophozoites from the water in experimental testing conditions. Absence of an standardized water treatment protocol to eliminate N. fowleri. Treatment based only on chlorine was ineffective to eliminate N. fowleri. Combined chlorination and UV light treatment was effective to completely eliminate N.fowleri. Combination of chlorine - Uv would be a promising method for water disinfection.
Collapse
|
20
|
Stec J, Kosikowska U, Mendrycka M, Stępień-Pyśniak D, Niedźwiedzka-Rystwej P, Bębnowska D, Hrynkiewicz R, Ziętara-Wysocka J, Grywalska E. Opportunistic Pathogens of Recreational Waters with Emphasis on Antimicrobial Resistance-A Possible Subject of Human Health Concern. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127308. [PMID: 35742550 PMCID: PMC9224392 DOI: 10.3390/ijerph19127308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Infections caused by exposure to opportunistic pathogens can cause serious health problems during recreational water use. The problem of diseases caused by microbes transmitted by water is a major public health challenge, especially in developing countries with economic problems and poor hygiene conditions. Moreover, the quality of water in natural reservoirs is often at a very low level in terms of microbiological water purity, which means that their use for recreational purposes, but also as a source of drinking water, may have serious health consequences. Recreational waters pose a threat to human health. Therefore, the quality of recreational waters is closely monitored in many jurisdictions. In this review, we summarize key information on the most common pathogens that can be water-based or waterborne. The issue of antimicrobial resistance among opportunistic pathogens remains equally important. It is important not only to fight pathogens, but also to take action to reduce chemical stressors (especially antibiotics) in the aquatic environment, and to understand the various mechanisms of the spread of antibiotic-resistant genes.
Collapse
Affiliation(s)
- Joanna Stec
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (J.S.); (U.K.)
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (J.S.); (U.K.)
| | - Mariola Mendrycka
- Department of Nursing, Kazimierz Pulaski University of Technology and Humanities in Radom, 26-600 Radom, Poland;
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | | | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.N.-R.); (R.H.)
- Correspondence:
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.N.-R.); (R.H.)
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
21
|
Petri O, Ulqinaku D, Kika B, Abazaj E. Trends of recreational water quality in Albania's coastal during 2016-2020. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:327-334. [PMID: 35575055 DOI: 10.1080/10934529.2022.2075653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Water quality impairment is a substantial environmental hazard which impacts a wide variety of stakeholders and interests, particularly those who participate in outdoor water-based recreational activities. Recreational bathing water qualities are highly vulnerable to microbial pollution from municipal sewage, industrial effluents, agriculture run-off and river discharges. Fecal contamination impairs water quality and potentiates human health risks. The aim of this study was to see the 5-year trend of microbiological quality of recreational bathing waters in Albania. Every year we collected 1,071 samples taken 30 centimeters below the water's surface at least one meter deep. Assessment of bacterial load of the coastal waters was done nine times for every point, for the Escherichia coli and Intestinal enterococci, according to the methods ISO 7899-1 and ISO 9308-3. Bathing water assessment is to be classified according the categories indicated in the Directive 2006/7/EC and recommendations of WHO/UNEP-2010. Microbial Water Quality Assessment Category (cfu/100 ml water) done in 119 monitoring points were: During 2016, Excellent 53%, Sufficient 23%, Good 9% and Poor 15%. In 2017, Excellent 68%, Sufficient 15%, Good 6% and Poor 10%. During 2018, Excellent 82.4%, Sufficient 13%, Good 0.9% and Poor 3.7%. During 2019, Excellent 89%, Sufficient 2.5%, Good 6% and Poor 2.5%. During 2020 Excellent 89.9%, Sufficient 5%, Good 0.9%, and Poor 4.2%. Based on the above assessment, it is noticed a significant increase of microbial quality of recreational bathing waters in Albania due to investments in the sewerage system and better waste water treatment.
Collapse
Affiliation(s)
- Oltiana Petri
- Microbiology, Sports University of Tirana, Tirana, Albania
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Dritan Ulqinaku
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Blerta Kika
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Erjona Abazaj
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| |
Collapse
|
22
|
Kosikowska U, Stec J, Andrzejczuk S, Mendrycka M, Pietras-Ożga D, Stępień-Pyśniak D. Plasmid-Mediated Fluoroquinolone Resistance Genes in Quinolone-Susceptible Aeromonas spp. Phenotypes Isolated From Recreational Surface Freshwater Reservoir. Front Cell Infect Microbiol 2022; 12:885360. [PMID: 35646727 PMCID: PMC9132129 DOI: 10.3389/fcimb.2022.885360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Aeromonas spp. are recognized as opportunistic pathogens causing diseases. Infections in humans can result mainly in gastrointestinal and wound diseases with or without progression to septicemia. Although Aeromonas spp. are not known uropathogens and they rarely cause urinary tract infection, we hypothesize that the presence of these bacteria in the water and the contact during, e.g., recreational and bathing activity can create the conditions for the colonization of the human body and may result to diseases in various locations, including the urinary tract. Our study presents the occurrence of aeromonad fluoroquinolone-susceptible phenotypes with the presence of plasmid-mediated fluoroquinolone resistance (PMQR) genes in a natural freshwater reservoir occasionally used for recreational activities. Sixty-nine isolates collected during the bathing period were identified by mass spectrometry and screened for the presence of fluoroquinolone-resistant phenotypes and genotypes. Fluoroquinolone susceptibility was determined as minimal inhibitory concentration values. PMQR qnr genes were detected by PCR. Isolates comprising eight species, namely, mainly Aeromonas veronii (50.7% isolates) and Aeromonas media (24.6% isolates) and rarely Aeromonas eucrenophila, Aeromonas caviae, Aeromonas bestiarum, Aeromonas ichthiosmia, and Aeromonas hydrophila, were selected. All isolates were phenotypically susceptible either to ciprofloxacin or levofloxacin. Unexpectedly, at least one to three of the PMQR genes were detected in 42.0% of the fluoroquinolone-susceptible Aeromonas spp. phenotypes. Mainly the qnrS (34.8% isolates) and qnrA (14.5% isolates) determinants were detected. In conclusion, the freshwater reservoir occasionally used for bathing was tainted with aeromonads, with a high occurrence of opportunistic pathogens such as A. veronii and A. media. MALDI‐TOF MS is a powerful technique for aeromonad identification. Our data reveals the mismatch phenomenon between fluoroquinolone-susceptible aeromonad phenotypes and the presence of plasmid-mediated qnr resistance genes. It suggests that phenotypically susceptible bacteria might be a potential source for the storage and transmission of these genes. The exposure during, e.g., a recreational activity may create the potential risk for causing infections, both diagnostically and therapeutically difficult, after expressing the resistance genes and quinolone-resistant strain selection.
Collapse
Affiliation(s)
- Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Lublin, Poland
- *Correspondence: Urszula Kosikowska,
| | - Joanna Stec
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Sylwia Andrzejczuk
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Mariola Mendrycka
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities in Radom, Radom, Poland
| | - Dorota Pietras-Ożga
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
23
|
Gangi D, Frau D, Drozd AA, Bordet F, Andrade S, Bazzalo M, de Tezanos Pinto P. Integrating field and satellite monitoring for assessing environmental risk associated with bacteria in recreational waters of a large reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151714. [PMID: 34800461 DOI: 10.1016/j.scitotenv.2021.151714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/14/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
In a large South American Reservoir (750 km2, limit between Uruguay and Argentina), we characterized the environmental risk posed by cyanobacteria proxies (abundance, toxin concentration, chlorophyll-a) and Escherichia coli abundances, integrating field (six sites, summers 2011-2015) and satellite (750 km2, summers 2011-2017) monitoring. We further assessed how well field cyanobacteria quantitative proxies (abundance, toxin concentration, chlorophyll-a and scum formation) used to build a local risk communication system for recreational (bathing) use of waters named "cyano-traffic-light", ongoing since 2011, reflected its outcome. Cyanobacteria abundance in the field ranged from moderate (>20,000 to <100,000 cells mL-1) to high-risk (>100,000 cells mL-1), and its abundance was positively related to toxin (microcystin) concentration. Mean microcystin concentrations was within the low (≤2 μg L-1, 50% sites) or moderate (>2 < 10 μg L-1, 50% sites) risk categories. On rare occasions, toxin concentration posed a high-risk for human health. E. coli abundance was within the high-risk category (>126 CFU 100 mL-1) for human health, mostly in the northern part of the reservoir. Cyanobacteria proxies (abundance and toxins) and E. coli abundance were, however, unrelated. The predictive model showed that, out of the four cyanobacteria proxies used to construct the cyano-traffic-light only cyanobacteria abundance (p < 0.05) explained the outcome of the reports, yet with low explanatory power (41%). The satellite monitoring allowed delimiting the extent and magnitude of the environmental risk posed by cyanobacteria at landscape scale (highest risk in the meander parts of the Argentinean side of the reservoir) and producing risk maps that can be used by water management agencies. Based upon our results we propose including E. coli abundances and satellite derived cyanobacteria abundances in the building of the cyano-traffic-light, among other modifications.
Collapse
Affiliation(s)
- Daniela Gangi
- Laboratorio de Limnología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Diego Frau
- Instituto Nacional de Limnología (CONICET-UNL), Argentina.
| | - Andrea A Drozd
- Departamento de Ambiente y Turismo, Universidad Nacional de Avellaneda, Argentina; Centro Regional de Estudios Genómicos (CREG), Universidad Nacional de la Plata, Argentina
| | - Facundo Bordet
- Área de Gestión Ambiental, Gerencia de Ingeniería y Planeamiento, Comisión Técnica Mixta de Salto Grande (CTM), Argentina
| | - Soledad Andrade
- Área de Gestión Ambiental, Gerencia de Ingeniería y Planeamiento, Comisión Técnica Mixta de Salto Grande (CTM), Argentina
| | | | - Paula de Tezanos Pinto
- Instituto de Botánica Darwinion, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
24
|
Fang T, Zhang Z, Wang H, Rogers M, Cui Q. Insights into effects of algae on decay and distribution of bacterial pathogens in recreational water: Implications for microbial risk management. J Environ Sci (China) 2022; 113:92-103. [PMID: 34963553 DOI: 10.1016/j.jes.2021.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 06/14/2023]
Abstract
The decay and distribution of bacterial pathogens in water is an important information for the health risk assessment to guide water safety management, and suspended algae might affect bacterial pathogens in water. This study established microcosms to investigate the effects of algae-related factors on the representative indicators and opportunistic pathogen species in water. We found that suspended algae increased the persistence of targeted species by 1-2 orders of magnitude of concentrations compared to microcosms without algae; and the effect of algae on microbial survival was affected by water nutrient levels (i.e., carbon, nitrogen and phosphorus), as the increased microbial persistence were correlated to the increased algae concentrations with more nutrient supplies. Moreover, decay and distribution profiles of representative species were determined. The three opportunistic pathogen species (Pseudomonas aeruginosa, Aeromonas hydrophila and Staphylococcus aureus) showed lower decay rates (0.82-0.98/day, 0.76-0.98/day, 0.63-0.87/day) largely affected by algae-related factors, while the enteric species (Escherichia coli and Enterococcus faecalis) had higher decay rates (0.94-1.31/day, 0.89-1.21/day) with little association with algae, indicating the propensity for attachment to algae is an important parameter in microbial fate. Together results suggest suspended algae played an evident role in the decay and distribution of bacterial pathogens, providing important implications regarding microbial safety in recreational water.
Collapse
Affiliation(s)
- Tingting Fang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Matt Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 3, 117576, Singapore
| | - Qijia Cui
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Li Y, Zhang C, Mou X, Zhang P, Liang J, Wang Z. Distribution characteristics of antibiotic resistance bacteria and related genes in urban recreational lakes replenished by different supplementary water source. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1176-1190. [PMID: 35228362 DOI: 10.2166/wst.2022.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The distribution characteristics of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in urban recreational water from different water-supply sources might be different. In this study, water samples were collected to detect the antibiotic resistance of heterotrophic bacteria to five antibiotics, and the content, phenotype, gene type and species distribution of resistant bacteria were analyzed. The results showed that the changes of bacteria resistance rate in two lakes to five kinds of antibiotics were synchronous with time, and it would reach its maximum in autumn. The detection of ARGs and int I in 80 resistance strains showed that the detection rate of tetG, tetA and int I was high. Here, 51.25% of the bacteria were doubly resistant to AMP-CTX. The 80 isolate strains were of nine genera and 19 species, among which Bacillus cereus, Escherichia coli, Aeromonas veronii, Aeromonas caviae and Raoultella ornithinolytica were the common ARB species in two lakes. Correlation analysis showed that the water temperature was significantly correlated with the content of ARB in sulfamethoxazole (SMZ) and cefotaxime (CTX) (p < 0.05), and the total phosphorus (TP) in FQ lake was significantly correlated with the content of AMP-resistant bacteria (p < 0.05), while there were no other correlations between the changes of other water quality indexes and the content of ARB (p > 0.05).
Collapse
Affiliation(s)
- Yongqiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China E-mail: ; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chongmiao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China E-mail: ; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiao Mou
- Shaanxi Institute for Food and Drug Control, Xi'an, 710065, China
| | - Peipei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China E-mail: ; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jie Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China E-mail: ; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhen Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China E-mail: ; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
26
|
Shahin SA, Keevy H, Dada AC, Gyawali P, Sherchan SP. Incidence of human associated HF183 Bacteroides marker and E. coli levels in New Orleans Canals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150356. [PMID: 34563901 DOI: 10.1016/j.scitotenv.2021.150356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/19/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
With a focus on five sites in an impaired, densely populated area in the New Orleans area, we investigated the temporal and spatial variability of standard FIB and a marker of human-associated pollution (Bacteroides HF183). With all sites combined, only a weak positive correlation (r = 0.345; p = 0.001) was observed between E. coli and HF183. Also, specific conductivity (r = - 0.374; p < 0.0001) and dissolved oxygen (r = - 0.390; p < 0.0001) were observed to show a weak moderate correlation with E. coli. These correlations increased to moderately negative when HF183 was correlated with specific conductivity (r = - 0.448; p < 0.0001) and dissolved oxygen (r = - 0.455; p < 0.0001). E. coli contamination was generally highest at the sites in the canal that are situated in the most densely populated part of the watershed while HF183 was frequently detected across all sites. E. coli concentrations were significantly higher (p < 0.05) when HF183 was present. HF183 was detected at significantly higher concentrations in samples that exceeded the EPA water quality standard (WQS) than those that did not (p < 0.05). Dissolved oxygen and specific conductivity were significantly lower when E. coli WQS was exceeded or when HF183 was present (p < 0.05). Rainfall impacted E. coli concentrations and HF183 differently at the study sites. While HF183 and E. coli concentrations levels were significantly higher (p < 0.05) if the days prior to sampling had been wet, the frequency of detection of HF183 was unimpacted, as comparable detection rates were recorded during wet and dry weather conditions. Without testing for HF183, it would have been assumed, based on testing for E. coli alone, that human fecal pollution was only associated with densely populated areas and rainfall events. E. coli alone may not be an effective indicator of sewage pollution at the study sites across all weather conditions and may need to be complemented with HF183 enumeration to optimize human fecal pollution identification and management at the watershed level.
Collapse
Affiliation(s)
- Shalina A Shahin
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA
| | - Helen Keevy
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA
| | | | - Pradip Gyawali
- Institute of Environmental Science and Research Ltd, Porirua, 5240, New Zealand
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA.
| |
Collapse
|
27
|
Mohd Hussain RH, Abdul Ghani MK, Khan NA, Siddiqui R, Anuar TS. Acanthamoeba species isolated from marine water in Malaysia exhibit distinct genotypes and variable physiological properties. JOURNAL OF WATER AND HEALTH 2022; 20:54-67. [PMID: 35100154 DOI: 10.2166/wh.2021.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present study identifies the Acanthamoeba genotypes and their pathogenic potential in five marine waters in Malaysia. Fifty water samples were collected between January and May 2019. Physical parameters of water quality were measured in situ, whereas chemical and microbiological analyses were conducted in the laboratory. All samples had undergone filtration using nitrocellulose membrane and were tested for Acanthamoeba using cultivation and polymerase chain reaction by targeting the 18S ribosomal RNA gene. The pathogenic potential of all positive isolates was identified using physiological tolerance tests. Thirty-six (72.0%) samples were positive for Acanthamoeba. Total coliforms (p = 0.013) and pH level (p = 0.023) displayed significant correlation with Acanthamoeba presence. Phylogenetic analysis showed that 27 samples belonged to genotype T4, four (T11), two (T18) and one from each genotype T5, T15 and T20. Thermo- and osmo-tolerance tests signified that three (8.3%) Acanthamoeba strains displayed highly pathogenic attributes. This study is the first investigation in Malaysia describing Acanthamoeba detection in marine water with molecular techniques and genotyping. The study outcomes revealed that the marine water in Malaysia could be an integral source of Acanthamoeba strains potentially pathogenic in humans. Thus, the potential risk of this water should be monitored routinely in each region.
Collapse
Affiliation(s)
- Rosnani Hanim Mohd Hussain
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia E-mail:
| | - Mohamed Kamel Abdul Ghani
- Programme of Biomedical Sciences, School of Diagnostic and Applied Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Tengku Shahrul Anuar
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia E-mail:
| |
Collapse
|
28
|
Butler AJ, Pintar K, Thomas JL, Fleury M, Kadykalo S, Ziebell K, Nash J, Lapen D. Microbial water quality at contrasting recreational areas in a mixed-use watershed in eastern Canada. JOURNAL OF WATER AND HEALTH 2021; 19:975-989. [PMID: 34874904 DOI: 10.2166/wh.2021.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recreational water use is an important source of human enteric illness. Enhanced (episodic) surveillance of natural recreational waters as a supplement to beach monitoring can enrich our understanding of human health risks. From 2011 to 2013, water sampling was undertaken at recreational sites on a watershed in eastern Canada. This study compared the prevalence and associations of human enteric pathogens and fecal indicator organisms. Beach water samples had lower pathogen presence than those along the main river, due to different pollution sources and the hydrological disposition. Pathogen profiles identified from the beach sites suggested a more narrow range of sources, including birds, indicating that wild bird management could help reduce public health risks at these sites. The presence and concentration of indicator organisms did not differ significantly between beaches and the river. However, higher concentrations of generic Escherichia coli were observed when Salmonella and Cryptosporidium were present at beach sites, when Salmonella was present at the river recreational site, and when verotoxigenic E. coli were present among all sites sampled. In this watershed, generic E. coli concentrations were good indicators of potential contamination, pathogen load, and elevated human health risk, supporting their use for routine monitoring where enhanced pathogen testing is not possible.
Collapse
Affiliation(s)
| | | | - Janis L Thomas
- Environmental Monitoring and Reporting Branch, Ontario Ministry of Environment, Conservation and Parks, Toronto, Canada
| | - Manon Fleury
- Centre for Food-borne, Environmental and Zoonotic and Infectious Diseases, Public Health Agency of Canada, Guelph, Canada E-mail:
| | - Stefanie Kadykalo
- Centre for Food-borne, Environmental and Zoonotic and Infectious Diseases, Public Health Agency of Canada, Guelph, Canada E-mail:
| | - Kim Ziebell
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Canada
| | - John Nash
- National Microbiology Laboratory at Toronto, Public Health Agency of Canada, Toronto, Canada
| | - David Lapen
- Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
29
|
Farrell ML, Joyce A, Duane S, Fitzhenry K, Hooban B, Burke LP, Morris D. Evaluating the potential for exposure to organisms of public health concern in naturally occurring bathing waters in Europe: A scoping review. WATER RESEARCH 2021; 206:117711. [PMID: 34637971 DOI: 10.1016/j.watres.2021.117711] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Globally, water-based bathing pastimes are important for both mental and physical health. However, exposure to waterborne organisms could present a substantial public health issue. Bathing waters are shown to contribute to the transmission of illness and disease and represent a reservoir and pathway for the dissemination of antimicrobial resistant (AMR) organisms. Current bathing water quality regulations focus on enumeration of faecal indicator organisms and are not designed for detection of specific waterborne organisms of public health concern (WOPHC), such as antimicrobial resistant (AMR)/pathogenic bacteria, or viruses. This investigation presents the first scoping review of the occurrence of waterborne organisms of public health concern (WOPHC) in identified natural bathing waters across the European Union (EU), which aimed to critically evaluate the potential risk of human exposure and to assess the appropriateness of the current EU bathing water regulations for the protection of public health. Accordingly, this review sought to identify and synthesise all literature pertaining to a selection of bacterial (Campylobacter spp., Escherichia coli, Salmonella spp., Shigella spp., Vibrio spp., Pseudomonas spp., AMR bacteria), viral (Hepatitis spp., enteroviruses, rotavirus, adenovirus, norovirus), and protozoan (Giardia spp., and Cryptosporidium spp.) contaminants in EU bathing waters. Sixty investigations were identified as eligible for inclusion and data was extracted. Peer-reviewed investigations included were from 18 countries across the EU, totalling 87 investigations across a period of 35 years, with 30% published between 2011 and 2015. A variety of water bodies were identified, with 27 investigations exclusively assessing coastal waters. Waterborne organisms were classified into three categories; bacteria, viruses, and protozoa; amounting to 58%, 36% and 17% of the total investigations, respectively. The total number of samples across all investigations was 8,118, with detection of one or more organisms in 2,449 (30%) of these. Viruses were detected in 1281 (52%) of all samples where WOPHC were found, followed by bacteria (865(35%)) and protozoa (303(12%)). Where assessed (442 samples), AMR bacteria had a 47% detection rate, emphasising their widespread occurrence in bathing waters. Results of this scoping review highlight the potential public health risk of exposure to WOPHC in bathing waters that normally remain undetected within the current monitoring parameters.
Collapse
Affiliation(s)
- Maeve Louise Farrell
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland.
| | - Aoife Joyce
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland
| | - Sinead Duane
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland; Whitaker Institute, National University of Ireland Galway, Ireland
| | - Kelly Fitzhenry
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland
| | - Brigid Hooban
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland
| | - Liam P Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland
| |
Collapse
|
30
|
Michalska M, Zorena K, Marks R, Wąż P. The emergency discharge of sewage to the Bay of Gdańsk as a source of bacterial enrichment in coastal air. Sci Rep 2021; 11:20959. [PMID: 34697351 PMCID: PMC8546070 DOI: 10.1038/s41598-021-00390-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/07/2021] [Indexed: 11/12/2022] Open
Abstract
The purpose of this research was to study the presence of potential pathogenic bacteria in the seawater and air in five coastal towns (Hel, Puck, Gdynia, Sopot, Gdańsk-Brzeźno) as well as the enrichment of bacteria from the seawater into the coastal air after an emergency discharge of sewage into the Bay of Gdańsk. A total of 594 samples of air and seawater were collected in the coastal zone between spring and summer (between 2014 and 2018). Air samples were collected using the impact method with a SAS Super ISO 100. The multivariate analysis, conducted using contingency tables, showed a statistically significant variation between the concentration of coliforms, psychrophilic and mesophilic bacteria in the seawater microlayer and air in 2018, after an emergency discharge of sewage into the Bay of Gdańsk, compared to 2014-2017. Moreover, we detected a marine aerosol enrichment in psychrophilic, mesophilic bacteria, coliforms and Escherichia coli. We also showed a statistically significant relationship between the total concentration of bacteria and humidity, air temperature, speed and wind direction. This increased concentration of bacteria in the seawater and coastal air, and the high factor of air enrichment with bacteria maybe associated with the emergency discharge of wastewater into the Bay of Gdańsk. Therefore, it is suggested that in the event of a malfunction of a sewage treatment plant, as well as after floods or sudden rainfall, the public should be informed about the sanitary and epidemiological status of the coastal waters and be recommended to limit their use of coastal leisure areas.
Collapse
Affiliation(s)
- Małgorzata Michalska
- Department of Immunobiology and Environment Microbiology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine Medical University of Gdańsk, ul. Dębinki 7, 80-211, Gdańsk, Poland.
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine Medical University of Gdańsk, ul. Dębinki 7, 80-211, Gdańsk, Poland
| | - Roman Marks
- Institute of Marine and Environmental Sciences, University of Szczecin, ul. Mickiewicza 16, 70-383, Szczecin, Poland
| | - Piotr Wąż
- Department of Nuclear Medicine, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, ul. Dębinki 7, 80-211, Gdańsk, Poland
| |
Collapse
|
31
|
Kongprajug A, Chyerochana N, Rattanakul S, Denpetkul T, Sangkaew W, Somnark P, Patarapongsant Y, Tomyim K, Sresung M, Mongkolsuk S, Sirikanchana K. Integrated analyses of fecal indicator bacteria, microbial source tracking markers, and pathogens for Southeast Asian beach water quality assessment. WATER RESEARCH 2021; 203:117479. [PMID: 34365192 DOI: 10.1016/j.watres.2021.117479] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The degradation of coastal water quality from fecal pollution poses a health risk to visitors at recreational beaches. Fecal indicator bacteria (FIB) are a proxy for fecal pollution; however the accuracy of their representation of fecal pollution health risks at recreational beaches impacted by non-point sources is disputed due to non-human derivation. This study aimed to investigate the relationship between FIB and a range of culturable and molecular-based microbial source tracking (MST) markers and pathogenic bacteria, and physicochemical parameters and rainfall. Forty-two marine water samples were collected from seven sampling stations during six events at two tourist beaches in Thailand. Both beaches were contaminated with fecal pollution as evident from the GenBac3 marker at 88%-100% detection and up to 8.71 log10 copies/100 mL. The human-specific MST marker human polyomaviruses JC and BK (HPyVs) at up to 4.33 log10 copies/100 mL with 92%-94% positive detection indicated that human sewage was likely the main contamination source. CrAssphage showed lower frequencies and concentrations; its correlations with the FIB group (i.e., total coliforms, fecal coliforms, and enterococci) and GenBac3 diminished its use as a human-specific MST marker for coastal water. Human-specific culturable AIM06 and SR14 bacteriophages and general fecal indicator coliphages also showed less sensitivity than the human-specific molecular assays. The applicability of the GenBac3 endpoint PCR assay as a lower-cost prescreening step prior to the GenBac3 qPCR assay was supported by its 100% positive predictive value, but its limited negative predictive values required subsequent qPCR confirmation. Human enteric adenovirus and Vibrio cholerae were not found in any of the samples. The HPyVs related to Vibrio parahaemolyticus, Vibrio vulnificus, and 5-d rainfall records, all of which were more prevalent and concentrated during the wet season. More monitoring is therefore recommended during wet periods. Temporal differences but no spatial differences were observed, suggesting the need for a sentinel site at each beach for routine monitoring. The exceedance of FIB water quality standards did not indicate increased prevalence or concentrations of the HPyVs or Vibrio spp. pathogen group, so the utility of FIB as an indicator of health risks at tropical beaches maybe challenged. Accurate assessment of fecal pollution by incorporating MST markers could lead to developing a more effective water quality monitoring plan to better protect human health risks in tropical recreational beaches.
Collapse
Affiliation(s)
- Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Thammanitchpol Denpetkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, 10400 Bangkok, Thailand
| | - Watsawan Sangkaew
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Pornjira Somnark
- Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Yupin Patarapongsant
- Behavioral Research and Informatics in Social Sciences Research Unit, SASIN School of Management, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanokpon Tomyim
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok 10400, Thailand.
| |
Collapse
|
32
|
Jani K, Bandal J, Shouche Y, Shafi S, Azhar EI, Zumla A, Sharma A. Extended Ecological Restoration of Bacterial Communities in the Godavari River During the COVID-19 Lockdown Period: a Spatiotemporal Meta-analysis. MICROBIAL ECOLOGY 2021; 82:365-376. [PMID: 34219185 PMCID: PMC8255117 DOI: 10.1007/s00248-021-01781-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/20/2021] [Indexed: 05/04/2023]
Abstract
The unprecedented COVID-19 pandemic has had major impact on human health worldwide. Whilst national and international COVID-19 lockdown and travel restriction measures have had widespread negative impact on economies and mental health, they may have beneficial effect on the environment, reducing air and water pollution. Mass bathing events (MBE) also known as Kumbh Mela are known to cause perturbations of the ecosystem affecting resilient bacterial populations within water of rivers in India. Lockdowns and travel restrictions provide a unique opportunity to evaluate the impact of minimum anthropogenic activity on the river water ecosystem and changes in bacterial populations including antibiotic-resistant strains. We performed a spatiotemporal meta-analysis of bacterial communities of the Godavari River, India. Targeted metagenomics revealed a 0.87-fold increase in the bacterial diversity during the restricted activity of lockdown. A significant increase in the resilient phyla, viz. Proteobacteria (70.6%), Bacteroidetes (22.5%), Verrucomicrobia (1.8%), Actinobacteria (1.2%) and Cyanobacteria (1.1%), was observed. There was minimal incorporation of allochthonous bacterial communities of human origin. Functional profiling using imputed metagenomics showed reduction in infection and drug resistance genes by - 0.71-fold and - 0.64-fold, respectively. These observations may collectively indicate the positive implications of COVID-19 lockdown measures which restrict MBE, allowing restoration of the river ecosystem and minimise the associated public health risk.
Collapse
Affiliation(s)
- Kunal Jani
- DBT-National Centre for Cell Science, Pune, India
| | | | | | - Shuja Shafi
- Mass Gatherings and Global Health Network, London, UK
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alimuddin Zumla
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
- NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | | |
Collapse
|
33
|
Shoults DC, Li Q, Petterson S, Rudko SP, Dlusskaya L, Leifels M, Scott C, Schlosser C, Ashbolt NJ. Pathogen performance testing of a natural swimming pool using a cocktail of microbiological surrogates and QMRA-derived management goals. JOURNAL OF WATER AND HEALTH 2021; 19:629-641. [PMID: 34371499 DOI: 10.2166/wh.2021.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent decades, natural swimming pools (NSPs) have gained popularity in Europe, especially in Germany and Austria. NSPs differ from swimming pools in that they utilize biological treatment processes based on wetland processes with no disinfection residual. However, data are missing on the specific log-reduction performance of NSPs to address enteric virus, bacteria, and parasitic protozoa removal considered necessary to meet the North American risk-based benchmark (<35 illnesses per 1,000 swimming events) set by the USEPA for voluntary swimming. In this study, we examined Canada's first NSP at Borden Park, Edmonton, Canada, to address the following three questions: (1) Given normal faecal shedding rates by bathers, what is the total log reduction (TLR) theoretically needed to meet the EPA benchmark? (2) what is the in-situ performance of the NSP based on spiking suitable microbial surrogates (MS2 coliphage, Enterococcus faecalis, and Saccharomyces cerevisiae [Baker's yeast])? and (3) how much time is required to reach acceptable bather risk levels under different representative volume-turnover rates? A reverse-quantitative microbial risk assessment (QMRA) revealed that of the four reference pathogens selected (Norovirus, Campylobacter, Cryptosporidium, and Giardia), only Norovirus was estimated to exceed the risk benchmark at the 50th, 75th, and 95th percentiles, while Campylobacter was the only other reference pathogen to exceed at the 95th percentile. Log-reduction values (LRVs) were similar to previous reports for bacterial indicators, and novel LRVs were estimated for the other two surrogates. A key finding was that more than 24 h treatment time would be necessary to provide acceptable bather protection following heavy bather use (378 bathers/day for main pool and 26 bathers/day for children's pool), due to the mixing dynamics of the treated water diluting out possible residual pool faecal contamination. The theoretical maximum number of people in the pool per day to be below USEPA's 35 gastro cases in 1,000 swimming events was 113, 47, and 8, at the 50th, 75th, and 95th percentiles. Further, the use of ultra-violet disinfection to the pool return flow had little effect on reducing the treatment time required.
Collapse
Affiliation(s)
- David C Shoults
- Centre for Water Resources Studies, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Qiaozhi Li
- School of Public Health, University of Alberta, Edmonton, Alberta T6G 2G7, Canada E-mail:
| | - Susan Petterson
- Water & Health Pty Ltd, North Sydney, NSW 2060, Australia; School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia
| | - Sydney P Rudko
- School of Public Health, University of Alberta, Edmonton, Alberta T6G 2G7, Canada E-mail:
| | - Lena Dlusskaya
- School of Public Health, University of Alberta, Edmonton, Alberta T6G 2G7, Canada E-mail:
| | - Mats Leifels
- Singapore Centre of Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Canada
| | - Candis Scott
- School of Public Health, University of Alberta, Edmonton, Alberta T6G 2G7, Canada E-mail:
| | - Cyndi Schlosser
- Borden Park, City of Edmonton, Edmonton, Alberta T5B 4W8, Canada
| | - Nicholas J Ashbolt
- School of Public Health, University of Alberta, Edmonton, Alberta T6G 2G7, Canada E-mail: ; Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW 2480, Australia
| |
Collapse
|
34
|
Reynolds LJ, Martin NA, Sala-Comorera L, Callanan K, Doyle P, O'Leary C, Buggy P, Nolan TM, O'Hare GMP, O'Sullivan JJ, Meijer WG. Identifying Sources of Faecal Contamination in a Small Urban Stream Catchment: A Multiparametric Approach. Front Microbiol 2021; 12:661954. [PMID: 34267734 PMCID: PMC8276237 DOI: 10.3389/fmicb.2021.661954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/24/2021] [Indexed: 01/15/2023] Open
Abstract
Small urban streams discharging in the proximity of bathing waters may significantly contribute to the deterioration of water quality, yet their impact may be overlooked. This study focuses on the Elm Park stream in the city of Dublin that is subject to faecal contamination by unidentified sources. The aim of the study was to identify a minimum number of “sentinel” sampling stations in an urban catchment that would provide the maximum amount of information regarding faecal pollution in the catchment. Thus, high-resolution sampling within the catchment was carried out over the course of 1 year at 11 stations. Faecal indicator bacteria were enumerated and microbial source tracking (MST) was employed to evaluate human pollution. In addition, ammonium, total oxidised nitrogen, and phosphorus levels were monitored to determine if these correlated with faecal indicator and the HF183 MST marker. In addition, the effect of severe weather events on water quality was assessed using automated sampling at one of the identified “sentinel” stations during baseflow and high flow conditions over a 24-h period. Our results show that this urban stream is at times highly contaminated by point source faecal pollution and that human faecal pollution is pervasive in the catchment. Correlations between ammonium concentrations and faecal indicator bacteria (FIB) as well as the human MST marker were observed during the study. Cluster analysis identified four “sentinel” stations that provide sufficient information on faecal pollution in the stream, thus reducing the geographical complexity of the catchment. Furthermore, ammonium levels strongly correlated with FIB and the human HF183 MST marker under high flow conditions at key “sentinel” stations. This work demonstrates the effectiveness of pairing MST, faecal indicators, and ammonium monitoring to identify “sentinel” stations that could be more rapidly assessed using real-time ammonium readouts to assess remediation efforts.
Collapse
Affiliation(s)
- Liam J Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Niamh A Martin
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Laura Sala-Comorera
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Kevin Callanan
- Central Laboratory, Dublin City Council, Dublin, Ireland
| | - Padraig Doyle
- Drainage Planning, Policy and Development Control, Dublin City Council, Dublin, Ireland
| | - Clare O'Leary
- Central Laboratory, Dublin City Council, Dublin, Ireland
| | - Paul Buggy
- Municipal Services, Dún Laoghaire-Rathdown County Council, Dublin, Ireland
| | - Tristan M Nolan
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Gregory M P O'Hare
- UCD School of Computer Science, UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - John J O'Sullivan
- UCD School of Civil Engineering, UCD Dooge Centre for Water Resources Research, UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
35
|
Tiwari A, Oliver DM, Bivins A, Sherchan SP, Pitkänen T. Bathing Water Quality Monitoring Practices in Europe and the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5513. [PMID: 34063910 PMCID: PMC8196636 DOI: 10.3390/ijerph18115513] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022]
Abstract
Many countries including EU Member States (EUMS) and the United States (U.S.) regularly monitor the microbial quality of bathing water to protect public health. This study comprehensively evaluates the EU bathing water directive (BWD) and the U.S. recreational water quality criteria (RWQC) as regulatory frameworks for monitoring microbial quality of bathing water. The major differences between these two regulatory frameworks are the provision of bathing water profiles, classification of bathing sites based on the pollution level, variations in the sampling frequency, accepted probable illness risk, epidemiological studies conducted during the development of guideline values, and monitoring methods. There are also similarities between the two approaches given that both enumerate viable fecal indicator bacteria (FIB) as an index of the potential risk to human health in bathing water and accept such risk up to a certain level. However, enumeration of FIB using methods outlined within these current regulatory frameworks does not consider the source of contamination nor variation in inactivation rates of enteric microbes in different ecological contexts, which is dependent on factors such as temperature, solar radiation, and salinity in various climatic regions within their geographical areas. A comprehensive "tool-box approach", i.e., coupling of FIB and viral pathogen indicators with microbial source tracking for regulatory purposes, offers potential for delivering improved understanding to better protect the health of bathers.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland;
| | - David M. Oliver
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK;
| | - Aaron Bivins
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA;
| | - Samendra P. Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA 70112, USA;
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland;
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
36
|
Wang L, Zhu Z, Sassoubre L, Yu G, Liao C, Hu Q, Wang Y. Improving the robustness of beach water quality modeling using an ensemble machine learning approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142760. [PMID: 33131841 DOI: 10.1016/j.scitotenv.2020.142760] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 05/12/2023]
Abstract
Microbial pollution of beach water can expose swimmers to harmful pathogens. Predictive modeling provides an alternative method for beach management that addresses several limitations associated with traditional culture-based methods of assessing water quality. Widely-used machine learning methods often suffer from high variability in performance from one year or beach to another. Therefore, the best machine learning method varies between beaches and years, making method selection difficult. This study proposes an ensemble machine learning approach referred to as model stacking that has a two-layered learning structure, where the outputs of five widely-used individual machine learning models (multiple linear regression, partial least square, sparse partial least square, random forest, and Bayesian network) are taken as input features for another model that produces the final prediction. Applying this approach to three beaches along eastern Lake Erie, New York, USA, we show that generally the model stacking approach was able to generate reliably good predictions compared to all of the five base models. The accuracy rankings of the stacking model consistently stayed 1st or 2nd every year, with yearly-average accuracy of 78%, 81%, and 82.3% at the three studied beaches, respectively. This study highlights the value of the model stacking approach in predicting beach water quality and solving other pressing environmental problems.
Collapse
Affiliation(s)
- Leizhi Wang
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo 14220, NY, USA; Nanjing Hydraulic Research Institute, State Key laboratory of Hydrology, Water Resources and Hydraulic Engineering & Science, Nanjing 210029, China; Yangtze Institute for Conservation and Development, Nanjing, 210098, China
| | - Zhenduo Zhu
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo 14220, NY, USA.
| | - Lauren Sassoubre
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo 14220, NY, USA
| | - Guan Yu
- Department of Biostatistics, University at Buffalo, The State University of New York, Buffalo 14220, NY, USA
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, NY 10065, New York, USA
| | - Qingfang Hu
- Nanjing Hydraulic Research Institute, State Key laboratory of Hydrology, Water Resources and Hydraulic Engineering & Science, Nanjing 210029, China; Yangtze Institute for Conservation and Development, Nanjing, 210098, China
| | - Yintang Wang
- Nanjing Hydraulic Research Institute, State Key laboratory of Hydrology, Water Resources and Hydraulic Engineering & Science, Nanjing 210029, China; Yangtze Institute for Conservation and Development, Nanjing, 210098, China
| |
Collapse
|
37
|
Pedrosa de Macena LDG, Castiglia Feitosa R, Vieira CB, Araújo IT, Taniuchi M, Miagostovich MP. Microbiological assessment of an urban lagoon system in the coastal zone of Rio de Janeiro, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1170-1180. [PMID: 32839906 DOI: 10.1007/s11356-020-10479-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
This study aims to assess microbiological contamination using a molecular tool for detection of multiple enteropathogens in a coastal ecosystem area in Rio de Janeiro, Brazil. Ten litres of superficial water samples were obtained during the spring ebb tide from sampling sites along the Jacarepaguá watershed. Samples were concentrated using skimmed milk flocculation method for TaqMan array card (TAC), designed to identify 35 enteric pathogens simultaneously, and single TaqMan qPCR analysis for detecting human adenovirus (HAdV) and JC human polyomavirus (JCPyV) as faecal indicator viruses (FIV). TAC results identified 17 enteric pathogens including 4/5 viral species investigated, 8/15 bacteria, 4/6 protozoa and 1/7 helminths. Escherichia coli concentration was also measured as faecal indicator bacteria (FIB) using Colilert Quanti-Tray System with positivity in all samples studied. HAdV and JCPyV qPCR were detected in 8 and 4 samples, respectively, with concentration ranging from 8 × 102 to 2 × 106 genome copies/L. Partial nucleotide sequencing demonstrated the occurrence of species HAdV A, C, D, and F, present in faeces of individuals with enteric and non-enteric infections, and JCPyV type 3 (Af2), prevalent in a high genetically mixed population like the Brazilian. The diversity of enteropathogens detected by TAC emphasizes the utility of this methodology for quick assessment of microbiological contamination of the aquatic ecosystems, speeding up mitigation actions where the risk of the exposed population is detected, as well as pointing out the infrastructure gaps in areas where accelerated urban growth is observed.
Collapse
Affiliation(s)
- Lorena da Graça Pedrosa de Macena
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Helio e Peggy Pereira Pavilion, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
| | - Renato Castiglia Feitosa
- Department of Sanitation and Environmental Health, National School of Public Health (ENSP), Oswaldo Cruz Foundation (FIOCRUZ), Rua Leopoldo Bulhões, 1.480, Manguinhos, Rio de Janeiro, RJ, 21041-210, Brazil
| | - Carmen Baur Vieira
- Department of Microbiology and Parasitology (MIP), Biomedical Institute, Federal Fluminense University (UFF), Rua Professor Hernani Melo, 101, São Domingos, Niterói, RJ, 24210-130, Brazil
| | - Irene Trigueiros Araújo
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Helio e Peggy Pereira Pavilion, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Mami Taniuchi
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, VA, 22903, USA
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Helio e Peggy Pereira Pavilion, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
38
|
Petterson S, Li Q, Ashbolt N. Screening Level Risk Assessment (SLRA) of human health risks from faecal pathogens associated with a Natural Swimming Pond (NSP). WATER RESEARCH 2021; 188:116501. [PMID: 33091804 PMCID: PMC7535628 DOI: 10.1016/j.watres.2020.116501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Natural swimming ponds (NSPs) are artificially created bodies of water intended for human recreation, characterised by the substitution of chemical disinfection with natural biological processes for water purification. NSPs are growing in popularity, however little is known regarding the public health risks. A screening level risk assessment was undertaken as an initial step in assessing the first Canadian public NSP located in Edmonton, Alberta. Risk of enteric pathogens originating from pool bathers was assessed under normal conditions and following accidental faecal release events. The performance of the natural treatment train for health protection was quantified with and without the addition of UV disinfection of naturally-treated water, and compared to the US EPA benchmark to provide a reference point to consider acceptability. Estimated levels of pathogen contamination of the pond were dependant upon the discrete number of shedders present, which in turn depended upon the prevalence of infection in the population. Overall performance of the natural disinfection system was dependant upon the filtration rate of the natural treatment system or turnover time. Addition of UV disinfection reduced the uncertainty around the removal efficacy, and mitigated the impact of larger shedding events, however the impact of UV disinfection on the natural treatment biome is unknown. Further information is needed on the performance of natural barriers for pathogen removal, and therefore challenge studies are recommended. Given the identified risks, the pool is posted that there is risk from accidental faecal releases, as in any natural water body with swimmers. Screening level risk assessment was a valuable first step in understanding the processes driving the system and in identifying important data gaps.
Collapse
Affiliation(s)
- Susan Petterson
- Water & Health Pty Ltd, North Sydney, NSW 2060, Australia; School of Medicine, Griffith University, Gold Coast QLD 4222, Australia.
| | - Qiaozhi Li
- School of Public Health, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| | - Nicholas Ashbolt
- School of Public Health, University of Alberta, Edmonton, Alberta T6G 1C9, Canada; Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
39
|
Reynolds LJ, Sala-Comorera L, Martin NA, Nolan TM, Stephens JH, Gitto A, O'Hare GMP, O'Sullivan JJ, Meijer WG. Correlation between antimicrobial resistance and faecal contamination in small urban streams and bathing waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140242. [PMID: 32758961 DOI: 10.1016/j.scitotenv.2020.140242] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance represents the greatest challenge to healthcare systems around the world. As antibiotic resistance genes (ARGs) are shed in faeces, many studies have focused on how wastewater effluent contributes to ARG pollution in rivers. However, small urban streams and bathing waters not impacted by treated wastewater have received little attention though they may be important reservoirs of ARGs. The main objective of this study was to assess the extent to which ARG and faecal pollution impact small urban streams and bathing waters and to determine if there is a relationship between these contaminants. For one year, bi-monthly water samples were collected from two urban streams and Dublin city's three designated bathing waters. The Liffey Estuary, that receives treated wastewater, was also sampled. The sul1, tet(O), qnrS, blaTEM, blaSHV and blaCTX-M ARGs were quantified. E. coli and intestinal enterococci levels were determined and the source of faecal pollution (human, dog, gull) quantified by microbial source tracking. Our results show that the Liffey Estuary, the urban streams and the bathing waters are highly impacted by ARGs and human faeces. There were clear correlations between all of the studied faecal indicators and ARGs in the Liffey Estuary. In the urban streams relationships were observed for only some of the ARGs and faecal indicators, which is likely a result of non-continuous sewage leaks and overflows to the streams. Similarly, only some ARGs correlated with faecal indicators in the urban bathing waters. The source of ARGs in the bathing waters is likely to be multifaceted as we detected sporadic dog and gull faecal markers. This study demonstrates that small urban streams and bathing waters are reservoirs of ARGs and that they may pose a previously unrecognised public health risk as they have the potential to transmit enteric pathogens and antibiotic resistance determinants.
Collapse
Affiliation(s)
- Liam J Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Ireland
| | - Laura Sala-Comorera
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Ireland
| | - Niamh A Martin
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Ireland
| | - Tristan M Nolan
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Ireland
| | - Jayne H Stephens
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Ireland
| | - Aurora Gitto
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Ireland
| | - Gregory M P O'Hare
- UCD School of Computer Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - John J O'Sullivan
- UCD School of Civil Engineering, UCD Dooge Centre for Water Resources Research and UCD Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Ireland.
| |
Collapse
|
40
|
Neill AJ, Tetzlaff D, Strachan NJC, Hough RL, Avery LM, Kuppel S, Maneta MP, Soulsby C. An agent-based model that simulates the spatio-temporal dynamics of sources and transfer mechanisms contributing faecal indicator organisms to streams. Part 1: Background and model description. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110903. [PMID: 32721338 DOI: 10.1016/j.jenvman.2020.110903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
A new Model for the Agent-based simulation of Faecal Indicator Organisms (MAFIO) is developed that attempts to overcome limitations in existing faecal indicator organism (FIO) models arising from coarse spatial discretisations and poorly-constrained hydrological processes. MAFIO is a spatially-distributed, process-based model presently designed to simulate the fate and transport of agents representing FIOs shed by livestock at the sub-field scale in small (<10 km2) agricultural catchments. Specifically, FIO loading, die-off, detachment, surface routing, seepage and channel routing are modelled on a regular spatial grid. Central to MAFIO is that hydrological transfer mechanisms are simulated based on a hydrological environment generated by an external model for which it is possible to robustly determine the accuracy of simulated catchment hydrological functioning. The spatially-distributed, tracer-aided ecohydrological model EcH2O-iso is highlighted as a possible hydrological environment generator. The present paper provides a rationale for and description of MAFIO, whilst a companion paper applies the model in a small agricultural catchment in Scotland to provide a proof-of-concept.
Collapse
Affiliation(s)
- Aaron J Neill
- Northern Rivers Institute, University of Aberdeen, Aberdeen, AB24 3UF, Scotland, United Kingdom; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, United Kingdom.
| | - Doerthe Tetzlaff
- IGB Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany; Department of Geography, Humboldt University Berlin, 10099, Berlin, Germany; Northern Rivers Institute, University of Aberdeen, Aberdeen, AB24 3UF, Scotland, United Kingdom
| | - Norval J C Strachan
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, Scotland, United Kingdom
| | - Rupert L Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, United Kingdom
| | - Lisa M Avery
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, United Kingdom
| | - Sylvain Kuppel
- Institut de Physique du Globe de Paris, CNRS UMR 7154 - University of Paris, 75231, Paris, France; INRAE, RiverLy, 69625, Villeurbanne, France; Northern Rivers Institute, University of Aberdeen, Aberdeen, AB24 3UF, Scotland, United Kingdom
| | - Marco P Maneta
- Geosciences Department, University of Montana, Missoula, MT, 59812-1296, USA; Department of Ecosystem and Conservation Sciences, W.A Franke College of Forestry and Conservation. Universtiy of Montana, Missoula, USA
| | - Chris Soulsby
- Northern Rivers Institute, University of Aberdeen, Aberdeen, AB24 3UF, Scotland, United Kingdom; IGB Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| |
Collapse
|
41
|
Holcomb DA, Stewart JR. Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality. Curr Environ Health Rep 2020; 7:311-324. [PMID: 32542574 PMCID: PMC7458903 DOI: 10.1007/s40572-020-00278-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Fecal contamination of water is a major public health concern. This review summarizes recent developments and advancements in water quality indicators of fecal contamination. RECENT FINDINGS This review highlights a number of trends. First, fecal indicators continue to be a valuable tool to assess water quality and have expanded to include indicators able to detect sources of fecal contamination in water. Second, molecular methods, particularly PCR-based methods, have advanced considerably in their selected targets and rigor, but have added complexity that may prohibit adoption for routine monitoring activities at this time. Third, risk modeling is beginning to better connect indicators and human health risks, with the accuracy of assessments currently tied to the timing and conditions where risk is measured. Research has advanced although challenges remain for the effective use of both traditional and alternative fecal indicators for risk characterization, source attribution and apportionment, and impact evaluation.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7435, USA
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7431, USA.
| |
Collapse
|
42
|
Pineda CO, Leal DAG, Fiuza VRDS, Jose J, Borelli G, Durigan M, Pena HFJ, Bueno Franco RM. Toxoplasma
gondii
oocysts,
Giardia
cysts and
Cryptosporidium
oocysts in outdoor swimming pools in Brazil. Zoonoses Public Health 2020; 67:785-795. [DOI: 10.1111/zph.12757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Carolina Ortiz Pineda
- Laboratório de Protozoologia Departamento de Biologia Animal Instituto de Biologia Universidade Estadual de Campinas (UNICAMP) Campinas Brazil
| | - Diego Averaldo Guiguet Leal
- Laboratório de Parasitologia Ambiental Departamento de Patologia Básica, Setor de Ciências Biológicas Universidade Federal do Paraná (UFPR) Curitiba Brazil
| | - Vagner Ricardo da Silva Fiuza
- Instituto de Biociências, Parasitologia Animal Universidade Federal do Mato Grosso do Sul (UFMS) Campo Grande Brazil
| | - Juliana Jose
- Laboratório de Genômica e Expressão Departamento de Genética Evolução e Bioagentes Instituto de Biologia Universidade Estadual de Campinas (UNICAMP) Campinas Brazil
| | - Guilherme Borelli
- Laboratório de Genômica e Expressão Departamento de Genética Evolução e Bioagentes Instituto de Biologia Universidade Estadual de Campinas (UNICAMP) Campinas Brazil
| | | | - Hilda Fátima Jesus Pena
- Laboratório de Doenças Parasitárias Departamento de Medicina Veterinária Preventiva e Saúde Animal Faculdade de Medicina Veterinária e Zootecnia Universidade de São Paulo (USP) São Paulo Brazil
| | - Regina Maura Bueno Franco
- Laboratório de Protozoologia Departamento de Biologia Animal Instituto de Biologia Universidade Estadual de Campinas (UNICAMP) Campinas Brazil
| |
Collapse
|
43
|
Federigi I, Bonadonna L, Bonanno Ferraro G, Briancesco R, Cioni L, Coccia AM, Della Libera S, Ferretti E, Gramaccioni L, Iaconelli M, La Rosa G, Lucentini L, Mancini P, Suffredini E, Vicenza T, Veneri C, Verani M, Carducci A. Quantitative Microbial Risk Assessment as support for bathing waters profiling. MARINE POLLUTION BULLETIN 2020; 157:111318. [PMID: 32658683 DOI: 10.1016/j.marpolbul.2020.111318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/02/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Profiling bathing waters supported by Quantitative Microbial Risk Assessment (QMRA) is key to the WHO's recommendations for the 2020/2021 revision of the European Bathing Water Directive. We developed an area-specific QMRA model on four pathogens, using fecal indicator concentrations (E. coli, enterococci) for calculating pathogen loads. The predominance of illness was found to be attributable to Human Adenovirus, followed by Salmonella, Vibrio, and Norovirus. Overall, the cumulative illness risk showed a median of around 1 case/10000 exposures. The risk estimates were strongly influenced by the indicators that were used, suggesting the need for a more detailed investigation of the different sources of fecal contamination. Area-specific threshold values for fecal indicators were estimated on a risk-basis by modelling the cumulative risk against E. coli and enterococci concentrations. To improve bathing waters assessment, we suggest considering source apportionment, locally estimating of pathogen/indicator ratios, and calculating site-specific indicators thresholds based on risk assessment.
Collapse
Affiliation(s)
| | - Lucia Bonadonna
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Rossella Briancesco
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Lorenzo Cioni
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56123 Pisa, Italy
| | - Anna Maria Coccia
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Emanuele Ferretti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Marcello Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Lucentini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Pamela Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Teresa Vicenza
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carolina Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Verani
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
44
|
Numerical Modeling of Microbial Fate and Transport in Natural Waters: Review and Implications for Normal and Extreme Storm Events. WATER 2020. [DOI: 10.3390/w12071876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Degradation of water quality in recreational areas can be a substantial public health concern. Models can help beach managers make contemporaneous decisions to protect public health at recreational areas, via the use of microbial fate and transport simulation. Approaches to modeling microbial fate and transport vary widely in response to local hydrometeorological contexts, but many parameterizations include terms for base mortality, solar inactivation, and sedimentation of microbial contaminants. Models using these parameterizations can predict up to 87% of variation in observed microbial concentrations in nearshore water, with root mean squared errors ranging from 0.41 to 5.37 log10 Colony Forming Units (CFU) 100 mL−1. This indicates that some models predict microbial fate and transport more reliably than others and that there remains room for model improvement across the board. Model refinement will be integral to microbial fate and transport simulation in the face of less readily observable processes affecting water quality in nearshore areas. Management of contamination phenomena such as the release of storm-associated river plumes and the exchange of contaminants between water and sand at the beach can benefit greatly from optimized fate and transport modeling in the absence of directly observable data.
Collapse
|
45
|
Physical Factors Impacting the Survival and Occurrence of Escherichia coli in Secondary Habitats. WATER 2020. [DOI: 10.3390/w12061796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Escherichia (E.) coli is a fecal microbe that inhabits the intestines of endotherms (primary habitat) and the natural environment (secondary habitats). Due to prevailing thinking regarding the limited capacity of E. coli to survive in the environment, relatively few published investigations exist regarding environmental factors influencing E. coli’s survival. To help guide future research in this area, an overview of factors known to impact the survival of E. coli in the environment is provided. Notably, the lack of historic field-based research holds two important implications: (1) large knowledge gaps regarding environmental factors influencing E. coli’s survival in the environment exist; and (2) the efficacy of implemented management strategies have rarely been assessed on larger field scales, thus leaving their actual impact(s) largely unknown. Moreover, the persistence of E. coli in the environment calls into question its widespread and frequent use as a fecal indicator microorganism. To address these shortcomings, future work should include more field-based studies, occurring in diverse physiographical regions and over larger spatial extents. This information will provide scientists and land-use managers with a new understanding regarding factors influencing E. coli concentrations in its secondary habitat, thereby providing insight to address problematic fecal contamination effectively.
Collapse
|
46
|
Cristiane Pinto K, de Souza Lauretto M, Navarro Gonzaléz MIJ, Sato MIZ, Nardocci AC, Razzolini MTP. Assessment of health risks from recreational exposure to Giardia and Cryptosporidium in coastal bathing waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23129-23140. [PMID: 32333348 DOI: 10.1007/s11356-020-08650-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Some Brazilian beaches are impacted by raw or poorly treated sewage. Thus, users (beachgoers, sports people, and children) are exposed to pathogens, which pose health concerns. This study aimed to estimate the probability of infection and disease by Giardia and Cryptosporidium, using the quantitative microbial risk assessment (QMRA), for three groups of bathers: children, adults, and open water swimmers. The concentrations of (oo)cysts were taken from a study run by CETESB (Environmental Company of Sao Paulo State) throughout 2011 and 2012, in which 203 samples were collected monthly and analyzed for (oo)cysts of Giardia and Cryptosporidium. Giardia was present in 43% of the samples, while Cryptosporidium in 13%. Infection probability was higher in beaches with more positive samples for Giardia cysts for the group of open water swimmers. In some cases, the highest annual risk obtained for giardiasis and cryptosporidiosis was 2.4 × 10-1 and 8.9 × 10-3 for open water swimmers, respectively, exceeding the incidence results found in the epidemiological study run in summer of 1999 in São Paulo state coast. The results bring insights to improve environmental quality in order to protect tourists' and residents' wellbeing.
Collapse
Affiliation(s)
- Karla Cristiane Pinto
- Environmental Company of the State of São Paulo, Department of Environmental Analyses, Av. Prof. Frederico Hermann Jr., 345, Sao Paulo, Brazil
| | - Marcelo de Souza Lauretto
- School of Arts, Science and Humanities, University of São Paulo-Brazil, R. Arlindo Bettio, 1000, Sao Paulo, Brazil
- NARA - Center for Research in Environmental Risk Assessment. School of Public Health, Environmental Health Department, Av. Dr Arnaldo 715, 1° andar, 01246-904, Sao Paulo, Brazil
| | - Maria Inés J Navarro Gonzaléz
- II/UNAM - Instituto de Ingeniería/Universidad Nacional Autónoma de México, Edifício 5, 1 er Nivel, Cub. 220-Circuito Escolar, Ciudad Universitaria, 04510, Mexico, D.F., Mexico
| | - Maria Inês Zanoli Sato
- Environmental Company of the State of São Paulo, Department of Environmental Analyses, Av. Prof. Frederico Hermann Jr., 345, Sao Paulo, Brazil
- NARA - Center for Research in Environmental Risk Assessment. School of Public Health, Environmental Health Department, Av. Dr Arnaldo 715, 1° andar, 01246-904, Sao Paulo, Brazil
| | - Adelaide Cássia Nardocci
- FSP/USP - School of Public Health, University of Sao Paulo, Environmental Health Department, Av. Dr Arnaldo 715, 1° andar, 01246-904, Sao Paulo, Brazil
- NARA - Center for Research in Environmental Risk Assessment. School of Public Health, Environmental Health Department, Av. Dr Arnaldo 715, 1° andar, 01246-904, Sao Paulo, Brazil
| | - Maria Tereza Pepe Razzolini
- FSP/USP - School of Public Health, University of Sao Paulo, Environmental Health Department, Av. Dr Arnaldo 715, 1° andar, 01246-904, Sao Paulo, Brazil.
- NARA - Center for Research in Environmental Risk Assessment. School of Public Health, Environmental Health Department, Av. Dr Arnaldo 715, 1° andar, 01246-904, Sao Paulo, Brazil.
| |
Collapse
|
47
|
Bortagaray V, Girardi V, Pou S, Lizasoain A, Tort LFL, Spilki FR, Colina R, Victoria M. Detection, Quantification, and Microbial Risk Assessment of Group A Rotavirus in Rivers from Uruguay. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:89-98. [PMID: 31792742 DOI: 10.1007/s12560-019-09416-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to detect, quantify, and assess the risk of infection and illness for Group A Rotavirus (RVA) in the watersheds of the Santa Lucia and Uruguay rivers in Uruguay. Monthly sampling was carried out for one year in six sites in the watershed of the Santa Lucía River and four in the Uruguay River. All the collection sites are used for recreational activities. Viral concentration was performed with the adsorption-elution method, and detection and quantification of RVA was carried out by TaqMan quantitative PCR (qPCR). Quantitative microbial risk assessment was applied to estimate the daily and annual risk of RVA infection, as well as the daily risk of illness considering direct exposure through recreational activity. RVA was detected in 42% (20/48) of the analyzed samples in the Uruguay River and 40% (29/72) in the Santa Lucía River. The virus was present in all the analyzed points in both watersheds. A pattern of seasonality, characterized by a higher detection frequency of the virus during coldest month of the year, was observed in both basins. The mean concentration for RVA was 1.3 × 105 genomic copies/L. The microbiological risk assessment shows that Santa Lucía watershed presented the highest daily risk of infection (6.41E-01) and illness (3.20E-01) estimated for the point downstream of Florida City; meanwhile for Uruguay River, the highest probabilities of infection (6.82E-01) and illness (3.41E-01) were estimated for the collection site for drinking water intake in Salto city. These results suggest that RVA contamination of these important rivers negatively impact on their microbiological quality since they are used for recreation and drinking water intake, demonstrating that the disposal of waste from cities located in their riverside confers a constant threat of infection for the general population, especially for children.
Collapse
Affiliation(s)
- Viviana Bortagaray
- Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Viviane Girardi
- Laboratório de Saúde Única, Universidade Feevale, Novo Hamburgo, Brazil
| | - Sonia Pou
- Institute of Research in Health Sciences (INICSA), Faculty of Medical Sciences, CONICET and Biostatistics Unit, School of Nutrition, Faculty of Medical SciencesNational University of Córdoba, Córdoba, Argentina
| | - Andrés Lizasoain
- Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Luis Fernando López Tort
- Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Fernando R Spilki
- Laboratório de Saúde Única, Universidade Feevale, Novo Hamburgo, Brazil
| | - Rodney Colina
- Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Matias Victoria
- Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay.
| |
Collapse
|
48
|
Kozak S, Petterson S, McAlister T, Jennison I, Bagraith S, Roiko A. Utility of QMRA to compare health risks associated with alternative urban sewer overflow management strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110309. [PMID: 32250792 DOI: 10.1016/j.jenvman.2020.110309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/10/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Wet weather sewer overflows pose potential short-term public health risks. With increasing populations, aging infrastructure and climate change, utilities are challenged with managing sewerage infrastructure to provide optimum outcomes. This study compared how modelled public health risk profiles could change under alternative sewer overflow management strategies during 12 and 24-month rainfall-runoff events. Specifically, existing conditions were compared with both a 'business-as-usual' (BAU) sewer upgrade and a more holistic 'effects-based planning' (EBP) approach based on pumped wet weather sewage overflows directed to a local receiving waterway. Options were compared based on their efficacy to reduce manhole overflows, recreational waterway guideline exceedances and downstream recreational waterway health risks estimated through a screening-level Quantitative Microbial Risk Assessment (QMRA). Results indicated that the two management strategies would be equally effective in reducing the frequency, duration and volume of manhole sewer overflows, eliminating them in the 12-month scenarios and reducing them from >5000 m3 for the 24-month baseline scenario, to 23 and 35 m3 for BAU and EBP, respectively. Baseline, BAU and EBP scenarios produced similar hours of enterococci guideline exceedances, ranging from 1 to 4 h difference. The QMRA produced similar health risk profiles for downstream recreational waterway users for all design events, suggesting that sewer overflows are not the primary driver of public health risks during and immediately following high rainfall events. As such, QMRA provided evidence that an EBP strategy may be used to manage wet weather sewer overflows in lieu of an expensive BAU upgrade, without exacerbating the public health of downstream waterway users. Further investigation of the broader environmental health impacts of implementing this type of innovative approach is warranted. Nonetheless, this work highlights the value of integrating QMRA with other modelling approaches to guide and inform sewer overflow management.
Collapse
Affiliation(s)
- Sonya Kozak
- School of Medicine, Griffith University, Parklands Drive, Gold Coast, Australia; Cities Research Institute, Griffith University, Parklands Drive, Gold Coast, Australia.
| | - Susan Petterson
- School of Medicine, Griffith University, Parklands Drive, Gold Coast, Australia; Water & Health Pty Ltd, P.O. 648, Salamander Bay, 2317, Australia.
| | - Tony McAlister
- School of Medicine, Griffith University, Parklands Drive, Gold Coast, Australia; Water Technology, Level 3, 43 Peel Street, South Brisbane, QLD, Australia.
| | - Ian Jennison
- Queensland Urban Utilities, 2/15 Green Square Close, Brisbane, Australia.
| | - Sam Bagraith
- Queensland Urban Utilities, 2/15 Green Square Close, Brisbane, Australia.
| | - Anne Roiko
- School of Medicine, Griffith University, Parklands Drive, Gold Coast, Australia; Cities Research Institute, Griffith University, Parklands Drive, Gold Coast, Australia.
| |
Collapse
|
49
|
Latifi A, Salami M, Kazemirad E, Soleimani M. Isolation and identification of free-living amoeba from the hot springs and beaches of the Caspian Sea. Parasite Epidemiol Control 2020; 10:e00151. [PMID: 32923701 PMCID: PMC7474157 DOI: 10.1016/j.parepi.2020.e00151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 11/29/2022] Open
Abstract
Free-living amoeba (FLA) such as Acanthamoeba, Naegleria, Balamuthia, and Vermamoeba have been identified from both natural and human-made environments such as Hot springs and spa. Naegleria fowleri causes Primary Amoebic Meningoencephalitis (PAM), while Acanthamoeba and Balamuthia cause chronic granulomatous encephalitis. Acanthamoeba also can cause cutaneous lesions and Amoebic Keratitis (AK) that is associated with contact lens use or corneal trauma. FLA are known to serve as host of and vehicles for diverse intracellular organisms. This study aimed was to identify the presence of FLA in the hot springs and beaches of the Caspian Sea in Ramsar tourist town located in the northern part of Iran. Water samples were collected in sterile bottles and were transferred to the laboratory. One litre of each sample passed through the nitrocellulose membrane filter. Each filter insert was then placed in non-nutrient agar plates already seeded with lawn culture of Escherichia coli. Positive samples were analyzed by morphological keys and Polymerase chain reaction (PCR) using 18S rDNA gene and ITS region to identify amoeba isolates. A total of 81 water sampled were tasted. After identified using the morphological key and PCR assay, 54 (66.6%) of the samples were positive for FLA. Ten of the samples were identified as Acanthamoeba (belong to T3, T4, and T5 genotypes), three as Vermamoeba vermiformis, four as Naegleria (3 N.australiensis and 1 N.grubery). Only one sample was positive Vahlkampfia. The presence of thermotolerant FLA in the Hot springs and beaches of the Caspian Sea as places for recreational purposes or wellness may be a potential health risk.
Collapse
Affiliation(s)
- Alireza Latifi
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Salami
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Kazemirad
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Soleimani
- Ocular Trauma and Emergency Department, Farabi eye hospital, Tehran university of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Iñiguez-Armijos C, Sánchez J, Villareal M, Aguilar S, Rosado D. Effects of bathing intensity, rainfall events, and location on the recreational water quality of stream pools in southern Ecuador. CHEMOSPHERE 2020; 243:125442. [PMID: 31995889 DOI: 10.1016/j.chemosphere.2019.125442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/09/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Bathing in natural waters is a highly demanded recreational activity in tropical countries because of climatic conditions and availability of bathing sites; but, do users know the water quality of these sites? We determined the physicochemical and microbiological water quality of a highly used bathing site in southern Ecuador. We assessed how bather attendance, rainfall events, and pool location alters the recreational water quality (RWQ). Most of the parameters measured in the stream pools did not accomplish the Ecuadorian and international regulations for recreational water quality. Microbiological water quality diminishes from upstream to downstream pools because of human activities and bathing intensity having potential effects on bather health and eco-touristic development. We found that an increase of bathers is strongly associated with a growing concentration of Escherichia coli. It is suggested better land-use practices and review thoroughly the Ecuadorian regulation to assure a healthy RWQ. Further efforts are needed to identify more risky bathing sites, determine pollution sources, and establish a long-term monitoring program to support the touristic development in countries looking for diversifying their economy.
Collapse
Affiliation(s)
- Carlos Iñiguez-Armijos
- EcoSs Lab - Laboratorio de Ecología Tropical y Servicios Ecosistémicos, Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, 1101608, Loja, Ecuador.
| | - Julissa Sánchez
- Titulación de Ingeniero en Gestión Ambiental, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, 1101608, Loja, Ecuador
| | - Marielena Villareal
- Titulación de Ingeniero en Gestión Ambiental, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, 1101608, Loja, Ecuador
| | - Silvio Aguilar
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, 1101608, Loja, Ecuador
| | - Daniel Rosado
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, 1101608, Loja, Ecuador.
| |
Collapse
|