1
|
Trambas IA, Bowen L, Thallas-Bonke V, Snelson M, Sourris KC, Laskowski A, Tauc M, Rubera I, Zheng G, Harris DCH, Kantharidis P, Shimizu T, Cooper ME, Tan SM, Coughlan MT. Proximal tubular deletion of superoxide dismutase-2 reveals disparate effects on kidney function in diabetes. Redox Biol 2025; 82:103601. [PMID: 40127616 PMCID: PMC11979990 DOI: 10.1016/j.redox.2025.103601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/09/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
There is a large body of evidence implicating mitochondrial reactive oxygen species (ROS) overproduction and oxidative stress in the development of diabetic kidney disease and the deficiency of mitochondrial antioxidant systems in the kidney, such as manganese superoxide dismutase (MnSOD/SOD2) have been identified. The proximal tubules of the kidney are densely packed with mitochondria thereby providing energy via oxidative phosphorylation in order to drive active transport for proximal tubular reabsorption of solutes from the glomerular filtrate. We hypothesized that maintenance of MnSOD function in the proximal tubules would be critical to maintain kidney health in diabetes. Here, we induced targeted deletion of SOD2 in the proximal tubules of the kidney in Ins2Akita diabetic mice (SODptKO mice) and show that 20 weeks of SOD2 deletion leads to no major impairment of kidney function and structure, despite these mice displaying enhanced albuminuria and kidney lipid peroxidation (8-isoprostanes). Plasma cystatin C, which is a surrogate marker of glomerular filtration was not altered in SODptKO diabetic mice and histological assessment of the kidney cortex revealed no change in kidney fibrosis. Thus, our findings suggest that deletion of SOD2 in the proximal tubular compartment of the kidney induces a more subtle phenotype than expected, shedding light on the involvement of SOD2 and the proximal tubular compartment in the pathogenesis of diabetic kidney disease.
Collapse
Affiliation(s)
- Inez A Trambas
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - Lilliana Bowen
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - Vicki Thallas-Bonke
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - Matthew Snelson
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - Karly C Sourris
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - Adrienne Laskowski
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - Michel Tauc
- Laboratoire de Physiomédecine Moléculaire, Université Côte D'Azur, CNRS, LP2M, 7370, Nice Cedex 2, France
| | - Isabelle Rubera
- Laboratoire de Physiomédecine Moléculaire, Université Côte D'Azur, CNRS, LP2M, 7370, Nice Cedex 2, France
| | - Guoping Zheng
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, 2145, Australia
| | - David C H Harris
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, 2145, Australia
| | - Phillip Kantharidis
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - Takahiko Shimizu
- Department of Food and Reproductive Function Advanced Research, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Mark E Cooper
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - Sih Min Tan
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, 3004, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, 3004, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, 3004, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University Parkville Campus, 381 Royal Parade, Parkville, 3052, Victoria, Australia.
| |
Collapse
|
2
|
Wu YJ, Yang YR, Yan YL, Yang HY, Du JR. Targeting mitochondrial dysfunction: an innovative strategy for treating renal fibrosis. Mol Cell Biochem 2025:10.1007/s11010-025-05297-w. [PMID: 40299265 DOI: 10.1007/s11010-025-05297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
The incidence and hospitalization rate of kidney disease, especially end-stage renal disease, have increased significantly, which seriously endangers the health of patients. Mitochondria are the core organelles of cellular energy metabolism, and their dysfunction can lead to kidney energy supply insufficiency and oxidative stress damage, which has become a global public health problem. Studies have shown that the disturbance of mitochondrial quality control mechanisms, including mitochondrial dynamics, autophagy, oxidative stress regulation and biosynthesis, is closely related to the occurrence and development of renal fibrosis (RF). As a multicellular pathological process, RF involves the injury and shedding of podocytes, the transdifferentiation of renal tubular epithelial cells, the activation of fibroblasts, and the infiltration of macrophages, among which the mitochondrial dysfunction plays an important role. This review systematically elaborates the molecular mechanisms of mitochondrial damage during RF progression, aiming to provide theoretical foundations for developing novel therapeutic strategies to delay RF advancement.
Collapse
Affiliation(s)
- Yi-Jin Wu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yan-Rong Yang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Ya-Ling Yan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Han-Yinan Yang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Cai X, Cao H, Wang M, Yu P, Liang X, Liang H, Xu F, Cai M. SGLT2 inhibitor empagliflozin ameliorates tubulointerstitial fibrosis in DKD by downregulating renal tubular PKM2. Cell Mol Life Sci 2025; 82:159. [PMID: 40237854 PMCID: PMC12003256 DOI: 10.1007/s00018-025-05688-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND AND OBJECTIVE Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been shown to prevent the progression of diabetic kidney disease (DKD). However, their impact on renal fibrosis remains largely uninvestigated. This study aimed to explore the effect of SGLT2 inhibitor empagliflozin on renal fibrosis in DKD patients and DKD models, and the molecular mechanisms involved. METHODS Kidney samples of DKD patients and DKD models were used in this study. DKD mouse models included STZ-treated CD-1 mice and HFD-fed C57BL/6 mice were all treated with empagliflozin for 6 to 12 weeks. Kidney pathological changes were analysed and fibrotic factors were detected. HK-2 cells were treated with normal glucose (NG), high glucose (HG), or HG with empagliflozin. RNA sequencing was employed to identify the differentially expressed genes. Epithelial-mesenchymal transition (EMT) markers were detected. Binding of transcription factor and target gene was determined using a dual-luciferase reporter assay. RESULTS Empagliflozin significantly ameliorated kidney fibrosis in DKD patients and DKD models. This was evidenced by tubulointerstitial fibrosis reduction observed through PAS and Masson staining, along with fibrotic factors downregulation. RNA sequencing and the subsequent in vitro and in vivo validation identified PKM2 as the most significantly upregulated glycolytic enzyme in DKD patients and models. Empagliflozin downregulated PKM2 and alleviated EMT and renal fibrosis. Importantly, empagliflozin improves fibrosis by downregulating PKM2. The downregulation of PKM2 by empagliflozin was achieved by inhibiting the binding of estrogen-related receptor α at the promoter. CONCLUSIONS Empagliflozin ameliorates kidney fibrosis via downregulating PKM2 in DKD.
Collapse
Affiliation(s)
- Xiang Cai
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tian He Road, Tian He District, Guangzhou, 510630, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Huanyi Cao
- Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Meijun Wang
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tian He Road, Tian He District, Guangzhou, 510630, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Xunfei Healthcare Technology Co., Ltd., Hefei, People's Republic of China
| | - Piaojian Yu
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tian He Road, Tian He District, Guangzhou, 510630, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoqi Liang
- Department of Animal Experimental Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hua Liang
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, People's Republic of China
| | - Fen Xu
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tian He Road, Tian He District, Guangzhou, 510630, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
| | - Mengyin Cai
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tian He Road, Tian He District, Guangzhou, 510630, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Jiang L, Yu H, Jian J, Sai X, Wang Y, Zhang Y, Wu X. Landscape analysis of m6A modification regulators reveals LRPPRC as a key modulator in tubule cells for DKD: a multi-omics study. Front Pharmacol 2025; 16:1506896. [PMID: 40255566 PMCID: PMC12006725 DOI: 10.3389/fphar.2025.1506896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/03/2025] [Indexed: 04/22/2025] Open
Abstract
Background Diabetic Kidney Disease (DKD) is a serious complication of diabetes, imposing a substantial medical burden. The significance of N6-methyladenosine (m6A) modification in the pathogenesis of DKD has become increasingly prominent. Aim This study aimed to investigate the specific expression patterns of the m6A geneset in the pathogenesis of DKD. Method Bulk RNA, single-cell and spatial transcriptome were utilized to clarify the hub gene. 3 types of machine learning algorithms were applied. The possible compounds were screened based on the DSigDB database. Result GSEA has revealed the potential m6a-associated pathways such as cGMP-PKG pathway. GSVA showed that the two types of m6a regulation, namely m6a-readers and m6a-writers, were generally suppressed in DKD patients. The output of 3 types of machine learning algorithm and differential analysis has determined the LRPPRC as the hub gene. LRPPRC was downregulated in the LOH, PODO, CT, and CD-ICB cell populations, most of which were tubular cells. It exhibited the decreasing trend over time, particularly pronounced in LOH cells. The low activity of LRPPRC was mainly detected in the injured renal tubules. In clinical patients, the expression levels of LRPPRC mRNA in DKD showed the tendency to be downregulated and exhibited the potential correlations with Glomerular Filtration Rate (GFR) and proteinuria according to the Nephroseq database. The lobeline might be an important potential compound involved in the regulation of LRPPRC and other m6a genes. Its actual efficacy needs to be verified in vivo or in vitro.
Collapse
Affiliation(s)
- Li Jiang
- Diabetes Department of integrated Chinese and Western Medicine, China National Center for Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Hongda Yu
- Dermatology Department, China-Japan Friendship Hospital, Beijing, China
| | - Jie Jian
- General Medicine Department, Mental Health Center of Dongcheng District, Beijing, China
| | - Xulin Sai
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yudian Wang
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Hubei, Wuhan, China
| | - Yufei Zhang
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Hubei, Wuhan, China
| | - Xiai Wu
- Diabetes Department of integrated Chinese and Western Medicine, China National Center for Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
5
|
Xuan C, Chen D, Zhang S, Li C, Fang Q, Chen D, Liu J, Jiang X, Zhang Y, Shen W, Cai G, Chen X, Li P. Isoquercitrin Alleviates Diabetic Nephropathy by Inhibiting STAT3 Phosphorylation and Dimerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414587. [PMID: 40184310 DOI: 10.1002/advs.202414587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/10/2025] [Indexed: 04/06/2025]
Abstract
At the convergence point of multiple cytokine signals, signal transducer and activator of transcription 3 (STAT3) is a highly promising therapeutic target for diabetic nephropathy. Isoquercitrin, a natural small-molecule inhibitor of STAT3, may have beneficial effects on diabetic nephropathy; however, the underlying mechanism remains unclear. Isoquercitrin significantly mitigated renal inflammation and fibrosis by inhibiting STAT3 activity in mice with diabetic nephropathy. Moreover, STAT3 is a direct molecular target of isoquercitrin, which as corroborated by tight and stable noncovalent binding between them. This interaction is mechanistically supported by the affinity of isoquercitrin for the Ser668-Gln635-Gln633 region within the pY+1 binding pocket of the SH2 domain. This binding obstructs pivotal processes like STAT3 phosphorylation and dimerization, thereby suppressing its transcriptional function. Finally, a kidney-targeted nanocarrier, Iso@PEG-GK, is developed to load isoquercitrin, thus enhancing its therapeutic precision for diabetic nephropathy. Iso@PEG-GK significantly improved the absorption and renal distribution of isoquercitrin. This study is the first to demonstrate that isoquercitrin exerts a significant protective effect against diabetic nephropathy and may provide a novel therapeutic drug for this disease.
Collapse
Affiliation(s)
- Chen Xuan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100000, China
| | - Donghui Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100000, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shuangna Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100000, China
| | - Chaofan Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100000, China
| | - Qingyun Fang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100000, China
| | - Dinghua Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100000, China
| | - Jiabao Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100000, China
| | - Xin Jiang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100000, China
| | - Yingjie Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100000, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100000, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100000, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100000, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, 100000, China
| |
Collapse
|
6
|
Satta E, Strollo F, Borgia L, Guarino G, Romano C, Masarone M, Marfella R, Gentile S. Urinary L-FABP: A Novel Biomarker for Evaluating Diabetic Nephropathy Onset and Progression. A Narrative Review. Diabetes Ther 2025:10.1007/s13300-025-01731-w. [PMID: 40178792 DOI: 10.1007/s13300-025-01731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Patients with diabetes mellitus (DM) are at risk of developing diabetic nephropathy (DN), a condition whose onset and progression are linked to increased morbidity and mortality. Therefore, early recognition is crucial. Presently, this relies on the albumin excretion rate (AER) and glomerular filtration rate (GFR). Nevertheless, DN eventually affects patients with normal AER and GFR. Thus, further easy-to-handle biomarkers of DN onset/worsening are needed. Liver-type fatty acid-binding protein (L-FABP) has been associated with renal damage and could help predict/diagnose DN. We performed a literature selection to evaluate the performance of urinary excretion of such biomarker (urinary-L-FABP:uL-FABP) in predicting/diagnosing DN and its progression in diabetes. We evaluated 635 publications, 21 of which were included. Of these, 14 have cross-sectional design/arms and ten longitudinal design/arms. Cross-sectional studies showed uL-FABP to correlate with DN onset and severity in type-1 DM and type-2 DM, besides being higher than in healthy controls in the case of normoalbuminuria. Longitudinal studies showed baseline uL-FABP to predict DN onset in normoalbuminuric patients with T1DM and DN progression independently of diabetes type. The results suggest that uL-FABP is a marker of tubular damage detectable before increased albumin excretion and can represent the earliest sign of DN. Indeed, it discloses its onset and often predicts its severity in T2DM and patients with T1DM. Currently, uL-FABP can be routinely assessed and, being available as a point-of-care fast-test kit, may also become an easy-to-handle diagnostic tool for outpatients. In conclusion, uL-FABP represents a user-friendly biomarker of DN and can even predict DN progression in T2DM and T1DM over time.
Collapse
Affiliation(s)
- Ersilia Satta
- Nefrocenter Research Network, Cava de´ Tirreni, Italy
| | - Felice Strollo
- Department of Endocrinology and Diabetes, IRCCS San Raffaele Pisana, Rome, Italy
| | - Luisa Borgia
- Bioethics, DISVA, Department of Life and Environmental Sciences, Biological Sciences Faculty, Marche Polytechnic University, 22, Piazza Roma, 60121, Ancona, Italy
| | - Giuseppina Guarino
- Nefrocenter Research Network, Cava de´ Tirreni, Italy
- Department of Precision Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| | | | - Mario Masarone
- Department of Medicine, Surgery and Odontostomatology "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.
| | - Raffaele Marfella
- Department of Precision Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| | - Sandro Gentile
- Nefrocenter Research Network, Cava de´ Tirreni, Italy
- Department of Precision Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
7
|
Ahmed N, Dalmasso C, Turner MB, Arthur G, Cincinelli C, Loria AS. From fat to filter: the effect of adipose tissue-derived signals on kidney function. Nat Rev Nephrol 2025:10.1038/s41581-025-00950-5. [PMID: 40175570 DOI: 10.1038/s41581-025-00950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Obesity is associated with severe consequences for the renal system, including chronic kidney disease, kidney failure and increased mortality. Obesity has both direct and indirect effects on kidney health through several mechanisms, including activation of the renin-angiotensin system, mechanical compression, inflammation, fibrosis, increased filtration barrier permeability and renal nerve activity. The expansion of adipose tissue through hypertrophy and hyperplasia can induce haemodynamic changes that promote glomerular hyperfiltration to compensate for the greater metabolic demands of the increased body weight. Adipose expansion is also associated with the release of adipokines and pro-inflammatory cytokines, hyperinsulinaemia and insulin resistance, which exert direct and indirect effects on kidney function via various mechanisms. Increased uptake of fatty acids by the kidney leads to alterations in lipid metabolism and lipotoxicity, also contributing to the pro-inflammatory and pro-fibrotic environment. The role of the adipose tissue-brain-kidney axis in the obesity-associated decline in renal function is sustained by studies showing that stimulation of adipose tissue sensory neurons by locally released factors increases renal sympathetic nerve activity. Conversely, pre-existent kidney disease can contribute to adipose dysfunction through the accumulation of uraemic toxins and hormonal changes. These findings highlight the importance of crosstalk between adipose tissue and the kidneys and provide insights into the mechanisms underlying the associations between obesity and kidney disease.
Collapse
Affiliation(s)
- Nermin Ahmed
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| | - Meghan B Turner
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Gertrude Arthur
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Cole Cincinelli
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
8
|
Pierre L, Juszczak F, Delmotte V, Decarnoncle M, Ledoux B, Bultot L, Bertrand L, Boonen M, Renard P, Arnould T, Declèves AE. AMPK protects proximal tubular epithelial cells from lysosomal dysfunction and dedifferentiation induced by lipotoxicity. Autophagy 2025; 21:860-880. [PMID: 39675352 PMCID: PMC11925112 DOI: 10.1080/15548627.2024.2435238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Renal proximal tubules are a primary site of injury in metabolic diseases. In obese patients and animal models, proximal tubular epithelial cells (PTECs) display dysregulated lipid metabolism, organelle dysfunctions, and oxidative stress that contribute to interstitial inflammation, fibrosis and ultimately end-stage renal failure. Our research group previously pointed out AMP-activated protein kinase (AMPK) decline as a driver of obesity-induced renal disease. Because PTECs display high macroautophagic/autophagic activity and rely heavily on their endo-lysosomal system, we investigated the effect of lipid stress on autophagic flux and lysosomes in these cells. Using a model of highly differentiated primary PTECs challenged with palmitate, our data placed lysosomes at the cornerstone of the lipotoxic phenotype. As soon as 6 h after palmitate exposure, cells displayed impaired lysosomal acidification subsequently leading to autophagosome accumulation and activation of lysosomal biogenesis. We also showed the inability of lysosomal quality control to restore acidic pH which finally drove PTECs dedifferentiation. When palmitate-induced AMPK activity decline was prevented by AMPK activators, lysosomal acidification and the differentiation profile of PTECs were preserved. Our work provided key insights on the importance of lysosomes in PTECs homeostasis and lipotoxicity and demonstrated the potential of AMPK in protecting the organelle from lipid stress.Abbreviation: ACAC: acetyl-CoA carboxylase; ACTB: actin beta; AICAR: 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside; AMPK: AMP-activated protein kinase; APQ1: aquaporin 1 (Colton blood group); BSA: bovine serum albumin; CDH16: cadherin 16; CKD: chronic kidney disease; CTSB: cathepsin B; CTSD: cathepsin D; EPB41L5: erythrocyte membrane protein band 4.1 like 5; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; EMT: epithelial-to-mesenchymal transition; FA: fatty acid; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GFP: green fluorescent protein; GUSB: glucuronidase beta; HEXB: hexosaminidase subunit beta; LAMP: lysosomal associated membrane protein; LD: lipid droplet; LGALS3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester hydrobromide; LMP: lysosomal membrane permeabilization; LRP2: LDL receptor related protein 2; LSD: lysosomal storage disorder; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCOLN1: mucolipin TRP cation channel 1; MG132: N-benzyloxycarbonyl-L-leucyl-L-leucyl-L-leucinal; MmPTECs: Mus musculus (mouse) proximal tubular epithelial cells; MTORC1: mechanistic target of rapamycin kinase complex 1; OA: oleate; PA: palmitate; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PTs: proximal tubules; PTECs: proximal tubular epithelial cells; PRKAA: protein kinase AMP-activated catalytic subunit alpha; RFP: red fluorescent protein; RPS6KB: ribosomal protein S6 kinase B; SLC5A2: solute carrier family 5 member 2; SOX9: SRY-box transcription factor 9; SQSTM1: sequestosome 1; TFEB: transcription factor EB; Ub: ubiquitin; ULK1: unc-51 like autophagy activating kinase 1; VIM: vimentin.
Collapse
Affiliation(s)
- Louise Pierre
- Laboratory of Biochemistry and Cell Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Florian Juszczak
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Valentine Delmotte
- Laboratory of Biochemistry and Cell Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Morgane Decarnoncle
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Benjamin Ledoux
- Laboratory of Biochemistry and Cell Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Laurent Bultot
- Pole of Cardiovascular Research, Experimental and Clinical Research Institute (CARD), UCLouvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Experimental and Clinical Research Institute (CARD), UCLouvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Marielle Boonen
- URPhyM, Intracellular Trafficking Biology, NARILIS, University of Namur, Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| |
Collapse
|
9
|
Zhong J, Xu P, Li X, Wang M, Chen X, Liang H, Chen Z, Yuan J, Xiao Y. Construction of a diagnostic model utilizing m7G regulatory factors for the characterization of diabetic nephropathy and the immune microenvironment. Sci Rep 2025; 15:9208. [PMID: 40097518 PMCID: PMC11914462 DOI: 10.1038/s41598-025-93811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Diabetic nephropathy (DN), a prevalent and severe complication of diabetes, is associated with poor prognosis and limited treatment options. N7-Methylguanosine (m7G) modification plays a crucial role in regulating RNA structure and function, linking it closely to metabolic disorders. However, despite its biological significance, the interplay between m7G methylation and immune status in DN remains largely unexplored. Leveraging data from the GEO database, we conducted consensus clustering of m7G regulators in DN patients to identify distinct molecular subtypes. To construct and validate m7G-related prognostic features and risk scores, we integrated multiple machine learning approaches, including Support Vector Machine-Recursive Feature Elimination, Random Forest, LASSO, Cox regression, and ROC curves analysis. In addition, we employed GSVA, ssGSEA, CIBERSORT, and Gene Set Enrichment Analysis to investigate the associated biological pathways and the immune landscape, providing deeper insights into the role of m7G methylation in DN. Based on the expression levels of 18 m7G-related regulatory factors, we identified nine key regulators. Through machine learning techniques, we identified four significant regulators (METTL1, CYFIP2, EIF3D, and NUDT4). Consensus clustering classified these genes into two distinct m7G-related clusters. To characterize these subtypes, we conducted immune infiltration analysis, differential expression analysis, and enrichment analysis, uncovering significant biological differences between the clusters. Additionally, we developed an m7G-related risk scoring model using the PCA algorithm. The differential expression of the four key regulators was further validated through in vivo experiments, reinforcing their potential role in disease progression. The m7G-related genes METTL1, CYFIP2, EIF3D, and NUDT4 may serve as potential diagnostic biomarkers for DN, providing new insights into its molecular mechanisms and immune landscape.
Collapse
Affiliation(s)
- Jingying Zhong
- School of Traditional Chinese Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Pengli Xu
- School of Traditional Chinese Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Xuanyi Li
- School of Traditional Chinese Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Meng Wang
- School of Traditional Chinese Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Xuejun Chen
- School of Traditional Chinese Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Huiyu Liang
- School of Traditional Chinese Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Zedong Chen
- School of Traditional Chinese Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Jing Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya Xiao
- School of Traditional Chinese Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Peng Y, Zhang Y, Wang R, Wang X, Liu X, Liao H, Li R. Inonotus obliquus (chaga) ameliorates folic acid-induced renal fibrosis in mice: the crosstalk analysis among PT cells, macrophages and T cells based on single-cell sequencing. Front Pharmacol 2025; 16:1556739. [PMID: 40160460 PMCID: PMC11949929 DOI: 10.3389/fphar.2025.1556739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Background Renal fibrosis, characterized by the abnormal accumulation of extracellular matrix in renal tissue and progressive loss of kidney function, is posing a significant challenge in clinical treatment. While several therapeutic options exist, effective treatments remain limited. Inonotus obliquus (Chaga), a traditional medicinal mushroom, has shown promising effects in chronic kidney disease (CKD), yet its cellular and molecular mechanisms remain largely unexplored. Methods We analysed the chemical composition of Chaga using UPLC-MS and predicted its biological targets using PubChem and Swiss Target Prediction. We used single-cell RNA sequencing to study cellular responses in a mouse model of folic acid-induced renal fibrosis, complemented by spatial transcriptomics to map cellular location patterns. Histological assessment was performed using H&E and Masson trichrome staining. Results For the first time, we employed single-cell RNA sequencing technology to investigate Chaga treatment in renal fibrosis. Histological analysis revealed that Chaga treatment significantly reduced renal tubular damage scores [from 5.00 (5.00, 5.00) to 2.00 (2.00, 2.00), p < 0.05] and decreased collagen deposition area (from 11.40% ± 3.01% to 4.06% ± 0.45%, p < 0.05) at day 14. Through analysis of 82,496 kidney cells, we identified 30 distinct cell clusters classified into eight cell types. Key findings include the downregulation of pro-inflammatory M1 macrophages and upregulation of anti-inflammatory M2 macrophages, alongside decreased T cell responses. Single-cell sequencing revealed differential gene expression in proximal tubular subpopulations associated with reduced fibrosis. Pathway and network pharmacology analyses of 60 identified compounds in Chaga and their 675 predicted targets suggested potential effects on immune and fibrotic pathways, particularly affecting Tregs and NKT cells. Cell-to-cell communication analyses revealed potential interactions between proximal tubular cells, macrophages, and T Cells, providing insights into possible mechanisms by which Chaga may ameliorate renal fibrosis. Conclusion Our study provided new insights into the potential therapeutic effects of Chaga in renal fibrosis through single-cell sequencing analysis. Our findings suggest that Chaga may represent a promising candidate for renal fibrosis treatment, though further experimental validation is needed to establish its clinical application.
Collapse
Affiliation(s)
- Yueling Peng
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Yaling Zhang
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
- Department of Nephrology, Taiyuan Central Hospital, Taiyuan, China
| | - Rui Wang
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Xinyu Wang
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Xingwei Liu
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Hui Liao
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| |
Collapse
|
11
|
Yang R, Liu W, Zhou Y, Cheng B, Liu S, Wu R, Liu Y, Li J. Modulating HIF-1α/HIF-2α homeostasis with Shen-Qi-Huo-Xue formula alleviates tubular ferroptosis and epithelial-mesenchymal transition in diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119478. [PMID: 39947365 DOI: 10.1016/j.jep.2025.119478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic kidney disease (DKD) is one of the main types of chronic kidney disease, which seriously affects the quality of life of patients. Shen-Qi-Huo-Xue formula (SQHXF), based on the Shen-Qi-Di-Huang decoction, is a traditional Chinese medicine formula for DKD. This study explored the mechanism of action of SQHXF on DKD through analysis of drug components, in vivo and in vitro experiments. AIM OF THE STUDY To elucidate the regulatory mechanisms of HIF-1α/HIF-2α homeostasis on ferroptosis and epithelial-mesenchymal transition (EMT) in renal tubular epithelial cells and the mechanism of action of SQHXF against DKD. METHODS The components of SQHXF were analyzed using UPLC-Q Exactive HF/MS. The effects of SQHXF on renal function, urinary proteins, glucose-lipid metabolism, hepatic function, renal tissue hypoxia, ferroptosis and EMT were analyzed following gavage of DKD model mice with different SQHXF doses. The effects of changes in HIF-1α and HIF-2α expression on ferroptosis and EMT, as well as the modulatory effects of SQHXF-containing serum, were assessed in vitro. The potential feedback mechanism of HIFs/ferroptosis/EMT was elucidated using HIF-1α knockdown and a ferroptosis inhibitor. RESULTS One-hundred and fifty compounds in SQHXF were tested for bloodstream entry. In vivo study showed that SQHXF was able to reduce creatinine, uric acid, fasting plasma glucose, 24-h urinary protein, low-density lipoprotein cholesterol, and aspartate aminotransferase levels, up-regulate HIF-1α, down-regulate HIF-2α, reduce ferroptosis, and alleviate renal fibrosis and EMT in tubular epithelial cells. HIF-1α/HIF-2α imbalance promoted ferroptosis and EMT in HK-2 cells, which was attenuated by SQHXF-containing serum. HIF-1α knockdown decreased HIF-2α expression and reduced ferroptosis and EMT. Inhibition of ferroptosis reduced EMT but failed to regulate HIF-1α and HIF-2α. CONCLUSIONS SQHXF alleviated ferroptosis and EMT, improved liver and kidney function, reduced proteinuria, and alleviated renal lesions by maintaining equilibrium between HIF-1α and HIF-2α.
Collapse
Affiliation(s)
- Ronglu Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Wu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Yi Zhou
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Bin Cheng
- Outpatient Department, Anhui University of Traditional Chinese Medicine, Hefei, 230031, China.
| | - Shiyi Liu
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Ruiying Wu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Yongjun Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Jinhu Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
12
|
Li XQ, Jin B, Liu SX, Zhu Y, Li N, Zhang QY, Wan C, Feng Y, Xing YX, Ma KL, Liu J, Jiang CM, Lu J. Neddylation of RhoA impairs its protein degradation and promotes renal interstitial fibrosis progression in diabetic nephropathy. Acta Pharmacol Sin 2025:10.1038/s41401-024-01460-z. [PMID: 39900822 DOI: 10.1038/s41401-024-01460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/15/2024] [Indexed: 02/05/2025]
Abstract
Diabetic nephropathy (DN) is a common and serious complication of diabetes, characterized by chronic fibro-inflammatory processes with an unclear pathogenesis. Renal fibrosis plays a significant role in the development and progression of DN. While recent research suggests that the neddylation pathway may influence fibrotic processes, its specific dysregulation in DN and the underlying mechanisms remain largely unexplored. This study identified the neddylation of RhoA as a novel post-translational modification that regulates its expression and promotes renal fibrosis in DN. We here demonstrated that two key components of the neddylation pathway-NEDD8-activating enzyme E1 subunit 1 (NAE1) and NEDD8-are significantly upregulated in human chronic kidney disease (CKD) specimens compared to healthy kidneys, implicating neddylation in CKD-associated fibrosis. Our findings further revealed that both pharmacological inhibition of neddylation using MLN4924 and genetic knockdown of NAE1 mitigate renal fibrosis in mouse models of streptozotocin-induced diabetes and unilateral ureteral obstruction (UUO). Immunoprecipitation-mass spectrometry (IP-MS) and subsequent function assays demonstrated a direct interaction between RhoA and NEDD8. Importantly, neddylation inhibition reduced RhoA protein expression, highlighting a potential therapeutic target. Additionally, a positive correlation was noted between elevated NEDD8 mRNA levels and RhoA mRNA expression in human CKD specimens. RhoA overexpression counteracted the antifibrotic effects of neddylation inhibition, underscoring its critical role in fibrosis progression. Mechanistically, we unveiled that neddylation enhances RhoA protein stability by inhibiting its ubiquitination-mediated degradation, which subsequently activates the ERK1/2 pathway. Collectively, this study provides novel insights into NAE1-dependent RhoA neddylation as a key contributor to renal fibrosis in DN. The NAE1 protein mediates RhoA protein hyper-neddylation and subsequent stabilization of the RhoA protein, which, in turn, contributes to the development of renal fibrosis and inflammation through an ERK1/2-dependent mechanism. Consequently, targeting neddylation inhibition represents a viable therapeutic approach for the treatment of renal fibrosis in DN.
Collapse
Affiliation(s)
- Xue-Qi Li
- Institute of Nephrology, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, Nanjing, 210008, China
| | - Bo Jin
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Si-Xiu Liu
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yan Zhu
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Nan Li
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qing-Yan Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Cheng Wan
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuan Feng
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yue-Xian Xing
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Kun-Ling Ma
- Department of Nephrology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Jing Liu
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chun-Ming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Jian Lu
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
13
|
Jiang M, Chen H, Luo J, Chen J, Gao L, Zhu Q. Characterization of diabetic kidney disease in 235 patients: clinical and pathological insights with or without concurrent non-diabetic kidney disease. BMC Nephrol 2025; 26:29. [PMID: 39825278 PMCID: PMC11748606 DOI: 10.1186/s12882-024-03931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND This study aimed to explore the clinical and pathological features of patients with diabetic kidney disease (DKD), with and without non-diabetic kidney disease (NDKD), through a retrospective analysis. The objective was to provide clinical insights for accurate identification. METHODS A retrospective analysis of 235 patients admitted to the Department of Nephrology at Hangzhou Hospital of Traditional Chinese Medicine was conducted between July 2014 and December 2022. These patients underwent renal biopsy and received a pathology-based diagnosis of DKD. They were categorized into the DKD alone group (93 cases) and the DKD + NDKD group (142 cases). RESULTS In the DKD alone group, gender distribution was even, with ages mainly between 50 and 59 years, and a disease duration of less than 5 years, primarily presenting nodular diabetic glomerulosclerosis. In contrast, the DKD + NDKD group had a higher male incidence, a wider age range, longer disease duration, and prevalent diffuse diabetic glomerulosclerosis. Acute and chronic tubulointerstitial lesions and IgA nephropathy were the predominant types of combined NDKD, accounting for 40.14% and 35.21%, respectively. Clinical correlation analysis revealed associations between glomerular grading, tubulointerstitial lesions, renal arteriolar vitelliform lesions, renal vascular atherosclerosis, and clinical parameters such as 24-hour urine protein, hemoglobin, and urinary specific gravity. Multifactorial logistic regression analysis identified independent factors affecting DKD + NDKD, including body mass index, blood creatinine level, microscopic erythrocyte grade, urinary immunoglobulin G/creatinine ratio, and serum immunoglobulin A. CONCLUSION The research underscores distinctions in age, gender distribution, disease duration, and renal pathology between DKD alone and DKD + NDKD groups. Additionally, significant discriminative factors including BMI, blood creatinine level, microscopic erythrocyte grade, UIgG/urine creatinine ratio, and serum IgA levels help differentiate DKD from NDKD, thereby enabling personalized treatment approaches. Furthermore, the study highlights the role of RASi as the most commonly used drug in the treatment of both DKD and NDKD, with emerging drugs such as SGLT2 inhibitors showing promising renal protective effects.
Collapse
Affiliation(s)
- Mengjie Jiang
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Hongyu Chen
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Jing Luo
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Jinhan Chen
- The Second Affiliated College Of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, China
| | - Li Gao
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Qin Zhu
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China.
| |
Collapse
|
14
|
Kleibert M, Tkacz K, Winiarska K, Małyszko J, Cudnoch-Jędrzejewska A. The role of hypoxia-inducible factors 1 and 2 in the pathogenesis of diabetic kidney disease. J Nephrol 2025; 38:37-47. [PMID: 39648258 PMCID: PMC11903585 DOI: 10.1007/s40620-024-02152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/30/2024] [Indexed: 12/10/2024]
Abstract
According to the 10th edition of the IDF Diabetes Atlas, 537 million people suffered from diabetes in 2021, and this number will increase by 47% by 2045. It is estimated that even 30-40% of these individuals may develop diabetic kidney disease (DKD) in the course of diabetes. DKD is one of the most important complications of diabetes, both in terms of impact and magnitude. It leads to high morbidity and mortality, which subsequently impacts on quality of life, and it carries a high financial burden. Diabetic kidney disease is considered a complex and heterogeneous entity involving disturbances in vascular, glomerular, podocyte, and tubular function. It would appear that hypoxia-inducible factors (HIF)-1 and HIF-2 may be important players in the pathogenesis of this disease. However, their exact role is still not fully investigated. In this article, we summarize the current knowledge about HIF signaling and its role in DKD. In addition, we focus on the possible effects of nephroprotective drugs on HIF expression and activity in various tissues.
Collapse
Affiliation(s)
- Marcin Kleibert
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Kamil Tkacz
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jolanta Małyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097, Warsaw, Poland
| |
Collapse
|
15
|
Ye S, Zhang M, Zheng X, Li S, Fan Y, Wang Y, Peng H, Chen S, Yang J, Tan L, Zhang M, Xie P, Li X, Luo N, Wang Z, Jin L, Wu X, Pan Y, Fan J, Zhou Y, Tang SCW, Li B, Chen W. YAP1 preserves tubular mitochondrial quality control to mitigate diabetic kidney disease. Redox Biol 2024; 78:103435. [PMID: 39608245 PMCID: PMC11629574 DOI: 10.1016/j.redox.2024.103435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
Renal tubule cells act as a primary site of injury in diabetic kidney disease (DKD), with dysfunctional mitochondrial quality control (MQC) closely associated with progressive kidney dysfunction in this context. Our investigation delves into the observed inactivation of yes-associated protein 1 (YAP1) and consequential dysregulation of MQC within renal tubule cells among DKD subjects through bioinformatic analysis of transcriptomics data from the Gene Expression Omnibus (GEO) dataset. Receiver operating characteristic curve analysis unequivocally underscores the robust diagnostic accuracy of YAP1 and MQC-related genes for DKD. Furthermore, we observed YAP1 inactivation, accompanied by perturbed MQC, within cultured tubule cells exposed to high glucose (HG) and palmitic acid (PA). This pattern was also evident in the tubulointerstitial compartment of kidney sections from biopsy-approved DKD patients. Additionally, renal tubule cell-specific Yap1 deletion exacerbated kidney injury in diabetic mice. Mechanistically, Yap1 deletion disrupted MQC, leading to mitochondrial aberrations in mitobiogenesis and mitophagy within tubule cells, ultimately culminating in histologic tubular injury. Notably, Yap1 deletion-induced renal tubule injury promoted the secretion of C-X-C motif chemokine ligand 1 (CXCL1), potentially augmenting M1 macrophage infiltration within the renal microenvironment. These multifaceted events were significantly ameliorated by administrating the YAP1 activator XMU-MP-1 in DKD mice. Consistently, bioinformatic analysis of transcriptomics data from the GEO dataset revealed a noteworthy upregulation of tubule cells-derived chemokine CXCL1 associated with macrophage infiltration among DKD patients. Crucially, overexpression of YAP1 via adenovirus transfection sustained mitochondrial membrane potential, mtDNA copy number, oxygen consumption rate, and activity of mitochondrial respiratory chain complex, but attenuated mitochondrial ROS production, thereby maintaining MQC and subsequently suppressing CXCL1 generation within cultured tubule cells exposed to HG and PA. Collectively, our study establishes a pivotal role of tubule YAP1 inactivation-mediated MQC dysfunction in driving DKD progression, at least in part, facilitated by promoting M1 macrophage polarization through a paracrine-dependent mechanism.
Collapse
Affiliation(s)
- Siyang Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Meng Zhang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Xunhua Zheng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Suchun Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Yuting Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Yiqin Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Huajing Peng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Sixiu Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Jiayi Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Li Tan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Manhuai Zhang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Peichen Xie
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Xiaoyan Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Ning Luo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Zhipeng Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yong Pan
- Department of Pathophysiology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen, 518000, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Bin Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.
| |
Collapse
|
16
|
Yang F, Zhang X, Huang J, Ma Y, Guo S, Liu Y, Wang P, Wang Y. Lumbrokinase (LK) ameliorates diabetic kidney disease renal fibrosis through regulating snail via m6A RNA methyltransferase 3. Sci Rep 2024; 14:28671. [PMID: 39562622 PMCID: PMC11576886 DOI: 10.1038/s41598-024-80168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
The present study was undertaken to investigate the therapeutic effect and underlying mechanisms of lumbrokinase (LK) on diabetic kidney disease (DKD). Kidney tissue samples from DKD patients and normal controls were collected from hospitals. The type 2 diabetic nephropathy model was induced in db/db mice. The mice were then randomly divided into a model group (DM group) and an LK group. db/m mice were used as the control group (Con group). After 12 weeks of treatment with LK (234 KU/kg/day), biochemical parameters were tested, and pathological changes in the kidney were observed under a light microscope. The epithelial-to-mesenchymal transition (EMT), mRNA m6A methylation proteins, and activated TGF-β1/Smad pathway components were assessed by western blot or immunofluorescence in DKD patients, model mice, and high glucose-stimulated HK-2 cells. We found that the m6A eraser METTL3 was expressed at low levels in DKD patients, model mice, and high glucose-stimulated HK-2 cells. METTL3 overexpression reversed the high glucose-induced activation of the TGF-β1/Smad pathway and EMT through snail in vitro. However, LK can restore the expression of the m6A-modifying enzyme METTL3 in vivo and in vitro, suppressed EMT, and alleviated renal interstitial fibrosis by downregulating snail. Overall, LK ameliorated renal fibrosis through the regulation of Snail via m6A RNA METTL3.
Collapse
Affiliation(s)
- Fan Yang
- Hebei University of Chinese Medicine, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei, China
| | - Xiaoyun Zhang
- Hebei University of Chinese Medicine, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei, China
| | - Jiaan Huang
- Hebei University of Chinese Medicine, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei, China
| | - Yun Ma
- Hebei University of Chinese Medicine, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Hebei, China
| | - Shuai Guo
- The Third Hospital of Hebei Medical University, Hebei, China
| | - Yan Liu
- Hebei University of Chinese Medicine, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei, China
| | - Peng Wang
- Hebei University of Chinese Medicine, Hebei, China.
- The Second Hospital of Hebei University of Chinese Medicine, Hebei, China.
| | - Yuehua Wang
- Hebei University of Chinese Medicine, Hebei, China.
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei, China.
| |
Collapse
|
17
|
Yang Y, Ren S, Xue J, Dong W, He W, Luo J, Li X, Xu H, Zheng Z, Wang X, Wang L, Guan M, Jia Y, Xue Y. DeSUMOylation of RBMX regulates exosomal sorting of cargo to promote renal tubulointerstitial fibrosis in diabetic kidney disease. J Adv Res 2024:S2090-1232(24)00423-5. [PMID: 39341454 DOI: 10.1016/j.jare.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) has become the primary cause of chronic renal failure in China, and renal tubulointerstitial fibrosis plays a central role in DKD progression. Urinary exosomes, which reflect kidney changes, are largely influenced by RNA-binding proteins (RBPs) in their miRNA content. OBJECTIVES Our research aimed to determine the effect of the RNA-binding protein RBMX on exosomal miRNA in DKD. METHODS We introduced a higher level of Rbmx into diabetic mice using an adenoassociated virus and isolated exosomes from their kidney tissue through advanced centrifugation techniques and specialized kits. We then conducted a series of tests, including qRT-PCR, Western blot, MitoSOX, ATP luminescence, coimmunoprecipitation, SUMOylation assays, RNA immunoprecipitation, and confocal microscopy. RESULTS RBMX is found in higher levels in DKD and contributes to worsening kidney fibrosis, mitochondrial damage, and miRNA mismanagement in exosomes. It specifically binds with miR-26a, miR-23c, and miR-874 within the exosomes. This dysfunction may be linked to changes in RBMX SUMOylation. These miRNAs seem to protect against mitochondrial damage in kidney cells by targeting CERS6. CONCLUSION DeSUMOylation of RBMX plays a crucial role in determining the makeup of miRNAs in kidney cell exosomes, impacting the protective miRNAs which regulate mitochondrial damage through their interaction with CERS6 mRNA, ultimately affecting mitochondrial health in DKD.
Collapse
Affiliation(s)
- Yanlin Yang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology & Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shijing Ren
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junyu Xue
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, China
| | - Wenhui Dong
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei He
- Department of Neurosurgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiayi Luo
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaomin Li
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haibin Xu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zongji Zheng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangyu Wang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meiping Guan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yijie Jia
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yaoming Xue
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Elwakiel A, Gupta D, Rana R, Manoharan J, Al-Dabet MM, Ambreen S, Fatima S, Zimmermann S, Mathew A, Li Z, Singh K, Gupta A, Pal S, Sulaj A, Kopf S, Schwab C, Baber R, Geffers R, Götze T, Alo B, Lamers C, Kluge P, Kuenze G, Kohli S, Renné T, Shahzad K, Isermann B. Factor XII signaling via uPAR-integrin β1 axis promotes tubular senescence in diabetic kidney disease. Nat Commun 2024; 15:7963. [PMID: 39261453 PMCID: PMC11390906 DOI: 10.1038/s41467-024-52214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Coagulation factor XII (FXII) conveys various functions as an active protease that promotes thrombosis and inflammation, and as a zymogen via surface receptors like urokinase-type plasminogen activator receptor (uPAR). While plasma levels of FXII are increased in diabetes mellitus and diabetic kidney disease (DKD), a pathogenic role of FXII in DKD remains unknown. Here we show that FXII is locally expressed in kidney tubular cells and that urinary FXII correlates with kidney dysfunction in DKD patients. F12-deficient mice (F12-/-) are protected from hyperglycemia-induced kidney injury. Mechanistically, FXII interacts with uPAR on tubular cells promoting integrin β1-dependent signaling. This signaling axis induces oxidative stress, persistent DNA damage and senescence. Blocking uPAR or integrin β1 ameliorates FXII-induced tubular cell injury. Our findings demonstrate that FXII-uPAR-integrin β1 signaling on tubular cells drives senescence. These findings imply previously undescribed diagnostic and therapeutic approaches to detect or treat DKD and possibly other senescence-associated diseases.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany.
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Medical Laboratory Sciences, School of Science, University of Jordan, Amman, Jordan
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Zhiyang Li
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Surinder Pal
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Alba Sulaj
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Constantin Schwab
- Institute of pathology, University of Heidelberg, Heidelberg, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tom Götze
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Bekas Alo
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Christina Lamers
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Paul Kluge
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Georg Kuenze
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
19
|
Kim MJ, Kang MK, Hong YS, Leem GH, Song TJ. Association of Renal Hyperfiltration with Incidence of New-Onset Diabetes Mellitus: A Nationwide Cohort Study. J Clin Med 2024; 13:5267. [PMID: 39274480 PMCID: PMC11396438 DOI: 10.3390/jcm13175267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Background and Objectives: While the connection between decreased kidney function and diabetes mellitus (DM) is commonly acknowledged, there is insufficient research examining the relationship between higher-than-normal estimated glomerular filtration rate (eGFR) and the incidence risk of new-onset DM. Our research aimed to explore the relationship between an eGFR and the incidence risk of new-onset DM in the Korean general population through a nationwide longitudinal study. Methods: This research employed the cohort records of the National Health Insurance Service in Korea, analyzing records from 2,294,358 individuals between the ages of 20 and 79 who underwent health check-ups between 2010 and 2011. The eGFR levels from the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation were used to assess the renal function. New-onset DM was defined as two or more claims with the International Classification of Diseases-10 classification codes E10 to E14, being prescribed any medication for lowering blood glucose, or having a record of fasting plasma glucose levels of ≥126 mg/dL from a health examination after the index date. Results: The mean age of subjects was 47.34 ± 13.76 years. The 150,813 (6.57%) new-onset DM cases were identified over a median follow-up of 9.63 years. In the multivariable Cox regression analysis, in comparison with the 5th decile, the 10th (≥114.12 mL/min/1.73 m2) (hazard ratio (HR): 0.52, 95% confidence interval (CI) (0.50-0.54), p < 0.001) eGFR decile was significantly associated with a decreased incidence of new-onset DM. Moreover, eGFR >120 mL/min/1.73 m2 was associated with a reduced risk of new-onset DM (HR: 0.40, 95% CI (0.39-0.42), p < 0.001). These results were consistent regardless of the presence of impaired glucose tolerance, age, or obesity. Conclusion: Our study showed higher-than-normal eGFR levels were associated with a lower risk of incidence for new-onset DM regardless of the presence of impaired glucose tolerance, age, or obesity. In general population, higher-than-normal eGFR may be associated with a lower risk of incidence of new-onset DM.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Min Kyoung Kang
- Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Ye-Seon Hong
- Department of Physiology, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Gwang Hyun Leem
- Department of Convergence Medicine, Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Tae-Jin Song
- Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| |
Collapse
|
20
|
Phanish MK, Heidebrecht F, Jackson M, Rigo F, Dockrell MEC. Targeting alternative splicing of fibronectin in human renal proximal tubule epithelial cells with antisense oligonucleotides to reduce EDA+ fibronectin production and block an autocrine loop that drives renal fibrosis. Exp Cell Res 2024; 442:114186. [PMID: 39098465 DOI: 10.1016/j.yexcr.2024.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
TGFβ1 is a powerful regulator of fibrosis; secreted in a latent form, it becomes active after release from the latent complex. During tissue fibrosis, the EDA + isoform of cellular fibronectin is overexpressed. In pulmonary fibrosis it has been proposed that the fibronectin splice variant including an EDA domain (FN EDA+) activates latent TGFβ. Our work investigates the potential of blocking the 'splicing in' of EDA with antisense oligonucleotides to inhibit TGFβ1-induced EDA + fibronectin and to prevent the cascade of events initiated by TGFβ1 in human renal proximal tubule cells (PTEC). Human primary PTEC were treated with TGFβ1 for 48 h, medium removed and the cells transfected with RNase H-independent antisense oligonucleotides (ASO) designed to block EDA exon inclusion (ASO5). The efficacy of ASO to block EDA exon inclusion was assessed by EDA + fibronectin RNA and protein expression; the expression of TGFβ, αSMA (α smooth muscle actin), MMP2 (matrix metalloproteinse-2), MMP9 (matrix metalloproteinse-9), Collagen I, K Cadherin and connexin 43 was analysed. Targeting antisense oligonucleotides designed to block EDA exon inclusion in fibronectin pre mRNA were effective in reducing the amount of TGFβ1 -induced cellular EDA + fibronectin RNA and secreted EDA + fibronectin protein (assessed by western immunoblotting and immunocytochemistry) in human proximal tubule cells in an in vitro cell culture model. The effect was selective for EDA + exon with no effect on EDB + fibronectin RNA and total fibronectin mRNA. Exogenous TGFβ1 induced endogenous TGFβ, αSMA, MMP2, MMP9 and Col I mRNA. TGFβ1 treatment for 48h reduced the expression of K-Cadherin and increased the expression of connexin-43. These TGFβ1-induced pro-fibrotic changes were attenuated by ASO5 treatment. 48 h after the removal of exogenous TGFβ, further increases in αSMA, MMP2, MMP9 was observed; ASO5 significantly inhibited this subsequent increase. ASO5 treatment also significantly inhibited ability of the cell culture medium harvested at the end of the experiment (96h) to stimulate SMAD3 reporter cells. The role of endogenous TGFβ1 was confirmed by the use of a TGFβ receptor inhibitor. Our results demonstrate a critical role of FN EDA+ in a cycle of TGFβ driven pro-fibrotic responses in human PTEC and blocking its production with ASO technology offers a potential therapy to interrupt this vicious circle and hence limit the progression of renal fibrosis.
Collapse
Affiliation(s)
- Mysore Keshavmurthy Phanish
- SWT Institute for Renal Research, Renal Unit, St Helier Hospital, Epsom and St Helier University Hospitals NHS Trust, London, UK; St Georges' University of London, London, UK.
| | - Felicia Heidebrecht
- SWT Institute for Renal Research, Renal Unit, St Helier Hospital, Epsom and St Helier University Hospitals NHS Trust, London, UK
| | - Michaela Jackson
- IONIS Pharmaceuticals, 2855, Gazelle Ct, Carlsbad, CA 92010, USA
| | - Frank Rigo
- IONIS Pharmaceuticals, 2855, Gazelle Ct, Carlsbad, CA 92010, USA
| | - Mark Edward Carl Dockrell
- SWT Institute for Renal Research, Renal Unit, St Helier Hospital, Epsom and St Helier University Hospitals NHS Trust, London, UK; St Georges' University of London, London, UK.
| |
Collapse
|
21
|
Peña-Montes DJ, Huerta-Cervantes M, Riveros-Rosas H, Manzo-Avalos S, Aguilera-Méndez A, Huerta M, Trujillo X, Cortés-Rojo C, Montoya-Pérez R, Salgado-Garciglia R, Saavedra-Molina A. Iron chelation mitigates mitochondrial dysfunction and oxidative stress by enhancing nrf2-mediated antioxidant responses in the renal cortex of a murine model of type 2 diabetes. Mitochondrion 2024; 78:101937. [PMID: 39004262 DOI: 10.1016/j.mito.2024.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Renal iron overload is a common complication of diabetes that leads to oxidative stress and mitochondrial dysfunction in the kidneys. This study investigated the effects of iron chelation using deferiprone on mitochondrial dysfunction and oxidative stress in the renal cortex of a murine model of type 2 diabetes. Diabetic rats were treated with deferiprone (50 mg/kg BW) for 16 weeks. Our results show that iron chelation with deferiprone significantly increased the nuclear accumulation of Nrf2, a transcription factor that regulates the expression of antioxidant enzymes. This led to enhanced antioxidant capacity, reduced production of reactive oxygen species, and improved mitochondrial bioenergetic function in diabetic rats. However, chronic iron chelation led to altered mitochondrial respiration and increased oxidative stress in non-diabetic rats. In conclusion, our findings suggest that iron chelation with deferiprone protects mitochondrial bioenergetics and mitigates oxidative stress in the renal cortex, involving the NRF2 pathway in type 2 diabetes.
Collapse
Affiliation(s)
- Donovan J Peña-Montes
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | | | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Salvador Manzo-Avalos
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Asdrubal Aguilera-Méndez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Mexico
| | - Xóchitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Mexico
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Rafael Salgado-Garciglia
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico.
| |
Collapse
|
22
|
Zhang C, Ren W, Lu X, Feng L, Li J, Zhu B. Empagliflozin's role in early tubular protection for type 2 diabetes patients. Mol Med 2024; 30:112. [PMID: 39085830 PMCID: PMC11293177 DOI: 10.1186/s10020-024-00881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Patients with type 2 diabetes often face early tubular injury, necessitating effective treatment strategies. This study aimed to evaluate the impact of the SGLT2 inhibitor empagliflozin on early tubular injury biomarkers in type 2 diabetes patients with normoalbuminuria. METHODS A randomized controlled clinical study comprising 54 patients selected based on specific criteria was conducted. Patients were divided into an intervention group (empagliflozin, n = 27) and a control group (n = 27) and treated for 6 weeks. Tubular injury biomarkers KIM-1 and NGAL were assessed pre- and post-treatment. RESULTS Both groups demonstrated comparable baseline characteristics. Post-treatment, fasting and postprandial blood glucose levels decreased similarly in both groups. The intervention group exhibited better improvements in total cholesterol, low-density lipoprotein, and blood uric acid levels. Renal function indicators, including UACR and eGFR, showed greater enhancements in the intervention group. Significant reductions in KIM-1 and NGAL were observed in the intervention group. CONCLUSION Treatment with empagliflozin in type 2 diabetes patients with normoalbuminuria led to a notable decrease in tubular injury biomarkers KIM-1 and NGAL. These findings highlight the potential of SGLT2 inhibitors in early tubular protection, offering a new therapeutic approach.
Collapse
Affiliation(s)
- Chuangbiao Zhang
- Department of Endocrinology, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Weiwei Ren
- Department of Endocrinology, Guangzhou Baiyun District Maternal And Child Health Hospital, Guangzhou, 51000, Guangdong Province, China
| | - Xiaohua Lu
- Department of Endocrinology, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Lie Feng
- Department of Endocrinology, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Jiaying Li
- Department of Endocrinology, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, China.
| | - Beibei Zhu
- Endoscopy Center, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
23
|
Lin HH, Tseng CY, Yu PR, Ho HY, Hsu CC, Chen JH. Therapeutic Effect of Desmodium caudatum Extracts on Alleviating Diabetic Nephropathy Mice. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:374-380. [PMID: 38750193 DOI: 10.1007/s11130-024-01192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
Desmodium caudatum extracts (DCE) were investigated for their potential therapeutic effects on diabetic nephropathy (DN). In our study, the high-fat diet (HFD) / streptozotocin (STZ)-induced DN model in C57BL/6 mice was treated with 100 mg/kg, 200 mg/kg DCE. The results showed that DCE decreased biochemical parameters and proteinuria levels. The kidney sections staining indicated that DCE treatment recovered glomerular atrophy and alleviated lipid droplets in the glomerular. Additionally, DCE inhibited lipid and glycogen accumulation down-regulated the expression of sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS) proteins. DCE also reduced collagenous fibrous tissue and the expression of transforming growth factor-β1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) through Masson's trichrome staining and immunohistochemical analysis. We found that DCE alleviated hydroxyproline content, and epithelial-mesenchymal transition (EMT). Besides, the results shown that DCE enhanced the antioxidant enzymes to mitigate fibrosis by reducing oxidative stress. In conclusion, our study provided evidence of the protective effect of DCE which down-regulated hyperglycemia, hyperlipidemia and inhibition of TGF-β1 and EMT pathway but elevated antioxidant, suggesting its therapeutic implication for DN.
Collapse
Affiliation(s)
- Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City, Taiwan
| | - Chiao-Yun Tseng
- Department of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jiangou N. Rd., South Dist., Taichung City, 40201, Taiwan
| | - Pei-Rong Yu
- Department of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jiangou N. Rd., South Dist., Taichung City, 40201, Taiwan
| | - Hsiang-Yu Ho
- Department of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jiangou N. Rd., South Dist., Taichung City, 40201, Taiwan
| | - Cheng-Chin Hsu
- Department of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jiangou N. Rd., South Dist., Taichung City, 40201, Taiwan
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jiangou N. Rd., South Dist., Taichung City, 40201, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan.
| |
Collapse
|
24
|
Ghose S, Satariano M, Korada S, Cahill T, Shah R, Raina R. Advancements in diabetic kidney disease management: integrating innovative therapies and targeted drug development. Am J Physiol Endocrinol Metab 2024; 326:E791-E806. [PMID: 38630049 DOI: 10.1152/ajpendo.00026.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease and affects approximately 40% of individuals with diabetes . Cases of DKD continue to rise globally as the prevalence of diabetes mellitus increases, with an estimated 415 million people living with diabetes in 2015 and a projected 642 million by 2040. DKD is associated with significant morbidity and mortality, representing 34% and 36% of all chronic kidney disease deaths in men and women, respectively. Common comorbidities including hypertension and ageing-related nephron loss further complicate disease diagnosis and progression. The progression of DKD involves several mechanisms including glomerular endothelial cell dysfunction, inflammation, and fibrosis. Targeting these mechanisms has formed the basis of several therapeutic agents. Renin-angiotensin-aldosterone system (RAAS) blockers, specifically angiotensin receptor blockers (ARBs), demonstrate significant reductions in macroalbuminuria. Sodium-glucose transporter type 2 (SGLT-2) inhibitors demonstrate kidney protection independent of diabetes control while also decreasing the incidence of cardiovascular events. Emerging agents including glucagon-like peptide 1 (GLP-1) agonists, anti-inflammatory agents like bardoxolone, and mineralocorticoid receptor antagonists show promise in mitigating DKD progression. Many novel therapies including monoclonal antibodies CSL346, lixudebart, and tozorakimab; mesenchymal stem/stromal cell infusion; and cannabinoid-1 receptor inverse agonism via INV-202 are currently in clinical trials and present opportunities for further drug development.
Collapse
Affiliation(s)
- Shaarav Ghose
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Matthew Satariano
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Saichidroopi Korada
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Thomas Cahill
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Raghav Shah
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Rupesh Raina
- Department of Medicine, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio, United States
- Department of Nephrology, Akron Children's Hospital, Akron, Ohio, United States
| |
Collapse
|
25
|
Behnoush AH, Khalaji A, Shokri Varniab Z, Rahbarghazi A, Amini E, Klisic A. Urinary and circulatory netrin-1 as biomarker in diabetes and its related complications: a systematic review and meta-analysis. Endocrine 2024; 84:328-344. [PMID: 37996774 DOI: 10.1007/s12020-023-03598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Novel biomarkers have been suggested for the diagnosis and prognosis of diabetes mellitus. The biomarker utility of netrin-1 in diabetes as an extracellular protein has been investigated. In this systematic review and meta-analysis, we reviewed the role of netrin-1 as a biomarker in prediabetes, diabetes, and complications of diabetes. METHODS PubMed, Embase, Scopus, and Web of Science were systematically searched for studies that measured circulatory and/or urinary netrin-1 levels in diabetes and compared them with non-diabetic patients or evaluated the prognostic role of this marker. Standardized mean difference (SMD) and 95% confidence interval (CI) were calculated using random-effect meta-analysis to compare netrin-1 levels between groups. The impact of mean age, male sex percentage, sample size, mean body mass index, and publication year on the overall heterogeneity was assessed using meta-regression. RESULTS Among 413 records from international databases, 19 original studies were included with 2061 cases (1137 diabetics, 196 prediabetics, and 728 healthy controls). Meta-analysis of eight studies measuring netrin-1 in patients with diabetes and comparing it with healthy controls showed no significant difference between the two groups (SMD 0.69, 95% CI -0.78 to 2.16, I2 = 98%, p-value = 0.36). On the other hand, a meta-analysis of netrin-1 levels in patients with prediabetes in comparison with healthy controls revealed that they had lower levels (SMD -0.51, 95% CI -0.81 to -0.21, p-value < 0.01). Diabetic patients with microalbuminuria and macroalbuminuria had significantly higher circulatory netrin-1 levels compared to normoalbuminuric group SMD 1.18, 95% CI 0.83 to 1.53, p-value < 0.01 and SMD 1.67, 95% CI 0.76 to 2.58, p-value < 0.01, respectively). Moreover, no difference in urinary netrin-1 levels was found between micro-, macro-, and normoalbuminuric groups (p-value > 0.05). CONCLUSION Netrin-1 showed promising results as a biomarker in diabetes prognosis. However, more studies are required to confirm our findings, and higher sample size studies are needed to evaluate the diagnostic utility of this marker.
Collapse
Affiliation(s)
- Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahra Shokri Varniab
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Rahbarghazi
- Department of Physical Education and Sports Sciences, Faculty of Educational Science and Psychology, University of Mohaghegh Ardabil, Ardabil, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Amini
- Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Aleksandra Klisic
- University of Montenegro-Faculty of Medicine, Podgorica, Montenegro
- Center for Laboratory Diagnostics, Primary Health Care Center, Podgorica, Montenegro
| |
Collapse
|
26
|
Yang J, Zhuang H, Li J, Nunez-Nescolarde AB, Luo N, Chen H, Li A, Qu X, Wang Q, Fan J, Bai X, Ye Z, Gu B, Meng Y, Zhang X, Wu D, Sia Y, Jiang X, Chen W, Combes AN, Nikolic-Paterson DJ, Yu X. The secreted micropeptide C4orf48 enhances renal fibrosis via an RNA-binding mechanism. J Clin Invest 2024; 134:e178392. [PMID: 38625739 PMCID: PMC11093611 DOI: 10.1172/jci178392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Renal interstitial fibrosis is an important mechanism in the progression of chronic kidney disease (CKD) to end-stage kidney disease. However, we lack specific treatments to slow or halt renal fibrosis. Ribosome profiling identified upregulation of a secreted micropeptide, C4orf48 (Cf48), in mouse diabetic nephropathy. Cf48 RNA and protein levels were upregulated in tubular epithelial cells in human and experimental CKD. Serum Cf48 levels were increased in human CKD and correlated with loss of kidney function, increasing CKD stage, and the degree of active interstitial fibrosis. Cf48 overexpression in mice accelerated renal fibrosis, while Cf48 gene deletion or knockdown by antisense oligonucleotides significantly reduced renal fibrosis in CKD models. In vitro, recombinant Cf48 (rCf48) enhanced TGF-β1-induced fibrotic responses in renal fibroblasts and epithelial cells independently of Smad3 phosphorylation. Cellular uptake of Cf48 and its profibrotic response in fibroblasts operated via the transferrin receptor. RNA immunoprecipitation-sequencing identified Cf48 binding to mRNA of genes involved in the fibrotic response, including Serpine1, Acta2, Ccn2, and Col4a1. rCf48 binds to the 3'UTR of Serpine1 and increases mRNA half-life. We identify the secreted Cf48 micropeptide as a potential enhancer of renal fibrosis that operates as an RNA-binding peptide to promote the production of extracellular matrix.
Collapse
Affiliation(s)
- Jiayi Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Hongjie Zhuang
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinhua Li
- Department of Nephrology and
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China
- Department of Nephrology, Monash Health and Department of Medicine and
| | - Ana B. Nunez-Nescolarde
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ning Luo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Huiting Chen
- The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China
| | - Andy Li
- Department of Nephrology, Monash Health and Department of Medicine and
| | - Xinli Qu
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Qing Wang
- Department of Nephrology and
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Xiaoyan Bai
- Department of Nephrology and
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhiming Ye
- Department of Nephrology and
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bing Gu
- Department of Clinical Laboratory, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yue Meng
- Department of Clinical Laboratory, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xingyuan Zhang
- Department of Biostatistics, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Di Wu
- Department of Biostatistics, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Youyang Sia
- School of Life Science, Tsinghua University, Beijing, China
| | - Xiaoyun Jiang
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Alexander N. Combes
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | | | - Xueqing Yu
- Department of Nephrology and
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
27
|
Takagi A, Kusunoki Y, Ohigashi M, Osugi K, Inoue C, Inoue M, Tsunoda T, Kadoya M, Konishi K, Katsuno T, Koyama H. Association between continuous glucose monitoring-derived glycemic control indices and urinary biomarkers of diabetic kidney disease: Hyogo Diabetes Hypoglycemia Cognition Complications study. Acta Diabetol 2024; 61:413-423. [PMID: 38006524 DOI: 10.1007/s00592-023-02214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
AIMS Glomerular damage and proximal tubular damage play an important role in the pathogenesis of diabetic kidney disease. This study aimed to investigate the relationship between the urinary markers of proximal tubular injury, including urinary liver-type fatty acid-binding protein-to-creatinine ratio (uL-FABP/Cr) and urinary N-acetyl-β-D-glucosaminidase-to-creatinine ratio (uNAG/Cr), and glycemic control status. METHODS This cross-sectional study included 245 and 39 patients with type 2 diabetes mellitus (T2DM) and non-T2DM (NDM), respectively. The participants of this study were fitted with retrospective CGM, and glycemic control indices, such as time in range (TIR) and glycemia risk index (GRI), were calculated. RESULTS The results were presented as medians (interquartile ranges). The uL-FABP/Cr was significantly higher in the microalbuminuria than in the normo-albuminuria group [4.2 (2.7-7.1) and 2.2 (1.4-3.4) μg/gCr, respectively, P < 0.001], while the uNAG/Cr in the normo-albuminuria group [6.3 (4.5-10.1) U/gCr] was significantly higher than that in the NDM group [5.3 (3.8-6.3) U/gCr, P = 0.048] but significantly lower than that in the microalbuminuria group [9.2 (6.4-11.1) U/gCr, P = 0.004]. The multivariate logistic regression analysis indicated that CGM-derived TIR was significantly associated with the urinary albumin-to-creatinine ratio [uAlb/Cr, odds ratio (OR) 0.985, 95% confidence interval (CI) 0.971-0.998, P = 0.029] and uNAG/Cr (OR 0.973, 95% CI 0.957-0.989, P = 0.001) independent of renal function. GRI was similarly associated with uAlb/Cr and uNAG/Cr. CONCLUSION The findings of this study indicated that uNAG/Cr was elevated before albuminuria development and was associated with CGM-derived TIR and GRI.
Collapse
Affiliation(s)
- Ayako Takagi
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yoshiki Kusunoki
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Mana Ohigashi
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Keiko Osugi
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Chikako Inoue
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Maki Inoue
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Taku Tsunoda
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Manabu Kadoya
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kosuke Konishi
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Tomoyuki Katsuno
- Department of Occupational Therapy, School of Rehabilitation, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Hidenori Koyama
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
28
|
Chen H, Zhang H, Li AM, Liu YT, Liu Y, Zhang W, Yang C, Song N, Zhan M, Yang S. VDR regulates mitochondrial function as a protective mechanism against renal tubular cell injury in diabetic rats. Redox Biol 2024; 70:103062. [PMID: 38320454 PMCID: PMC10850784 DOI: 10.1016/j.redox.2024.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
PURPOSE To investigate the regulatory effect and mechanism of Vitamin D receptor (VDR) on mitochondrial function in renal tubular epithelial cell under diabetic status. METHODS The diabetic rats induced by streptozotocin (STZ) and HK-2 cells under high glocose(HG)/transforming growth factor beta (TGF-β) stimulation were used in this study. Calcitriol was administered for 24 weeks. Renal tubulointerstitial injury and some parameters of mitochondrial function including mitophagy, mitochondrial fission, mitochondrial ROS, mitochondrial membrane potential (MMP), mitochondrial ATP, Complex V activity and mitochondria-associated ER membranes (MAMs) integrity were examined. Additionally, paricalcitol, 3-MA (an autophagy inhibitor), VDR over-expression plasmid, VDR siRNA and Mfn2 siRNA were applied in vitro. RESULTS The expression of VDR, Pink1, Parkin, Fundc1, LC3II, Atg5, Mfn2, Mfn1 in renal tubular cell of diabetic rats were decreased significantly. Calcitriol treatment reduced the levels of urinary albumin, serum creatinine and attenuated renal tubulointerstitial fibrosis in STZ induced diabetic rats. In addition, VDR agonist relieved mitophagy dysfunction, MAMs integrity, and inhibited mitochondrial fission, mitochondrial ROS. Co-immunoprecipitation analysis demonstrated that VDR interacted directly with Mfn2. Mitochondrial function including mitophagy, mitochondrial membrane potential (MMP), mitochondrial Ca2+, mitochondrial ATP and Complex V activity were decreased dramatically in HK-2 cells under HG/TGF-β ambience. In vitro pretreatment of HK-2 cells with autophagy inhibitor 3-MA, VDR siRNA or Mfn2 siRNA negated the activating effects of paricalcitol on mitochondrial function. Pricalcitol and VDR over-expression plasmid activated Mfn2 and then partially restored the MAMs integrity. Additionally, VDR restored mitophagy was partially associated with MAMs integrity through Fundc1. CONCLUSION Activated VDR could contribute to restore mitophagy through Mfn2-MAMs-Fundc1 pathway in renal tubular cell. VDR could recover mitochondrial ATP, complex V activity and MAMs integrity, inhibit mitochondrial fission and mitochondrial ROS. It indicating that VDR agonists ameliorate renal tubulointerstitial fibrosis in diabetic rats partially via regulation of mitochondrial function.
Collapse
Affiliation(s)
- Hong Chen
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Ai-Mei Li
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Yu-Ting Liu
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Yan Liu
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Cheng Yang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Na Song
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| | - Ming Zhan
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, China.
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, China.
| |
Collapse
|
29
|
Wu QS, Zheng DN, Ji C, Qian H, Jin J, He Q. MicroRNA-630 alleviates inflammatory reactions in rats with diabetic kidney disease by targeting toll-like receptor 4. World J Diabetes 2024; 15:488-501. [PMID: 38591087 PMCID: PMC10999043 DOI: 10.4239/wjd.v15.i3.488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 03/15/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is a major complication of diabetes mellitus. Renal tubular epithelial cell (TEC) damage, which is strongly associated with the inflammatory response and mesenchymal trans-differentiation, plays a significant role in DKD; However, the precise molecular mechanism is unknown. The recently identified microRNA-630 (miR-630) has been hypothesized to be closely associated with cell migration, apoptosis, and autophagy. However, the association between miR-630 and DKD and the underlying mechanism remain unknown. AIM To investigate how miR-630 affects TEC injury and the inflammatory response in DKD rats. METHODS Streptozotocin was administered to six-week-old male rats to create a hyperglycemic diabetic model. In the second week of modeling, the rats were divided into control, DKD, negative control of lentivirus, and miR-630 overexpression groups. After 8 wk, urine and blood samples were collected for the kidney injury assays, and renal tissues were removed for further molecular assays. The target gene for miR-630 was predicted using bioinformatics, and the association between miR-630 and toll-like receptor 4 (TLR4) was confirmed using in vitro investigations and double luciferase reporter gene assays. Overexpression of miR-630 in DKD rats led to changes in body weight, renal weight index, basic blood parameters and histopathological changes. RESULTS The expression level of miR-630 was reduced in the kidney tissue of rats with DKD (P < 0.05). The miR-630 and TLR4 expressions in rat renal TECs (NRK-52E) were measured using quantitative reverse transcription polymerase chain reaction. The mRNA expression level of miR-630 was significantly lower in the high-glucose (HG) and HG + mimic negative control (NC) groups than in the normal glucose (NG) group (P < 0.05). In contrast, the mRNA expression level of TLR4 was significantly higher in these groups (P < 0.05). However, miR-630 mRNA expression increased and TLR4 mRNA expression significantly decreased in the HG + miR-630 mimic group than in the HG + mimic NC group (P < 0.05). Furthermore, the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 were significantly higher in the HG and HG + mimic NC groups than in NG group (P < 0.05). However, the levels of these cytokines were significantly lower in the HG + miR-630 mimic group than in the HG + mimic NC group (P < 0.05). Notably, changes in protein expression were observed. The HG and HG + mimic NC groups showed a significant decrease in E-cadherin protein expression, whereas TLR4, α-smooth muscle actin (SMA), and collagen IV protein expression increased (P < 0.05). Conversely, the HG + miR-630 mimic group exhibited a significant increase in E-cadherin protein expression and a notable decrease in TLR4, α-SMA, and collagen IV protein expression than in the HG + mimic NC group (P < 0.05). The miR-630 targets TLR4 gene expression. In vivo experiments demonstrated that DKD rats treated with miR-630 agomir exhibited significantly higher miR-630 mRNA expression than DKD rats injected with agomir NC. Additionally, rats treated with miR-630 agomir showed significant reductions in urinary albumin, blood glucose, TLR4, and proinflammatory markers (TNF-α, IL-1β, and IL-6) expression levels (P < 0.05). Moreover, these rats exhibited fewer kidney lesions and reduced infiltration of inflammatory cells. CONCLUSION MiR-630 may inhibit the inflammatory reaction of DKD by targeting TLR4, and has a protective effect on DKD.
Collapse
Affiliation(s)
- Qi-Shun Wu
- Graduate School, Medical College of Soochow University, Suzhou 215006, Jiangsu Province, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou 314408, Zhejiang Province, China
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Dan-Na Zheng
- Graduate School, Medical College of Soochow University, Suzhou 215006, Jiangsu Province, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou 314408, Zhejiang Province, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 314408, Zhejiang Province, China
| | - Cheng Ji
- Molecular Inspection Laboratory, School of Medicine, Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Hui Qian
- Molecular Inspection Laboratory, School of Medicine, Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310060, Zhejiang Province, China
| | - Qiang He
- Graduate School, Medical College of Soochow University, Suzhou 215006, Jiangsu Province, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou 314408, Zhejiang Province, China
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310060, Zhejiang Province, China
| |
Collapse
|
30
|
Tomita-Yagi A, Ozeki-Okuno N, Watanabe-Uehara N, Komaki K, Umehara M, Sawada-Yamauchi H, Minamida A, Sunahara Y, Matoba Y, Nakamura I, Nakata T, Nakai K, Ida T, Yamashita N, Kamezaki M, Kirita Y, Taniguchi T, Konishi E, Matoba S, Tamagaki K, Kusaba T. The importance of proinflammatory failed-repair tubular epithelia as a predictor of diabetic kidney disease progression. iScience 2024; 27:109020. [PMID: 38357667 PMCID: PMC10865398 DOI: 10.1016/j.isci.2024.109020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/17/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
The immense public health burden of diabetic kidney disease (DKD) has led to an increase in research on the pathophysiology of advanced DKD. The present study focused on the significance of proinflammatory vascular cell adhesion molecule 1 (VCAM1)+ tubules in DKD progression. A retrospective cohort study of DKD patients showed that the percentage of VCAM1+ tubules in kidney samples was correlated with poor renal outcomes. We established an advanced DKD model by partial resection of the kidneys of db/db mice and demonstrated that it closely resembled the human advanced DKD phenotype, with tissue hypoxia, tubular DNA damage, tissue inflammation, and high tubular VCAM1 expression. Luseogliflozin ameliorated tissue hypoxia and proinflammatory responses, including VCAM1+ expression, in tubules. These findings suggest the potential of tubular VCAM1 as a histological marker for poor DKD outcomes. SGLT2 inhibitors may attenuate tissue hypoxia and subsequent tissue inflammation in advanced DKD, thereby ameliorating tubular injury.
Collapse
Affiliation(s)
- Aya Tomita-Yagi
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Natsuko Ozeki-Okuno
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Noriko Watanabe-Uehara
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazumi Komaki
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Minato Umehara
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroko Sawada-Yamauchi
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Minamida
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuto Sunahara
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yayoi Matoba
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Itaru Nakamura
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Nakata
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kunihiro Nakai
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoharu Ida
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Noriyuki Yamashita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michitsugu Kamezaki
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuya Taniguchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiichi Tamagaki
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuro Kusaba
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
31
|
Hu H, Liang W, Ding G. Ion homeostasis in diabetic kidney disease. Trends Endocrinol Metab 2024; 35:142-150. [PMID: 37880052 DOI: 10.1016/j.tem.2023.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023]
Abstract
The complications of type 2 diabetes are a major global public health problem with high incidence and mortality, affecting almost all individuals with diabetes worldwide. Diabetic kidney disease (DKD) is one such primary complication and has become a leading cause of end-stage renal disease in patients with diabetes. Progression from diabetes to DKD is a complex process typically involving multiple mechanisms. Recent remarkable clinical benefits of sodium-glucose cotransporter 2 (SGLT2) inhibitors in diabetes and DKD highlight the critical impact of renal ion homeostasis on disease progression. This review comprehensively examines the impact of ion homeostasis on the transition from diabetes to DKD, outlining possible therapeutic interventions and addressing the ongoing challenges in this rapidly developing field.
Collapse
Affiliation(s)
- Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei 430060, China; Key Clinical Research Center of Kidney Disease, 238 Jiefang Rd, Wuhan, Hubei 430060, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei 430060, China; Key Clinical Research Center of Kidney Disease, 238 Jiefang Rd, Wuhan, Hubei 430060, China.
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei 430060, China; Key Clinical Research Center of Kidney Disease, 238 Jiefang Rd, Wuhan, Hubei 430060, China.
| |
Collapse
|
32
|
Lu J, Li XQ, Chen PP, Zhang JX, Li L, Wang GH, Liu XQ, Jiang CM, Ma KL. Acetyl-CoA synthetase 2 promotes diabetic renal tubular injury in mice by rewiring fatty acid metabolism through SIRT1/ChREBP pathway. Acta Pharmacol Sin 2024; 45:366-377. [PMID: 37770579 PMCID: PMC10789804 DOI: 10.1038/s41401-023-01160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
Diabetic nephropathy (DN) is characterized by chronic low-grade renal inflammatory responses, which greatly contribute to disease progression. Abnormal glucose metabolism disrupts renal lipid metabolism, leading to lipid accumulation, nephrotoxicity, and subsequent aseptic renal interstitial inflammation. In this study, we investigated the mechanisms underlying the renal inflammation in diabetes, driven by glucose-lipid metabolic rearrangement with a focus on the role of acetyl-CoA synthetase 2 (ACSS2) in lipid accumulation and renal tubular injury. Diabetic models were established in mice by the injection of streptozotocin and in human renal tubular epithelial HK-2 cells cultured under a high glucose (HG, 30 mmol/L) condition. We showed that the expression levels of ACSS2 were significantly increased in renal tubular epithelial cells (RTECs) from the diabetic mice and human diabetic kidney biopsy samples, and ACSS2 was co-localized with the pro-inflammatory cytokine IL-1β in RTECs. Diabetic ACSS2-deficient mice exhibited reduced renal tubular injury and inflammatory responses. Similarly, ACSS2 knockdown or inhibition of ACSS2 by ACSS2i (10 µmol/L) in HK-2 cells significantly ameliorated HG-induced inflammation, mitochondrial stress, and fatty acid synthesis. Molecular docking revealed that ACSS2 interacted with Sirtuin 1 (SIRT1). In HG-treated HK-2 cells, we demonstrated that ACSS2 suppressed SIRT1 expression and activated fatty acid synthesis by modulating SIRT1-carbohydrate responsive element binding protein (ChREBP) activity, leading to mitochondrial oxidative stress and inflammation. We conclude that ACSS2 promotes mitochondrial oxidative stress and renal tubular inflammation in DN by regulating the SIRT1-ChREBP pathway. This highlights the potential therapeutic value of pharmacological inhibition of ACSS2 for alleviating renal inflammation and dysregulation of fatty acid metabolic homeostasis in DN. Metabolic inflammation in the renal region, driven by lipid metabolism disorder, is a key factor in renal injury in diabetic nephropathy (DN). Acetyl-CoA synthetase 2 (ACSS2) is abundantly expressed in renal tubular epithelial cells (RTECs) and highly upregulated in diabetic kidneys. Deleting ACSS2 reduces renal fatty acid accumulation and markers of renal tubular injury in diabetic mice. We demonstrate that ACSS2 deletion inhibits ChREBP-mediated fatty acid lipogenesis, mitochondrial oxidative stress, and inflammatory response in RTECs, which play a major role in the progression of diabetic renal tubular injury in the kidney. These findings support the potential use of ACSS2 inhibitors in treating patients with DN.
Collapse
Affiliation(s)
- Jian Lu
- Department of Nephrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xue-Qi Li
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Pei-Pei Chen
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jia-Xiu Zhang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Liang Li
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Gui-Hua Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiao-Qi Liu
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chun-Ming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Kun-Ling Ma
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
33
|
Yin DY, Hou GL, Yang XQ, Bi LL, Mei XF, Bai MK, Zhou L, Zhu S, Huang YJ. Urinary matrix metalloproteinase-7 is a sensitive biomarker to evaluate renal tubular injury in patients with minimal change disease and focal segmental glomerulosclerosis. Clin Kidney J 2024; 17:sfad027. [PMID: 38186883 PMCID: PMC10765092 DOI: 10.1093/ckj/sfad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 01/09/2024] Open
Abstract
Objective To explore the advantages of urinary matrix metalloproteinase-7 (MMP-7) in evaluating renal tubular injury in minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) patients compared with urinary cystatin C (CysC) and retinol-binding protein (RBP). Methods Serum and urine samples were collected from 20 healthy volunteers, and 40 MCD and 20 FSGS patients. Serum and urinary MMP-7 levels were measured by enzyme-linked immunosorbent assay. Urinary total protein, CysC and RBP levels were measured by automatic specific protein analyzer and compared with urinary creatinine level for calibration. The renal tissue serial sections were stained by MMP-7 immunohistochemistry and periodic acid-Schiff. Results Under light microscopy, MMP-7 granular weak positive expression was showed sporadically in the cytoplasm of a few renal tubular epithelial cells without obvious morphological changes in MCD patients, and MMP-7-positive expression was observed in the cytoplasm of some renal tubular epithelial cells in FSGS patients. There was no significant difference in serum MMP-7 level among the three groups. Compared with the control group, the urinary MMP-7 level in MCD patients was higher, but urinary CysC and RBP levels were not increased significantly. Compared with the control group and MCD patients, urinary MMP-7, CysC and RBP levels in FSGS patients were upregulated significantly. Conclusions Urinary MMP-7 could not only evaluate the mild renal tubular epithelial cells injury in MCD patients with massive proteinuria, but also evaluate the continuous renal tubular epithelial cells injury in FSGS patients.
Collapse
Affiliation(s)
- Dan-yang Yin
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gai-ling Hou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiao-qing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Liang-liang Bi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Xiao-feng Mei
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Meng-ke Bai
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Li Zhou
- School of Pharmacy China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shan Zhu
- Department of Pediatrics, Henan Province Hospital of TCM, Zhengzhou, Henan, China
| | - Yan-jie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| |
Collapse
|
34
|
Neumiller JJ, Alicic RZ, Tuttle KR. Optimization of guideline-directed medical therapies in patients with diabetes and chronic kidney disease. Clin Kidney J 2024; 17:sfad285. [PMID: 38213492 PMCID: PMC10783256 DOI: 10.1093/ckj/sfad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 01/13/2024] Open
Abstract
Diabetes is the leading cause of chronic kidney disease (CKD) and kidney failure worldwide. CKD frequently coexists with heart failure and atherosclerotic cardiovascular disease in the broader context of cardio-kidney-metabolic syndrome. Diabetes and CKD are associated with increased risk of all-cause and cardiovascular death as well as decreased quality of life. The role of metabolic and hemodynamic abnormalities has long been recognized as an important contributor to the pathogenesis and progression of CKD in diabetes, while a more recent and growing body of evidence supports activation of both systemic and local inflammation as important contributors. Current guidelines recommend therapies targeting pathomechanisms of CKD in addition to management of traditional risk factors such as hyperglycemia and hypertension. Sodium-glucose cotransporter-2 inhibitors are recommended for treatment of patients with CKD and type 2 diabetes (T2D) if eGFR is ≥20 ml/min/173 m2 on a background of renin-angiotensin system inhibition. For patients with T2D, CKD, and atherosclerotic cardiovascular disease, a glucagon-like peptide-1 receptor agonist is recommended as additional risk-based therapy. A non-steroidal mineralocorticoid receptor antagonist is also recommended as additional risk-based therapy for persistent albuminuria in patients with T2D already treated with renin-angiotensin system inhibition. Implementation of guideline-directed medical therapies is challenging in the face of rapidly accumulating knowledge, high cost of medications, and lack of infrastructure for optimal healthcare delivery. Furthermore, studies of new therapies have focused on T2D and CKD. Clinical trials are now planned to inform the role of these therapies in people with type 1 diabetes (T1D) and CKD.
Collapse
Affiliation(s)
- Joshua J Neumiller
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA, USA
| | - Radica Z Alicic
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Katherine R Tuttle
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Nephrology Division, Kidney Research Institute, and Institute of Translational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
35
|
Concepción M, Quiroz J, Suarez J, Paz J, Roseboom P, Ildefonso S, Cribilleros D, Zavaleta F, Coronado J, Concepción L. Novel Biomarkers for the diagnosis of diabetic nephropathy. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:382-391. [PMID: 39011442 PMCID: PMC11246682 DOI: 10.22088/cjim.15.3.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/03/2022] [Accepted: 10/31/2022] [Indexed: 07/17/2024]
Abstract
Diabetes mellitus and its complications are a known public health problem nowadays. Diabetic nephropathy is one of the main complications and the result of multiple mechanisms, including: activation of the renin-angiotensin-aldosterone system, formation of advanced glycation end products and chronic inflammation that led to glomerular and tubulo-interstitial damage producing mesangial expansion and glomerulosclerosis, which finally results in chronic kidney disease. Early detection of diabetic nephropathy is essential for adequate intervention to stop, or at least slow down its progression. Multiple markers have been described, not only the classic ones such as serum creatinine, urea, and albuminuria, but at this point also novel biomarkers such as neutrophil gelatinase-associated lipocalin, tumor necrosis factor 1 receptor and monocyte chemoattractant protein-1, among others. The aim of this article was to provide an update review of the role of biomarkers in the diagnosis of diabetic nephropathy.
Collapse
Affiliation(s)
| | - Juan Quiroz
- Division of Medicine, Hospital de Apoyo Chepén, Peru
| | | | - José Paz
- Division of Endocrinology, Edgardo Rebagliati Martins National Hospital, Lima, Peru
- Faculty of Medicine, San Marcos Mayor National University, Lima, Peru
| | - Pela Roseboom
- Department of Medicine. Cesar Vallejo Mendoza Hospital, Santiago de Chuco, Peru
| | - Sofia Ildefonso
- Division of Endocrinology, Guillermo Almenara Irigoyen National Hospital, Lima, Peru
| | | | | | | | - Luis Concepción
- Department of Medicine. Hospital Regional Docente of Trujillo, Trujillo, Peru
- Faculty of Medicine, National University of Trujillo, Trujillo, Peru
| |
Collapse
|
36
|
Limonte CP, Prince DK, Hoofnagle AN, Galecki A, Hirsch IB, Tian F, Waikar SS, Looker HC, Nelson RG, Doria A, Mauer M, Kestenbaum BR, de Boer IH. Associations of Biomarkers of Tubular Injury and Inflammation with Biopsy Features in Type 1 Diabetes. Clin J Am Soc Nephrol 2024; 19:44-55. [PMID: 37871959 PMCID: PMC10843226 DOI: 10.2215/cjn.0000000000000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Whether biomarkers of tubular injury and inflammation indicate subclinical structural kidney pathology early in type 1 diabetes remains unknown. METHODS We investigated associations of biomarkers of tubular injury and inflammation with kidney structural features in 244 adults with type 1 diabetes from the Renin-Angiotensin System Study, a randomized, placebo-controlled trial testing effects of enalapril or losartan on changes in glomerular, tubulointerstitial, and vascular parameters from baseline to 5-year kidney biopsies. Biosamples at biopsy were assessed for kidney injury molecule 1 (KIM-1), soluble TNF receptor 1 (sTNFR1), arginine-to-citrulline ratio in plasma, and uromodulin and epidermal growth factor (EGF) in urine. We examined cross-sectional correlations between biomarkers and biopsy features and baseline biomarker associations with 5-year changes in biopsy features. RESULTS Participants' mean age was 30 years (SD 10) and diabetes duration 11 years (SD 5); 53% were women. The mean GFR measured by iohexol disappearance was 128 ml/min per 1.73 m 2 (SD 19) and median urinary albumin excretion was 5 μ g/min (interquartile range, 3-8). KIM-1 was associated with most biopsy features: higher mesangial fractional volume (0.5% [95% confidence interval (CI), 0.1 to 0.9] greater per SD KIM-1), glomerular basement membrane (GBM) width (14.2 nm [95% CI, 6.5 to 22.0] thicker), cortical interstitial fractional volume (1.1% [95% CI, 0.6 to 1.6] greater), fractional volume of cortical atrophic tubules (0.6% [95% CI, 0.2 to 0.9] greater), and arteriolar hyalinosis index (0.03 [95% CI, 0.1 to 0.05] higher). sTNFR1 was associated with higher mesangial fractional volume (0.9% [95% CI, 0.5 to 1.3] greater) and GBM width (12.5 nm [95% CI, 4.5 to 20.5] thicker) and lower GBM surface density (0.003 μ m 2 / μ m 3 [95% CI, 0.005 to 0.001] lesser). EGF and arginine-to-citrulline ratio correlated with severity of glomerular and tubulointerstitial features. Baseline sTNFR1, uromodulin, and EGF concentrations were associated with 5-year glomerular and tubulointerstitial feature progression. CONCLUSIONS Biomarkers of tubular injury and inflammation were associated with kidney structural parameters in early type 1 diabetes and may be indicators of kidney disease risk. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Renin Angiotensin System Study (RASS/B-RASS), NCT00143949. PODCAST This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/CJASN/2023_11_17_CJN0000000000000333.mp3.
Collapse
Affiliation(s)
- Christine P. Limonte
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - David K. Prince
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Andrew N. Hoofnagle
- Kidney Research Institute, University of Washington, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Andrzej Galecki
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Irl B. Hirsch
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington
| | - Frances Tian
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Helen C. Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Alessandro Doria
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michael Mauer
- Department of Pediatrics and Medicine, University of Minnesota, Minneapolis, Massachusetts
| | - Bryan R. Kestenbaum
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Ian H. de Boer
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
- Kidney Research Institute, University of Washington, Seattle, Washington
| |
Collapse
|
37
|
Niu H, Ren X, Tan E, Wan X, Wang Y, Shi H, Hou Y, Wang L. CD36 deletion ameliorates diabetic kidney disease by restoring fatty acid oxidation and improving mitochondrial function. Ren Fail 2023; 45:2292753. [PMID: 38097943 PMCID: PMC10732185 DOI: 10.1080/0886022x.2023.2292753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Renal tubular epithelial cells (TECs) are vulnerable to mitochondrial dysregulation, which is an integral part of diabetic kidney disease (DKD). We found that CD36 knockout ameliorated mitochondrial dysfunction and diabetic kidney injury in mice, improved renal function, glomerular hypertrophy, tubular injury, tubulointerstitial fibrosis, and kidney cell apoptosis. Furthermore, CD36 knockout conferred protection against diabetes-induced mitochondrial dysfunction and restored renal tubular cells and mitochondrial morphology. CD36 knockout also restored mitochondrial fatty acid oxidation (FAO) and enhanced FAO-associated respiration in diabetic TECs. CD36 was found to alter cellular metabolic pathways in diabetic kidneys partly via PDK4 the -AMPK axis inactivation. Because CD36 protects against DKD by improving mitochondrial function and restoring FAO, it can serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Huimin Niu
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
- Department of Nephrology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xiayu Ren
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Enxue Tan
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Xing Wan
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yu Wang
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Honghong Shi
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yanjuan Hou
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Lihua Wang
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
38
|
Xue R, Xiao H, Kumar V, Lan X, Malhotra A, Singhal PC, Chen J. The Molecular Mechanism of Renal Tubulointerstitial Inflammation Promoting Diabetic Nephropathy. Int J Nephrol Renovasc Dis 2023; 16:241-252. [PMID: 38075191 PMCID: PMC10710217 DOI: 10.2147/ijnrd.s436791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 02/12/2024] Open
Abstract
Diabetic nephropathy (DN) is a common complication affecting many diabetic patients, leading to end-stage renal disease. However, its pathogenesis still needs to be fully understood to enhance the effectiveness of treatment methods. Traditional theories are predominantly centered on glomerular injuries and need more explicit explanations of recent clinical observations suggesting that renal tubules equally contribute to renal function and that tubular lesions are early features of DN, even occurring before glomerular lesions. Although the conventional view is that DN is not an inflammatory disease, recent studies indicate that systemic and local inflammation, including tubulointerstitial inflammation, contributes to the development of DN. In patients with DN, intrinsic tubulointerstitial cells produce many proinflammatory factors, leading to medullary inflammatory cell infiltration and activation of inflammatory cells in the interstitial region. Therefore, understanding the molecular mechanism of renal tubulointerstitial inflammation contributing to DN injury is of great significance and will help further identify key factors regulating renal tubulointerstitial inflammation in the high glucose environment. This will aid in developing new targets for DN diagnosis and treatment and expanding new DN treatment methods.
Collapse
Affiliation(s)
- Rui Xue
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People’s Republic of China
| | - Haiting Xiao
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Vinod Kumar
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Xiqian Lan
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Pravin C Singhal
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Jianning Chen
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People’s Republic of China
| |
Collapse
|
39
|
Shi R, Zhao W, Zhu L, Wang R, Wang D. Identification of basement membrane markers in diabetic kidney disease and immune infiltration by using bioinformatics analysis and experimental verification. IET Syst Biol 2023; 17:316-326. [PMID: 37776100 PMCID: PMC10725710 DOI: 10.1049/syb2.12078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease worldwide. Basement membranes (BMs) are ubiquitous extracellular matrices which are affected in many diseases including DKD. Here, the authors aimed to identify BM-related markers in DKD and explored the immune cell infiltration in this process. The expression profiles of three datasets were downloaded from the Gene Expression Omnibus database. BM-related differentially expression genes (DEGs) were identified and Kyoto encyclopaedia of genes and genomes pathway enrichment analysis were applied to biological functions. Immune cell infiltration and immune function in the kidneys of patients with DKD and healthy controls were evaluated and compared using the ssGSEA algorithm. The association of hub genes and immune cells and immune function were explored. A total of 30 BM-related DEGs were identified. The functional analysis showed that BM-related DEGs were notably associated with basement membrane alterations. Crucially, BM-related hub genes in DKD were finally identified, which were able to distinguish patients with DKD from controls. Moreover, the authors observed that laminin subunit gamma 1(LAMC1) expression was significantly high in HK2 cells treated with high glucose. Immunohistochemistry results showed that, compared with those in db/m mouse kidneys, the levels of LAMC1 in db/db mouse kidneys were significantly increased. The biomarkers genes may prove crucial for DKD treatment as they could be targeted in future DKD treatment protocols.
Collapse
Affiliation(s)
- Rui Shi
- Department of NephrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Wen‐Man Zhao
- Department of NephrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Li Zhu
- Department of NephrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Rui‐Feng Wang
- Department of NephrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - De‐Guang Wang
- Department of NephrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
40
|
Ji JL, Shi HM, Li ZL, Jin R, Qu GT, Zheng H, Wang E, Qiao YY, Li XY, Ding L, Ding DF, Ding LC, Gan WH, Wang B, Zhang AQ. Satellite cell-derived exosome-mediated delivery of microRNA-23a/27a/26a cluster ameliorates the renal tubulointerstitial fibrosis in mouse diabetic nephropathy. Acta Pharmacol Sin 2023; 44:2455-2468. [PMID: 37596398 PMCID: PMC10692096 DOI: 10.1038/s41401-023-01140-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023]
Abstract
Renal tubulointerstitial fibrosis (TIF) is considered as the final convergent pathway of diabetic nephropathy (DN) without effective therapies currently. MiRNAs play a key role in fibrotic diseases and become promising therapeutic targets for kidney diseases, while miRNA clusters, formed by the cluster arrangement of miRNAs on chromosomes, can regulate diverse biological functions alone or synergistically. In this study, we developed clustered miR-23a/27a/26a-loaded skeletal muscle satellite cells-derived exosomes (Exos) engineered with RVG peptide, and investigated their therapeutic efficacy in a murine model of DN. Firstly, we showed that miR-23a-3p, miR-26a-5p and miR-27a-3p were markedly decreased in serum samples of DN patients using miRNA sequencing. Meanwhile, we confirmed that miR-23a-3p, miR-26a-5p and miR-27a-3p were primarily located in proximal renal tubules and highly negatively correlated with TIF in db/db mice at 20 weeks of age. We then engineered RVG-miR-23a/27a/26a cluster loaded Exos derived from muscle satellite cells, which not only enhanced the stability of miR-23a/27a/26a cluster, but also efficiently delivered more miR-23a/27a/26a cluster homing to the injured kidney. More importantly, administration of RVG-miR-23a/27a/26a-Exos (100 μg, i.v., once a week for 8 weeks) significantly ameliorated tubular injury and TIF in db/db mice at 20 weeks of age. We revealed that miR-23a/27a/26a-Exos enhanced antifibrotic effects by repressing miRNA cluster-targeting Lpp simultaneously, as well as miR-27a-3p-targeting Zbtb20 and miR-26a-5p-targeting Klhl42, respectively. Knockdown of Lpp by injection of AAV-Lpp-RNAi effectively ameliorated the progression of TIF in DN mice. Taken together, we established a novel kidney-targeting Exo-based delivery system by manipulating the miRNA-23a/27a/26a cluster to ameliorate TIF in DN, thus providing a promising therapeutic strategy for DN.
Collapse
Affiliation(s)
- Jia-Ling Ji
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Hui-Min Shi
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Ran Jin
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Gao-Ting Qu
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Hui Zheng
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - E Wang
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Yun-Yang Qiao
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Xing-Yue Li
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Ling Ding
- Department of Pediatrics, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, China
| | - Da-Fa Ding
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Liu-Cheng Ding
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Wei-Hua Gan
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, 210009, China.
| | - Ai-Qing Zhang
- Department of Pediatrics, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, China.
| |
Collapse
|
41
|
方 晨, 孙 丽, 刘 研, 肖 力, 孙 林. [Non-Classical Clinical Types and Pathological Changes of Diabetic Kidney Disease: A Review]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1074-1079. [PMID: 38162079 PMCID: PMC10752793 DOI: 10.12182/20231160102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 01/03/2024]
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes mellitus and approximately 1/3 of diabetic patients may progress to DKD. A typical early clinical manifestation of DKD is microalbuminuria and patients may present with macroproteinuria accompanied by a decrease in renal function condition as the disease progresses. It is generally believed that the likelihood of a reversal of the disease is reduced after the development of macroproteinuria in patients with DKD, and that eventually some patients' condition may develop into end-stage renal disease (ESRD). Moreover, the thickening of the glomerular basement membrane, mesangial matrix expansion, Kimmelstiel-Wilson (K-W) nodules, and glomerulosclerosis in end-stage diabetes mellitus are typical pathologic changes of DKD. However, some DKD patients, especially those with type 2 diabetes mellitus (T2DM) combined with DKD, may have diverse clinical manifestations, showing variations in disease progression and regression, and manifesting as non-classical types of DKD, such as normoalbuminuric DKD, proteinuria-reduced DKD, and DKD with rapid decline in renal function. In addition, the formation of crescents, a special pathological change, is observed in renal biopsy. However, this issue is currently under-recognized by clinicians and therefore deserves more attention. In order to improve clinicians' understanding of the presentations and pathological changes of non-classical DKD and the level of DKD prevention and treatment in China, we present a preliminary introduction to the clinical phenotypes and pathological changes of non-classical types of DKD in this paper by summarizing the findings of our prior studies as well as domestic and international literature.
Collapse
Affiliation(s)
- 晨茜 方
- 中南大学湘雅二医院 肾内科 (长沙 410011)Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - 丽雅 孙
- 中南大学湘雅二医院 肾内科 (长沙 410011)Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - 研 刘
- 中南大学湘雅二医院 肾内科 (长沙 410011)Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - 力 肖
- 中南大学湘雅二医院 肾内科 (长沙 410011)Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - 林 孙
- 中南大学湘雅二医院 肾内科 (长沙 410011)Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
42
|
Silva-Aguiar RP, Teixeira DE, Peres RAS, Alves SAS, Novaes-Fernandes C, Dias WB, Pinheiro AAS, Peruchetti DB, Caruso-Neves C. O-Linked GlcNAcylation mediates the inhibition of proximal tubule (Na ++K +)ATPase activity in the early stage of diabetes mellitus. Biochim Biophys Acta Gen Subj 2023; 1867:130466. [PMID: 37742874 DOI: 10.1016/j.bbagen.2023.130466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is a severe complication of diabetes mellitus (DM). It has been proposed that modifications in the function of proximal tubule epithelial cells (PTECs) precede glomerular damage during the onset of DKD. This study aimed to identify modifications in renal sodium handling in the early stage of DM and its molecular mechanism. METHODS Streptozotocin (STZ)-induced diabetic BALB/c mice (STZ group) and LLC-PK1 cells, a model of PTECs, were used. All parameters were assessed in the 4th week after an initial injection of STZ. RESULTS Early stage of DKD was characterized by hyperfiltration and PTEC dysfunction. STZ group exhibited increased urinary sodium excretion due to impairment of tubular sodium reabsorption. This was correlated to a decrease in cortical (Na++K+)ATPase (NKA) α1 subunit expression and enzyme activity and an increase in O-GlcNAcylation. RNAseq analysis of patients with DKD revealed an increase in expression of the glutamine-fructose aminotransferase (GFAT) gene, a rate-limiting step of hexosamine biosynthetic pathway, and a decrease in NKA expression. Incubation of LLC-PK1 cells with 10 μM thiamet G, an inhibitor of O-GlcNAcase, reduced the expression and activity of NKA and increased O-GlcNAcylation. Furthermore, 6-diazo-5-oxo-L-norleucine (DON), a GFAT inhibitor, or dapagliflozin, an SGLT2 inhibitor, avoided the inhibitory effect of HG on expression and activity of NKA associated with the decrease in O-GlcNAcylation. CONCLUSION Our results show that the impairment of tubular sodium reabsorption, in the early stage of DM, is due to SGLT2-mediated HG influx in PTECs, increase in O-GlcNAcylation and reduction in NKA expression and activity.
Collapse
Affiliation(s)
- Rodrigo P Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo A S Peres
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sarah A S Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Novaes-Fernandes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner B Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTIC, Rio de Janeiro, Brazil.
| |
Collapse
|
43
|
Iizuka K, Deguchi K. Editorial: Diabetic renal tubulointerstitial disease. Front Endocrinol (Lausanne) 2023; 14:1303514. [PMID: 38027121 PMCID: PMC10649770 DOI: 10.3389/fendo.2023.1303514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Katsumi Iizuka
- Department of Clinical Nutrition, Graduate School of Medicine, Fujita Health University, Toyoake, Japan
- Food and Nutrition Service Department, Fujita Health University Hospital, Toyoake, Japan
| | - Kanako Deguchi
- Department of Clinical Nutrition, Graduate School of Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
44
|
Vučić Lovrenčić M, Božičević S, Smirčić Duvnjak L. Diagnostic challenges of diabetic kidney disease. Biochem Med (Zagreb) 2023; 33:030501. [PMID: 37545693 PMCID: PMC10373061 DOI: 10.11613/bm.2023.030501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/10/2023] [Indexed: 08/08/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common microvascular complications of both type 1 and type 2 diabetes and the most common cause of the end-stage renal disease (ESRD). It has been evidenced that targeted interventions at an early stage of DKD can efficiently prevent or delay the progression of kidney failure and improve patient outcomes. Therefore, regular screening for DKD has become one of the fundamental principles of diabetes care. Long-established biomarkers such as serum-creatinine-based estimates of glomerular filtration rate and albuminuria are currently the cornerstone of diagnosis and risk stratification in routine clinical practice. However, their immanent biological limitations and analytical variations may influence the clinical interpretation of the results. Recently proposed new predictive equations without the variable of race, together with the evidence on better accuracy of combined serum creatinine and cystatin C equations, and both race- and sex-free cystatin C-based equation, have enabled an improvement in the detection of DKD, but also require the harmonization of the recommended laboratory tests, wider availability of cystatin C testing and specific approach in various populations. Considering the complex pathophysiology of DKD, particularly in type 2 diabetes, a panel of biomarkers is needed to classify patients in terms of the rate of disease progression and/or response to specific interventions. With a personalized approach to diagnosis and treatment, in the future, it will be possible to respond to DKD better and enable improved outcomes for numerous patients worldwide.
Collapse
Affiliation(s)
- Marijana Vučić Lovrenčić
- Department of clinical chemistry and laboratory medicine, University hospital Merkur, Zagreb, Croatia
| | - Sandra Božičević
- Department of clinical chemistry and laboratory medicine, University hospital Merkur, Zagreb, Croatia
| | - Lea Smirčić Duvnjak
- Vuk Vrhovac University clinic for diabetes, endocrinology and metabolic diseases, University hospital Merkur, Zagreb, Croatia
- School of medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
45
|
Shi Y, Guo Z, Liu F, Pan S, Gao D, Zhou S, Liu Z, Wang F, Liu D, Liu Z. Analysis of potential biomarkers for diabetic kidney disease based on single-cell RNA-sequencing integrated with a single-cell sequencing assay for transposase-accessible chromatin. Aging (Albany NY) 2023; 15:10681-10704. [PMID: 37827693 PMCID: PMC10599739 DOI: 10.18632/aging.205107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Diabetic kidney disease (DKD) is a renal microvascular disease caused by hyperglycemia that involves metabolic remodeling, oxidative stress, inflammation, and other factors. The mechanism is complex and not fully unraveled. We performed an integrated single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) and single-cell RNA-sequencing (scRNA-seq) analyses of kidneys from db/db and db/m mice to identify differential open chromatin regions and gene expression, particularly in genes related to proximal tubular reabsorption and secretion. We identified 9,776 differentially expressed genes (DEGs) and 884 cell type-specific transcription factors (TFs) across 15 cell types. Glucose and lipid transporters, and TFs related to the circadian rhythm in the proximal tubules had significantly higher expression in db/db mice than in db/m mice (P<0.01). Crosstalk between podocytes and tubular cells in the proximal tubules was enhanced, and renal inflammation, oxidative stress, and fibrosis pathways were activated in db/db mice. Western blotting and immunohistochemical staining results showed that Wfdc2 expression in the urine and kidneys of DKD patients was higher than that in non-diabetic kidney disease (NDKD) controls. The revealed landscape of chromatin accessibility and transcriptional profiles in db/db mice provide insights into the pathological mechanism of DKD.
Collapse
Affiliation(s)
- Yan Shi
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Zuishuang Guo
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Fengxun Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Dan Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Zhenjie Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Feng Wang
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Department of Nephrology, Shanghai Eighth People’s Hospital, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, P.R. China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| |
Collapse
|
46
|
Xu C, Ha X, Yang S, Tian X, Jiang H. Advances in understanding and treating diabetic kidney disease: focus on tubulointerstitial inflammation mechanisms. Front Endocrinol (Lausanne) 2023; 14:1232790. [PMID: 37859992 PMCID: PMC10583558 DOI: 10.3389/fendo.2023.1232790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes that can lead to end-stage kidney disease. Despite its significant impact, most research has concentrated on the glomerulus, with little attention paid to the tubulointerstitial region, which accounts for the majority of the kidney volume. DKD's tubulointerstitial lesions are characterized by inflammation, fibrosis, and loss of kidney function, and recent studies indicate that these lesions may occur earlier than glomerular lesions. Evidence has shown that inflammatory mechanisms in the tubulointerstitium play a critical role in the development and progression of these lesions. Apart from the renin-angiotensin-aldosterone blockade, Sodium-Glucose Linked Transporter-2(SGLT-2) inhibitors and new types of mineralocorticoid receptor antagonists have emerged as effective ways to treat DKD. Moreover, researchers have proposed potential targeted therapies, such as inhibiting pro-inflammatory cytokines and modulating T cells and macrophages, among others. These therapies have demonstrated promising results in preclinical studies and clinical trials, suggesting their potential to treat DKD-induced tubulointerstitial lesions effectively. Understanding the immune-inflammatory mechanisms underlying DKD-induced tubulointerstitial lesions and developing targeted therapies could significantly improve the treatment and management of DKD. This review summarizes the latest advances in this field, highlighting the importance of focusing on tubulointerstitial inflammation mechanisms to improve DKD outcomes.
Collapse
Affiliation(s)
- Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaowen Ha
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
47
|
Yang J, Li L, Li C, Chen W, Liu Y, Luo S, Zhao C, Han Y, Yang M, Zhao H, Jiang N, Xi Y, Tang C, Cai J, Xiao L, Liu H, Sun L. PACS-2 deficiency aggravates tubular injury in diabetic kidney disease by inhibiting ER-phagy. Cell Death Dis 2023; 14:649. [PMID: 37794057 PMCID: PMC10550977 DOI: 10.1038/s41419-023-06175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Autophagy of endoplasmic reticulum (ER-phagy) selectively removes damaged ER through autophagy-lysosome pathway, acting as an adaptive mechanism to alleviate ER stress and restore ER homeostasis. However, the role and precise mechanism of ER-phagy in tubular injury of diabetic kidney disease (DKD) remain obscure. In the present study, we demonstrated that ER-phagy of renal tubular cells was severely impaired in streptozocin (STZ)-induced diabetic mice, with a decreased expression of phosphofurin acidic cluster sorting protein 2 (PACS-2), a membrane trafficking protein which was involved in autophagy, and a reduction of family with sequence similarity 134 member B (FAM134B), one ER-phagy receptor. These changes were further aggravated in mice with proximal tubule specific knockout of Pacs-2 gene. In vitro, transfection of HK-2 cells with PACS-2 overexpression plasmid partially improved the impairment of ER-phagy and the reduction of FAM134B, both of which were induced in high glucose ambience; while the effect was blocked by FAM134B siRNA. Mechanistically, PACS-2 interacted with and promoted the nuclear translocation of transcription factor EB (TFEB), which was reported to activate the expression of FAM134B. Collectively, these data unveiled that PACS-2 deficiency aggravates renal tubular injury in DKD via inhibiting ER-phagy through TFEB/FAM134B pathway.
Collapse
Affiliation(s)
- Jinfei Yang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chanyue Zhao
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Juan Cai
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Huafeng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lin Sun
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
48
|
Kunke M, Knöfler H, Dahlke E, Zanon Rodriguez L, Böttner M, Larionov A, Saudenova M, Ohrenschall GM, Westermann M, Porubsky S, Bernardes JP, Häsler R, Magnin JL, Koepsell H, Jouret F, Theilig F. Targeted deletion of von-Hippel-Lindau in the proximal tubule conditions the kidney against early diabetic kidney disease. Cell Death Dis 2023; 14:562. [PMID: 37626062 PMCID: PMC10457389 DOI: 10.1038/s41419-023-06074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Glomerular hyperfiltration and albuminuria subject the proximal tubule (PT) to a subsequent elevation of workload, growth, and hypoxia. Hypoxia plays an ambiguous role in the development and progression of DKD and shall be clarified in our study. PT-von-Hippel-Lindau (Vhl)-deleted mouse model in combination with streptozotocin (STZ)-induced type I diabetes mellitus (DM) was phenotyped. In contrary to PT-Vhl-deleted STZ-induced type 1 DM mice, proteinuria and glomerular hyperfiltration occurred in diabetic control mice the latter due to higher nitric oxide synthase 1 and sodium and glucose transporter expression. PT Vhl deletion and DKD share common alterations in gene expression profiles, including glomerular and tubular morphology, and tubular transport and metabolism. Compared to diabetic control mice, the most significantly altered in PT Vhl-deleted STZ-induced type 1 DM mice were Ldc-1, regulating cellular oxygen consumption rate, and Zbtb16, inhibiting autophagy. Alignment of altered genes in heat maps uncovered that Vhl deletion prior to STZ-induced DM preconditioned the kidney against DKD. HIF-1α stabilization leading to histone modification and chromatin remodeling resets most genes altered upon DKD towards the control level. These data demonstrate that PT HIF-1α stabilization is a hallmark of early DKD and that targeting hypoxia prior to the onset of type 1 DM normalizes renal cell homeostasis and prevents DKD development.
Collapse
Affiliation(s)
- Madlen Kunke
- Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany
| | - Hannah Knöfler
- Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany
| | - Eileen Dahlke
- Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany
| | | | - Martina Böttner
- Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany
| | - Alexey Larionov
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | | | | | | | | | - Joana P Bernardes
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Robert Häsler
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - François Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège (ULiège), Liège, Belgium
- Division of Nephrology, CHU of Liège, University of Liège (CHU ULiège), Liège, Belgium
| | - Franziska Theilig
- Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany.
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
49
|
Liu T, Jin Q, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Regulation of autophagy by natural polyphenols in the treatment of diabetic kidney disease: therapeutic potential and mechanism. Front Endocrinol (Lausanne) 2023; 14:1142276. [PMID: 37635982 PMCID: PMC10448531 DOI: 10.3389/fendo.2023.1142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a leading cause of end-stage renal disease worldwide. Autophagy plays an important role in maintaining cellular homeostasis in renal physiology. In DKD, the accumulation of advanced glycation end products induces decreased renal autophagy-related protein expression and transcription factor EB (TFEB) nuclear transfer, leading to impaired autophagy and lysosomal function and blockage of autophagic flux. This accelerates renal resident cell injury and apoptosis, mediates macrophage infiltration and phenotypic changes, ultimately leading to aggravated proteinuria and fibrosis in DKD. Natural polyphenols show promise in treating DKD by regulating autophagy and promoting nuclear transfer of TFEB and lysosomal repair. This review summarizes the characteristics of autophagy in DKD, and the potential application and mechanisms of some known natural polyphenols as autophagy regulators in DKD, with the goal of contributing to a deeper understanding of natural polyphenol mechanisms in the treatment of DKD and promoting the development of their applications. Finally, we point out the limitations of polyphenols in current DKD research and provide an outlook for their future research.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
50
|
Wang Y, Jin M, Cheng CK, Li Q. Tubular injury in diabetic kidney disease: molecular mechanisms and potential therapeutic perspectives. Front Endocrinol (Lausanne) 2023; 14:1238927. [PMID: 37600689 PMCID: PMC10433744 DOI: 10.3389/fendo.2023.1238927] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diabetic kidney disease (DKD) is a chronic complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. Currently, there are limited therapeutic drugs available for DKD. While previous research has primarily focused on glomerular injury, recent studies have increasingly emphasized the role of renal tubular injury in the pathogenesis of DKD. Various factors, including hyperglycemia, lipid accumulation, oxidative stress, hypoxia, RAAS, ER stress, inflammation, EMT and programmed cell death, have been shown to induce renal tubular injury and contribute to the progression of DKD. Additionally, traditional hypoglycemic drugs, anti-inflammation therapies, anti-senescence therapies, mineralocorticoid receptor antagonists, and stem cell therapies have demonstrated their potential to alleviate renal tubular injury in DKD. This review will provide insights into the latest research on the mechanisms and treatments of renal tubular injury in DKD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mingyue Jin
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qiang Li
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| |
Collapse
|