1
|
Calzetta L, Page C, Matera MG, Cazzola M, Rogliani P. Drug-Drug Interactions and Synergy: From Pharmacological Models to Clinical Application. Pharmacol Rev 2024; 76:1159-1220. [PMID: 39009470 DOI: 10.1124/pharmrev.124.000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
This review explores the concept of synergy in pharmacology, emphasizing its importance in optimizing treatment outcomes through the combination of drugs with different mechanisms of action. Synergy, defined as an effect greater than the expected additive effect elicited by individual agents according to specific predictive models, offers a promising approach to enhance therapeutic efficacy while minimizing adverse events. The historical evolution of synergy research, from ancient civilizations to modern pharmacology, highlights the ongoing quest to understand and harness synergistic interactions. Key concepts, such as concentration-response curves, additive effects, and predictive models, are discussed in detail, emphasizing the need for accurate assessment methods throughout translational drug development. Although various mathematical models exist for synergy analysis, selecting the appropriate model and software tools remains a challenge, necessitating careful consideration of experimental design and data interpretation. Furthermore, this review addresses practical considerations in synergy assessment, including preclinical and clinical approaches, mechanism of action, and statistical analysis. Optimizing synergy requires attention to concentration/dose ratios, target site localization, and timing of drug administration, ensuring that the benefits of combination therapy detected bench-side are translatable into clinical practice. Overall, the review advocates for a systematic approach to synergy assessment, incorporating robust statistical analysis, effective and simplified predictive models, and collaborative efforts across pivotal sectors, such as academic institutions, pharmaceutical companies, and regulatory agencies. By overcoming critical challenges and maximizing therapeutic potential, effective synergy assessment in drug development holds promise for advancing patient care. SIGNIFICANCE STATEMENT: Combining drugs with different mechanisms of action for synergistic interactions optimizes treatment efficacy and safety. Accurate interpretation of synergy requires the identification of the expected additive effect. Despite innovative models to predict the additive effect, consensus in drug-drug interactions research is lacking, hindering the bench-to-bedside development of combination therapies. Collaboration among science, industry, and regulation is crucial for advancing combination therapy development, ensuring rigorous application of predictive models in clinical settings.
Collapse
Affiliation(s)
- Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Clive Page
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Maria Gabriella Matera
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Mario Cazzola
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Paola Rogliani
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| |
Collapse
|
2
|
Tian L, Zhao C, Yan Y, Jia Q, Cui S, Chen H, Li X, Jiang H, Yao Y, He K, Zhao X. Ceramide-1-phosphate alleviates high-altitude pulmonary edema by stabilizing circadian ARNTL-mediated mitochondrial dynamics. J Adv Res 2024; 60:75-92. [PMID: 37479181 PMCID: PMC11156611 DOI: 10.1016/j.jare.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
INTRODUCTION High-altitude pulmonary edema (HAPE) is a severe and potentially fatal condition with limited treatment options. Although ceramide kinase (CERK)-derived ceramide-1-phosphate (C1P) has been demonstrated to offer protection against various pulmonary diseases, its effects on HAPE remain unclear. OBJECTIVES Our study aimed to investigate the potential role of CERK-derived C1P in the development of HAPE and to reveal the molecular mechanisms underlying its protective effects. We hypothesized that CERK-derived C1P could protect against HAPE by stabilizing circadian rhythms and maintaining mitochondrial dynamics. METHODS To test our hypothesis, we used CERK-knockout mice and established HAPE mouse models using a FLYDWC50-1C hypobaric hypoxic cabin. We utilized a range of methods, including lipidomics, transcriptomics, immunofluorescence, Western blotting, and transmission electron microscopy, to identify the mechanisms of regulation. RESULTS Our findings demonstrated that CERK-derived C1P played a protective role against HAPE. Inhibition of CERK exacerbated HAPE induced by the hypobaric hypoxic environment. Specifically, we identified a novel mechanism in which CERK inhibition induced aryl hydrocarbon receptor nuclear translocator-like (ARNTL) autophagic degradation, inducing the circadian rhythm and triggering mitochondrial damage by controlling the expression of proteins required for mitochondrial fission and fusion. The decreased ARNTL caused by CERK inhibition impaired mitochondrial dynamics, induced oxidative stress damage, and resulted in defects in mitophagy, particularly under hypoxia. Exogenous C1P prevented ARNTL degradation, alleviated mitochondrial damage, neutralized oxidative stress induced by CERK inhibition, and ultimately relieved HAPE. CONCLUSIONS This study provides evidence for the protective effect of C1P against HAPE, specifically, through stabilizing circadian rhythms and maintaining mitochondrial dynamics. Exogenous C1P therapy may be a promising strategy for treating HAPE. Our findings also highlight the importance of the circadian rhythm and mitochondrial dynamics in the pathogenesis of HAPE, suggesting that targeting these pathways may be a potential therapeutic approach for this condition.
Collapse
Affiliation(s)
- Liuyang Tian
- School of Medicine, Nankai University, Tianjin 300071, China; Medical Big Data Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China; National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China
| | - Chenghui Zhao
- National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; Research Center for Biomedical Engineering, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Yan
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Jia
- National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Saijia Cui
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Huining Chen
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaolu Li
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University Beijing Anzhen Hospital, Beijing 100029, China
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University Beijing Anzhen Hospital, Beijing 100029, China
| | - Yongming Yao
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China.
| | - Kunlun He
- Medical Big Data Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China; National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| | - Xiaojing Zhao
- National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
3
|
Abstract
The timing of life on Earth is remarkable: between individuals of the same species, a highly similar temporal pattern is observed, with shared periods of activity and inactivity each day. At the individual level, this means that over the course of a single day, a person alternates between two states. They are either upright, active, and communicative or they lie down in a state of (un)consciousness called sleep where even the characteristic of neuronal signals in the brain shows distinctive properties. The circadian clock governs both of these time stamps-activity and (apparent) inactivity-making them come and go consistently at the same approximate time each day. This behavior thus represents the meeting of two pervasive systems: the circadian clock and metabolism. In this article, we will describe what is known about how the circadian clock anticipates daily changes in oxygen usage, how circadian clock regulation may relate to normal physiology, and to hypoxia and ischemia that can result from pathologies such as myocardial infarction and stroke.
Collapse
Affiliation(s)
- Francesca Sartor
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany (F.S., B.F.-B., M.M.)
| | - Borja Ferrero-Bordera
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany (F.S., B.F.-B., M.M.)
| | - Jeffrey Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO (J.H.)
| | - Markus Sperandio
- Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine, and the Biomedical Center (BMC), Medical Faculty, LMU Munich, Germany (M.S.)
| | - Paul M Holloway
- Radcliffe Department of Medicine, University of Oxford, United Kingdom (P.M.H.)
| | - Martha Merrow
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany (F.S., B.F.-B., M.M.)
| |
Collapse
|
4
|
Li J, Yang L, Yao Y, Gu P, Xie Y, Yin H, Xue M, Jiang Y, Dai J, Ma J. Associations between long-term night shift work and incidence of chronic obstructive pulmonary disease: a prospective cohort study of 277,059 UK Biobank participants. BMC Med 2024; 22:16. [PMID: 38225649 PMCID: PMC10790498 DOI: 10.1186/s12916-023-03240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Little is known about the effects of night shifts and their interactions with genetic factors on chronic obstructive pulmonary disease (COPD). In this study, we aim to investigate relationships between long-term night shift work exposure and COPD risk, and assess modification effects of genetic predisposition. METHODS A total of 277,059 subjects who were in paid employment or self-employed were included in the UK Biobank. Information on current and lifetime employment was obtained, and a weighted COPD-specific genetic risk score (GRS) was constructed. We used Cox proportional hazard models to investigate associations between night shift work and COPD risk, and their interaction with COPD-specific GRS. RESULTS The cohort study included 277,059 participants (133,063 men [48.03%]; mean [SD] age, 52.71 [7.08] years). During a median follow-up of 12.87 years, we documented 6558 incidents of COPD. From day work, irregular night shifts to regular night shifts, there was an increased trend in COPD incidence (P for trend < 0.001). Compared with day workers, the hazard ratio (HR) and 95% confidence interval (CI) of COPD was 1.28 (1.20, 1.37) for subjects with rarely/sometimes night shifts and 1.49 (1.35, 1.66) for those with permanent night shifts. Besides, the longer durations (especially in subjects with night shifts ≥ 10 years) and increasing monthly frequency of night shifts (in workers with > 8 nights/month) were associated with a higher COPD risk. Additionally, there was an additive interaction between night shifts and genetic susceptibility on the COPD risk. Subjects with permanent night shifts and high genetic risk had the highest risk of COPD (HR: 1.90 [95% CI: 1.63, 2.22]), with day workers with low genetic risk as a reference. CONCLUSIONS Long-term night shift exposure is associated with a higher risk of COPD. Our findings suggest that decreasing the frequency and duration of night shifts may offer a promising approach to mitigating respiratory disease incidence in night shift workers, particularly in light of individual susceptibility.
Collapse
Affiliation(s)
- Jia Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liangle Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yuxin Yao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Pei Gu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yujia Xie
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Haoyu Yin
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Mingyue Xue
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, M5T3L9, Canada
| | - Yu Jiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Jianghong Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, 830017, China.
| | - Jixuan Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Lee Y, Song J, Jeong Y, Choi E, Ahn C, Jang W. Meta-analysis of single-cell RNA-sequencing data for depicting the transcriptomic landscape of chronic obstructive pulmonary disease. Comput Biol Med 2023; 167:107685. [PMID: 37976829 DOI: 10.1016/j.compbiomed.2023.107685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a respiratory disease characterized by airflow limitation and chronic inflammation of the lungs that is a leading cause of death worldwide. Since the complete pathological mechanisms at the single-cell level are not fully understood yet, an integrative approach to characterizing the single-cell-resolution landscape of COPD is required. To identify the cell types and mechanisms associated with the development of COPD, we conducted a meta-analysis using three single-cell RNA-sequencing datasets of COPD. Among the 154,011 cells from 16 COPD patients and 18 healthy subjects, 17 distinct cell types were observed. Of the 17 cell types, monocytes, mast cells, and alveolar type 2 cells (AT2 cells) were found to be etiologically implicated in COPD based on genetic and transcriptomic features. The most transcriptomically diversified states of the three etiological cell types showed significant enrichment in immune/inflammatory responses (monocytes and mast cells) and/or mitochondrial dysfunction (monocytes and AT2 cells). We then identified three chemical candidates that may potentially induce COPD by modulating gene expression patterns in the three etiological cell types. Overall, our study suggests the single-cell level mechanisms underlying the pathogenesis of COPD and may provide information on toxic compounds that could be potential risk factors for COPD.
Collapse
Affiliation(s)
- Yubin Lee
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea.
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea.
| | - Yeonbin Jeong
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea.
| | - Eunyoung Choi
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea.
| | - Chulwoo Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
6
|
Izmailova ES, Kilian R, Bakker JP, Evans S, Scotina AD, Reiss TF, Singh D, Wagner JA. Study protocol: A comparison of mobile and clinic-based spirometry for capturing the treatment effect in moderate asthma. Clin Transl Sci 2023; 16:2112-2122. [PMID: 37602889 PMCID: PMC10651656 DOI: 10.1111/cts.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Several inefficiencies in drug development trial implementation may be improved by moving data collection from the clinic to mobile, allowing for more frequent measurements and therefore increased statistical power while aligning to a patient-centric approach to trial design. Sensor-based digital health technologies such as mobile spirometry (mSpirometry) are comparable to clinic spirometry for capturing outcomes, such as forced expiratory volume in 1 s (FEV1); however, the impact of remote spirometry measurements on the detection of treatment effect has not been investigated. A protocol for a multicenter, single-arm, open-label interventional trial of long-acting beta agonist (LABA) therapy among 60 participants with uncontrolled moderate asthma is described. Participants will complete twice-daily mSpirometry at home and clinic spirometry during weekly visits, alongside continuous use of a wrist-worn wearable and regular completion of several diaries capturing asthma symptoms as well as participant- and site-reported satisfaction and ease of use of mSpirometry. The co-primary objectives of this study are (A) to quantify the treatment effect of LABA therapy among participants with moderate asthma, using both clinical spirometry (FEV1c ) and mSpirometry (FEV1m ); and (B) to investigate whether FEV1m is as accurate as FEV1c in detecting the treatment effect using a mixed-effect model for repeated measures. Study results will help inform whether the deployment of mSpirometry and a wrist-worn wearable for remote data collection are feasible in a multicenter setting among participants with moderate asthma, which may then be generalizable to other populations with respiratory disease.
Collapse
Affiliation(s)
| | - Rachel Kilian
- Koneksa HealthNew YorkNew YorkUSA
- SSI StrategyNew YorkNew YorkUSA
| | - Jessie P. Bakker
- Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Division of Sleep MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Shawna Evans
- Koneksa HealthNew YorkNew YorkUSA
- SSI StrategyNew YorkNew YorkUSA
| | | | | | - Dave Singh
- Medicines Evaluation Unit, University of ManchesterManchester University NHS Foundation TrustManchesterUK
| | | |
Collapse
|
7
|
van der Kamp M, Hengeveld V, Willard N, Thio B, de Graaf P, Geven I, Tabak M. Remote Patient Monitoring and Teleconsultation to Improve Health Outcomes and Reduce Health Care Utilization of Pediatric Asthma (ALPACA Study): Protocol for a Randomized Controlled Effectiveness Trial. JMIR Res Protoc 2023; 12:e45585. [PMID: 37399066 PMCID: PMC10365621 DOI: 10.2196/45585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/31/2023] [Accepted: 04/30/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Childhood asthma is imposing a great financial burden on the pediatric health care system. Asthma costs are directly related to the level of asthma control. A substantial part of these costs may be preventable by the timely and adequate assessment of asthma deterioration in daily life and proper asthma management. The use of eHealth technology may assist such timely and targeted medical anticipation. OBJECTIVE This paper describes the Ambulatory Pediatric Asthma Care (ALPACA) study protocol to investigate the effectiveness of an eHealth intervention consisting of remote patient monitoring and teleconsultation integrated into the daily clinical care of pediatric patients with asthma. This intervention aims to reduce health care utilization and costs and improve health outcomes compared to a control group that receives standard care. In addition, this study aims to improve future eHealth pediatric asthma care by gaining insights from home-monitoring data. METHODS This study is a prospective randomized controlled effectiveness trial. A total of 40 participants will be randomized to either 3 months of eHealth care (intervention group) or standard care (control group). The eHealth intervention consists of remote patient monitoring (spirometry, pulse oximetry, electronic medication adherence tracking, and asthma control questionnaire) and web-based teleconsultation (video sharing, messages). All participants will have a 3-month follow-up with standard care to evaluate whether the possible effects of eHealth care are longer lasting. During the entire study and follow-up period, all participants will use blinded observational home monitoring (sleep, cough/wheeze sounds, air quality in bedroom) as well. RESULTS This study was approved by the Medical Research Ethics Committees United. Enrollment began in February 2023, and the results of this study are expected to be submitted for publication in July 2024. CONCLUSIONS This study will contribute to the existing knowledge on the effectiveness of eHealth interventions that combine remote patient monitoring and teleconsultation for health care utilization, costs, and health outcomes. Furthermore, the observational home-monitoring data can contribute to improved identification of early signs of asthma deterioration in pediatric patients. Researchers and technology developers could use this study to guide and improve eHealth development, while health care professionals, health care institutions, and policy makers may employ our results to make informed decisions to steer toward high-quality, efficient pediatric asthma care. TRIAL REGISTRATION ClinicalTrials.gov NCT05517096; https://clinicaltrials.gov/ct2/show/NCT05517096. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/45585.
Collapse
Affiliation(s)
- Mattienne van der Kamp
- Pediatric Department, Medisch Spectrum Twente, Enschede, Netherlands
- Biomedical Signals and Systems Department, University of Twente, Enschede, Netherlands
| | - Vera Hengeveld
- Pediatric Department, Medisch Spectrum Twente, Enschede, Netherlands
| | - Nico Willard
- Remote Patient Management and Chronic Care Department, Philips Research, Eindhoven, Netherlands
| | - Boony Thio
- Pediatric Department, Medisch Spectrum Twente, Enschede, Netherlands
| | - Pascal de Graaf
- Remote Patient Management and Chronic Care Department, Philips Research, Eindhoven, Netherlands
| | - Inge Geven
- Remote Patient Management and Chronic Care Department, Philips Research, Eindhoven, Netherlands
| | - Monique Tabak
- Biomedical Signals and Systems Department, University of Twente, Enschede, Netherlands
| |
Collapse
|
8
|
Ma Y, Chang MC, Litrownik D, Wayne PM, Yeh GY. Day-night patterns in heart rate variability and complexity: differences with age and cardiopulmonary disease. J Clin Sleep Med 2023; 19:873-882. [PMID: 36692177 PMCID: PMC10152358 DOI: 10.5664/jcsm.10434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/25/2023]
Abstract
STUDY OBJECTIVES Heart rate variability (HRV) measures provide valuable insights into physiology; however, gaps remain in understanding circadian patterns in heart rate dynamics. We aimed to explore day-night differences in heart rate dynamics in patients with chronic cardiopulmonary disease compared with healthy controls. METHODS Using 24-hour heart rate data from patients with chronic obstructive pulmonary disease (COPD) and/or heart failure (n = 16) and healthy adult controls (older group: ≥50 years, n = 42; younger group: 20-49 years, n = 136), we compared day-night differences in conventional time and frequency domain HRV indices and a multiscale-entropy-based complexity index (CI1-20) of HRV among the 3 groups. RESULTS Twenty-four-hour HRV showed significant day-night differences (marked with "△") among younger healthy (mean age: 34.5 years), older healthy (mean age: 61.6 years), and cardiopulmonary patients (mean age: 68.4 years), including change in percentage of adjacent intervals that differ > 50 ms (△pNN50), high frequency (△HF), normalized low frequency (△nLF), ratio (△LF/HF), and △CI1-20. Among these, △LF/HF (2.13 ± 2.35 vs 1.1 ± 2.47 vs -0.35 ± 1.25; P < .001) and △CI1-20 (0.15 ± 0.24 vs 0.02 ± 0.28 vs -0.21 ± 0.27; P < .001) were significant in each pairwise comparison following analysis of variance tests. Average CI1-20 was highest in younger healthy individuals and lowest in cardiopulmonary patients (1.37 ± 0.12 vs 1.01 ± 0.27; P < .001). Younger healthy patients showed a heart rate complexity dipping pattern (night < day), older healthy patients showed nondipping, and cardiopulmonary patients showed reverse dipping (night > day). CONCLUSIONS As measures of 24-hour variability, traditional and complexity-based metrics of HRV exhibit large day-night differences in healthy individuals; these differences are blunted, or even reversed, in individuals with cardiopulmonary pathology. Measures of diurnal dynamics may be useful indices of reduced adaptive capacity in patients with cardiopulmonary conditions. CITATION Ma Y, Chang M-C, Litrownik D, Wayne PM, Yeh GY. Day-night patterns in heart rate variability and complexity: differences with age and cardiopulmonary disease. J Clin Sleep Med. 2023;19(5):873-882.
Collapse
Affiliation(s)
- Yan Ma
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mei-Chu Chang
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daniel Litrownik
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of General Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Peter M. Wayne
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gloria Y. Yeh
- Osher Center for Integrative Medicine, Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of General Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Yuan M, Lu W, Lan Y, Yang J, Yin J, Wang D. Current role and future perspectives of electroacupuncture in circadian rhythm regulation. Heliyon 2023; 9:e15986. [PMID: 37205998 PMCID: PMC10189514 DOI: 10.1016/j.heliyon.2023.e15986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/02/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
In recent years, in-depth research on chronobiology has been conducted, and the circadian rhythm has become a new target for the treatment of diseases. Circadian rhythms are closely related to the normal physiological functions of organisms. Increasing evidence indicates that circadian rhythm disorders are the pathological basis of diseases such as sleep disorders, depression, cardiovascular diseases, and cancer. As an economical, safe, and effective treatment method, electroacupuncture has been widely used in clinical practice. In this paper, we summarize the current literature on electroacupuncture's regulation of circadian rhythm disorders and circadian clock genes. In addition, we briefly explore the optimization of electroacupuncture intervention programmes and the feasibility of implementing electroacupuncture intervention programmes at selected times in clinical practice. We conclude that electroacupuncture may have good application prospects in circadian rhythm regulation, but this conclusion needs to be confirmed by clinical trials.
Collapse
Affiliation(s)
- Min Yuan
- Department of Rehabilitation Medicine, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Wei Lu
- Department of Rehabilitation Medicine, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Ying Lan
- Department of Intensive Care Unit, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Jiaen Yang
- Department of TCM Rehabilitation Medicine, Affiliated Foshan Gaoming Hospital of Guangdong Medical University, Foshan, China
| | - Jun Yin
- Department of Rehabilitation Medicine, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Dong Wang
- Department of Rehabilitation Medicine, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- Corresponding author.
| |
Collapse
|
10
|
Cox SL, O'Siorain JR, He Y, Lordan R, Naik A, Tang SY, Sengupta S, FitzGerald GA, Carroll RG, Curtis AM. Circadian disruption in lung fibroblasts enhances NF-κB activity to exacerbate neutrophil recruitment. FASEB J 2023; 37:e22753. [PMID: 36624683 PMCID: PMC10107448 DOI: 10.1096/fj.202201456r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023]
Abstract
Fibroblasts are stromal cells abundant throughout tissues, including the lungs. Fibroblasts are integral coordinators of immune cell recruitment through chemokine secretion. Circadian rhythms direct the recruitment of immune cells to the lung, which in turn impacts response to infection and survival. Although fibroblasts display robust circadian rhythms, the contribution of the fibroblast molecular clock to lung-specific migration of immune cells and recruitment remains to be established. Mice challenged intranasally with lipopolysaccharide (LPS) at dusk showed increased expression of the pro-inflammatory cytokine IL-1β and chemokine CXCL5 in the lung, which was accompanied by increased neutrophil recruitment. Primary lung fibroblasts with knockdown of the core clock gene Bmal1 and immortalized Bmal1-/- lung fibroblasts also displayed increased Cxcl5 expression under IL-1β stimulation. Conditioned media obtained from IL-1β-stimulated Bmal1-/- immortalized fibroblasts-induced greater neutrophil migration compared with Bmal1+/+ lung fibroblast controls. Phosphorylation of the NF-κB subunit, p65, was enhanced in IL-1β-stimulated Bmal1-/- lung fibroblasts, and pharmacological inhibition of NF-κB attenuated the enhanced CXCL5 production and neutrophil recruitment observed in these cells. Collectively, these results demonstrate that Bmal1 represses NF-κB activity in lung fibroblasts to control chemokine expression and immune cell recruitment during an inflammatory response.
Collapse
Affiliation(s)
- Shannon L. Cox
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences (PBS)Royal College of Surgeons in Ireland (RCSI)DublinIreland
| | - James R. O'Siorain
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences (PBS)Royal College of Surgeons in Ireland (RCSI)DublinIreland
| | - Yan He
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences (PBS)Royal College of Surgeons in Ireland (RCSI)DublinIreland
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouChina
| | - Ronan Lordan
- Institute of Translational Medicine and Therapeutics (ITMAT)University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amruta Naik
- Institute of Translational Medicine and Therapeutics (ITMAT)University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Children's Hospital of PediatricsPhiladelphiaPennsylvaniaUSA
| | - Soon Yew Tang
- Institute of Translational Medicine and Therapeutics (ITMAT)University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shaon Sengupta
- Institute of Translational Medicine and Therapeutics (ITMAT)University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Children's Hospital of PediatricsPhiladelphiaPennsylvaniaUSA
- Department of PaediatricsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Garret A. FitzGerald
- Institute of Translational Medicine and Therapeutics (ITMAT)University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Richard G. Carroll
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences (PBS)Royal College of Surgeons in Ireland (RCSI)DublinIreland
| | - Annie M. Curtis
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences (PBS)Royal College of Surgeons in Ireland (RCSI)DublinIreland
- Tissue Engineering Research Group (TERG)Royal College of Surgeons in Ireland (RCSI)DublinIreland
| |
Collapse
|
11
|
Ella K, Sűdy ÁR, Búr Z, Koós B, Kisiczki ÁS, Mócsai A, Káldi K. Time restricted feeding modifies leukocyte responsiveness and improves inflammation outcome. Front Immunol 2022; 13:924541. [PMID: 36405720 PMCID: PMC9666763 DOI: 10.3389/fimmu.2022.924541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Time restricted eating, the dietary approach limiting food intake to a maximal 10-hour period of daytime is considered beneficial in metabolic dysfunctions, such as obesity and diabetes. Rhythm of food intake and parallel changes in serum nutrient levels are also important entrainment signals for the circadian clock, particularly in tissues involved in metabolic regulation. As both the metabolic state and the circadian clock have large impact on immune functions, we investigated in mice whether time restricted feeding (TRF) affects systemic inflammatory potential. TRF slackened the symptoms in K/BxN serum-transfer arthritis, an experimental model of human autoimmune joint inflammation. Compared to ad libitum conditions TRF reduced the expression of inflammatory mediators in visceral adipose tissue, an integrator and coordinator of metabolic and inflammatory processes. Furthermore, TRF strengthened the oscillation of peripheral leukocyte counts and alongside decreased the pool of both marginated and tissue leukocytes. Our data suggest that the altered leukocyte distribution in TRF mice is related to the attenuated expression of adhesion molecules on the surface of neutrophils and monocytes. We propose that TRF modifies both rhythm and inflammatory potential of leukocytes which contribute to the milder reactivity of the immune system and therefore time-restricted eating could serve as an effective complementary tool in the therapy of autoinflammatory processes.
Collapse
|
12
|
Boeselt T, Kroenig J, Lueders TS, Koehler N, Beutel B, Hildebrandt O, Koehler U, Conradt R. Acoustic Monitoring of Night-Time Respiratory Symptoms in 14 Patients with Exacerbated COPD Over a 3- Week Period. Int J Chron Obstruct Pulmon Dis 2022; 17:2977-2986. [DOI: 10.2147/copd.s377069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022] Open
|
13
|
Leung C, Sin DD. Pharmacotherapy considerations for morning symptoms in chronic obstructive pulmonary disease. Expert Opin Pharmacother 2022; 23:1359-1362. [DOI: 10.1080/14656566.2022.2116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Clarus Leung
- Department of Medicine, University of British Columbia
| | - Don D. Sin
- MD, Professor, Department of Medicine, University of British Columbia & Director, Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, Canada
| |
Collapse
|
14
|
Neves AR, Albuquerque T, Quintela T, Costa D. Circadian rhythm and disease: Relationship, new insights, and future perspectives. J Cell Physiol 2022; 237:3239-3256. [PMID: 35696609 DOI: 10.1002/jcp.30815] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023]
Abstract
The circadian system is responsible for internal functions and regulation of the organism according to environmental cues (zeitgebers). Circadian rhythm dysregulation or chronodisruption has been associated with several diseases, from mental to autoimmune diseases, and with life quality change. Following this, some therapies have been developed to correct circadian misalignments, such as light therapy and chronobiotics. In this manuscript, we describe the circadian-related diseases so far investigated, and studies reporting relevant data on this topic, evidencing this relationship, are included. Despite the actual limitations in published work, there is clear evidence of the correlation between circadian rhythm dysregulation and disease origin/development, and, in this way, clock-related therapies emerge as great progress in the clinical field. Future improvements in such interventions can lead to the development of successful chronotherapy strategies, deeply contributing to enhanced therapeutic outcomes.
Collapse
Affiliation(s)
- Ana R Neves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Tânia Albuquerque
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,Unidade de Investigação para o Desenvolvimento do Interior (UDI-IPG), Instituto Politécnico da Guarda, Guarda, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
15
|
Kim HS, An CH, Teller D, Moon SJ, Hwang GW, Song JW. The role of retinoid-related orphan receptor-α in cigarette smoke-induced autophagic response. Respir Res 2022; 23:110. [PMID: 35509068 PMCID: PMC9066967 DOI: 10.1186/s12931-022-02034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Retinoid-related orphan receptor-α (RORα) and autophagy dysregulation are involved in the pathophysiology of chronic obstructive pulmonary disease (COPD), but little is known regarding their association. We investigated the role of RORα in COPD-related autophagy. METHODS The lung tissues and cells from a mouse model were analyzed for autophagy markers by using western blot analysis and transmission electron microscopy. RESULTS Cigarette smoke increased the LC3-II level and decreased the p62 level in whole lung homogenates of a chronic cigarette smoking mouse model. Although cigarette smoke did not affect the levels of p62 in Staggerer mutant mice (RORαsg/sg), the baseline expression levels of p62 were significantly higher than those in wild type (WT) mice. Autophagy was induced by cigarette smoke extract (CSE) in Beas-2B cells and in primary fibroblasts from WT mice. In contrast, fibroblasts from RORαsg/sg mice failed to show CSE-induced autophagy and exhibited fewer autophagosomes, lower LC3-II levels, and higher p62 levels than fibroblasts from WT mice. Damage-regulated autophagy modulator (DRAM), a p53-induced modulator of autophagy, was expressed at significantly lower levels in the fibroblasts from RORαsg/sg mice than in those from WT mice. DRAM knockdown using siRNA in Beas-2B cells inhibited CSE-induced autophagy and cell death. Furthermore, RORα co-immunoprecipitated with p53 and the interaction increased p53 reporter gene activity. CONCLUSIONS Our findings suggest that RORα promotes autophagy and contributes to COPD pathogenesis via regulation of the RORα-p53-DRAM pathway.
Collapse
Affiliation(s)
- Hak-Su Kim
- Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Chang Hyeok An
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, USA
- Division of Pulmonology, Department of Internal Medicine, Hanil General Hospital, Seoul, Republic of Korea
| | - Danielle Teller
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, USA
| | - Su-Jin Moon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Gi Won Hwang
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
16
|
Cheng F, An Y, Xue J, Wang Y, Ding X, Zhang Y, Zhao C. Circadian rhythm disruption exacerbates Th2-like immune response in murine allergic airway inflammation. Int Forum Allergy Rhinol 2022; 12:757-770. [PMID: 34821064 PMCID: PMC9298795 DOI: 10.1002/alr.22914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/08/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chronic jet lag (CJL)-induced circadian rhythm disruption (CRD) is positively correlated with an increased risk of allergic diseases. However, little is known about the mechanism involved in allergic rhinitis (AR). METHODS Aberrant light/dark cycles-induced CRD mice were randomly divided into negative control (NC) group, AR group, CRD+NC group, and CRD+AR group (n = 8/group). After ovalbumin (OVA) challenge, nasal symptom scores were recorded. The expression of Occludin and ZO-1 in both nasal mucosa and lung tissues was detected by reverse transcription-quantitative polymerase chain reaction (RT-PCR) and immunohistochemical staining. The level of OVA-specific immunoglobulin E (sIgE) and T-helper (Th)-related cytokines in the plasma was measured by enzyme-linked immunosorbent assay (ELISA), and the proportion of Th1, Th2, Th17, and regulatory T cell (Treg) in splenocytes was evaluated by flow cytometry. RESULTS The nasal symptom score in the CRD+AR group was significantly higher than those in the AR group with respect to eosinophil infiltration, mast cell degranulation, and goblet cell hyperplasia. The expression of ZO-1 and Occludin in the nasal mucosa and lung tissues in the CRD+AR group were significantly lower than those in the AR group. Furthermore, Th2 and Th17 cell counts from splenocytes and OVA-sIgE, interleukin 4 (IL-4), IL-6, IL-13, and IL-17A levels in plasma were significantly increased in the CRD+AR group than in the AR group, whereas Th1 and Treg cell count and interferon γ (IFN-γ) level were significantly decreased in the CRD+AR group. CONCLUSION CRD experimentally mimicked CJL in human activities, could exacerbate local and systemic allergic reactions in AR mice, partially through decreasing Occludin and ZO-1 level in the respiratory mucosa and increasing Th2-like immune response in splenocytes.
Collapse
Affiliation(s)
- Feng‐Li Cheng
- Department of Otolaryngology–Head and Neck Surgerythe Second HospitalShanxi Medical UniversityTaiyuanChina
- Key Research Laboratory of Airway NeuroimmunologyShanxi ProvinceChina
| | - Yun‐Fang An
- Department of Otolaryngology–Head and Neck Surgerythe Second HospitalShanxi Medical UniversityTaiyuanChina
- Key Research Laboratory of Airway NeuroimmunologyShanxi ProvinceChina
| | - Jin‐Mei Xue
- Department of Otolaryngology–Head and Neck Surgerythe Second HospitalShanxi Medical UniversityTaiyuanChina
- Key Research Laboratory of Airway NeuroimmunologyShanxi ProvinceChina
| | - Yan‐Jie Wang
- Department of Otolaryngology–Head and Neck Surgerythe Second HospitalShanxi Medical UniversityTaiyuanChina
- Key Research Laboratory of Airway NeuroimmunologyShanxi ProvinceChina
| | - Xue‐Wei Ding
- Department of Otolaryngology‐Head and Neck SurgeryHuludao Central HospitalHuludaoChina
| | - Yan‐Ting Zhang
- Department of Otolaryngology–Head and Neck Surgerythe Second HospitalShanxi Medical UniversityTaiyuanChina
- Key Research Laboratory of Airway NeuroimmunologyShanxi ProvinceChina
| | - Chang‐Qing Zhao
- Department of Otolaryngology–Head and Neck Surgerythe Second HospitalShanxi Medical UniversityTaiyuanChina
- Key Research Laboratory of Airway NeuroimmunologyShanxi ProvinceChina
| |
Collapse
|
17
|
Adamovich Y, Dandavate V, Asher G. Circadian clocks' interactions with oxygen sensing and signalling. Acta Physiol (Oxf) 2022; 234:e13770. [PMID: 34984824 DOI: 10.1111/apha.13770] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022]
Abstract
In mammals, physiology and metabolism are shaped both by immediate and anticipatory responses to environmental changes through the myriad of molecular mechanisms. Whilst the former is mostly mediated through different acute signalling pathways the latter is primarily orchestrated by the circadian clock. Oxygen is vital for life and as such mammals have evolved different mechanisms to cope with changes in oxygen levels. It is widely accepted that oxygen sensing through the HIF-1 signalling pathway is paramount for the acute response to changes in oxygen levels. Circadian clocks are molecular oscillators that control 24 hours rhythms in various aspects of physiology and behaviour. Evidence emerging in recent years points towards pervasive molecular and functional interactions between these two pathways on multiple levels. Daily oscillations in oxygen levels are circadian clock-controlled and can reset the clock through HIF-1. Furthermore, the circadian clock appears to modulate the hypoxic response. We review herein the literature related to the crosstalk between the circadian clockwork and the oxygen-signalling pathway in mammals at the molecular and physiological level both under normal and pathologic conditions.
Collapse
Affiliation(s)
- Yaarit Adamovich
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot Israel
| | - Vaishnavi Dandavate
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot Israel
| | - Gad Asher
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
18
|
Lin CR, Bahmed K, Kosmider B. Dysregulated Cell Signaling in Pulmonary Emphysema. Front Med (Lausanne) 2022; 8:762878. [PMID: 35047522 PMCID: PMC8762198 DOI: 10.3389/fmed.2021.762878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023] Open
Abstract
Pulmonary emphysema is characterized by the destruction of alveolar septa and irreversible airflow limitation. Cigarette smoking is the primary cause of this disease development. It induces oxidative stress and disturbs lung physiology and tissue homeostasis. Alveolar type II (ATII) cells have stem cell potential and can repair the denuded epithelium after injury; however, their dysfunction is evident in emphysema. There is no effective treatment available for this disease. Challenges in this field involve the large complexity of lung pathophysiological processes and gaps in our knowledge on the mechanisms of emphysema progression. It implicates dysregulation of various signaling pathways, including aberrant inflammatory and oxidative responses, defective antioxidant defense system, surfactant dysfunction, altered proteostasis, disrupted circadian rhythms, mitochondrial damage, increased cell senescence, apoptosis, and abnormal proliferation and differentiation. Also, genetic predispositions are involved in this disease development. Here, we comprehensively review studies regarding dysregulated cell signaling, especially in ATII cells, and their contribution to alveolar wall destruction in emphysema. Relevant preclinical and clinical interventions are also described.
Collapse
Affiliation(s)
- Chih-Ru Lin
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States.,Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, United States
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States
| |
Collapse
|
19
|
Bukhari I, Ashfaq M, Nisa BU, Ahmed A, Waseem H, Yasir M. Comparison of the Effects of Beclomethasone Dipropionate and Budesonide in the Treatment of Children with Mild, Persistent Asthma. Cureus 2021; 13:e17943. [PMID: 34660132 PMCID: PMC8514125 DOI: 10.7759/cureus.17943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
Objective To compare the mean change in peak expiratory flow values in children receiving inhaled beclomethasone dipropionate versus inhaled budesonide in the treatment of mild persistent asthma. Method The medical records of 60 patients from the outpatient department (OPD)/emergency room (ER), National Institute of Child Health, Karachi, who received beclomethasone dipropionate (BDP) 200 µg one puff and budesonide (BUD) 200 µg one puff twice a day for treatment of mild persistent asthma from March 10, 2020, to August 10, 2020, were explored. Results The mean age of children was 10.56 ± 3.01 years in the BUD group and 10.05 ± 3.54 years in the BDP group. The mean change in peak expiratory flow % in the BUD group was 15.69 ± 3.59%, and in the BDP group, it was 13.59 ± 4.26% (P-value=0.04) Conclusion BDP and budesonide (BUD) were both found to be effective for the treatment of mild persistent asthma in children. However, we found that BUD had better efficacy compared to BDP.
Collapse
Affiliation(s)
| | - Muhammad Ashfaq
- Pediatric Medicine Ward 1, National Institute of Child Health, Karachi, PAK
| | - Bader-U- Nisa
- Pediatric Medical Unit 3, National Institute of Child Health, Karachi, PAK
| | - Aijaz Ahmed
- Pediatric Medicine Ward 1, National Institute of Child Health, Karachi, PAK
| | - Hira Waseem
- Pediatric Medicine Ward 1, National Institute of Child Health, Karachi, PAK
| | - Mehrunnisa Yasir
- Pediatric Medicine Ward 1, National Institute of Child Health, Karachi, PAK
| |
Collapse
|
20
|
Pearson JA, Voisey AC, Boest-Bjerg K, Wong FS, Wen L. Circadian Rhythm Modulation of Microbes During Health and Infection. Front Microbiol 2021; 12:721004. [PMID: 34512600 PMCID: PMC8430216 DOI: 10.3389/fmicb.2021.721004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Circadian rhythms, referring to 24-h daily oscillations in biological and physiological processes, can significantly regulate host immunity to pathogens, as well as commensals, resulting in altered susceptibility to disease development. Furthermore, vaccination responses to microbes have also shown time-of-day-dependent changes in the magnitude of protective immune responses elicited in the host. Thus, understanding host circadian rhythm effects on both gut bacteria and viruses during infection is important to minimize adverse effects on health and identify optimal times for therapeutic administration to maximize therapeutic success. In this review, we summarize the circadian modulations of gut bacteria, viruses and their interactions, both in health and during infection. We also discuss the importance of chronotherapy (i.e., time-specific therapy) as a plausible therapeutic administration strategy to enhance beneficial therapeutic responses.
Collapse
Affiliation(s)
- James Alexander Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Alexander Christopher Voisey
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kathrine Boest-Bjerg
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
21
|
Zhang J, Cheng H, Wang D, Zhu Y, Yang C, Shen Y, Yu J, Li Y, Xu S, Song X, Zhou Y, Chen J, Fan L, Jiang J, Wang C, Hao K. Revealing consensus gene pathways associated with respiratory functions and disrupted by PM2.5 nitrate exposure at bulk tissue and single cell resolution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116951. [PMID: 33780843 DOI: 10.1016/j.envpol.2021.116951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nitrate is a major pollutant component in ambient PM2.5. It is known that chronic exposure to PM2.5 NO3- damages respiratory functions. We aim to explore the underlying toxicological mechanism at single cell resolution. METHODS We systematically conducted exposure experiments on forty C57BL/6 mice, assessed respiratory functions, and profiled lung transcriptome. . Afterward, we estimated the cell type compositions from RNA-seq data using deconvolution analysis. The genes and pathways associated with respiratory function and dysregulated by to PM2.5 NO3- exposure were characterized at bulk-tissue and single-cell resolution. RESULTS PM2.5 NO3- exposure did not significantly modify the cell type composition in lung, but profoundly altered the gene expression within each cell type. At ambient concentration (22 μg/m3), exposure significantly (FDR<10%) altered 95 genes' expression. Among the genes associated with respiratory functions, a large fraction (74.6-91.7%) were significantly perturbed by PM2.5 NO3- exposure. For example, among the 764 genes associated with peak expiratory flow (PEF), 608 (79.6%) were affected by exposure (p = 1.92e-345). Pathways known to play role in lung disease pathogenesis, including circadian rhythms, sphingolipid metabolism, immune response and lysosome, were found significantly associated with respiratory functions and disrupted by PM2.5 NO3- exposure. CONCLUSIONS This study extended our knowledge of PM2.5 NO3- exposure's effect to the levels of lung gene expression, pathways, lung cell type composition and cell specific transcriptome. At single cell resolution, we provided insights in toxicological mechanism of PM2.5 NO3- exposure and subsequent pulmonary disease risks.
Collapse
Affiliation(s)
- Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dongbin Wang
- School of Environment, Tsinghua University, Beijing, China
| | - Yujie Zhu
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Chun Yang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuan Shen
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaolian Song
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yang Zhou
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ke Hao
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Potus F, Frump AL, Umar S, R. Vanderpool R, Al Ghouleh I, Lai YC. Recent advancements in pulmonary arterial hypertension and right heart failure research: overview of selected abstracts from ATS2020 and emerging COVID-19 research. Pulm Circ 2021; 11:20458940211037274. [PMID: 34434543 PMCID: PMC8381443 DOI: 10.1177/20458940211037274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
Each year the American Thoracic Society (ATS) Conference brings together scientists who conduct basic, translational and clinical research to present on the recent advances in the field of respirology. Due to the Coronavirus Disease of 2019 (COVID-19) pandemic, the ATS2020 Conference was held online in a series of virtual meetings. In this review, we focus on the breakthroughs in pulmonary hypertension research. We have selected 11 of the best basic science abstracts which were presented at the ATS2020 Assembly on Pulmonary Circulation mini-symposium "What's New in Pulmonary Arterial Hypertension (PAH) and Right Ventricular (RV) Signaling: Lessons from the Best Abstracts," reflecting the current state of the art and associated challenges in PH. Particular emphasis is placed on understanding the mechanisms underlying RV failure, the regulation of inflammation, and the novel therapeutic targets that emerged from preclinical research. The pathologic interactions between pulmonary hypertension, right ventricular function and COVID-19 are also discussed.
Collapse
Affiliation(s)
- Francois Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de
l'Institut Universitaire de Cardiologie et Pneumologie de Quebec City, Quebec,
Canada
| | - Andrea L. Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational
Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, Division of
Molecular Medicine, David Geffen School of Medicine at University of California Los
Angeles, Los Angeles, CA, USA
| | - Rebecca R. Vanderpool
- Division of Translational and Regenerative Medicine, University of
Arizona, Tucson, AZ, USA
| | - Imad Al Ghouleh
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, and
Division of Cardiology, Department of Medicine, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational
Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
23
|
Rodriguez-Rodriguez N, Gogoi M, McKenzie AN. Group 2 Innate Lymphoid Cells: Team Players in Regulating Asthma. Annu Rev Immunol 2021; 39:167-198. [PMID: 33534604 PMCID: PMC7614118 DOI: 10.1146/annurev-immunol-110119-091711] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Type 2 immunity helps protect the host from infection, but it also plays key roles in tissue homeostasis, metabolism, and repair. Unfortunately, inappropriate type 2 immune reactions may lead to allergy and asthma. Group 2 innate lymphoid cells (ILC2s) in the lungs respond rapidly to local environmental cues, such as the release of epithelium-derived type 2 initiator cytokines/alarmins, producing type 2 effector cytokines such as IL-4, IL-5, and IL-13 in response to tissue damage and infection. ILC2s are associated with the severity of allergic asthma, and experimental models of lung inflammation have shown how they act as playmakers, receiving signals variously from stromal and immune cells as well as the nervous system and then distributing cytokine cues to elicit type 2 immune effector functions and potentiate CD4+ T helper cell activation, both of which characterize the pathology of allergic asthma. Recent breakthroughs identifying stromal- and neuronal-derived microenvironmental cues that regulate ILC2s, along with studies recognizing the potential plasticity of ILC2s, have improved our understanding of the immunoregulation of asthma and opened new avenues for drug discovery.
Collapse
Affiliation(s)
- Noe Rodriguez-Rodriguez
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK
| | - Mayuri Gogoi
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK
| | - Andrew N.J. McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK,Corresponding author:
| |
Collapse
|
24
|
Silva T, Jeewandara C, Gomes L, Gangani C, Mahapatuna SD, Pathmanathan T, Wijewickrama A, Ogg GS, Malavige GN. Urinary leukotrienes and histamine in patients with varying severity of acute dengue. PLoS One 2021; 16:e0245926. [PMID: 33544746 PMCID: PMC7864425 DOI: 10.1371/journal.pone.0245926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background Vascular leak is a hallmark of severe dengue, and high leukotriene levels have been observed in dengue mouse models, suggesting a role in disease pathogenesis. We sought to explore their role in acute dengue, by assessing levels of urinary LTE4 and urinary histamine in patients with varying severity of acute dengue. Methods Urinary LTE4, histamine and creatinine were measured by a quantitative ELISA, in healthy individuals (n = 19), patients with dengue fever (DF = 72) and dengue haemorrhagic fever DHF (n = 48). The kinetics of LTE4 and histamine and diurnal variations were assessed in a subset of patients. Results Urinary LTE4 levels were significantly higher (p = 0.004) in patients who proceed to develop DHF when compared to patients with DF during early illness (≤ 4 days) and during the critical phase (p = 0.02), which continued to rise in patients who developed DHF during the course of illness. However, LTE4 is unlikely to be a good biomarker as ROCs gave an AUC value of 0.67 (95% CI 0.57 and 0.76), which was nevertheless significant (p = 0.002). Urinary LTE4 levels did not associate with the degree of viraemia, infecting virus serotype and was not different in those with primary vs secondary dengue. Urinary histamine levels were significantly high in patients with acute dengue although no difference was observed between patients with DF and DHF and again did not associate with the viraemia. Interestingly, LTE4, histamine and the viral loads showed a marked diurnal variation in both patients with DF and DHF. Conclusions Our data suggest that LTE4 could play a role in disease pathogenesis and since there are safe and effective cysteinyl leukotriene receptor blockers, it would be important to assess their efficacy in reducing dengue disease severity.
Collapse
Affiliation(s)
- Tehani Silva
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka
| | - Chandima Jeewandara
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Laksiri Gomes
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Chathurika Gangani
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | | | | | - Graham S. Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Gathsaurie Neelika Malavige
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Huang C, Izmailova ES, Jackson N, Ellis R, Bhatia G, Ruddy M, Singh D. Remote FEV1 Monitoring in Asthma Patients: A Pilot Study. Clin Transl Sci 2020; 14:529-535. [PMID: 33048470 PMCID: PMC7993258 DOI: 10.1111/cts.12901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 11/28/2022] Open
Abstract
Forced expiratory volume in one second (FEV1 ) is a critical parameter for the assessment of lung function for both clinical care and research in patients with asthma. While asthma is defined by variable airflow obstruction, FEV1 is typically assessed during clinic visits. Mobile spirometry (mSpirometry) allows more frequent measurements of FEV1 , resulting in a more continuous assessment of lung function over time and its variability. Twelve patients with moderate asthma were recruited in a single-center study and were instructed to perform pulmonary function tests at home twice daily for 28 days and weekly in the clinic. Daily and mean subject compliances were summarized. The agreement between clinic and mobile FEV1 was assessed using correlation and Bland-Altman analyses. The test-retest reliability for clinic and mSpirometry was assessed by interclass correlation coefficient (ICC). Simulation was conducted to explore if mSpirometry could improve statistical power over clinic counterparts. The mean subject compliance with mSpirometry was 70% for twice-daily and 85% for at least once-daily. The mSpirometry FEV1 were highly correlated and agreed with clinic ones from the same morning (r = 0.993) and the same afternoon (r = 0.988) with smaller mean difference for the afternoon (0.0019 L) than morning (0.0126 L) measurements. The test-retest reliability of mobile (ICC = 0.932) and clinic (ICC = 0.942) spirometry were comparable. Our simulation analysis indicated greater power using dense mSpirometry than sparse clinic measurements. Overall, we have demonstrated good compliance for repeated at-home mSpirometry, high agreement and comparable test-retest reliability with clinic counterparts, greater statistical power, suggesting a potential for use in asthma clinical research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dave Singh
- Medicines Evaluation Unit, Manchester, UK.,University of Manchester, Manchester University NHS Foundations Trust, Manchester, UK
| |
Collapse
|
26
|
Vanderstocken G, Marrow JP, Allwood MA, Stampfli MR, Simpson JA. Disruption of Physiological Rhythms Persist Following Cessation of Cigarette Smoke Exposure in Mice. Front Physiol 2020; 11:501383. [PMID: 33192539 PMCID: PMC7609783 DOI: 10.3389/fphys.2020.501383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 09/28/2020] [Indexed: 01/29/2023] Open
Abstract
Background Physiological rhythms in mammals are essential for maintaining health, whereas disruptions may cause or exacerbate disease pathogenesis. As such, our objective was to characterize how cigarette smoke exposure affects physiological rhythms of otherwise healthy mice using telemetry and cosinor analysis. Methods Female BALB/c mice were implanted with telemetry devices to measure body temperature, heart rate, systolic blood pressure (SBP), and activity. Following baseline measurements, mice were exposed to cigarette smoke for approximately 50 min twice daily during weekdays over 24 weeks. Physiological parameters were recorded after 1, 4, 8, and 24 weeks of exposure or after 4 weeks cessation following 4 weeks of cigarette smoke exposure. Results Acute cigarette smoke exposure resulted in anapyrexia, and bradycardia, with divergent effects on SBP. Long term, cigarette smoke exposure disrupted physiological rhythms after just 1 week, which persisted across 24 weeks of exposure (as shown by mixed effects on mesor, amplitude, acrophase, and goodness-of-fit using cosinor analysis). Four weeks of cessation was insufficient to allow full recovery of rhythms. Conclusion Our characterization of the pathophysiology of cigarette smoke exposure on physiological rhythms of mice suggests that rhythm disruption may precede and contribute to disease pathogenesis. These findings provide a clear rationale and guide for the future use of chronotherapeutics.
Collapse
Affiliation(s)
- Gilles Vanderstocken
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Department of Medicine, Firestone Institute for Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| | - Jade P Marrow
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.,IMPART Team Canada Investigator Network, Guelph, ON, Canada
| | - Melissa A Allwood
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Martin R Stampfli
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Department of Medicine, Firestone Institute for Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, ON, Canada.,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.,IMPART Team Canada Investigator Network, Guelph, ON, Canada
| |
Collapse
|
27
|
Foster AJ, Marrow JP, Allwood MA, Brunt KR, Simpson JA. Applications of a novel radiotelemetry method for the measurement of intrathoracic pressures and physiological rhythms in freely behaving mice. J Appl Physiol (1985) 2020; 129:992-1005. [PMID: 32881619 DOI: 10.1152/japplphysiol.00673.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Techniques to comprehensively evaluate pulmonary function carry a variety of limitations, including the ability to continuously record intrathoracic pressures (ITP), acutely and chronically, in a natural state of freely behaving animals. Measurement of ITP can be used to derive other respiratory parameters, which provide insight to lung health. Our aim was to develop a surgical approach for the placement of a telemetry pressure sensor to measure ITP, providing the ability to chronically measure peak pressure, breath frequency, and timing of the respiratory cycle to facilitate circadian analyses related to breathing patterns. Applications of this technique are shown using a moderate hypoxic challenge. Male C57Bl/6 mice were implanted with radiotelemetry devices to record heart rate, temperature, activity, and ITP during 24-h normoxia, 24-h hypoxia ([Formula: see text] = 0.15), and return to 48-h normoxia. Radiotelemetry of ITP permitted the detection of hypoxia-induced increases in "the ITP equivalent" of ventilation, which were driven by increases in breathing frequency and ITP on a short-term time scale. Respiratory frequency, derived from pressure waveforms, was increased by a decrease in expiratory time without changes in inspiratory time. Chronically, telemetric recording allowed for circadian analyses of respiratory drive, as assessed by inspiratory pressure divided by inspiratory time, which was increased by hypoxia and remained elevated for 48 h of recovery. Furthermore, respiratory frequency demonstrated a circadian rhythm, which was disrupted through the recovery period. In conclusion, radiotelemetry of ITP is a viable, long-term, chronic methodology that extends traditional methods to evaluate respiratory function in mice.NEW & NOTEWORTHY We have demonstrated for the first time in mice that radiotelemetry is an effective tool for the continuous and chronic recording of intrathoracic pressure (ITP) to facilitate circadian rhythm analyses. We show that continuous 24-h hypoxic stress alters the circadian rhythms of heart rate, body temperature, activity, and respiratory parameters, acutely and perpetually, through normoxic recovery. Radiotelemetry of ITP can complement traditional methods for evaluating respiratory function and better our understanding of respiratory pathophysiology.
Collapse
Affiliation(s)
- Andrew J Foster
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jade P Marrow
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Team Canada Investigator Network, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Melissa A Allwood
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada.,IMPART Team Canada Investigator Network, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Team Canada Investigator Network, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
| |
Collapse
|
28
|
Sportel ET, Oude Wolcherink MJ, van der Palen J, Lenferink A, Thio BJ, Movig KLL, Brusse-Keizer MGJ. Does immediate smart feedback on therapy adherence and inhalation technique improve asthma control in children with uncontrolled asthma? A study protocol of the IMAGINE I study. Trials 2020; 21:801. [PMID: 32943094 PMCID: PMC7499851 DOI: 10.1186/s13063-020-04694-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 08/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background Many asthmatic children suffer from uncontrolled asthma with frequent exacerbations, despite an optimal treatment plan using inhalation medication. Studies have shown that therapy adherence and inhalation technique are often suboptimal in asthmatic children, but these have traditionally been hard to measure. A novel device functioning as an add-on to the inhaler has been developed to measure both aspects by recording vibration patterns during inhalation. This data can be converted to smart feedback and provided to patients immediately via a mobile application. The aim of this study is to improve asthma control in children between 6 and 18 years old by providing immediate smart feedback on the intake of inhalation medication. Asthma control will be measured by forced expiratory volume in 1 s, (Childhood) Asthma Control Test ((c-)ACT) score, and lung function variability and reversibility. Methods The study will be performed in Medisch Spectrum Twente (Enschede, The Netherlands). The goal is to include 68 uncontrolled moderate to severe asthmatic children between 6 and 18 years old who receive controller inhalation medication through the Nexthaler®, Ellipta®, or Spiromax®. The study consists of three phases. Phase 1 is observational and will last 4 weeks to observe the baseline adherence and inhalation technique as monitored by the add-on device. A randomised controlled trial lasting 6 weeks will be performed in phase 2. Patients in the intervention group will receive immediate smart feedback about the performed inhalations via a mobile application. In the control group, adherence and inhalation technique will be monitored, but patients will not receive feedback. In phase 3, also lasting 6 weeks, the feedback will be ceased for all children and revision of current therapy may occur, depending on the findings in phase 2. Asthma control can be assessed by means of spirometry (both at home and in the hospital) and (c-)ACT questionnaires. Discussion Immediate smart feedback may improve therapy adherence and inhalation technique, and thus asthma control in children and prevent unnecessary switches to targeted biologics. Performing this study in children is desired, since they are known to react differently to feedback and medication than adults. Trial registration Dutch Trial Register NL7705. Registered on 29 April 2019
Collapse
Affiliation(s)
- Esther T Sportel
- Department of Clinical Pharmacy, Medisch Spectrum Twente, Enschede, The Netherlands.
| | | | - Job van der Palen
- Department of Research Methodology, Measurement and Data Analysis, University of Twente, Enschede, The Netherlands.,Department of Epidemiology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Anke Lenferink
- Department of Health Technology and Services Research, Faculty of Behavioural, Management and Social Sciences, Technical Medical Centre, University of Twente, Enschede, The Netherlands.,Department of Pulmonary Medicine, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Boony J Thio
- Department of Paediatrics, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Kris L L Movig
- Department of Clinical Pharmacy, Medisch Spectrum Twente, Enschede, The Netherlands
| | | |
Collapse
|
29
|
Bartman CM, Prakash YS. Bringing the cellular clock into understanding lung disease: it's time, period! Am J Physiol Lung Cell Mol Physiol 2020; 319:L273-L276. [PMID: 32639868 DOI: 10.1152/ajplung.00320.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
30
|
Novel Comprehensive Bioinformatics Approaches to Determine the Molecular Genetic Susceptibility Profile of Moderate and Severe Asthma. Int J Mol Sci 2020; 21:ijms21114022. [PMID: 32512817 PMCID: PMC7312607 DOI: 10.3390/ijms21114022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Asthma is a chronic inflammatory condition linked to hyperresponsiveness in the airways. There is currently no cure available for asthma, and therapy choices are limited. Asthma is the result of the interplay between genes and the environment. The exact molecular genetic mechanism of asthma remains elusive. Aims: The aim of this study is to provide a comprehensive, detailed molecular etiology profile for the molecular factors that regulate the severity of asthma and pathogenicity using integrative bioinformatics tools. Methods: The GSE43696 omnibus gene expression dataset, which contains 50 moderate cases, 38 severe cases, and 20 healthy controls, was used to investigate differentially expressed genes (DEGs), susceptible chromosomal loci, gene networks, pathways, gene ontologies, and protein–protein interactions (PPIs) using an intensive bioinformatics pipeline. Results: The PPI network analysis yielded DEGs that contribute to interactions that differ from moderate-to-severe asthma. The combined interaction scores resulted in higher interactions for the genes STAT3, AGO2, COL1A1, CLCN6, and KSR for moderate asthma and JAK2, INSR, ERBB2, NR3C1, and PTK6 for severe asthma. Enrichment analysis (EA) demonstrated differential enrichment between moderate and severe asthma phenotypes; the ion transport regulation pathway was significantly enhanced in severe asthma phenotypes compared to that in moderate asthma phenotypes and involved PER2, GCR, IRS-2, KCNK7, KCNK6, NOX1, and SCN7A. The most enriched common pathway in both moderate and severe asthma is the development of the glucocorticoid receptor (GR) signaling pathway followed by glucocorticoid-mediated inhibition of proinflammatory and proconstrictory signaling in the airway of smooth muscle cell pathways. Gene sets were shared between severe and moderate asthma at 16 chromosome locations, including 17p13.1, 16p11.2, 17q21.31, 1p36, and 19q13.2, while 60 and 48 chromosomal locations were unique for both moderate and severe asthma, respectively. Phylogenetic analysis for DEGs showed that several genes have been intersected in phases of asthma in the same cluster of genes. This could indicate that several asthma-associated genes have a common ancestor and could be linked to the same biological function or gene family, implying the importance of these genes in the pathogenesis of asthma. Conclusion: New genetic risk factors for the development of moderate-to-severe asthma were identified in this study, and these could provide a better understanding of the molecular pathology of asthma and might provide a platform for the treatment of asthma.
Collapse
|
31
|
Dutta RK, Chinnapaiyan S, Unwalla H. Aberrant MicroRNAomics in Pulmonary Complications: Implications in Lung Health and Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:413-431. [PMID: 31655261 PMCID: PMC6831837 DOI: 10.1016/j.omtn.2019.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Over the last few decades, evolutionarily conserved molecular networks have emerged as important regulators in the expression and function of eukaryotic genomes. Recently, miRNAs (miRNAs), a large family of small, non-coding regulatory RNAs were identified in these networks as regulators of endogenous genes by exerting post-transcriptional gene regulation activity in a broad range of eukaryotic species. Dysregulation of miRNA expression correlates with aberrant gene expression and can play an essential role in human health and disease. In the context of the lung, miRNAs have been implicated in organogenesis programming, such as proliferation, differentiation, and morphogenesis. Gain- or loss-of-function studies revealed their pivotal roles as regulators of disease development, potential therapeutic candidates/targets, and clinical biomarkers. An altered microRNAome has been attributed to several pulmonary diseases, such as asthma, chronic pulmonary obstructive disease, cystic fibrosis, lung cancer, and idiopathic pulmonary fibrosis. Considering the relevant roles and functions of miRNAs under physiological and pathological conditions, they may lead to the invention of new diagnostic and therapeutic tools. This review will focus on recent advances in understanding the role of miRNAs in lung development, lung health, and diseases, while also exploring the progress and prospects of their application as therapeutic leads or as biomarkers.
Collapse
Affiliation(s)
- Rajib Kumar Dutta
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Srinivasan Chinnapaiyan
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|