1
|
Anju Abraham P, Gokul V, Swapna MNS, Sankararaman SI. Thermal lens technique's surrogacy unveiled: A novel tool for microplastic detection and quantification in water. Heliyon 2024; 10:e34532. [PMID: 39104487 PMCID: PMC11298906 DOI: 10.1016/j.heliyon.2024.e34532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
The escalating usage of paper cups and packaging materials with plastic coatings has evolved into a substantial environmental and health concern, evidenced by the report of microplastics in human blood. This research introduces an innovative laser-assisted thermal lens (TL) technique for the precise detection and measurement of microplastics, specifically those leaching from the inner plastic coatings of paper cups. Employing a multipronged approach encompassing scanning electron microscopy, optical microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, UV-visible, and Raman spectroscopy, a comprehensive investigation is conducted into the leaching of microplastics into hot water from paper cups. The thermal diffusivity (D) of water samples containing microplastics is determined using the TL technique based on 120 observations for each temperature conducted using paper cups from three distinct manufacturers. The observation of a strong correlation between the number of microplastic particles (N) and D of the water sample enabled the setting of a linear empirical relation that can be used for computing the microplastics in water at a particular temperature. The study thus proposes a surrogate method for quantifying microplastics in water using the sensitive and non-destructive TL technique.
Collapse
Affiliation(s)
| | - Vijayakumar Gokul
- Department of Optoelectronics, University of Kerala, Trivandrum, 695581, India
| | | | | |
Collapse
|
2
|
Abimbola I, McAfee M, Creedon L, Gharbia S. In-situ detection of microplastics in the aquatic environment: A systematic literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173111. [PMID: 38740219 DOI: 10.1016/j.scitotenv.2024.173111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Microplastics are ubiquitous in the aquatic environment and have emerged as a significant environmental issue due to their potential impacts on human health and the ecosystem. Current laboratory-based microplastic detection methods suffer from various drawbacks, including a lack of standardisation, limited spatial and temporal coverage, high costs, and time-consuming procedures. Consequently, there is a need for the development of in-situ techniques to detect and monitor microplastics to effectively identify and understand their sources, pathways, and behaviours. Herein, we adopt a systematic literature review method to assess the development and application of experimental and field technologies designed for the in-situ detection and monitoring of aquatic microplastics, without the need for sample preparation. Four scientific databases were searched in March 2023, resulting in a review of 62 relevant studies. These studies were classified into seven sensor categories and their working principles were discussed. The sensor classes include optical devices, digital holography, Raman spectroscopy, other spectroscopy, hyperspectral imaging, remote sensing, and other methods. We also looked at how data from these technologies are integrated with machine learning models to develop classifiers capable of accurately characterising the physical and chemical properties of microplastics and discriminating them from other particles. This review concluded that in-situ detection of microplastics in aquatic environments is feasible and can be achieved with high accuracy, even though the methods are still in the early stages of development. Nonetheless, further research is still needed to enhance the in-situ detection of microplastics. This includes exploring the possibility of combining various detection methods and developing robust machine-learning classifiers. Additionally, there is a recommendation for in-situ implementation of the reviewed methods to assess their effectiveness in detecting microplastics and identify their limitations.
Collapse
Affiliation(s)
- Ismaila Abimbola
- Department of Environmental Science, Faculty of Science, Atlantic Technological University, Sligo, Ireland.
| | - Marion McAfee
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, Sligo, Ireland
| | - Leo Creedon
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, Sligo, Ireland
| | - Salem Gharbia
- Department of Environmental Science, Faculty of Science, Atlantic Technological University, Sligo, Ireland
| |
Collapse
|
3
|
Mishra M, Sudarsan D, Santos CAG, da Silva RM, Beja SK, Paul S, Bhanja P, Sethy M. Current patterns and trends of microplastic pollution in the marine environment: A bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22925-22944. [PMID: 38416357 DOI: 10.1007/s11356-024-32511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
Microplastics are pervasive in the natural environment and pose a growing concern for global health. Plastic waste in marine environments has emerged as a global issue, threatening not only marine biota but also human health due to its implications for the food chain. This study aims to discern the patterns and trends of research, specifically on Marine Microplastic Pollution (MMP), based on a bibliometric analysis of scientific publications from 2011 to 2022. The methodology utilized in this study comprises three stages: (a) creating a bibliographical dataset from Scopus by Elsevier and the Web of Science Core Collection by Clarivate Analytics, (b) analyzing current research (trends and patterns) using bibliometric analysis through Biblioshiny tool, and (c) examining themes and subthemes in MMP research (wastewater treatment, plastic ingestion, the Mediterranean Sea, microplastics pollution, microplastics in freshwater, microplastic ingestion, plastic pollution, and microplastic pollution in the marine environment). The findings reveal that during the studied period, the number of MMP publications amounted to 1377 articles, with an average citation per publication of 59.23 and a total citation count of 81,553. The most cited article was published in 2011, and since then, the number of publications on this topic has been increasing steadily. The author count stood at 5478, with 22 trending topics identified from the 1377 published titles. Between 2019 and 2022, the countries contributing most to the publication of MMP articles were China, the United States of America (USA), and the United Kingdom (UK). However, a noticeable shift in the origin of author countries was observed in the 2019-2022 timeframe, transitioning from a dominance by the USA and the UK to a predominance by China. In 2019, there was a substantial increase in the volume of publications addressing the topic of microplastics. The results show that the most prevalent themes and subthemes pertained to MMP in the Mediterranean Sea. The journals with the highest number of MMP articles published were the Marine Pollution Bulletin (253 articles) and Science of the Total Environment (190 articles). The analysis concludes that research on MMP remains prominent and appears to be increasing each year.
Collapse
Affiliation(s)
- Manoranjan Mishra
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089, Odisha, India
| | - Desul Sudarsan
- Department of Library and Information Science, Berhampur University, Berhampur, 760007, Odisha, India
| | - Celso Augusto Guimarães Santos
- Department of Civil and Environmental Engineering, Federal University of Paraíba, João Pessoa, 58051-900, Paraíba, Brazil.
| | | | - Santosh Kumar Beja
- Department of Environmental Science, Berhampur University, Berhampur, 760007, Odisha, India
| | - Suman Paul
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089, Odisha, India
| | - Pragati Bhanja
- Department of Library and Information Science, Berhampur University, Berhampur, 760007, Odisha, India
| | - Murtyunjya Sethy
- Department of Library and Information Science, Berhampur University, Berhampur, 760007, Odisha, India
| |
Collapse
|
4
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F. Microplastic contamination in commercially packaged edible seaweeds and exposure of the ethnic minority and local population in Mexico. Food Res Int 2024; 176:113840. [PMID: 38163691 DOI: 10.1016/j.foodres.2023.113840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Diet is an important pathway for microplastic exposure. This study examined distinct edible seaweed products sold at ethnic food stores in Mexico for microplastic contamination, as well as the exposure of the Asian ethnic minority and local population to microplastics. Microplastics were extracted from seaweed samples using a wet oxide digestion with hydrogen peroxide followed by zinc chloride density separation. They were subsequently detected, quantified, and the polymer type was determined via microscopic inspection and Fourier transform infrared spectroscopy. Microplastic contamination was detected in all samples, with an average abundance of 24.0 ± 9.4 items g-1. Fibrous-shaped (61 %) and non-colored (57 %) microplastics were prevalent. Microplastics with sizes smaller than 0.2 mm prevailed (60 %), and they have the potential to penetrate gut barriers and endanger human health. Polymers identified consisted of polyethylene-polypropylene, polyamide, cellophane, rayon, and polyethylene terephthalate. According to pollution load index values, seaweed samples were minimally contaminated with microplastics, with values ranging between 3.7 and 6.0. The estimated yearly intake of microplastic from seaweed consumption by the South Korean and Chinese populations in Mexico was 5.8 × 104 ± 2.3 × 104 and 5.7 × 104 ± 4.9 × 104, respectively. This study's findings highlight the importance of improved control measures for minimizing microplastics in foods for export.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
5
|
Siddique MAM, Uddin A, Hossain MS, Rahman SMA, Rahman MS, Kibria G, Malafaia G. "Microplastic seasoning": A study on microplastic contamination of sea salts in Bangladesh. MARINE POLLUTION BULLETIN 2024; 198:115863. [PMID: 38039574 DOI: 10.1016/j.marpolbul.2023.115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
This study investigated microplastics (MPs) in commercial sea salts from Bangladesh. The presence of MPs in the 18 sea salt bands was 100 %, where the mean MPs abundance was 471.67 MPs/kg, ranging between 300 and 670 MPs/kg. The maximum number of MPs in the 300-1500 μm size class was significantly higher than the 1500-3000 μm and 3000-5000 μm size class. The most dominant color was black. Fibers and foams were the dominant shapes. The highest number of MPs was 41 %, obtained from coarse salt grains. Four types of polymers were mainly identified from the analyzed samples: PP, PE, PET, and PA. The mean polymer risk index value among these sea salts was 539 to 1257. The findings of this study can be helpful for consumers, salt industries, and policymakers to be aware of or reduce MP contamination levels in sea salts during production and consumption.
Collapse
Affiliation(s)
- Mohammad Abdul Momin Siddique
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Azad Uddin
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Soliman Hossain
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Shahriar Md Arifur Rahman
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali 3814, Bangladesh; Department of Natural Resource and Society, University of Idaho, Moscow, ID 83844, USA
| | - M Safiur Rahman
- Water Quality Research Laboratory, Chemistry Division, Atomic Energy Center, Bangladesh Atomic Energy Commission, 4-Kazi Nazrul Islam Avenue, Shahbag, Dhaka 1000, Bangladesh
| | | | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, G.O., Brazil.
| |
Collapse
|
6
|
Kudzin MH, Piwowarska D, Festinger N, Chruściel JJ. Risks Associated with the Presence of Polyvinyl Chloride in the Environment and Methods for Its Disposal and Utilization. MATERIALS (BASEL, SWITZERLAND) 2023; 17:173. [PMID: 38204025 PMCID: PMC10779931 DOI: 10.3390/ma17010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Plastics have recently become an indispensable part of everyone's daily life due to their versatility, durability, light weight, and low production costs. The increasing production and use of plastics poses great environmental problems due to their incomplete utilization, a very long period of biodegradation, and a negative impact on living organisms. Decomposing plastics lead to the formation of microplastics, which accumulate in the environment and living organisms, becoming part of the food chain. The contamination of soils and water with poly(vinyl chloride) (PVC) seriously threatens ecosystems around the world. Their durability and low weight make microplastic particles easily transported through water or air, ending up in the soil. Thus, the problem of microplastic pollution affects the entire ecosystem. Since microplastics are commonly found in both drinking and bottled water, humans are also exposed to their harmful effects. Because of existing risks associated with the PVC microplastic contamination of the ecosystem, intensive research is underway to develop methods to clean and remove it from the environment. The pollution of the environment with plastic, and especially microplastic, results in the reduction of both water and soil resources used for agricultural and utility purposes. This review provides an overview of PVC's environmental impact and its disposal options.
Collapse
Affiliation(s)
- Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| | - Dominika Piwowarska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Str., 90-237 Łódź, Poland
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str., 90-232 Łódź, Poland
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna Str., 90-364 Łódź, Poland
| | - Natalia Festinger
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| | - Jerzy J. Chruściel
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| |
Collapse
|
7
|
Seewoo BJ, Goodes LM, Mofflin L, Mulders YR, Wong EV, Toshniwal P, Brunner M, Alex J, Johnston B, Elagali A, Gozt A, Lyle G, Choudhury O, Solomons T, Symeonides C, Dunlop SA. The plastic health map: A systematic evidence map of human health studies on plastic-associated chemicals. ENVIRONMENT INTERNATIONAL 2023; 181:108225. [PMID: 37948868 DOI: 10.1016/j.envint.2023.108225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The global production and use of plastic materials has increased dramatically since the 1960s and there is increasing evidence of human health impacts related to exposure to plastic-associated chemicals. There is, however, no comprehensive, regulatory, post-market monitoring for human health effects of plastic-associated chemicals or particles and it is unclear how many of these have been investigated for effects in humans, and therefore what the knowledge gaps are. OBJECTIVE To create a systematic evidence map of peer-reviewed human studies investigating the potential effects of exposure to plastic-associated particles/chemicals on health to identify research gaps and provide recommendations for future research and regulation policy. METHODS Medline and Embase databases were used to identify peer-reviewed primary human studies published in English from Jan 1960 - Jan 2022 that investigated relationships between exposures to included plastic-associated particles/chemicals measured and detected in bio-samples and human health outcomes. Plastic-associated particles/chemicals included are: micro and nanoplastics, due to their widespread occurrence and potential for human exposure; polymers, the main building blocks of plastic; plasticizers and flame retardants, the two most common types of plastic additives with the highest concentration ranges in plastic materials; and bisphenols and per- or polyfluoroalkyl substances, two chemical classes of known health concern that are common in plastics. We extracted metadata on the population and study characteristics (country, intergenerational, sex, age, general/special exposure risk status, study design), exposure (plastic-associated particle/chemical, multiple exposures), and health outcome measures (biochemical, physiological, and/or clinical), from which we produced the interactive database 'Plastic Health Map' and a narrative summary. RESULTS We identified 100,949 unique articles, of which 3,587 met our inclusion criteria and were used to create a systematic evidence map. The Plastic Health Map with extracted metadata from included studies are freely available at https://osf.io/fhw7d/ and summary tables, plots and overall observations are included in this report. CONCLUSIONS We present the first evidence map compiling human health research on a wide range of plastic-associated chemicals from several different chemical classes, in order to provide stakeholders, including researchers, regulators, and concerned individuals, with an efficient way to access published literature on the matter and determine knowledge gaps. We also provide examples of data clusters to facilitate systematic reviews and research gaps to help direct future research efforts. Extensive gaps are identified in the breadth of populations, exposures and outcomes addressed in studies of potential human health effects of plastic-associated chemicals. No studies of the human health effects of micro and/or nanoplastics were found, and no studies were found for 26/1,202 additives included in our search that are of known hazard concern and confirmed to be in active production. Few studies have addressed recent "substitution" chemicals for restricted additives such as organophosphate flame retardants, phthalate substitutes, and bisphenol analogues. We call for a paradigm shift in chemical regulation whereby new plastic chemicals are rigorously tested for safety before being introduced in consumer products, with ongoing post-introduction biomonitoring of their levels in humans and health effects throughout individuals' life span, including in old age and across generations.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise M Goodes
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise Mofflin
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yannick R Mulders
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Enoch Vs Wong
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Priyanka Toshniwal
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Manuel Brunner
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jennifer Alex
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Brady Johnston
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Ahmed Elagali
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Aleksandra Gozt
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Greg Lyle
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Population Health, Curtin University, Kent St, Bentley WA 6102, Australia
| | - Omrik Choudhury
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia
| | - Terena Solomons
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Health and Medical Sciences (Library), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Christos Symeonides
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Sarah A Dunlop
- Plastics, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
8
|
Haque MK, Uddin M, Kormoker T, Ahmed T, Zaman MRU, Rahman MS, Rahman MA, Hossain MY, Rana MM, Tsang YF. Occurrences, sources, fate and impacts of plastic on aquatic organisms and human health in global perspectives: What Bangladesh can do in future? ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5531-5556. [PMID: 37382719 DOI: 10.1007/s10653-023-01646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Bangladesh is not an exception to the growing global environmental problem of plastic pollution. Plastics have been deemed a blessing for today's world thanks to their inexpensive production costs, low weight, toughness, and flexibility, but poor biodegradability and massive misuse of plastics are to blame for widespread contamination of the environmental components. Plastic as well as microplastic pollution and its adverse consequences have attracted significant investigative attention all over the world. Plastic pollution is a rising concern in Bangladesh, but scientific studies, data, and related information are very scarce in numerous areas of the plastic pollution problem. The current study examined the effects of plastic and microplastic pollution on the environment and human health, and it examined Bangladesh's existing knowledge of plastic pollution in aquatic ecosystems in light of the rapidly expanding international research in this field. We also made an effort to investigate the current shortcomings in Bangladesh's assessment of plastic pollution. This study proposed several management approaches to the persistent plastic pollution problem by analyzing studies from industrialized and emerging countries. Finally, this work pushed investigators to investigate Bangladesh's plastic contamination thoroughly and develop guidelines and policies to address the issue.
Collapse
Affiliation(s)
- Md Kamrul Haque
- Institute of Bangabandhu War of Liberation Bangladesh Studies, National University, Dhaka, 1209, Bangladesh
| | - Minhaz Uddin
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Tapos Kormoker
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong.
| | - Tareq Ahmed
- Institute of Structural and Molecular Biology, Department of Biological Science, University of London, Birkbeck, UK
| | - Md Rahat Uz Zaman
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - M Safiur Rahman
- Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Shahbag, Dhaka, 1000, Bangladesh
| | - Md Ashekur Rahman
- Department of Fisheries, Faculty of Agriculture, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Yeamin Hossain
- Department of Fisheries, Faculty of Agriculture, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Md Masud Rana
- Department of Horticulture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong
| |
Collapse
|
9
|
Ji J, Wu X, Li X, Zhu Y. Effects of microplastics in aquatic environments on inflammatory bowel disease. ENVIRONMENTAL RESEARCH 2023; 229:115974. [PMID: 37088319 DOI: 10.1016/j.envres.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The incidence of inflammatory bowel disease (IBD) has been increasing in recent years, particularly in newly industrialized nations. Environmental factors have been identified as playing a crucial role in IBD pathogenesis. Microplastics (MPs), a novel class of environmental pollutants, are a significant global pollution concern. MPs are found in almost all aquatic environments. MPs in the environment may pose health risks, specifically concerning the intestinal system, due to prolonged exposure through the consumption of aquatic foods and drinking water. In this review, we aimed to provide a comprehensive overview of the current knowledge on the impact of MPs in water resources on the occurrence and progression of IBD. Our systematic analysis of in vitro and in vivo studies found that MPs induce intestinal barrier dysfunction, imbalance in the intestinal microbiome, and metabolic abnormalities, ultimately leading to IBD. In addition, MP exposure causes greater harm to individuals with preexisting gastrointestinal disorders than those without them. Our analysis of this literature review highlights the need for further research to improve the understanding of the complex relationship between MP exposure and IBD.
Collapse
Affiliation(s)
- Jiali Ji
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Xi Li
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ya Zhu
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
10
|
Thiele CJ, Grange LJ, Haggett E, Hudson MD, Hudson P, Russell AE, Zapata-Restrepo LM. Microplastics in European sea salts - An example of exposure through consumer choice and of interstudy methodological discrepancies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114782. [PMID: 36934543 DOI: 10.1016/j.ecoenv.2023.114782] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Microplastics are contaminants of emerging concern, not least due to their global presence in marine surface waters. Unsurprisingly, microplastics have been reported in salts harvested from numerous locations. We extracted microplastics from 13 European sea salts through 30% H2O2 digestion and filtration over 5-µm filters. Filters were visually inspected at magnifications to x100. A subsample of potential microplastics was subjected to Raman spectroscopy. Particle mass was estimated, and human dose exposure calculated. After blank corrections, median concentrations were 466 ± 152 microplastics kg-1 ranging from 74 to 1155 items kg-1. Traditionally harvested salts contained fewer microplastics than most industrially harvested ones (t-test, p < 0.01). Approximately 14 µg of microplastics (< 12 particles) may be absorbed by the human body annually, of which a quarter may derive from a consumer choosing sea salt. We reviewed existing studies, showing that targeting different particle sizes and incomplete filtrations hinder interstudy comparison, indicating the importance of method harmonisation for future studies. Excess salt consumption is detrimental to human health; the hazardousness of ingesting microplastics on the other hand has yet to be shown. A portion of microplastics may enter sea salts through production processes rather than source materials.
Collapse
Affiliation(s)
- Christina J Thiele
- Centre for Environmental Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK.
| | - Laura J Grange
- School of Ocean and Earth Science, Faculty of Environment and Life Sciences, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK; Currently at School of Ocean Sciences, Bangor University, Bangor, Gwynedd LL57 2DG, UK
| | - Emily Haggett
- Centre for Environmental Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Malcolm D Hudson
- Centre for Environmental Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Philippa Hudson
- Philippa Hudson, Bournemouth University, Talbot Campus, Fern Barrow, Poole BH12 5BB, UK
| | - Andrea E Russell
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Lina M Zapata-Restrepo
- Centre for Environmental Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| |
Collapse
|
11
|
Nirmala K, Rangasamy G, Ramya M, Shankar VU, Rajesh G. A critical review on recent research progress on microplastic pollutants in drinking water. ENVIRONMENTAL RESEARCH 2023; 222:115312. [PMID: 36709031 DOI: 10.1016/j.envres.2023.115312] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Plastic pollution is an emerging issue in recent days. Persistent plastic particles reach the atmosphere, land and water by multiple pathways. Research has confirmed that the existence of plastic particles is found surprisingly everywhere, from the Artic to the Antarctic region. The probability of ingestion of plastic by all living forms is quite natural, as the whole planet's environment is polluted with microplastic particles. The bioaccumulation of microplastics is a threat and the consequences for living beings are yet to be explored. Microplastics present in different drinking water sources like rivers, lakes, treatment units etc. are studied by several researchers, covering various aspects. Research carried out by various scientists on the microplastics in different drinking water sources is highlighted in this review. In view of the previous research carried out on various aspects of microplastic particles, the necessity of a uniform protocol for qualitative and quantitative analysis of microplastic is ascertained. Microplastic pollution is an ongoing environmental concern, it must be addressed and research should be expanded.
Collapse
Affiliation(s)
- K Nirmala
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - M Ramya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India
| | - V Uma Shankar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India
| | - G Rajesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India
| |
Collapse
|
12
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
13
|
Özçifçi Z, Basaran B, Akçay HT. Microplastic contamination and risk assessment in table salts: Turkey. Food Chem Toxicol 2023; 175:113698. [PMID: 36889431 DOI: 10.1016/j.fct.2023.113698] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/15/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023]
Abstract
In this study, the characterization of microplastics of table salts (n = 36) was determined by FT - IR. Then, individuals' exposure to microplastics from table salt consumption was calculated with a deterministic model, and finally, a risk assessment of table salt was performed using the polymer risk index. On average, 44 ± 26, 38 ± 40, 28 ± 9, and 39 ± 30 microplastics/kg were detected in rock salts (n = 16), lake salts (n = 12), sea salts (n = 8), and all salts (n = 36). Microplastics with 10 different polymer types (CPE, VC-ANc, HDPE, PET, Nylon-6, PVAc, EVA, PP, PS, Polyester), 7 different colors (black, red, colorless, blue, green, brown, white, gray), and 3 different shapes (fiber, granulated, film) were found in table salts. The daily, annual and lifetime (70-year) exposures to microplastics from table salt consumption in 15+-year-old individuals (general) were calculated to be 0.41 microplastic particles/day, 150 microplastic particles/year and 10,424 microplastic particles/70-year, respectively. The average microplastic polymer risk index of all table salts was calculated as 182 ± 144 and the risk level is in the medium. In order to minimize microplastic contamination in table salts, protective measures should be taken at the source of the salt, and production processes should be improved.
Collapse
Affiliation(s)
- Zehra Özçifçi
- Department of Chemistry Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Burhan Basaran
- Department of Tea Agriculture and Processing Technology, Pazar Vocational School, Recep Tayyip Erdogan University, Rize, 53100, Turkey.
| | - Hakkı Türker Akçay
- Department of Chemistry Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| |
Collapse
|
14
|
Siddiqui SA, Khan S, Tariq T, Sameen A, Nawaz A, Walayat N, Oboturova NP, Ambartsumov TG, Nagdalian AA. Potential risk assessment and toxicological impacts of nano/micro-plastics on human health through food products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:361-395. [PMID: 36863839 DOI: 10.1016/bs.afnr.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The problem of environmental pollution with plastic is becoming more and more acute every year. Due to the low rate of decomposition of plastic, its particles get into food and harm the human body. This chapter focuses on the potential risks and toxicological effects of both nano and microplastics on human health. The main places of distribution of various toxicants along with the food chain have been established. The effects of some examples of the main sources of micro/nanoplastics on the human body are also emphasised. The processes of entry and accumulation of micro/nanoplastics are described, and the mechanism of accumulation that occurs inside the body is briefly explained. Potential toxic effects reported from studies on various organisms are highlighted as well.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany.
| | - Sipper Khan
- Institute of Agricultural Engineering Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Asad Nawaz
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | | | | | | |
Collapse
|
15
|
Hassoun A, Pasti L, Chenet T, Rusanova P, Smaoui S, Aït-Kaddour A, Bono G. Detection methods of micro and nanoplastics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:175-227. [PMID: 36863835 DOI: 10.1016/bs.afnr.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Plastics and related contaminants (including microplastics; MPs and nanoplastics; NPs) have become a serious global safety issue due to their overuse in many products and applications and their inadequate management, leading to possible leakage into the environment and eventually to the food chain and humans. There is a growing literature reporting on the occurrence of plastics, (MPs and NPs) in both marine and terrestrial organisms, with many indications about the harmful impact of these contaminants on plants and animals, as well as potential human health risks. The presence of MPs and NPs in many foods and beverages including seafood (especially finfish, crustaceans, bivalves, and cephalopods), fruits, vegetables, milk, wine and beer, meat, and table salts, has become popular research areas in recent years. Detection, identification, and quantification of MPs and NPs have been widely investigated using a wide range of traditional methods, such as visual and optical methods, scanning electron microscopy, and gas chromatography-mass spectrometry, but these methods are burdened with a number of limitations. In contrast, spectroscopic techniques, especially Fourier-transform infrared spectroscopy and Raman spectroscopy, and other emerging techniques, such as hyperspectral imaging are increasingly being applied due to their potential to enable rapid, non-destructive, and high-throughput analysis. Despite huge research efforts, there is still an overarching need to develop reliable analytical techniques with low cost and high efficiency. Mitigation of plastic pollution requires establishing standard and harmonized methods, adopting holistic approaches, and raising awareness and engaging the public and policymakers. Therefore, this chapter focuses mainly on identification and quantification techniques of MPs and NPs in different food matrices (mostly seafood).
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France; Syrian Academic Expertise (SAE), Gaziantep, Turkey.
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Tatiana Chenet
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Polina Rusanova
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Mazara del Vallo, TP, Italy; Department of Biological, Geological and Environmental Sciences (BiGeA) - Marine Biology and Fisheries Laboratory of Fano (PU), University of Bologna (BO), Bologna, Italy
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | | | - Gioacchino Bono
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Mazara del Vallo, TP, Italy; Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Di Palermo, Palermo, Italy
| |
Collapse
|
16
|
Ziani K, Ioniță-Mîndrican CB, Mititelu M, Neacșu SM, Negrei C, Moroșan E, Drăgănescu D, Preda OT. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023; 15:617. [PMID: 36771324 PMCID: PMC9920460 DOI: 10.3390/nu15030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Microplastics are small plastic particles that come from the degradation of plastics, ubiquitous in nature and therefore affect both wildlife and humans. They have been detected in many marine species, but also in drinking water and in numerous foods, such as salt, honey and marine organisms. Exposure to microplastics can also occur through inhaled air. Data from animal studies have shown that once absorbed, plastic micro- and nanoparticles can distribute to the liver, spleen, heart, lungs, thymus, reproductive organs, kidneys and even the brain (crosses the blood-brain barrier). In addition, microplastics are transport operators of persistent organic pollutants or heavy metals from invertebrate organisms to other higher trophic levels. After ingestion, the additives and monomers in their composition can interfere with important biological processes in the human body and can cause disruption of the endocrine, immune system; can have a negative impact on mobility, reproduction and development; and can cause carcinogenesis. The pandemic caused by COVID-19 has affected not only human health and national economies but also the environment, due to the large volume of waste in the form of discarded personal protective equipment. The remarkable increase in global use of face masks, which mainly contain polypropylene, and poor waste management have led to worsening microplastic pollution, and the long-term consequences can be extremely devastating if urgent action is not taken.
Collapse
Affiliation(s)
- Khaled Ziani
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | | | - Carolina Negrei
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania
| | - Elena Moroșan
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Doina Drăgănescu
- Department of Pharmaceutical Physics and Informatics, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Olivia-Teodora Preda
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania
| |
Collapse
|
17
|
Sewwandi M, Wijesekara H, Rajapaksha AU, Soysa S, Vithanage M. Microplastics and plastics-associated contaminants in food and beverages; Global trends, concentrations, and human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120747. [PMID: 36442819 DOI: 10.1016/j.envpol.2022.120747] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Microplastics has become a global concern due to their ubiquitous presence which poses unavoidable human exposure risks. Geographical distribution and yearly trends of research on microplastics, food, and beverages do not exist. Thus, no overall account is available regarding the presence of microplastics and plastics-associated contaminants in food and beverages. Hence, this attempt is to review the geographical distribution of studies through a brief bibliometric analysis and the plastics-associated contaminants including plasticizers and microplastics in food and beverages. Estimated microplastic consumption has been listed for the pool of publications reviewed here. Further, this review discusses the ingestion potency of micropollutants associated with microplastics, possible health impacts, and existing challenges. Global trend in research exponentially increased after 2018 and China is leading. Studies on microplastics were limited to a few beverages and food; milk, beer, tea, refreshing drinks, salt, sugar, honey, etc., whereas seafood and drinking water have been extensively studied. Publications on plastic-additives were reported in two ways; migration of plastic-additives from packaging by leaching and the presence of plastic-additives in food and beverages. Bisphenol A and bis(2-Ethylhexyl) phthalate were the most frequently reported both in food and beverages. Exposure of packaging material to high temperatures predominantly involves plastic-additive contamination in food and beverages. Microplastics-bound micropollutants can also be ingested through food and beverages; however, a lack of knowledge exists. The complex matrix of food or beverages and the absence of standard procedures for analysis of microplastics and micropollutants exist as challenges. More investigations on the presence of microplastics and plastic-additives in food and beverage are urgent needs to a better assessment of potential human exposure and human health risk.
Collapse
Affiliation(s)
- Madushika Sewwandi
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, 70140, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Sasimali Soysa
- Department of Physical Sciences and Technology, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, 70140, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia.
| |
Collapse
|
18
|
Ding J, Sun C, Li J, Shi H, Xu X, Ju P, Jiang F, Li F. Microplastics in global bivalve mollusks: A call for protocol standardization. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129490. [PMID: 35792432 DOI: 10.1016/j.jhazmat.2022.129490] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/12/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
A growing body of evidence shows that microplastic pollution is ubiquitous in bivalve mollusks globally and is of particular concern due to its potential impact on human health. However, non-standardized sampling, processing, and analytical techniques increased the difficulty of direct comparisons among existing studies. Based on 61 peer-reviewed papers, we summarized the current knowledge of microplastics in bivalve mollusks globally and provided an in-depth analysis of factors affecting the outcome of microplastic data, with the main focus on the effects of different species and methodologies. We found no significant differences in microplastic abundance among genera from the same family but significant differences among bivalve families, indicating habitats play an important role in microplastic ingestion by bivalve mollusks. This also provided foundational knowledge for using epifaunal and infaunal bivalves to monitor microplastic pollution in water and sediment, respectively. Recommendations for microplastic monitoring protocol in bivalve mollusks were proposed according to the results of this review, covering (i) a sample size of at least 50 bivalves in the study area, (ii) the use of 10 % KOH as the digestion solution, and (iii) the pore size of a filter membrane of < 5 µm. Acknowledging the need for a standard procedure, more efforts towards protocol standardization used in long-term and large-scale microplastic monitoring programs in bivalve mollusks are needed.
Collapse
Affiliation(s)
- Jinfeng Ding
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| | - Chengjun Sun
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China; Laboratory of Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jingxi Li
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Peng Ju
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| | - Fenghua Jiang
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
19
|
Occurrence and exposure to microplastics in salt for human consumption, present on the Lebanese market. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Abihssira-García IS, Kögel T, Gomiero A, Kristensen T, Krogstad M, Olsvik PA. Distinct polymer-dependent sorption of persistent pollutants associated with Atlantic salmon farming to microplastics. MARINE POLLUTION BULLETIN 2022; 180:113794. [PMID: 35659665 DOI: 10.1016/j.marpolbul.2022.113794] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/04/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Interactions of microplastics and persistent organic pollutants (POPs) associated with Atlantic salmon farming were studied to assess the potential role of microplastics in relation to the environmental impact of aquaculture. HDPE, PP, PET and PVC microplastics placed for 3 months near fish farms sorbed POPs from aquafeeds. PET and PVC sorbed significantly higher levels of dioxins and PCBs compared to HDPE, while the levels sorbed to PP were intermediate and did not differ statistically from PET, PVC or HDPE. In addition, the composition of dioxins accumulated in caged blue mussels did not reflect the patterns observed on the microplastics, probably due to polymer-specific affinity of POPs. In conclusion, the results of this study show that microplastics occurring near fish farms can sorb aquafeed-associated POPs and, therefore, microplastics could potentially be vectors of such chemicals in the marine environment and increase the environmental impact of fish farming.
Collapse
Affiliation(s)
| | - Tanja Kögel
- Institute of Marine Research (IMR), Bergen, Norway.
| | - Alessio Gomiero
- Environment Department, Norwegian Research Centre (NORCE), Randaberg, Norway.
| | | | - Morten Krogstad
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; Institute of Marine Research (IMR), Bergen, Norway.
| |
Collapse
|
21
|
Danopoulos E, Twiddy M, West R, Rotchell JM. A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127861. [PMID: 34863566 DOI: 10.1016/j.jhazmat.2021.127861] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 05/06/2023]
Abstract
Humans are exposed to microplastics (MPs) daily via ingestion and inhalation. It is not known whether this results in adverse health effects and, if so, at what levels of exposure. Without epidemiological studies, human cell in vitro MP toxicological studies provide an alternative approach to this question. This review systematically synthesised all evidence and estimated thresholds of dose-response relationships. MEDLINE and Web of Science were searched from inception to March 2021 and study quality was rated using a novel risk of bias assessment tool. Seventeen studies were included in the rapid review and eight in the meta-regression. Four biological endpoints displayed MP-associated effects: cytotoxicity, immune response, oxidative stress, barrier attributes, and one did not (genotoxicity). Irregular shape was found to be the only MP characteristic predicting cell death, along with the duration of exposure and MP concentration (μg/mL). Cells showed varying cytotoxic sensitivity to MPs, with Caco-2 cells (human adenocarcinoma cell line) being the most susceptible. Minimum, environmentally-relevant, concentrations of 10 μg/mL (5-200 µm), had an adverse effect on cell viability, and 20 μg/mL (0.4 µm) on cytokine release. This work is the first to quantify thresholds of MPs effects on human cells in the context of risk assessment.
Collapse
Affiliation(s)
- Evangelos Danopoulos
- Hull York Medical School, University of Hull, Allam Medical Building, Hull HU6 7RX, United Kingdom.
| | - Maureen Twiddy
- Hull York Medical School, University of Hull, Allam Medical Building, Hull HU6 7RX, United Kingdom
| | - Robert West
- Institute of Health Science, School of Medicine, University of Leeds, Leeds LS2 9LU, United Kingdom
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
22
|
Yin J, Li JY, Craig NJ, Su L. Microplastic pollution in wild populations of decapod crustaceans: A review. CHEMOSPHERE 2022; 291:132985. [PMID: 34801569 DOI: 10.1016/j.chemosphere.2021.132985] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Along with the increasing amount of plastic production and waste disposal, the presence of microplastics has been confirmed in all compartments of ecosystems. The microplastics in biota is of particular concern due to the potential eco-risks associated with long term exposure and the potential for transportation along food webs. Decapoda represents a diverse taxonomic group within the subphylum Crustacea, and some of which are highly valued in fishery and biological production. The interaction between microplastic pollution and wild populations of decapod crustaceans have been documented less than fish or bivalves but are critical to understand the fates of microplastics in marine eco-systems and enrich the baselines for consumption analyses. Our review systematically summarizes the occurrence, abundance and characteristics of microplastics detected in edible and non-edible sections of decapod crustaceans from field observations. Sub-groups between crabs and shrimps were also included for comparison. The occurrence of microplastics in the edible sections were less than those in non-edible sections, and there are differences between crabs and shrimps. Fibrous microplastics and items with a size category less than 1 mm were dominant pollutants across all available literature. The methodology selection, biological features and uptake pathways play roles in the microplastic body burden in Decapoda. Our work enriches the understanding of microplastic pollution in wild populations of decapod crustaceans but their contribution to the human exposure to microplastics needs to be addressed with more accurate measurements.
Collapse
Affiliation(s)
- Jie Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Nicholas J Craig
- School of Biosciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200142, China.
| |
Collapse
|
23
|
Gündogdu S, Rathod N, Hassoun A, Jamroz E, Kulawik P, Gokbulut C, Aït-Kaddour A, Özogul F. The impact of nano/micro-plastics toxicity on seafood quality and human health: facts and gaps. Crit Rev Food Sci Nutr 2022; 63:6445-6463. [PMID: 35152807 DOI: 10.1080/10408398.2022.2033684] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Contamination of the food and especially marine environment with nano/micro-plastic particles has raised serious concern in recent years. Environmental pollution and the resulting seafood contamination with microplastic (MP) pose a potential threat to consumers. The absorption rate of the MP by fish is generally considered low, although the bioavailability depends on the physical and chemical properties of the consumed MP. The available safety studies are inconclusive, although there is an indication that prolonged exposure to high levels of orally administered MP can be hazardous for consumers. This review details novel findings about the occurrence of MP, along with its physical and chemical properties, in the marine environment and seafood. The effect of processing on the content of MP in the final product is also reviewed. Additionally, recent findings regarding the impact of exposure of MP on human health are discussed. Finally, gaps in current knowledge are underlined, and the possibilities for future research are indicated in the review. There is an urgent need for further research on the absorption and bioavailability of consumed MP and in vivo studies on chronic exposure. Policymakers should also consider the implementation of novel legislation related to MP presence in food.
Collapse
Affiliation(s)
- Sedat Gündogdu
- Department of Basic Sciences, Cukurova University Faculty of Fisheries, Adana, Turkey
| | - Nikheel Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Dapoli, Maharashtra State, India
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Ewelina Jamroz
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Karakow, Poland
| | - Piotr Kulawik
- Department of Pharmacology and Toxicology, University of Adnan Menderes, Isikli Koyu, Aydin, Turkey
| | - Cengiz Gokbulut
- Faculty of Medicine, Department of Pharmacology, Balikesir University, Cagis Campus, Balikesir, Turkey
| | | | - Fatih Özogul
- Department of Seafood Processing Technology, Cukurova University Faculty of Fisheries, Adana, Turkey
| |
Collapse
|
24
|
Outdoor Atmospheric Microplastics within the Humber Region (United Kingdom): Quantification and Chemical Characterisation of Deposited Particles Present. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atmospheric microplastics (MPs) have been consistently captured within air samples on a global scale. Locations with high human activity are reported to have high MP levels. An urban sampling site in the Humber region (U.K.) has been sampled over a 13-month period, providing a seasonal variation profile of MP levels, size, shape, and polymer types that humans are exposed to. Mean MP levels, measured using passive fallout into a container, were 3055 ± 5072 MP m−2 day−1 (1164 median). An increase in levels with a decrease in MP size was observed, consisting of mainly film-shaped MPs (67%) that were polyethylene (31%) and nylon (28%) polymer types. No relationship between rainfall and MP fallout levels was observed. In parallel, MPs within five urbanised locations relevant to human exposure were characterised over a 2-week period. An overall MP mean (and standard deviation) of 1500 ± 1279 was observed (1012 median), from which petroleum resin accounted for 32% of MP polymer type, with a higher prevalence within industrial and roadside zones. These comprised mainly fragment (52%) and film (42%) shapes, and the MPs levels increased with decreasing particle size. The results provide novel information on characterising polymer levels and types, and can inform cellular toxicity studies, investigating the consequences of human MP exposure.
Collapse
|
25
|
Kim SK, Song NS. Microplastics in edible salt: a literature review focusing on uncertainty related with measured minimum cutoff sizes. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Pironti C, Ricciardi M, Motta O, Miele Y, Proto A, Montano L. Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects. TOXICS 2021; 9:224. [PMID: 34564375 PMCID: PMC8473407 DOI: 10.3390/toxics9090224] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022]
Abstract
Recently, studies on microplastics (MPs) have increased rapidly due to the growing awareness of the potential health risks related to their occurrence. The first part of this review is devoted to MP occurrence, distribution, and quantification. MPs can be transferred from the environment to humans mainly through inhalation, secondly from ingestion, and, to a lesser extent, through dermal contact. As regards food web contamination, we discuss the microplastic presence not only in the most investigated sources, such as seafood, drinking water, and salts, but also in other foods such as honey, sugar, milk, fruit, and meat (chickens, cows, and pigs). All literature data suggest not-negligible human exposure to MPs through the above-mentioned routes. Consequently, several research efforts have been devoted to assessing potential human health risks. Initially, toxicological studies were conducted with aquatic organisms and then with experimental mammal animal models and human cell cultures. In the latter case, toxicological effects were observed at high concentrations of MPs (polystyrene is the most common MP benchmark) for a short time. Further studies must be performed to assess the real consequences of MP contamination at low concentrations and prolonged exposure.
Collapse
Affiliation(s)
- Concetta Pironti
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Maria Ricciardi
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Ylenia Miele
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (Y.M.); (A.P.)
| | - Antonio Proto
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (Y.M.); (A.P.)
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “S. Francesco di Assisi Hospital”, 84020 Oliveto Citra, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
27
|
Zhang N, Li YB, He HR, Zhang JF, Ma GS. You are what you eat: Microplastics in the feces of young men living in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144345. [PMID: 33434834 DOI: 10.1016/j.scitotenv.2020.144345] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 05/24/2023]
Abstract
PURPOSE Microplastics have been widely detected in the environment and marine organisms. However, few studies have investigated the presence of microplastics in humans. This preliminary study identified and quantified the microplastic content in human feces. METHODS A total of 26 young male students aged 18-25 years were recruited from Beijing, China. A self-administered 7-day 24-h fluid intake record was used to document fluid intake, and food intake was recorded for 3 days. Feces were collected by participants using a sterile fecal collector. Microplastics in the remaining fecal residues were measured and identified using fourier transform infrared micro-spectroscopy. RESULTS Eventually, twenty-four participants completed the study. The fecal samples of 23 (95.8%) participants tested positive for microplastics. In these 23 samples, the abundance of microplastics varied from 1 particle/g to 36 particles/g (size 20 to 800 μm). The summed mass of all microplastic particles per participant ranged from 0.01 to 14.6 mg. Qualitative analysis of the microplastics indicated the presence of one to eight types of microplastics in each sample, with polypropylene (PP) being the most abundant; it was found in 95.8% of fecal samples. We examined associations between water intake habits and the abundance of microplastics in their feces. A moderate correlation was observed between packaged water and beverage intake and microplastic abundance in feces (r = 0.445, P = 0.029). CONCLUSION Various types of microplastics were detected in human feces, with PP being found in the highest proportion. There may be an association between water intake habits and microplastic abundance in feces.
Collapse
Affiliation(s)
- Na Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China; Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China
| | - Yi Bin Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China; Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China
| | - Hai Rong He
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China; Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China
| | - Jian Fen Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China; Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China
| | - Guan Sheng Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China; Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China.
| |
Collapse
|
28
|
Nicole W. Microplastics in Seafood: How Much Are People Eating? ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:34001. [PMID: 33730867 PMCID: PMC7969126 DOI: 10.1289/ehp8936] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
29
|
Danopoulos E, Jenner LC, Twiddy M, Rotchell JM. Microplastic Contamination of Seafood Intended for Human Consumption: A Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:126002. [PMID: 33355482 PMCID: PMC7757379 DOI: 10.1289/ehp7171] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Microplastics (MPs) have contaminated all compartments of the marine environment including biota such as seafood; ingestion from such sources is one of the two major uptake routes identified for human exposure. OBJECTIVES The objectives were to conduct a systematic review and meta-analysis of the levels of MP contamination in seafood and to subsequently estimate the annual human uptake. METHODS MEDLINE, EMBASE, and Web of Science were searched from launch (1947, 1974, and 1900, respectively) up to October 2020 for all studies reporting MP content in seafood species. Mean, standard deviations, and ranges of MPs found were collated. Studies were appraised systematically using a bespoke risk of bias (RoB) assessment tool. RESULTS Fifty studies were included in the systematic review and 19 in the meta-analysis. Evidence was available on four phyla: mollusks, crustaceans, fish, and echinodermata. The majority of studies identified MP contamination in seafood and reported MP content < 1 MP / g , with 26% of studies rated as having a high RoB, mainly due to analysis or reporting weaknesses. Mollusks collected off the coasts of Asia were the most heavily contaminated, coinciding with reported trends of MP contamination in the sea. According to the statistical summary, MP content was 0 - 10.5 MPs / g in mollusks, 0.1 - 8.6 MPs / g in crustaceans, 0 - 2.9 MPs / g in fish, and 1 MP / g in echinodermata. Maximum annual human MP uptake was estimated to be close to 55,000 MP particles. Statistical, sample, and methodological heterogeneity was high. DISCUSSION This is the first systematic review, to our knowledge, to assess and quantify MP contamination of seafood and human uptake from its consumption, suggesting that action must be considered in order to reduce human exposure via such consumption. Further high-quality research using standardized methods is needed to cement the scientific evidence on MP contamination and human exposures. https://doi.org/10.1289/EHP7171.
Collapse
|