1
|
Pardossi S, Fagiolini A, Cuomo A. Variations in BDNF and Their Role in the Neurotrophic Antidepressant Mechanisms of Ketamine and Esketamine: A Review. Int J Mol Sci 2024; 25:13098. [PMID: 39684808 DOI: 10.3390/ijms252313098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is critical for neuroplasticity, synaptic transmission, and neuronal survival. Studies have implicated it in the pathophysiology of depression, as its expression is significantly reduced in brain areas such as the prefrontal cortex and hippocampus in patients with depression. Our narrative review focuses on the relationship between BDNF, ketamine, and esketamine, specifically by summarizing human studies investigating BDNF variations in patients treated with these two drugs. BDNF plays a pivotal role in neuroplasticity and neurotrophic mechanisms that can be enhanced by traditional antidepressants, which have been shown to increase BDNF levels both peripherally and in targeted brain regions. Ketamine and its S-enantiomer, esketamine, exert both rapid and sustained antidepressant effects through activation of glutamate-related pathways, with neurotrophic effects involving BDNF, as demonstrated in experimental studies. However, clinical findings have shown mixed results, with most indicating an increase in plasma BDNF in patients treated with intravenous ketamine, although some studies contradict these findings. In addition to this, there are few studies of BDNF and esketamine. Currently, the limited number of studies suggests the need for further research, including larger sample sizes and investigations of BDNF and intranasal esketamine, which has been approved by several regulatory agencies for the treatment of treatment-resistant depression.
Collapse
Affiliation(s)
- Simone Pardossi
- Department of Molecular Medicine, University of Siena School of Medicine, 53100 Siena, Italy
| | - Andrea Fagiolini
- Department of Molecular Medicine, University of Siena School of Medicine, 53100 Siena, Italy
| | - Alessandro Cuomo
- Department of Molecular Medicine, University of Siena School of Medicine, 53100 Siena, Italy
| |
Collapse
|
2
|
Brakatselos C, Polissidis A, Ntoulas G, Asprogerakas MZ, Tsarna O, Vamvaka-Iakovou A, Nakas G, Delis A, Tzimas P, Skaltsounis L, Silva J, Delis F, Oliveira JF, Sotiropoulos I, Antoniou K. Multi-level therapeutic actions of cannabidiol in ketamine-induced schizophrenia psychopathology in male rats. Neuropsychopharmacology 2024; 50:388-400. [PMID: 39242923 PMCID: PMC11631973 DOI: 10.1038/s41386-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Repeated administration of ketamine (KET) has been used to model schizophrenia-like symptomatology in rodents, but the psychotomimetic neurobiological and neuroanatomical underpinnings remain elusive. In parallel, the unmet need for a better treatment of schizophrenia requires the development of novel therapeutic strategies. Cannabidiol (CBD), a major non-addictive phytocannabinoid has been linked to antipsychotic effects with unclear mechanistic basis. Therefore, this study aims to clarify the neurobiological substrate of repeated KET administration model and to evaluate CBD's antipsychotic potential and neurobiological basis. CBD-treated male rats with and without prior repeated KET administration underwent behavioral analyses, followed by multilevel analysis of different brain areas including dopaminergic and glutamatergic activity, synaptic signaling, as well as electrophysiological recordings for the assessment of corticohippocampal and corticostriatal network activity. Repeated KET model is characterized by schizophrenia-like symptomatology and alterations in glutamatergic and dopaminergic activity mainly in the PFC and the dorsomedial striatum (DMS), through a bi-directional pattern. These observations are accompanied by glutamatergic/GABAergic deviations paralleled to impaired function of parvalbumin- and cholecystokinin-positive interneurons, indicative of excitation/inhibition (E/I) imbalance. Moreover, CBD counteracted the schizophrenia-like behavioral phenotype as well as reverted prefrontal abnormalities and ventral hippocampal E/I deficits, while partially modulated dorsostriatal dysregulations. This study adds novel insights to our understanding of the KET-induced schizophrenia-related brain pathology, as well as the CBD antipsychotic action through a region-specific set of modulations in the corticohippocampal and costicostrtiatal circuitry of KET-induced profile contributing to the development of novel therapeutic strategies focused on the ECS and E/I imbalance restoration.
Collapse
Affiliation(s)
- Charalampos Brakatselos
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Alexia Polissidis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- Department of Science and Mathematics, ACG-Research Center, Deree - American College of Greece, 15342, Athens, Greece
| | - George Ntoulas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Michail-Zois Asprogerakas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Olga Tsarna
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Anastasia Vamvaka-Iakovou
- Institute of Biosciences & Applications, NCSR Demokritos, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gerasimos Nakas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Anastasios Delis
- Center of Basic Research, Biological Imaging Unit, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Petros Tzimas
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Leandros Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Joana Silva
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Joao Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Ioannis Sotiropoulos
- Institute of Biosciences & Applications, NCSR Demokritos, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
3
|
Jia X, Wang J, Ren D, Zhang K, Zhang H, Jin T, Wu S. Impact of the gut microbiota-Th17 cell axis on inflammatory depression. Front Psychiatry 2024; 15:1509191. [PMID: 39655201 PMCID: PMC11625820 DOI: 10.3389/fpsyt.2024.1509191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Depression is a serious cognitive disorder that results in significant and pervasive deficits in social behavior. These deficits can be traced back to the intricate interplay between social, psychological, and biological factors. Inflammatory depression, a treatment-resistant or non-responsive subtype of depression, may be related to the interaction between the gut microbiota and interleukin-17-producing CD4+ T cells (Th17 cells). The heterogeneity, plasticity, and effector role of Th17 cells in depression may be influenced by microbiota factors. Commensals-elicited homeostatic Th17 cells preserve the morphological and functional integrity of the intestinal barrier. In addition to pathogen-elicited inflammatory Th17 cells, commensal-elicited homeostatic Th17 cells can become conditionally pathogenic and contribute to the development of inflammatory depression. This review delves into the possible involvement of Th17 cells in inflammatory depression and examines the interplay between gut microbiota and either homeostatic or inflammatory Th17 cells.
Collapse
Affiliation(s)
- Xiuzhi Jia
- Department of Immunology and Pathogen Biology, College of Medicine, Lishui University, Lishui, Zhejiang, China
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Jiayi Wang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Dan Ren
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Kaibo Zhang
- Department of Immunology and Pathogen Biology, College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
- Division of Life Sciences and Medicine, Laboratory of Structural Immunology, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Songquan Wu
- Department of Immunology and Pathogen Biology, College of Medicine, Lishui University, Lishui, Zhejiang, China
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, Zhejiang, China
| |
Collapse
|
4
|
Raja SM, Guptill JT, Mack M, Peterson M, Byard S, Twieg R, Jordan L, Rich N, Castledine R, Bourne S, Wilmshurst M, Oxendine S, Avula SG, Zuleta H, Quigley P, Lawson S, McQuaker SJ, Ahmadkhaniha R, Appelbaum LG, Kowalski K, Barksdale CT, Gufford BT, Awan A, Sancho AR, Moore MC, Berrada K, Cogan GB, DeLaRosa J, Radcliffe J, Pao M, Kennedy M, Lawrence Q, Goldfeder L, Amanfo L, Zanos P, Gilbert JR, Morris PJ, Moaddel R, Gould TD, Zarate CA, Thomas CJ. A Phase 1 Assessment of the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of (2R,6R)-Hydroxynorketamine in Healthy Volunteers. Clin Pharmacol Ther 2024; 116:1314-1324. [PMID: 39054770 PMCID: PMC11479831 DOI: 10.1002/cpt.3391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
(R,S)-Ketamine (ketamine) is a dissociative anesthetic that also possesses analgesic and antidepressant activity. Undesirable dissociative side effects and misuse potential limit expanded use of ketamine in several mental health disorders despite promising clinical activity and intensifying medical need. (2R,6R)-Hydroxynorketamine (RR-HNK) is a metabolite of ketamine that lacks anesthetic and dissociative activity but maintains antidepressant and analgesic activity in multiple preclinical models. To enable future assessments in selected human indications, we report the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of RR-HNK in a Phase 1 study in healthy volunteers (NCT04711005). A six-level single-ascending dose (SAD) (0.1-4 mg/kg) and a two-level multiple ascending dose (MAD) (1 and 2 mg/kg) study was performed using a 40-minute IV administration emulating the common practice for ketamine administration for depression. Safety assessments showed RR-HNK possessed a minimal adverse event profile and no serious adverse events at all doses examined. Evaluations of dissociation and sedation demonstrated that RR-HNK did not possess anesthetic or dissociative characteristics in the doses examined. RR-HNK PK parameters were measured in both the SAD and MAD studies and exhibited dose-proportional increases in exposure. Quantitative electroencephalography (EEG) measurements collected as a PD parameter based on preclinical findings and ketamine's established effect on gamma-power oscillations demonstrated increases of gamma power in some participants at the lower/mid-range doses examined. Cerebrospinal fluid examination confirmed RR-HNK exposure within the central nervous system (CNS). Collectively, these data demonstrate RR-HNK is well tolerated with an acceptable PK profile and promising PD outcomes to support the progression into Phase 2.
Collapse
Affiliation(s)
- Shruti M. Raja
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeffrey T. Guptill
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
- Argenx BV, 9052 Gent, Belgium
| | - Michelle Mack
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Stephen Byard
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | - Robert Twieg
- Labcorp Bioanalytical Services, Indianapolis, IN, 46214, USA
| | - Lynn Jordan
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | | | - Samuel Bourne
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | | | - Sarah Oxendine
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Helen Zuleta
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Paul Quigley
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | - Sheila Lawson
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | | | - Reza Ahmadkhaniha
- National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 22124, USA
| | - Lawrence G. Appelbaum
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin Kowalski
- Labcorp Bioanalytical Services, Indianapolis, IN, 46214, USA
| | | | - Brandon T. Gufford
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Asaad Awan
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alfredo R. Sancho
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Max C. Moore
- Drug Discovery and Development Program, Frederick National Laboratory, Fredrick, MD, 21701, USA
| | - Karim Berrada
- Drug Discovery and Development Program, Frederick National Laboratory, Fredrick, MD, 21701, USA
| | - Gregory B. Cogan
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jesse DeLaRosa
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeanne Radcliffe
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maryland Pao
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Lisa Goldfeder
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leslie Amanfo
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Jessica R Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Patrick J. Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD, 20850, USA
| | - Ruin Moaddel
- National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 22124, USA
| | - Todd D. Gould
- Departments of Psychiatry, Pharmacology, and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Baltimore Veterans Affairs Medical Center, Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD, 20850, USA
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Leuchter MK, Citrenbaum C, Wilson AC, Tibbe TD, Jackson NJ, Krantz DE, Wilke SA, Corlier J, Strouse TB, Hoftman GD, Tadayonnejad R, Koek RJ, Slan AR, Ginder ND, Distler MG, Artin H, Lee JH, Adelekun AE, Einstein EH, Oughli HA, Leuchter AF. The effect of older age on outcomes of rTMS treatment for treatment-resistant depression. Int Psychogeriatr 2024; 36:1070-1075. [PMID: 38525670 PMCID: PMC11422516 DOI: 10.1017/s1041610224000462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Clinical outcomes of repetitive transcranial magnetic stimulation (rTMS) for treatment of treatment-resistant depression (TRD) vary widely and there is no mood rating scale that is standard for assessing rTMS outcome. It remains unclear whether TMS is as efficacious in older adults with late-life depression (LLD) compared to younger adults with major depressive disorder (MDD). This study examined the effect of age on outcomes of rTMS treatment of adults with TRD. Self-report and observer mood ratings were measured weekly in 687 subjects ages 16-100 years undergoing rTMS treatment using the Inventory of Depressive Symptomatology 30-item Self-Report (IDS-SR), Patient Health Questionnaire 9-item (PHQ), Profile of Mood States 30-item, and Hamilton Depression Rating Scale 17-item (HDRS). All rating scales detected significant improvement with treatment; response and remission rates varied by scale but not by age (response/remission ≥ 60: 38%-57%/25%-33%; <60: 32%-49%/18%-25%). Proportional hazards models showed early improvement predicted later improvement across ages, though early improvements in PHQ and HDRS were more predictive of remission in those < 60 years (relative to those ≥ 60) and greater baseline IDS burden was more predictive of non-remission in those ≥ 60 years (relative to those < 60). These results indicate there is no significant effect of age on treatment outcomes in rTMS for TRD, though rating instruments may differ in assessment of symptom burden between younger and older adults during treatment.
Collapse
Affiliation(s)
- Michael K. Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - Cole Citrenbaum
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - Andrew C. Wilson
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA
- NOAA National Centers for Environmental Information (NCEI), Boulder, CO, USA
| | - Tristan D. Tibbe
- Department of Psychology, University of California, Los Angeles, CA 90024
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA 90024, United States
| | - Nicholas J. Jackson
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA 90024, United States
| | - David E. Krantz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - Scott A. Wilke
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - Juliana Corlier
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - Thomas B. Strouse
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - Gil D. Hoftman
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - Reza Tadayonnejad
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Ralph J. Koek
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - Aaron R. Slan
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - Nathaniel D. Ginder
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - Margaret G. Distler
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - Hewa Artin
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - John H. Lee
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - Adesewa E. Adelekun
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - Evan H. Einstein
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - Hanadi A. Oughli
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| | - Andrew F. Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA 90024, United States
| |
Collapse
|
6
|
Al-Sharif NB, Zavaliangos-Petropulu A, Narr KL. A review of diffusion MRI in mood disorders: mechanisms and predictors of treatment response. Neuropsychopharmacology 2024; 50:211-229. [PMID: 38902355 PMCID: PMC11525636 DOI: 10.1038/s41386-024-01894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
By measuring the molecular diffusion of water molecules in brain tissue, diffusion MRI (dMRI) provides unique insight into the microstructure and structural connections of the brain in living subjects. Since its inception, the application of dMRI in clinical research has expanded our understanding of the possible biological bases of psychiatric disorders and successful responses to different therapeutic interventions. Here, we review the past decade of diffusion imaging-based investigations with a specific focus on studies examining the mechanisms and predictors of therapeutic response in people with mood disorders. We present a brief overview of the general application of dMRI and key methodological developments in the field that afford increasingly detailed information concerning the macro- and micro-structural properties and connectivity patterns of white matter (WM) pathways and their perturbation over time in patients followed prospectively while undergoing treatment. This is followed by a more in-depth summary of particular studies using dMRI approaches to examine mechanisms and predictors of clinical outcomes in patients with unipolar or bipolar depression receiving pharmacological, neurostimulation, or behavioral treatments. Limitations associated with dMRI research in general and with treatment studies in mood disorders specifically are discussed, as are directions for future research. Despite limitations and the associated discrepancies in findings across individual studies, evolving research strongly indicates that the field is on the precipice of identifying and validating dMRI biomarkers that could lead to more successful personalized treatment approaches and could serve as targets for evaluating the neural effects of novel treatments.
Collapse
Affiliation(s)
- Noor B Al-Sharif
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Artemis Zavaliangos-Petropulu
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Imperio CG, Levin FR, Martinez D. The Neurocircuitry of Substance Use Disorder, Treatment, and Change: A Resource for Clinical Psychiatrists. Am J Psychiatry 2024; 181:958-972. [PMID: 39380375 DOI: 10.1176/appi.ajp.20231023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Substance use disorder (SUD) is common in psychiatric patients and has a negative impact on health and well-being. However, SUD often goes untreated, and there is a need for psychiatrists, of all specialties, to address this pervasive clinical problem. In this review, the authors' goal is to provide a resource that describes treatments for SUD, using neuroscience as a framework. They discuss the effect of pharmacotherapy on craving, intoxication, and withdrawal and its ability to interrupt the cycle of substance use in SUD. The neuroscience of stress is reviewed, including medications targeting neurotransmitter systems activated by alarm and fear. Neuroplasticity and promising treatments that use this mechanism, including ketamine, psilocybin, and transcranial magnetic stimulation (TMS), are discussed. The authors conclude by listing resources and practice guidelines for physicians interested in learning more about treatments for SUD.
Collapse
Affiliation(s)
- Caesar G Imperio
- Division on Substance Use Disorders, New York State Psychiatric Institute, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York
| | - Frances R Levin
- Division on Substance Use Disorders, New York State Psychiatric Institute, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York
| | - Diana Martinez
- Division on Substance Use Disorders, New York State Psychiatric Institute, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York
| |
Collapse
|
8
|
Madsen CA, Navarro ML, Elfving B, Kessing LV, Castrén E, Mikkelsen JD, Knudsen GM. The effect of antidepressant treatment on blood BDNF levels in depressed patients: A review and methodological recommendations for assessment of BDNF in blood. Eur Neuropsychopharmacol 2024; 87:35-55. [PMID: 39079257 DOI: 10.1016/j.euroneuro.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 09/11/2024]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder and a leading cause of disability worldwide. Brain-derived neurotrophic factor (BDNF), a signaling protein responsible for promoting neuroplasticity, is highly expressed in the central nervous system but can also be found in the blood. Since impaired brain plasticity is considered a cornerstone in the pathophysiology of MDD, measurement of BDNF in blood has been proposed as a potential biomarker in MDD. The aim of our study is to systematically review the literature for the effects of antidepressant treatments on blood BDNF levels in MDD and the suitability of blood BDNF as a biomarker for depression severity and antidepressant response. We searched Pubmed® and Cochrane library up to March 2024 in a systematic manner using Medical Subject Headings (MeSH). The search resulted in a total of 42 papers, of which 30 were included in this systematic review. Generally, we found that patients with untreated MDD have a lower blood BDNF level than healthy controls. Antidepressant treatments increase blood BDNF levels, and more evidently after pharmacological than non-pharmacological treatment. Neither baseline nor change in the blood BDNF level correlates with depression severity or treatment outcome, which undermines its use as a biomarker in MDD. Our review also highlights the importance of considering factors influencing the accuracy and reproducibility of BDNF measurements. We summarize considerations to help obtain more robust blood BDNF values and compile a list of recommendations to help streamline assessment of blood BDNF levels in future studies.
Collapse
Affiliation(s)
- Clara A Madsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Miriam L Navarro
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Lars V Kessing
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Psychiatric Centre Copenhagen, Mental Health Services Capital Region, Copenhagen, Denmark
| | - Eero Castrén
- Neuroscience Center / HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Hess EM, Greenstein DK, Hutchinson OL, Zarate CA, Gould TD. Entactogen Effects of Ketamine: A Reverse-Translational Study. Am J Psychiatry 2024; 181:815-823. [PMID: 38982828 PMCID: PMC11492270 DOI: 10.1176/appi.ajp.20230980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
OBJECTIVE The authors sought to assess the prosocial, entactogen effects of ketamine. METHODS Pleasure from social situations was assessed in a sample of participants with treatment-resistant depression from randomized, double-blind, placebo-controlled studies, using four items of the Snaith-Hamilton Pleasure Scale (SHAPS) at five time points over 1 week following treatment with ketamine (0.5 mg/kg intravenously) or placebo. The primary endpoint was postinfusion self-reported pleasure on the four SHAPS items pertaining to social situations, including the item on helping others, between the ketamine and placebo groups. In a rodent experiment, the impact of ketamine on helping behavior in rats was assessed using the harm aversion task. The primary endpoint was a reduction in lever response rate relative to baseline, which indicated the willingness of rats to forgo obtaining sucrose to help protect their cage mate from electric shock. RESULTS Relative to placebo, ketamine increased ratings of feeling pleasure from being with family or close friends, seeing other people's smiling faces, helping others, and receiving praise, for 1 week following treatment. In the rodent experiment, during the harm aversion task, ketamine-treated rats maintained lower response rates relative to baseline to a greater extent than what was observed in vehicle-treated rats for 6 days posttreatment and delivered fewer shocks overall. CONCLUSIONS In patients with treatment-resistant depression, ketamine treatment was associated with increased pleasure from social situations, such as feeling pleasure from helping others. Ketamine-treated rats were more likely to protect their cage mate from harm, at the cost of obtaining sucrose. These findings suggest that ketamine has entactogen effects.
Collapse
Affiliation(s)
- Evan M Hess
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dede K Greenstein
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Olivia L Hutchinson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore Veterans Affairs Medical Center, Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Salvetti G, Saccenti D, Moro AS, Lamanna J, Ferro M. Comparison between Single-Dose and Two-Dose Psilocybin Administration in the Treatment of Major Depression: A Systematic Review and Meta-Analysis of Current Clinical Trials. Brain Sci 2024; 14:829. [PMID: 39199520 PMCID: PMC11352277 DOI: 10.3390/brainsci14080829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Current pharmacological treatments for major depressive disorder (MDD) are often only partially effective, with many patients experiencing no significant benefit, leading to treatment-resistant depression (TRD). Psilocybin, a classical serotonergic psychedelic, has emerged as a notable emerging treatment for such disorders. The aim of this systematic review and meta-analysis is to summarize and discuss the most recent evidence about the therapeutic effects of single-dose and two-dose psilocybin administration on the severity of depressive symptoms, as well as compare the efficacy of these interventions among patients with a primary diagnosis of MDD or TRD. Articles were collected from EBSCOhost and PubMed following the PRISMA guidelines, yielding 425 articles with 138 duplicates. After screening 287 records, 12 studies met the eligibility criteria and were included in the review. A quantitative analysis of the studies indicates that psilocybin is highly effective in reducing depressive symptoms severity among patients with primary MDD or TRD. Both single-dose and two-dose psilocybin treatments significantly reduced depressive symptoms severity, with two-dose administration sometimes yielding more pronounced and lasting effects. However, it is unclear if this was solely due to dosage or other factors. Future research should include standardized trials comparing these dosing strategies to better inform clinical practice.
Collapse
Affiliation(s)
- Gianmarco Salvetti
- Department of Psychology, Sigmund Freud University of Milan, 20143 Milan, Italy (D.S.); (M.F.)
| | - Daniele Saccenti
- Department of Psychology, Sigmund Freud University of Milan, 20143 Milan, Italy (D.S.); (M.F.)
- Brain and Behaviour SFU Lab, Sigmund Freud University of Milan, 20143 Milan, Italy
| | - Andrea Stefano Moro
- Department of Psychology, Sigmund Freud University of Milan, 20143 Milan, Italy (D.S.); (M.F.)
- Brain and Behaviour SFU Lab, Sigmund Freud University of Milan, 20143 Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Jacopo Lamanna
- Brain and Behaviour SFU Lab, Sigmund Freud University of Milan, 20143 Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mattia Ferro
- Department of Psychology, Sigmund Freud University of Milan, 20143 Milan, Italy (D.S.); (M.F.)
- Brain and Behaviour SFU Lab, Sigmund Freud University of Milan, 20143 Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
11
|
Azari L, Hemati H, Tavasolian R, Shahdab S, Tomlinson SM, Babilonia MB, Huang J, Tometich DB, Turner K, Anaraki KS, Jim HSL, Tabriz AA. The Efficacy of Ketamine for Acute and Chronic Pain in Patients with Cancer: A Systematic Review of Randomized Controlled Trials. Healthcare (Basel) 2024; 12:1560. [PMID: 39201120 PMCID: PMC11354190 DOI: 10.3390/healthcare12161560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Managing cancer-related pain poses significant challenges, prompting research into alternative approaches such as ketamine. This systematic review aims to analyze and summarize the impact of ketamine as an adjuvant to opioid therapy for cancer-related pain. We conducted a literature review in MEDLINE, EMBASE, and Scopus from 1 January 1982 to 20 October 2023. Abstracts were screened against inclusion criteria, and eligible studies underwent a full-text review. Data was extracted from the included studies, and a framework analysis approach summarized the evidence regarding ketamine's use in patients with cancer. A total of 21 randomized clinical trials were included, and the quality of all the included studies was good or fair. Significant improvements in pain scores and reduced morphine consumption were consistently observed with intravenous ketamine administration for postoperative pain control, particularly when combined with other analgesics such as morphine. Ketamine was less effective when used as an analgesic for chronic pain management, with several studies on neuropathic pain or chemotherapy-induced neuropathy finding minimal significant effect on reduction of pain scores or morphine requirements. The efficacy of ketamine in pain management appears to depend on factors such as dosage, route of administration, and patient population.
Collapse
Affiliation(s)
- Leila Azari
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA;
| | - Homa Hemati
- College of Pharmacy, Tehran University of Medical Sciences, Tehran 1416753955, Iran; (H.H.); (S.S.)
| | - Ronia Tavasolian
- Department of Clinical Science and Nutrition, University of Chester, Chester CH1 4BJ, UK;
| | - Sareh Shahdab
- College of Pharmacy, Tehran University of Medical Sciences, Tehran 1416753955, Iran; (H.H.); (S.S.)
| | | | - Margarita Bobonis Babilonia
- Supportive Care Medicine Department, Behavioral Medicine Services, Moffitt Cancer Center, Tampa, FL 33612, USA;
- Department of Psychiatry and Behavioral Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
- Department of Oncological Sciences, University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA; (K.T.); (H.S.L.J.); (A.A.T.)
| | - Jeffrey Huang
- Department of Anesthesiology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Danielle B. Tometich
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Kea Turner
- Department of Oncological Sciences, University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA; (K.T.); (H.S.L.J.); (A.A.T.)
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Kimia Saleh Anaraki
- Department of Internal Medicine, University of Maryland Capital Region, Largo, MD 20774, USA;
| | - Heather S. L. Jim
- Department of Oncological Sciences, University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA; (K.T.); (H.S.L.J.); (A.A.T.)
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Amir Alishahi Tabriz
- Department of Oncological Sciences, University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA; (K.T.); (H.S.L.J.); (A.A.T.)
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33612, USA;
| |
Collapse
|
12
|
Namiot ED, Smirnovová D, Sokolov AV, Chubarev VN, Tarasov VV, Schiöth HB. Depression clinical trials worldwide: a systematic analysis of the ICTRP and comparison with ClinicalTrials.gov. Transl Psychiatry 2024; 14:315. [PMID: 39085220 PMCID: PMC11291508 DOI: 10.1038/s41398-024-03031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Major depressive disorder (MDD), commonly known as depression, affects over 300 million people worldwide as of 2018 and presents a wide range of clinical symptoms. The international clinical trials registry platform (ICTRP) introduced by WHO includes aggregated data from ClinicalTrials.gov and 17 other national registers, making it the largest clinical trial platform. Here we analysed data in ICTRP with the aim of providing comprehensive insights into clinical trials on depression. Applying a novel hidden duplicate identification method, 10,606 depression trials were identified in ICTRP, with ANZCTR being the largest non- ClinicalTrials.gov database at 1031 trials, followed by IRCT with 576 trials, ISRCTN with 501 trials, CHiCTR with 489 trials, and EUCTR with 351 trials. The top four most studied drugs, ketamine, sertraline, duloxetine, and fluoxetine, were consistent in both groups, but ClinicalTrials.gov had more trials for each drug compared to the non-ClinicalTrials.gov group. Out of 9229 interventional trials, 663 unique agents were identified, including approved drugs (74.5%), investigational drugs (23.2%), withdrawn drugs (1.8%), nutraceuticals (0.3%), and illicit substances (0.2%). Both ClinicalTrials.gov and non-ClinicalTrials.gov databases revealed that the largest categories were antidepressive agents (1172 in ClinicalTrials.gov and 659 in non-ClinicalTrials.gov) and nutrients, amino acids, and chemical elements (250 in ClinicalTrials.gov and 659 in non-ClinicalTrials.gov), indicating a focus on alternative treatments involving dietary supplements and nutrients. Additionally, 26 investigational antidepressive agents targeting 16 different drug targets were identified, with buprenorphine (opioid agonist), saredutant (NK2 antagonist), and seltorexant (OX2 antagonist) being the most frequently studied. This analysis addresses 40 approved drugs for depression treatment including new drug classes like GABA modulators and NMDA antagonists that are offering new prospects for treating MDD, including drug-resistant depression and postpartum depression subtypes.
Collapse
Affiliation(s)
- Eugenia D Namiot
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Diana Smirnovová
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Aleksandr V Sokolov
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Vladimir N Chubarev
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow, Russia
| | - Vadim V Tarasov
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow, Russia
| | - Helgi B Schiöth
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
13
|
Yang X, Chen D. Comparing the adverse effects of ketamine and esketamine between genders using FAERS data. Front Pharmacol 2024; 15:1329436. [PMID: 39070784 PMCID: PMC11272469 DOI: 10.3389/fphar.2024.1329436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024] Open
Abstract
Background Ketamine was developed as an anesthetic. Esketamine is the isolated S-enantiomer of racemic ketamine. They provide new avenues for the treatment of depression, especially treatment-resistant depression. Considering differences in the pharmacokinetics and hormonal status of ketamine in patients of different genders, sex-based differences in esketamine adverse drug events (ADE) may also be observed. This study presents data mining and safety analysis of adverse events of ketamine and esketamine between genders, promoting the individualization of clinical practice. Methods Adverse drug reactions to ketamine and esketamine reported between the first quarter of 2004 and the second quarter of 2023 in the U.S. Food and Drug Administration on Adverse Event Reporting System (FAERS) were extracted. Thereafter, the reporting odds ratio (ROR) with 95% confidence interval (CI) was calculated. Results A total of 2907 female reports and 1634 male reports on esketamine were included in the analysis. ROR mining showed that completed suicide, decreased therapeutic product effects, urinary retention, and hypertension were common in men. Additionally, 552 female and 653 male ketamine reports were recorded. ROR mining revealed that toxicity to various agents, bradycardia, cystitis and agitation, were more likely to occur in men, whereas women were more likely to develop suicidal ideation, increased transaminase levels, sclerosing cholangitis, and sterile pyuria. Conclusion The adverse events of esketamine and ketamine differ across genders, which should be considered in clinical practice to provide individualized treatment.
Collapse
Affiliation(s)
| | - Dongdong Chen
- The Department of Anesthesiology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
14
|
Menculini G, Cinesi G, Scopetta F, Cardelli M, Caramanico G, Balducci PM, De Giorgi F, Moretti P, Tortorella A. Major challenges in youth psychopathology: treatment-resistant depression. A narrative review. Front Psychiatry 2024; 15:1417977. [PMID: 39056019 PMCID: PMC11269237 DOI: 10.3389/fpsyt.2024.1417977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Major depressive disorder (MDD) represents a major health issue in adolescents and young adults, leading to high levels of disability and profoundly impacting overall functioning. The clinical presentation of MDD in this vulnerable age group may slightly differ from what can be observed in adult populations, and psychopharmacological strategies do not always lead to optimal response. Resistance to antidepressant treatment has a prevalence estimated around 40% in youths suffering from MDD and is associated with higher comorbidity rates and suicidality. Several factors, encompassing biological, environmental, and clinical features, may contribute to the emergence of treatment-resistant depression (TRD) in adolescents and young adults. Furthermore, TRD may underpin the presence of an unrecognized bipolar diathesis, increasing the overall complexity of the clinical picture and posing major differential diagnosis challenges in the clinical practice. After summarizing current evidence on epidemiological and clinical correlates of TRD in adolescents and young adults, the present review also provides an overview of possible treatment strategies, including novel fast-acting antidepressants. Despite these pharmacological agents are promising in this population, their usage is expected to rely on risk-benefit ratio and to be considered in the context of integrated models of care.
Collapse
Affiliation(s)
- Giulia Menculini
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Gianmarco Cinesi
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesca Scopetta
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Matteo Cardelli
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Guido Caramanico
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Pierfrancesco Maria Balducci
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Community Mental Health Center “CSM Terni”, Department of Psychiatry, Local Health Unit USL Umbria 2, Terni, Italy
| | - Filippo De Giorgi
- Division of Psychiatry, Clinical Psychology and Rehabilitation, General Hospital of Perugia, Perugia, Italy
| | - Patrizia Moretti
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alfonso Tortorella
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
15
|
Juneja K, Afroze S, Goti Z, Sahu S, Asawa S, Bhuchakra HP, Natarajan B. Beyond therapeutic potential: a systematic investigation of ketamine misuse in patients with depressive disorders. DISCOVER MENTAL HEALTH 2024; 4:23. [PMID: 38951348 PMCID: PMC11217219 DOI: 10.1007/s44192-024-00077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Ketamine, a pharmacological agent that acts as an antagonist of the N-methyl-D-aspartate (NMDA) receptor, has garnered considerable interest because of its notable and expeditious antidepressant properties observed in individuals diagnosed with major depressive disorder (MDD) who exhibit resistance to conventional therapeutic interventions. A comprehensive and rigorous systematic review was undertaken to evaluate the prevalence of ketamine abuse undergoing ketamine treatment for depressive disorders. A comprehensive search was conducted across the electronic databases to identify pertinent studies published between 2021 and 2023. The present investigation incorporated a comprehensive range of studies encompassing the abuse or misuse of ketamine, including case reports, observational studies, and clinical trials. Data extraction and quality assessment were conducted in accordance with predetermined criteria. The findings of this systematic review demonstrate the importance of monitoring and addressing ketamine abuse in patients receiving ketamine treatment for depressive disorders like MDD. The wide range of reported prevalence rates highlights the need for standardized criteria and measures for defining and assessing ketamine abuse. This study presents a significant contribution to the field by introducing a novel screening questionnaire and assessment algorithm designed to identify and evaluate ketamine misuse among major depressive disorder (MDD) patients undergoing ketamine treatment. This innovative tool holds the potential to enhance clinical practice by providing healthcare professionals with a standardized approach to promptly detect and address ketamine misuse. The integration of this screening tool into routine care protocols can facilitate more effective monitoring and management of ketamine misuse in this population, ultimately leading to improved patient outcomes and safety.
Collapse
Affiliation(s)
| | - Sabah Afroze
- Shadan Hospital and Institute of Medical Sciences, Hyderabad, India
| | - Zeel Goti
- Government Medical College, Surat, India
| | | | | | | | | |
Collapse
|
16
|
Guldager MB, Chaves Filho AM, Biojone C, Joca S. Therapeutic potential of cannabidiol in depression. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:251-293. [PMID: 39029987 DOI: 10.1016/bs.irn.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Major depressive disorder (MDD) is a widespread and debilitating condition affecting a significant portion of the global population. Traditional treatment for MDD has primarily involved drugs that increase brain monoamines by inhibiting their uptake or metabolism, which is the basis for the monoaminergic hypothesis of depression. However, these treatments are only partially effective, with many patients experiencing delayed responses, residual symptoms, or complete non-response, rendering the current view of the hypothesis as reductionist. Cannabidiol (CBD) has shown promising results in preclinical models and human studies. Its mechanism is not well-understood, but may involve monoamine and endocannabinoid signaling, control of neuroinflammation and enhanced neuroplasticity. This chapter will explore CBD's effects in preclinical and clinical studies, its molecular mechanisms, and its potential as a treatment for MDD.
Collapse
Affiliation(s)
- Matti Bock Guldager
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark
| | | | - Caroline Biojone
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
17
|
Chen X, Wang X, Li C, Zhang Y, Feng S, Xu S. A scientometric analysis of research on the role of NMDA receptor in the treatment of depression. Front Pharmacol 2024; 15:1394730. [PMID: 38974036 PMCID: PMC11224522 DOI: 10.3389/fphar.2024.1394730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Background There have been numerous studies on NMDA receptors as therapeutic targets for depression. However, so far, there has been no comprehensive scientometric analysis of this field. Thus, we conducted a scientometric analysis with the aim of better elucidating the research hotspots and future trends in this field. Methods Publications on NMDAR in Depression between 2004 and 2023 were retrieved from the Web of Science Core Collection (WoSCC) database. Then, VOSviewer, CiteSpace, Scimago Graphica, and R-bibliometrix-were used for the scientometric analysis and visualization. Results 5,092 qualified documents were identified to scientometric analysis. In the past 20 years, there has been an upward trend in the number of annual publications. The United States led the world in terms of international collaborations, publications, and citations. 15 main clusters were identified from the co-cited references analysis with notable modularity (Q-value = 0.7628) and silhouette scores (S-value = 0.9171). According to the keyword and co-cited references analysis, treatment-resistant depression ketamine (an NMDAR antagonist), oxidative stress, synaptic plasticity, neuroplasticity related downstream factors like brain-derived neurotrophic factor were the research hotspots in recent years. Conclusion As the first scientometric analysis of NMDAR in Depression, this study shed light on the development, trends, and hotspots of research about NMDAR in Depression worldwide. The application and potential mechanisms of ketamine in the treatment of major depressive disorder (MDD) are still a hot research topic at present. However, the side effects of NMDAR antagonist like ketamine have prompted research on new rapid acting antidepressants.
Collapse
Affiliation(s)
| | | | | | | | - Shanwu Feng
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, China
| | - Shiqin Xu
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, China
| |
Collapse
|
18
|
Ahuja J, Leontieva L. Ketamine Therapy in Complex Cases: A Cautionary Tale of Exacerbated Personality Traits and the Crucial Role of Comprehensive Follow-Up and Psychosocial Interventions. Case Rep Psychiatry 2024; 2024:2143372. [PMID: 38939043 PMCID: PMC11208781 DOI: 10.1155/2024/2143372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
This case report examines the unexpected increase in suicidal ideation following ketamine infusion therapy in a 75-year-old female with a history of treatment-resistant depression. Despite ketamine's established efficacy in treating depression and acute suicidality, this patient's condition deteriorated posttreatment. The report delves into the patient's complex background, including psychosocial stressors, genetic predisposition to depression, and a history of personality traits that may have influenced her response to ketamine. This case underscores the importance of cautious administration of ketamine, especially in patients with personality disorders, and calls for deeper understanding and individualized treatment plans in mental health care. It is a reminder of the complexities involved in treating mental health conditions and the varying effects of treatments like ketamine on different individuals.
Collapse
Affiliation(s)
- Jai Ahuja
- Department of PsychiatrySUNY Upstate Medical University, Syracuse, NY, USA
| | - Luba Leontieva
- Department of PsychiatrySUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
19
|
Wang Y, Chang S, Chen D. Research trends and hotspots of ketamine from 2014 to 2023: a bibliometric analysis. Front Neurosci 2024; 18:1407301. [PMID: 38948929 PMCID: PMC11211255 DOI: 10.3389/fnins.2024.1407301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
Background Despite this growing interest, there remains a lack of comprehensive and systematic bibliometric analyses of ketamine research. This study aimed to summarize the progress in ketamine research through bibliometric analysis, providing insights into the development and direction of the field. Methods Publications related to ketamine were retrieved from the Web of Science Core Collection (WoSCC) database on February 15, 2024. In conducting a comprehensive bibliometric analysis, a variety of bibliographic elements were meticulously collected to map the landscape of research within a specific field. Results Between January 1, 2014, and December 31, 2023, a total of 10,328 articles on ketamine research were published across 1,752 academic journals by 45,891 authors from 8,914 institutions in 128 countries. The publication volume has shown a steady increase over this period. The United States of America (USA) and the People's Republic of China lead in both publication and citation counts. The National Institute of Mental Health (NIMH) and Yale University emerge as the most active institutions in this research domain. Carlos Zarate of the NIH National Institute of Mental Health was noted for the highest number of significant publications and received the most co-citations. The analysis revealed key research themes including mechanism of action, adverse events, psychiatric applications, and perioperative implications. Conclusion This study provided comprehensive bibliometric and knowledge mapping analysis of the global ketamine research landscape, offering valuable insights into the trends, key contributors, and thematic focus areas within the field. By delineating the evolution of ketamine research, this study aims to guide future scholarly endeavors and enhance our understanding of ketamine's therapeutic potential.
Collapse
Affiliation(s)
- Yida Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Sile Chang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Dongxu Chen
- Department of Anesthesiology, West China Second Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
20
|
Deng Q, Parker E, Wu C, Zhu L, Liu TCY, Duan R, Yang L. Repurposing Ketamine in the Therapy of Depression and Depression-Related Disorders: Recent Advances and Future Potential. Aging Dis 2024:AD.2024.0239. [PMID: 38916735 DOI: 10.14336/ad.2024.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Depression represents a prevalent and enduring mental disorder of significant concern within the clinical domain. Extensive research indicates that depression is very complex, with many interconnected pathways involved. Most research related to depression focuses on monoamines, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, tryptophan metabolism, energy metabolism, mitochondrial function, the gut-brain axis, glial cell-mediated inflammation, myelination, homeostasis, and brain neural networks. However, recently, Ketamine, an ionotropic N-methyl-D-aspartate (NMDA) receptor antagonist, has been discovered to have rapid antidepressant effects in patients, leading to novel and successful treatment approaches for mood disorders. This review aims to summarize the latest findings and insights into various signaling pathways and systems observed in depression patients and animal models, providing a more comprehensive view of the neurobiology of anxious-depressive-like behavior. Specifically, it highlights the key mechanisms of ketamine as a rapid-acting antidepressant, aiming to enhance the treatment of neuropsychiatric disorders. Moreover, we discuss the potential of ketamine as a prophylactic or therapeutic intervention for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Qianting Deng
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Ling Zhu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| |
Collapse
|
21
|
Bruton AM, Wesemann DG, Machingo TA, Majak G, Johnstone JM, Marshall RD. Ketamine for mood disorders, anxiety, and suicidality in children and adolescents: a systematic review. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02458-y. [PMID: 38750191 DOI: 10.1007/s00787-024-02458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/29/2024] [Indexed: 07/13/2024]
Abstract
Mood disorders, anxiety, and suicidality in youth are increasing and rapid-acting treatments are urgently needed. One potential is ketamine or its enantiomer esketamine, which was FDA approved in 2019 to treat major depressive disorder with suicidality in adults. This systematic review evaluated the evidence for the clinical use of ketamine to treat mood disorders, anxiety, and suicidality in youth. The PRISMA guidelines were used, and a protocol registered prospectively ( https://osf.io/9ucsg/ ). The literature search included Pubmed/MEDLINE, Ovid/MEDLINE, Scopus, CINAHL, PsychInfo, and Google Scholar. Trial registries and preprint servers were searched, and authors contacted for clarification. Studies reported on the clinical use of ketamine to treat anxiety, depression, bipolar disorder, or suicidality in youth ≤19 years old and assessed symptoms before and after ketamine use. Study screening and data extraction were conducted independently by 2-4 authors. Safety, tolerability, and efficacy data were collected. The Cochrane Risk of Bias guidelines assessed the quality of the evidence. Twenty-two published reports based on 16 studies were identified: 7 case studies, 6 observational studies, 3 randomized trials, and 6 secondary data analyses. Studies reported immediate improvements in depression, anxiety, and suicidality. Improvements were maintained for weeks-months following treatment. Ketamine was well-tolerated with the most common side effects being dizziness, nausea, and mild dissociation. Transient hemodynamic changes were reported, all of which resolved quickly and did not require medical intervention. Initial evidence suggests ketamine is safe and may be effective for mood disorders, anxiety, and suicidality in youth. Further randomized trials are warranted.
Collapse
Affiliation(s)
| | | | | | - Gop Majak
- University of Lethbridge, Lethbridge, Canada
| | | | | |
Collapse
|
22
|
Murphy J, Pak S, Shteynman L, Winkeler I, Jin Z, Kaczocha M, Bergese SD. Mechanisms and Preventative Strategies for Persistent Pain following Knee and Hip Joint Replacement Surgery: A Narrative Review. Int J Mol Sci 2024; 25:4722. [PMID: 38731944 PMCID: PMC11083264 DOI: 10.3390/ijms25094722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Chronic postsurgical pain (CPSP) following total knee arthroplasty (TKA) and total hip arthroplasty (THA) is a prevalent complication of joint replacement surgery which has the potential to decrease patient satisfaction, increase financial burden, and lead to long-term disability. The identification of risk factors for CPSP following TKA and THA is challenging but essential for targeted preventative therapy. Recent meta-analyses and individual studies highlight associations between elevated state anxiety, depression scores, preoperative pain, diabetes, sleep disturbances, and various other factors with an increased risk of CPSP, with differences observed in prevalence between TKA and THA. While the etiology of CPSP is not fully understood, several factors such as chronic inflammation and preoperative central sensitization have been identified. Other potential mechanisms include genetic factors (e.g., catechol-O-methyltransferase (COMT) and potassium inwardly rectifying channel subfamily J member 6 (KCNJ6) genes), lipid markers, and psychological risk factors (anxiety and depression). With regards to therapeutics and prevention, multimodal pharmacological analgesia, emphasizing nonopioid analgesics like acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs), has gained prominence over epidural analgesia. Nerve blocks and local infiltrative anesthesia have shown mixed results in preventing CPSP. Ketamine, an N-methyl-D-aspartate (NMDA)-receptor antagonist, exhibits antihyperalgesic properties, but its efficacy in reducing CPSP is inconclusive. Lidocaine, an amide-type local anesthetic, shows tentative positive effects on CPSP. Selective serotonin reuptake inhibitors (SSRIs) and serotonin norepinephrine reuptake inhibitors (SNRIs) have mixed results, while gabapentinoids, like gabapentin and pregabalin, present hopeful data but require further research, especially in the context of TKA and THA, to justify their use for CPSP prevention.
Collapse
Affiliation(s)
- Jasper Murphy
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.M.); (S.P.); (L.S.); (I.W.)
| | - Sery Pak
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.M.); (S.P.); (L.S.); (I.W.)
| | - Lana Shteynman
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.M.); (S.P.); (L.S.); (I.W.)
| | - Ian Winkeler
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.M.); (S.P.); (L.S.); (I.W.)
| | - Zhaosheng Jin
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA; (M.K.); (S.D.B.)
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA; (M.K.); (S.D.B.)
| | - Sergio D. Bergese
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA; (M.K.); (S.D.B.)
| |
Collapse
|
23
|
Bryson C, Douglas D, Schmidt U. Established and emerging treatments for eating disorders. Trends Mol Med 2024; 30:392-402. [PMID: 38503683 PMCID: PMC11439865 DOI: 10.1016/j.molmed.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
Eating disorders (EDs) are common mental health conditions that carry exceedingly high morbidity and mortality rates. Evidence-based treatment options include a range of psychotherapies and some, mainly adjunctive, pharmacological interventions. However, around 20-30% of people fail to respond to the best available treatments and develop a persistent treatment-refractory illness. Novel treatments for these disorders are emerging, but their efficacy and clinical relevance need further investigation. In this review article, we first outline the evidence-base for the established treatments of the three 'classical' EDs [anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED)]. We then review research on some of the most promising emerging treatment modalities, discussing the questions and challenges that remain.
Collapse
Affiliation(s)
- Callum Bryson
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Daire Douglas
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Ulrike Schmidt
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
24
|
O'Connor SM, Sleebs BE, Street IP, Flynn BL, Baell JB, Coles C, Quazi N, Paul D, Poiraud E, Huyard B, Wagner S, Andriambeloson E, de Souza EB. BNC210, a negative allosteric modulator of the alpha 7 nicotinic acetylcholine receptor, demonstrates anxiolytic- and antidepressant-like effects in rodents. Neuropharmacology 2024; 246:109836. [PMID: 38185416 DOI: 10.1016/j.neuropharm.2024.109836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
This work describes the characterization of BNC210 (6-[(2,3-dihydro-1H-inden-2-yl)amino]-1-ethyl-3-(4-morpholinylcarbonyl)-1,8-naphthyridin-4(1H)-one), a selective, small molecule, negative allosteric modulator (NAM) of α7 nicotinic acetylcholine receptors (α7 nAChR). With the aim to discover a non-sedating, anxiolytic compound, BNC210 was identified during phenotypic screening of a focused medicinal chemistry library using the mouse Light Dark (LD) box to evaluate anxiolytic-like activity and the mouse Open Field (OF) (dark) test to detect sedative and/or motor effects. BNC210 exhibited anxiolytic-like activity with no measurable sedative or motor effects. Electrophysiology showed that BNC210 did not induce α7 nAChR currents by itself but inhibited EC80 agonist-evoked currents in recombinant GH4C1 cell lines stably expressing the rat or human α7 nAChR. BNC210 was not active when tested on cell lines expressing other members of the cys-loop ligand-gated ion channel family. Screening over 400 other targets did not reveal any activity for BNC210 confirming its selectivity for α7 nAChR. Oral administration of BNC210 to male mice and rats in several tests of behavior related to anxiety- and stress- related disorders, demonstrated significant reduction of these behaviors over a broad therapeutic range up to 500 times the minimum effective dose. Further testing for potential adverse effects in suitable rat and mouse tests showed that BNC210 did not produce sedation, memory and motor impairment or physical dependence, symptoms associated with current anxiolytic therapeutics. These data suggest that allosteric inhibition of α7 nAChR function may represent a differentiated approach to treating anxiety- and stress- related disorders with an improved safety profile compared to current treatments.
Collapse
Affiliation(s)
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Ian P Street
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia; Children's Cancer Institute, School of Medicine and Health, UNSW, Randwick, Australia
| | - Bernard L Flynn
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Melbourne, Australia
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Melbourne, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | | | - Nurul Quazi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Elersič K, Banjac A, Živin M, Zorović M. Behavioral sensitization and tolerance induced by repeated treatment with ketamine enantiomers in male Wistar rats. PLoS One 2024; 19:e0299379. [PMID: 38427622 PMCID: PMC10906899 DOI: 10.1371/journal.pone.0299379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/08/2024] [Indexed: 03/03/2024] Open
Abstract
Ketamine has gained significant attention as a fast-acting antidepressant. However, ketamine is also associated with undesirable side effects. In our preclinical study, we explored the behavioral effects of ketamine enantiomers at subanesthetic doses. During repeated intermittent treatment, we examined locomotor stimulation and sensitization, ataxia, and expression of natural behaviors (grooming and rearing). Male Wistar rats were subcutaneously treated repeatedly with either 5 mg/kg of R-ketamine or S-ketamine, 15 mg/kg of R-ketamine, S-ketamine or racemic ketamine, 30 mg/kg of racemic ketamine or saline every third day for three weeks (seven treatments overall). After the first treatment, only 15 mg/kg of S-ketamine induced locomotor stimulation, and both 15 mg/kg of S-ketamine and 30 mg/kg of racemic ketamine induced ataxia. Upon repeated administration, doses of 15 mg/kg of R-ketamine, S-ketamine, and racemic ketamine, as well as 30 mg/kg of racemic ketamine, stimulated locomotion. 15 mg/kg of R-ketamine, S-ketamine, and racemic ketamine additionally resulted in locomotor sensitization. The last administration of 15 mg/kg of S-ketamine, 15 mg/kg of racemic ketamine, and 30 mg/kg of racemic ketamine resulted in ataxia. In the case of 15 mg/kg of S-ketamine, ataxic effects were significantly weaker in comparison to the effects from the first administration, indicating tolerance. Natural behaviors were attenuated after 5 and 15 mg/kg of S-ketamine and 15 and 30 mg/kg of racemic ketamine. Neither of the R-ketamine doses produced such an effect. We conclude that S-ketamine has a stronger behavioral effect than R-ketamine.
Collapse
Affiliation(s)
- Kristian Elersič
- Brain Research Lab, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Anamarija Banjac
- Brain Research Lab, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Živin
- Brain Research Lab, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Zorović
- Brain Research Lab, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
Abstract
Major depressive disorder (MDD) is a leading cause of suicide in the world. Monoamine-based antidepressant drugs are a primary line of treatment for this mental disorder, although the delayed response and incomplete efficacy in some patients highlight the need for improved therapeutic approaches. Over the past two decades, ketamine has shown rapid onset with sustained (up to several days) antidepressant effects in patients whose MDD has not responded to conventional antidepressant drugs. Recent preclinical studies have started to elucidate the underlying mechanisms of ketamine's antidepressant properties. Herein, we describe and compare recent clinical and preclinical findings to provide a broad perspective of the relevant mechanisms for the antidepressant action of ketamine.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Institute of Regulatory Innovation through Science, Kyung Hee University, Seoul, Republic of Korea
| | - Kanzo Suzuki
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Ege T Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
| | - Lisa M Monteggia
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
| |
Collapse
|
27
|
Kadiyala S, Bhamidipati P, Malla RR. Neuroplasticity: Pathophysiology and Role in Major Depressive Disorder. Crit Rev Oncog 2024; 29:19-32. [PMID: 38989735 DOI: 10.1615/critrevoncog.2024051197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Neuroplasticity is characterized by the brain's ability to change its activity in response to extrinsic and intrinsic factors and is thought to be the mechanism behind all brain functions. Neuroplasticity causes structural and functional changes on a molecular level, specifically the growth of different regions in the brain and changes in synaptic and post-synaptic activities. The four types of neuroplasticity are homologous area adaption, compensatory masquerade, cross-modal reassignment, and map expansion. All of these help the brain work around injuries or new information inputs. In addition to baseline physical functions, neuroplasticity is thought to be the basis of emotional and mental regulations and the impairment of it can cause various mental illnesses. Concurrently, these mental illnesses further the damage of synaptic plasticity in the brain. Major depressive disorder (MDD) is one of the most common mental illnesses. It is affected by and accelerates the impairment of neuroplasticity. It is characterized by a chronically depressed state of mind that can impact the patient's daily life, including work life and interests. This review will focus on highlighting the physiological aspects of the disease and the role of neuroplasticity in the pathogenesis and pathology of the disorder. Moreover, the role of monoamine regulation and ketamine uptake will be discussed in terms of their antidepressant effects on the outcomes of MDD.
Collapse
Affiliation(s)
| | - Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
28
|
Gordon JA, Volkow ND, Koob GF. No time to lose: the current state of research in rapid-acting psychotherapeutics. Neuropsychopharmacology 2024; 49:10-14. [PMID: 37349476 PMCID: PMC10700482 DOI: 10.1038/s41386-023-01627-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
The vast majority of treatments for psychiatric and substance use disorders take weeks to work. Notable exceptions to this rule exist, with some treatments such as intravenous ketamine resolving symptoms in minutes to hours. Current research is focused on identifying novel approaches to rapid-acting psychotherapeutics. Promising results from studies of novel classes of drugs and innovative brain stimulation therapies are currently being studied through both clinical and pre-clinical research, as described here. Research focused on understanding neurobiological mechanisms, effective therapeutic context, and implementation approaches are needed to maximize the potential reach of these therapies.
Collapse
Affiliation(s)
- Joshua A Gordon
- National Institute of Mental Health, Bethesda, MD, 20852, USA.
| | - Nora D Volkow
- National Institute on Drug Abuse, Bethesda, MD, 20852, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20852, USA
| |
Collapse
|
29
|
Jaber M, Kahwaji H, Nasr S, Baz R, Kim YK, Fakhoury M. Precision Medicine in Depression: The Role of Proteomics and Metabolomics in Personalized Treatment Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:359-378. [PMID: 39261438 DOI: 10.1007/978-981-97-4402-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Depression, or major depressive disorder (MDD), is a widespread mental health condition marked by enduring feelings of sorrow and loss of interest. Treatment of depression frequently combines psychotherapy, medication, and lifestyle modifications. However, the occurrence of treatment resistance in certain individuals makes it difficult for physicians to effectively manage this disorder, calling for the implementation of alternative therapeutic strategies. Recently, precision medicine has gained increased attention in the field of mental health, paving the way for more personalized and effective therapeutic interventions in depression. Also known as personalized medicine, this approach relies on genetic composition, molecular profiles, and environmental variables to customize therapies to individual patients. In particular, precision medicine has offered novel viewpoints on depression through two specific domains: proteomics and metabolomics. On one hand, proteomics is the thorough study of proteins in a biological system, while metabolomics focuses on analyzing the complete set of metabolites in a living being. In the past few years, progress in research has led to the identification of numerous depression-related biomarkers using proteomics and metabolomics techniques, allowing for early identification, precise diagnosis, and improved clinical outcome. However, despite significant progress in these techniques, further efforts are required for advancing precision medicine in the diagnosis and treatment of depression. The overarching goal of this chapter is to provide the current state of knowledge regarding the use of proteomics and metabolomics in identifying biomarkers related to depression. It also highlights the potential of proteomics and metabolomics in elucidating the intricate processes underlying depression, opening the door for tailored therapies that could eventually enhance clinical outcome in depressed patients. This chapter finally discusses the main challenges in the use of proteomics and metabolomics and discusses potential future research directions.
Collapse
Affiliation(s)
- Mohamad Jaber
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hamza Kahwaji
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Sirine Nasr
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Reine Baz
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
30
|
Parikh SV, Aaronson ST, Mathew SJ, Alva G, DeBattista C, Kanes S, Lasser R, Bullock A, Kotecha M, Jung J, Forrestal F, Jonas J, Vera T, Leclair B, Doherty J. Efficacy and safety of zuranolone co-initiated with an antidepressant in adults with major depressive disorder: results from the phase 3 CORAL study. Neuropsychopharmacology 2024; 49:467-475. [PMID: 37875578 PMCID: PMC10724299 DOI: 10.1038/s41386-023-01751-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
Major depressive disorder (MDD) is a mental health disorder that can cause disability and functional impairment that standard-of-care (SOC) antidepressant therapies (ADTs) can take weeks to treat. Zuranolone is a neuroactive steroid and positive allosteric modulator of synaptic and extrasynaptic γ-aminobutyric acid (GABA) type A receptors approved as an oral, once-daily, 14-day treatment course in adults with postpartum depression and under investigation in adults with MDD. The phase 3 CORAL Study (NCT04476030) evaluated the efficacy and safety of zuranolone 50 mg co-initiated with SOC ADT (zuranolone+ADT) vs placebo co-initiated with SOC ADT (placebo+ADT) in adults with MDD. Patients were randomized 1:1 to once-daily, blinded zuranolone+ADT or placebo+ADT for 14 days, then continued open-label SOC ADT for 28 more days. The primary endpoint was change from baseline (CFB) in the 17-item Hamilton Rating Scale for Depression (HAMD-17) total score at Day 3. Among 425 patients in the full analysis set, CFB in HAMD-17 total score at Day 3 was significantly improved with zuranolone+ADT vs placebo+ADT (least squares mean [standard error], -8.9 [0.39] vs -7.0 [0.38]; p = 0.0004). The majority of patients receiving zuranolone+ADT that experienced treatment-emergent adverse events (TEAEs) reported mild or moderate events. The most common TEAEs present in ≥10% of patients in either zuranolone+ADT or placebo+ADT groups were somnolence, dizziness, headache, and nausea. These results demonstrate that zuranolone+ADT provided more rapid improvement in depressive symptoms compared with placebo+ADT in patients with MDD, with a safety profile consistent with previous studies. Clinical trial registration: ClinicalTrials.gov identifier: NCT04476030.
Collapse
Affiliation(s)
- Sagar V Parikh
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| | - Scott T Aaronson
- Institute for Advanced Diagnostics and Therapeutics, Sheppard Pratt, Baltimore, MD, USA
| | - Sanjay J Mathew
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Charles DeBattista
- General Psychiatry and Psychology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | - Jeff Jonas
- Sage Therapeutics, Inc., Cambridge, MA, USA
| | | | | | | |
Collapse
|
31
|
Irmak-Yazicioglu MB, Arslan A. Navigating the Intersection of Technology and Depression Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:401-426. [PMID: 39261440 DOI: 10.1007/978-981-97-4402-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This chapter primarily focuses on the progress in depression precision medicine with specific emphasis on the integrative approaches that include artificial intelligence and other data, tools, and technologies. After the description of the concept of precision medicine and a comparative introduction to depression precision medicine with cancer and epilepsy, new avenues of depression precision medicine derived from integrated artificial intelligence and other sources will be presented. Additionally, less advanced areas, such as comorbidity between depression and cancer, will be examined.
Collapse
Affiliation(s)
| | - Ayla Arslan
- Department of Molecular Biology and Genetics, Üsküdar University, İstanbul, Türkiye.
| |
Collapse
|
32
|
Savić Vujović K, Jotić A, Medić B, Srebro D, Vujović A, Žujović J, Opanković A, Vučković S. Ketamine, an Old-New Drug: Uses and Abuses. Pharmaceuticals (Basel) 2023; 17:16. [PMID: 38276001 PMCID: PMC10820504 DOI: 10.3390/ph17010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
Ketamine as an old-new drug has a variety of clinical implications. In the last 30 years, ketamine has become popular for acute use in humans. Ketamine in standard doses is principally utilized for the induction and maintenance of surgical procedures. Besides its use in anesthesia and analgesia, recent studies have shown that ketamine has found a place in the treatment of asthma, epilepsy, depression, bipolar affective disorders, alcohol and heroin addiction. Ketamine primarily functions as a noncompetitive antagonist targeting the N-methyl-D-aspartate (NMDA) receptor, but its mechanism of action is complex. It is generally regarded as safe, with low doses and short-term use typically not leading to significant adverse effects. Also, ketamine is known as a powerful psychostimulant. During the past decade, ketamine has been one of the commonly abused drugs.
Collapse
Affiliation(s)
- Katarina Savić Vujović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (B.M.); (D.S.); (S.V.)
| | - Ana Jotić
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
| | - Branislava Medić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (B.M.); (D.S.); (S.V.)
| | - Dragana Srebro
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (B.M.); (D.S.); (S.V.)
| | | | - Janko Žujović
- Clinical Centre of Montenegro, Centre for Abdominal Surgery, 81000 Podgorica, Montenegro;
| | - Ana Opanković
- Clinical Centre of Serbia, Clinic for Psychiatry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sonja Vučković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (B.M.); (D.S.); (S.V.)
| |
Collapse
|
33
|
Brandão AAC, Deus DLS, Duarte-Filho LAMS, Menezes PMN, Massaranduba ABR, Silva FS, Ribeiro LAA. Nebulized and intraperitoneal ketamine have equivalent antidepressant-like effect in the forced swim and tail suspension tests in mice. Pharmacol Biochem Behav 2023; 233:173674. [PMID: 37949377 DOI: 10.1016/j.pbb.2023.173674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Major depressive disorder (MDD) is a debilitating illness that affects millions of people worldwide. Currently available antidepressants often take weeks to months to reach their full effect, which leads to an increased risk of suicidal behavior in patients with MMD. Intranasally, esketamine has emerged as an alternative to current antidepressants because of its rapid onset and long-lasting effects in patients with MDD. Animal models are useful for the initial pharmacological screening and for a better understanding of the mechanisms underlying the effects of new drugs with potential against MDD. There is a lack of data on alternative routes of drug administration, either oral or injectable, that can be used in preclinical studies. This study aimed to test whether ketamine has antidepressant-like effects in mice when administered via nebulization using a low-cost apparatus. When mice whose depressive-like behavior was induced by corticosterone were treated with nebulized ketamine at concentrations of 1.3, 2.6, and 5.2 mg/mL, immobility was reduced by 38.6 %, 62.0 %, and 61.1 %, respectively, in the forced swimming test (FST) and 43.6 %, 42.1 %, and 57.9 %, respectively, in the tail suspension test (TST). When depression-like behavior was induced by dexamethasone, nebulization with ketamine reduced immobility by 79.7 %, 49.2 %, and 44.4 % in the FST and 80.9 %, 71.4 %, and 80.4 %, respectively, in the TST. When depression-like behavior was induced by the association between dexamethasone and unpredictable chronic mild stress (UCMS) exposure, immobility was reduced by 26.1 %, 55.3 %, and 19.1 % in FST. Mice treated with nebulized ketamine did not show significant changes in the distance covered or in the time spent moving in the open field test. The efficacy of intraperitoneal and nebulized ketamine is equivalent, which shows that nebulization can be an alternative inexpensive route of drug administration for behavioral studies in rodents.
Collapse
Affiliation(s)
- Aida A C Brandão
- Curso de mestrado em biociências, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE 56304-917, Brazil
| | - Deborah L S Deus
- Curso de graduação em farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE 56304-917, Brazil
| | - Luiz A M S Duarte-Filho
- UMR CNRS 7266 LIENSs, Département de Biotechnologie, La Rochelle Université, La Rochelle, France
| | - Pedro M N Menezes
- Faculdade Maurício de Nassau (UNINASSAU), Av. Cardoso de Sá, 950, Cidade Universitária, Petrolina, PE CEP: 56328-020, Brazil; Faculdade de Petrolina (FACAPE), Campus Universitário, s/n, Vila Eduardo, Petrolina, PE CEP: 56328-903, Brazil
| | - Ana B R Massaranduba
- Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE 56304-917, Brazil
| | - Fabrício S Silva
- Colegiado de Ciências Farmacêuticas (CFARM), Programa de Pós-graduação em Biociências (PGB), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE 56304-917, Brazil
| | - Luciano A A Ribeiro
- Colegiado de Ciências Farmacêuticas (CFARM), Programa de Pós-graduação em Biociências (PGB), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE 56304-917, Brazil.
| |
Collapse
|
34
|
Gałuszko-Węgielnik M, Jakuszkowiak-Wojten K, Wilkowska A, Cubała WJ. Short term ketamine treatment in patient with bipolar disorder with comorbidity with borderline personality disorder: Focus on impulsivity. World J Biol Psychiatry 2023; 24:849-853. [PMID: 37338035 DOI: 10.1080/15622975.2023.2227901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/17/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES Borderline personality disorder (BPD) and bipolar disorder (BD) often co-occur and frequently do not respond adequately to traditional antidepressant treatments. Ketamine has shown rapid antidepressant and anti-suicidal effects. However, there is limited literature on the safety and tolerance of using ketamine to treat patients with comorbid BD and BPD. METHODS This case presents a female patient diagnosed with both Bipolar Disorder (BD) and Borderline Personality Disorder (BPD) who received intravenous ketamine treatment to alleviate acute depressive symptoms. RESULTS Initially, ketamine ameliorated depressed symptoms. However, as the ketamine treatment continued, the patient showed an increase in nonsuicidal self-injury (NSSIs) and impulsive conduct with a aggravation of dissociative symptoms. As a result, intravenous ketamine was discontinued, and the patient received the medication, which proved helpful. CONCLUSIONS Although ketamine presents antidepressant properties, reports on its impact on emotional dysregulation and impulsive conduct are unclear and not alike to its antidepressant effect. Therefore, there is a need for more studies investigating the effectiveness and safety of this rapid-acting medicine in this patient population.
Collapse
Affiliation(s)
| | | | - Alina Wilkowska
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Wiesław Jerzy Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
35
|
Simmatis L, Russo EE, Geraci J, Harmsen IE, Samuel N. Technical and clinical considerations for electroencephalography-based biomarkers for major depressive disorder. NPJ MENTAL HEALTH RESEARCH 2023; 2:18. [PMID: 38609518 PMCID: PMC10955915 DOI: 10.1038/s44184-023-00038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/21/2023] [Indexed: 04/14/2024]
Abstract
Major depressive disorder (MDD) is a prevalent and debilitating psychiatric disease that leads to substantial loss of quality of life. There has been little progress in developing new MDD therapeutics due to a poor understanding of disease heterogeneity and individuals' responses to treatments. Electroencephalography (EEG) is poised to improve this, owing to the ease of large-scale data collection and the advancement of computational methods to address artifacts. This review summarizes the viability of EEG for developing brain-based biomarkers in MDD. We examine the properties of well-established EEG preprocessing pipelines and consider factors leading to the discovery of sensitive and reliable biomarkers.
Collapse
Affiliation(s)
- Leif Simmatis
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cove Neurosciences Inc., Toronto, ON, Canada
| | - Emma E Russo
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cove Neurosciences Inc., Toronto, ON, Canada
| | - Joseph Geraci
- Cove Neurosciences Inc., Toronto, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Irene E Harmsen
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cove Neurosciences Inc., Toronto, ON, Canada
| | - Nardin Samuel
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Cove Neurosciences Inc., Toronto, ON, Canada.
| |
Collapse
|
36
|
Hack LM, Zhang X, Heifets BD, Suppes T, van Roessel PJ, Yesavage JA, Gray NJ, Hilton R, Bertrand C, Rodriguez CI, Deisseroth K, Knutson B, Williams LM. Ketamine's acute effects on negative brain states are mediated through distinct altered states of consciousness in humans. Nat Commun 2023; 14:6631. [PMID: 37857620 PMCID: PMC10587184 DOI: 10.1038/s41467-023-42141-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Ketamine commonly and rapidly induces dissociative and other altered states of consciousness (ASCs) in humans. However, the neural mechanisms that contribute to these experiences remain unknown. We used functional neuroimaging to engage key regions of the brain's affective circuits during acute ketamine-induced ASCs within a randomized, multi-modal, placebo-controlled design examining placebo, 0.05 mg/kg ketamine, and 0.5 mg/kg ketamine in nonclinical adult participants (NCT03475277). Licensed clinicians monitored infusions for safety. Linear mixed effects models, analysis of variance, t-tests, and mediation models were used for statistical analyses. Our design enabled us to test our pre-specified primary and secondary endpoints, which were met: effects of ketamine across dose conditions on (1) emotional task-evoked brain activity, and (2) sub-components of dissociation and other ASCs. With this design, we also could disentangle which ketamine-induced affective brain states are dependent upon specific aspects of ASCs. Differently valenced ketamine-induced ASCs mediated opposing effects on right anterior insula activity. Participants experiencing relatively higher depersonalization induced by 0.5 mg/kg of ketamine showed relief from negative brain states (reduced task-evoked right anterior insula activity, 0.39 SD). In contrast, participants experiencing dissociative amnesia showed an exacerbation of insula activity (0.32 SD). These results in nonclinical participants may shed light on the mechanisms by which specific dissociative states predict response to ketamine in depressed individuals.
Collapse
Affiliation(s)
- Laura M Hack
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Xue Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Boris D Heifets
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Trisha Suppes
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Peter J van Roessel
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jerome A Yesavage
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Nancy J Gray
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Hilton
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Claire Bertrand
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Carolyn I Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Karl Deisseroth
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
37
|
Zavaliangos-Petropulu A, McClintock SM, Joshi SH, Taraku B, Al-Sharif NB, Espinoza RT, Narr KL. Hippocampal subfield volumes in treatment resistant depression and serial ketamine treatment. Front Psychiatry 2023; 14:1227879. [PMID: 37876623 PMCID: PMC10590913 DOI: 10.3389/fpsyt.2023.1227879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Subanesthetic ketamine is a rapidly acting antidepressant that has also been found to improve neurocognitive performance in adult patients with treatment resistant depression (TRD). Provisional evidence suggests that ketamine may induce change in hippocampal volume and that larger pre-treatment volumes might be related to positive clinical outcomes. Here, we examine the effects of serial ketamine treatment on hippocampal subfield volumes and relationships between pre-treatment subfield volumes and changes in depressive symptoms and neurocognitive performance. Methods Patients with TRD (N = 66; 31M/35F; age = 39.5 ± 11.1 years) received four ketamine infusions (0.5 mg/kg) over 2 weeks. Structural MRI scans, the National Institutes of Health Toolbox (NIHT) Cognition Battery, and Hamilton Depression Rating Scale (HDRS) were collected at baseline, 24 h after the first and fourth ketamine infusion, and 5 weeks post-treatment. The same data was collected for 32 age and sex matched healthy controls (HC; 17M/15F; age = 35.03 ± 12.2 years) at one timepoint. Subfield (CA1/CA3/CA4/subiculum/molecular layer/GC-ML-DG) volumes corrected for whole hippocampal volume were compared across time, between treatment remitters/non-remitters, and patients and HCs using linear regression models. Relationships between pre-treatment subfield volumes and clinical and cognitive outcomes were also tested. All analyses included Bonferroni correction. Results Patients had smaller pre-treatment left CA4 (p = 0.004) and GC.ML.DG (p = 0.004) volumes compared to HC, but subfield volumes remained stable following ketamine treatment (all p > 0.05). Pre-treatment or change in hippocampal subfield volumes over time showed no variation by remission status nor correlated with depressive symptoms (p > 0.05). Pre-treatment left CA4 was negatively correlated with improved processing speed after single (p = 0.0003) and serial ketamine infusion (p = 0.005). Left GC.ML.DG also negatively correlated with improved processing speed after single infusion (p = 0.001). Right pre-treatment CA3 positively correlated with changes in list sorting working memory at follow-up (p = 0.0007). Discussion These results provide new evidence to suggest that hippocampal subfield volumes at baseline may present a biomarker for neurocognitive improvement following ketamine treatment in TRD. In contrast, pre-treatment subfield volumes and changes in subfield volumes showed negligible relationships with ketamine-related improvements in depressive symptoms.
Collapse
Affiliation(s)
- Artemis Zavaliangos-Petropulu
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Shawn M. McClintock
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States
| | - Shantanu H. Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Brandon Taraku
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Noor B. Al-Sharif
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Randall T. Espinoza
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Katherine L. Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
38
|
Akbar D, Rhee TG, Ceban F, Ho R, Teopiz KM, Cao B, Subramaniapillai M, Kwan ATH, Rosenblat JD, McIntyre RS. Dextromethorphan-Bupropion for the Treatment of Depression: A Systematic Review of Efficacy and Safety in Clinical Trials. CNS Drugs 2023; 37:867-881. [PMID: 37792265 DOI: 10.1007/s40263-023-01032-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND A significant proportion of adults with major depressive disorder (MDD) do not respond to treatments which are currently used in clinical practice such as first-generation monoamine-based antidepressants. OBJECTIVES The objective of this systematic review was to assess the efficacy, safety, and mechanisms of action of AXS-05, a combination of the NMDA-receptor antagonist dextromethorphan with bupropion, in adults with MDD. METHODS We searched PubMed, Embase, Google Scholar, and ClinicalTrials.gov for current studies reporting on efficacy and/or safety of AXS-05 in patients with MDD. The search terms included: "AXS-05" OR "dextromethorphan and bupropion" AND "depression". Studies from database inception to January 2023 were evaluated. Risk of bias was assessed using the Cochrane Risk of Bias tool. RESULTS The search yielded 54 studies of which 5 were included. All studies had low risk of bias. Depression severity, measured with the Montgomery-Åsberg Depression Rating Scale (MADRS) significantly decreased as early as 1-week post-treatment from baseline when compared to a placebo-controlled group (LS mean difference 2.2; 95% CI 0.6-3.9; p = 0.007) and at 2 weeks compared to an active control group (LS mean difference 4.7; 95% CI 0.6-8.8; p = 0.024). Treatment efficacy could be maintained for up to 12 months with mean MADRS score reduction of 23 points from baseline. Clinical remission and response rates also improved at week 1 and were maintained for 12 months. The treatment was well-tolerated, with some transient adverse events reported. CONCLUSION Current evidence suggests that the combination of dextromethorphan and bupropion is a well-tolerated, rapid-acting treatment option for adults with MDD. Initial success with AXS-05 supports the mechanistic role of glutamatergeric and sigma 1 signaling in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Dania Akbar
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA New England Mental Illness, Research, Education and Clinical Center (MIRECC), VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Felicia Ceban
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Brain and Cognition Discovery Foundation (BCDF), 77 Bloor St W Suite 617, Toronto, ON, M5S 1M2, Canada
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation (BCDF), 77 Bloor St W Suite 617, Toronto, ON, M5S 1M2, Canada
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Mehala Subramaniapillai
- Brain and Cognition Discovery Foundation (BCDF), 77 Bloor St W Suite 617, Toronto, ON, M5S 1M2, Canada
| | - Angela T H Kwan
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Brain and Cognition Discovery Foundation (BCDF), 77 Bloor St W Suite 617, Toronto, ON, M5S 1M2, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Brain and Cognition Discovery Foundation (BCDF), 77 Bloor St W Suite 617, Toronto, ON, M5S 1M2, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
39
|
Gold ND, Mallard AJ, Hermann JC, Zeifman RJ, Pagni BA, Bogenschutz MP, Ross S. Exploring the Potential Utility of Psychedelic Therapy for Patients With Amyotrophic Lateral Sclerosis. J Palliat Med 2023; 26:1408-1418. [PMID: 37167080 DOI: 10.1089/jpm.2022.0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is an aggressive, terminal neurodegenerative disease that causes death of motor neurons and has an average survival time of 3-4 years. ALS is the most common motor neuron degenerative disease and is increasing in prevalence. There is a pressing need for more effective ALS treatments as available pharmacotherapies do not reverse disease progression or provide substantial clinical benefit. Furthermore, despite psychological distress being highly prevalent in ALS patients, psychological treatments remain understudied. Psychedelics (i.e., serotonergic psychedelics and related compounds like ketamine) have seen a resurgence of research into therapeutic applications for treating a multitude of neuropsychiatric conditions, including psychiatric and existential distress in life-threatening illnesses. Methods: We conducted a narrative review to examine the potential of psychedelic assisted-psychotherapy (PAP) to alleviate psychiatric and psychospiritual distress in ALS. We also discussed the safety of using psychedelics in this population and proposed putative neurobiological mechanisms that may therapeutically intervene on ALS neuropathology. Results: PAP has the potential to treat psychological dimensions and may also intervene on neuropathological dimensions of ALS. Robust improvements in psychiatric and psychospiritual distress from PAP in other populations provide a strong rationale for utilizing this therapy to treat ALS-related psychiatric and existential distress. Furthermore, relevant neuroprotective properties of psychedelics warrant future preclinical trials to investigate this area in ALS models. Conclusion: PAP has the potential to serve as an effective treatment in ALS. Given the lack of effective treatment options, researchers should rigorously explore this therapy for ALS in future trials.
Collapse
Affiliation(s)
- Noah D Gold
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Austin J Mallard
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Jacob C Hermann
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Richard J Zeifman
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Broc A Pagni
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Michael P Bogenschutz
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Stephen Ross
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
40
|
Whinkin E, Eparwa TRJ, Julseth MC, Schneider A, Aggarwal SK. Reductions in anxiety and depression symptoms in a subset of outpatients with problematic substance use who received ketamine-assisted psychotherapy: a two-year retrospective chart review. Front Psychiatry 2023; 14:1160442. [PMID: 37711421 PMCID: PMC10498542 DOI: 10.3389/fpsyt.2023.1160442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023] Open
Abstract
Objective Assess changes in symptoms of anxiety, depression, and psychosocial or spiritual distress before and after ketamine-assisted psychotherapy (KAP) in individuals with problematic substance use (PSU). Methods A retrospective chart review was performed on participant data from two five-year prospective outcomes studies: the AIMS Medical Outcomes Study (AMOS) and the AIMS Cancer Outcomes Study (ACOS). The efficacy of KAP for anxiety, depression, and psychosocial or spiritual well being was assessed in patients with current, past, or high risk of substance use disorder. Validated psychometrics utilized were Generalized Anxiety Disorder-7 (GAD-7), Patient Health Questionnaire-9 (PHQ-9), and the National Institute of Health - Healing Experiences of All Life Stressors (NIH-HEALS) questionnaires. Results Between November 1, 2020 and October 31, 2022, a total of 18 patients identified with problematic substance use completed at least one KAP session and at least one baseline and post-KAP metric questionnaire. The PSU subpopulation average score changes were as follows: GAD-7 (-6.71 ± 9.15, n = 14); PHQ-9 (-7.44 ± 5.42, n = 16); and NIH-HEALS (5.13 ± 13.64, n = 15). The average score changes for the KAP population of enrolled subjects were as follows: GAD-7 (-2.45 ± 6.01, n = 104); PHQ-9 (-3.02 ± 6.01, n = 111); and NIH-HEALS (2.93 ± 11.91, n = 86). A comparison of average score changes (p < 0.05) between the PSU subpopulation and KAP population were as follows: GAD-7 (0.0219, 95% C.I. 1.37-8.11); PHQ-9 (0.0062, 95% C.I. 1.28-7.56); and NIH-HEALS (0.5197, 95% C.I. 8.96-4.56). For patients with PSU, results demonstrate statistically significant improvements in anxiety and depression symptoms after at least one KAP session. Average NIH-HEALS scores increased, though not by a statistically significant amount. Compared to the general population of enrolled KAP patients during this period, patients with PSU reported significantly greater average reductions in GAD-7 and PHQ-9 scores. Conclusion Undergoing one to six ketamine-assisted psychotherapy (KAP) sessions was associated with improved anxiety and depression ratings in patients with problematic substance use. Two-thirds of participants also experienced improved psychosocial and spiritual well-being. The use of KAP may be important to consider as a therapy for reducing anxiety and depression symptoms in patients with problematic substance use.
Collapse
Affiliation(s)
- Emily Whinkin
- Advanced Integrative Medical Sciences Institute, Seattle, WA, United States
| | - Therry Rose J. Eparwa
- Advanced Integrative Medical Sciences Institute, Seattle, WA, United States
- College of Nursing, Seattle University, Seattle, WA, United States
| | | | - Andrea Schneider
- College of Nursing, Seattle University, Seattle, WA, United States
| | - Sunil K. Aggarwal
- Advanced Integrative Medical Sciences Institute, Seattle, WA, United States
| |
Collapse
|
41
|
Raymond BL, Allen BFS, Freundlich RE, Parrish CG, Jayaram JE, Wanderer JP, Rice TW, Lindsell CJ, Scharfman KH, Dear ML, Gao Y, Hiser WD, McEvoy MD. The IMpact of PerioperAtive KeTamine on Enhanced Recovery after Abdominal Surgery (IMPAKT ERAS): protocol for a pragmatic, randomized, double-blinded, placebo-controlled trial. BMC Anesthesiol 2023; 23:227. [PMID: 37391729 PMCID: PMC10311882 DOI: 10.1186/s12871-023-02177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Multimodal analgesic strategies that reduce perioperative opioid consumption are well-supported in Enhanced Recovery After Surgery (ERAS) literature. However, the optimal analgesic regimen has not been established, as the contributions of each individual agent to the overall analgesic efficacy with opioid reduction remains unknown. Perioperative ketamine infusions can decrease opioid consumption and opioid-related side effects. However, as opioid requirements are drastically minimized within ERAS models, the differential effects of ketamine within an ERAS pathway remain unknown. We aim to pragmatically investigate through a learning healthcare system infrastructure how the addition of a perioperative ketamine infusion to mature ERAS pathways affects functional recovery. METHODS The IMPAKT ERAS trial (IMpact of PerioperAtive KeTamine on Enhanced Recovery after Abdominal Surgery) is a single center, pragmatic, randomized, blinded, placebo-controlled trial. 1544 patients undergoing major abdominal surgery will be randomly allocated to receive intraoperative and postoperative (up to 48 h) ketamine versus placebo infusions as part of a perioperative multimodal analgesic regimen. The primary outcome is length of stay, defined as surgical start time until hospital discharge. Secondary outcomes will include a variety of in-hospital clinical end points derived from the electronic health record. DISCUSSION We aimed to launch a large-scale, pragmatic trial that would easily integrate into routine clinical workflow. Implementation of a modified consent process was critical to preserving our pragmatic design, permitting an efficient, low-cost model without reliance on external study personnel. Therefore, we partnered with leaders of our Investigational Review Board to develop a novel, modified consent process and shortened written consent form that would meet all standard elements of informed consent, yet also allow clinical providers the ability to recruit and enroll patients during their clinical workflow. Our trial design has created a platform for subsequent pragmatic studies at our institution. TRIAL REGISTRATION NCT04625283, Pre-results.
Collapse
Affiliation(s)
- Britany L Raymond
- Department of Anesthesiology, Vanderbilt University Medical Center, 1301 Medical Center Drive 4648 TVC, Nashville, TN, 37232, USA.
| | - Brian F S Allen
- Department of Anesthesiology, Vanderbilt University Medical Center, 1301 Medical Center Drive 4648 TVC, Nashville, TN, 37232, USA
| | - Robert E Freundlich
- Department of Anesthesiology, Vanderbilt University Medical Center, 1301 Medical Center Drive 4648 TVC, Nashville, TN, 37232, USA
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, 2525 West End Ave Ste. 600, Nashville, TN, 37203, USA
| | - Crystal G Parrish
- Department of Anesthesiology, Vanderbilt University Medical Center, 1301 Medical Center Drive 4648 TVC, Nashville, TN, 37232, USA
| | - Jennifer E Jayaram
- Department of Anesthesiology, Vanderbilt University Medical Center, 1301 Medical Center Drive 4648 TVC, Nashville, TN, 37232, USA
| | - Jonathan P Wanderer
- Department of Anesthesiology, Vanderbilt University Medical Center, 1301 Medical Center Drive 4648 TVC, Nashville, TN, 37232, USA
| | - Todd W Rice
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, 2525 West End Ave Ste. 600, Nashville, TN, 37203, USA
| | - Christopher J Lindsell
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, 2525 West End Ave Ste. 600, Nashville, TN, 37203, USA
| | - Kevin H Scharfman
- Department of Pharmaceutical Services, Vanderbilt University Medical Center, 1211 Medical Center Drive B-101, Nashville, TN, 37232, USA
| | - Mary L Dear
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, 2525 West End Ave Ste. 600, Nashville, TN, 37203, USA
| | - Yue Gao
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, 2525 West End Ave Ste. 600, Nashville, TN, 37203, USA
| | - William D Hiser
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, 2525 West End Ave Ste. 600, Nashville, TN, 37203, USA
| | - Matthew D McEvoy
- Department of Anesthesiology, Vanderbilt University Medical Center, 1301 Medical Center Drive 4648 TVC, Nashville, TN, 37232, USA
| |
Collapse
|
42
|
Kantor S, Lanigan M, Giggins L, Lione L, Magomedova L, de Lannoy I, Upton N, Duxon M. Ketamine supresses REM sleep and markedly increases EEG gamma oscillations in the Wistar Kyoto rat model of treatment-resistant depression. Behav Brain Res 2023; 449:114473. [PMID: 37146722 DOI: 10.1016/j.bbr.2023.114473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 05/07/2023]
Abstract
Wistar-Kyoto (WKY) rats exhibit depression-like characteristics and decreased sensitivity to monoamine-based antidepressants, making them a suitable model of treatment-resistant depression (TRD). Ketamine has emerged recently as a rapidly acting antidepressant with high efficacy in TRD. Our aim was to determine whether subanaesthetic doses of ketamine can correct sleep and electroencephalogram (EEG) alterations in WKY rats and whether any ketamine-induced changes differentially affect WKY rats compared to Sprague-Dawley (SD) rats. Thus, we surgically implanted 8SD and 8 WKY adult male rats with telemetry transmitters and recorded their EEG, electromyogram, and locomotor activity after vehicle or ketamine (3, 5 or 10mg/kg, s.c.) treatment. We also monitored the plasma concentration of ketamine and its metabolites, norketamine and hydroxynorketamine in satellite animals. We found that WKY rats, have an increased amount of rapid eye movement (REM) sleep, fragmented sleep-wake pattern, and increased EEG delta power during non-REM sleep compared to SD rats. Ketamine suppressed REM sleep and increased EEG gamma power during wakefulness in both strains, but the gamma increase was almost twice as large in WKY rats than in SD rats. Ketamine also increased beta oscillations, but only in WKY rats. These differences in sleep and EEG are unlikely to be caused by dissimilarities in ketamine metabolism as the plasma concentrations of ketamine and its metabolites were similar in both strains. Our data suggest an enhanced antidepressant-like response to ketamine in WKY rats, and further support the predictive validity of acute REM sleep suppression as a measure of antidepressant responsiveness.
Collapse
Affiliation(s)
- Sandor Kantor
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom; Transpharmation Canada, Fergus, ON, N1M 2W8, Canada.
| | - Michael Lanigan
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom; University of Hertfordshire, College Lane, Hatfield, Herts, AL10 9AD, United Kingdom
| | - Lauren Giggins
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom
| | - Lisa Lione
- University of Hertfordshire, College Lane, Hatfield, Herts, AL10 9AD, United Kingdom
| | | | | | - Neil Upton
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom
| | - Mark Duxon
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom; Transpharmation Canada, Fergus, ON, N1M 2W8, Canada
| |
Collapse
|
43
|
Markov DD, Dolotov OV, Grivennikov IA. The Melanocortin System: A Promising Target for the Development of New Antidepressant Drugs. Int J Mol Sci 2023; 24:ijms24076664. [PMID: 37047638 PMCID: PMC10094937 DOI: 10.3390/ijms24076664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Major depression is one of the most prevalent mental disorders, causing significant human suffering and socioeconomic loss. Since conventional antidepressants are not sufficiently effective, there is an urgent need to develop new antidepressant medications. Despite marked advances in the neurobiology of depression, the etiology and pathophysiology of this disease remain poorly understood. Classical and newer hypotheses of depression suggest that an imbalance of brain monoamines, dysregulation of the hypothalamic-pituitary-adrenal axis (HPAA) and immune system, or impaired hippocampal neurogenesis and neurotrophic factors pathways are cause of depression. It is assumed that conventional antidepressants improve these closely related disturbances. The purpose of this review was to discuss the possibility of affecting these disturbances by targeting the melanocortin system, which includes adrenocorticotropic hormone-activated receptors and their peptide ligands (melanocortins). The melanocortin system is involved in the regulation of various processes in the brain and periphery. Melanocortins, including peripherally administered non-corticotropic agonists, regulate HPAA activity, exhibit anti-inflammatory effects, stimulate the levels of neurotrophic factors, and enhance hippocampal neurogenesis and neurotransmission. Therefore, endogenous melanocortins and their analogs are able to complexly affect the functioning of those body’s systems that are closely related to depression and the effects of antidepressants, thereby demonstrating a promising antidepressant potential.
Collapse
Affiliation(s)
- Dmitrii D. Markov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Oleg V. Dolotov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Igor A. Grivennikov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
44
|
Witkin JM, Golani LK, Smith JL. Clinical pharmacological innovation in the treatment of depression. Expert Rev Clin Pharmacol 2023; 16:349-362. [PMID: 37000975 DOI: 10.1080/17512433.2023.2198703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
INTRODUCTION Deficiencies in standard of care antidepressants are driving novel drug discovery. A new age of antidepressant medications has emerged with the introduction of rapid-acting antidepressants with efficacy in treatment-resistant patients. AREAS COVERED The newly approved medicines and those in clinical development for major depressive disorder (MDD) are documented in this scoping review of newly approved and emerging antidepressants. Compounds are evaluated for clinical efficacy, tolerability, and safety and compared to those of standard of care medicines. EXPERT OPINION A new age of antidepressant discovery relies heavily on glutamatergic mechanisms. New medicines based upon the model of ketamine have been delivered and are in clinical development. Rapid onset and the ability to impact treatment-resistant depression, raises the question of the best first-line medicines for patients. Drugs with improvements in tolerability are being investigated (e.g. mGlu2/3 receptor antagonists, AMPA receptor potentiators, and novel NMDA receptor modulators). Multiple companies are working toward the identification of novel psychedelic drugs where the requirement for psychedelic activity is not fully known. Gaps still exist - methods for matching patients with specific medicines are needed, and medicines for the prevention of MDD and its disease progression need research attention.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
- Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN USA
| | - Lalit K Golani
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| |
Collapse
|
45
|
Piniella D, Zafra F. Functional crosstalk of the glycine transporter GlyT1 and NMDA receptors. Neuropharmacology 2023; 232:109514. [PMID: 37003571 DOI: 10.1016/j.neuropharm.2023.109514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
NMDA-type glutamate receptors (NMDARs) constitute one of the main glutamate (Glu) targets in the central nervous system and are involved in synaptic plasticity, which is the molecular substrate of learning and memory. Hypofunction of NMDARs has been associated with schizophrenia, while overstimulation causes neuronal death in neurodegenerative diseases or in stroke. The function of NMDARs requires coincidental binding of Glu along with other cellular signals such as neuronal depolarization, and the presence of other endogenous ligands that modulate their activity by allosterism. Among these allosteric modulators are zinc, protons and Gly, which is an obligatory co-agonist. These characteristics differentiate NMDARs from other receptors, and their structural bases have begun to be established in recent years. In this review we focus on the crosstalk between Glu and glycine (Gly), whose concentration in the NMDAR microenvironment is maintained by various Gly transporters that remove or release it into the medium in a regulated manner. The GlyT1 transporter is particularly involved in this task, and has become a target of great interest for the treatment of schizophrenia since its inhibition leads to an increase in synaptic Gly levels that enhances the activity of NMDARs. However, the only drug that has completed phase III clinical trials did not yield the expected results. Notwithstanding, there are additional drugs that continue to be investigated, and it is hoped that knowledge gained from the recently published 3D structure of GlyT1 may allow the rational design of more effective new drugs.
Collapse
Affiliation(s)
- Dolores Piniella
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Institute of Health Carlos III (ISCIII), Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Institute of Health Carlos III (ISCIII), Spain.
| |
Collapse
|
46
|
Raymond BL, Allen BFS, Freundlich RE, Parrish CG, Jayaram JE, Wanderer JP, Rice TW, Lindsell CJ, Scharfman KH, Dear ML, Gao Y, Hiser WD, McEvoy MD. The IMpact of PerioperAtive KeTamine on Enhanced Recovery after Abdominal Surgery (IMPAKT ERAS): protocol for a pragmatic, randomized, double-blinded, placebo-controlled trial. RESEARCH SQUARE 2023:rs.3.rs-2639840. [PMID: 36993617 PMCID: PMC10055550 DOI: 10.21203/rs.3.rs-2639840/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
BACKGROUND Multimodal analgesic strategies that reduce perioperative opioid consumption are well-supported in Enhanced Recovery After Surgery (ERAS) literature. However, the optimal analgesic regimen has not been established, as the contributions of each individual agent to the overall analgesic efficacy with opioid reduction remains unknown. Perioperative ketamine infusions can decrease opioid consumption and opioid-related side effects. However, as opioid requirements are drastically minimized within ERAS models, the differential effects of ketamine within an ERAS pathway remain unknown. We aim to pragmatically investigate through a learning healthcare system infrastructure how the addition of a perioperative ketamine infusion to mature ERAS pathways affects functional recovery. METHODS The IMPAKT ERAS trial (IMpact of PerioperAtive KeTamine on Enhanced Recovery after Abdominal Surgery) is a single center, pragmatic, randomized, blinded, placebo-controlled trial. 1544 patients undergoing major abdominal surgery will be randomly allocated to receive intraoperative and postoperative (up to 48 hours) ketamine versus placebo infusions as part of a perioperative multimodal analgesic regimen. The primary outcome is length of stay, defined as surgical start time until hospital discharge. Secondary outcomes will include a variety of in-hospital clinical end points derived from the electronic health record. DISCUSSION We aimed to launch a large-scale, pragmatic trial that would easily integrate into routine clinical workflow. Implementation of a modified consent process was critical to preserving our pragmatic design, permitting an efficient, low-cost model without reliance on external study personnel. Therefore, we partnered with leaders of our Investigational Review Board to develop a novel, modified consent process and shortened written consent form that would meet all standard elements of informed consent, yet also allow clinical providers the ability to recruit and enroll patients during their clinical workflow. Our trial design has created a platform for subsequent pragmatic studies at our institution. TRIAL REGISTRATION NUMBER NCT04625283, Pre-results Protocol Version 1.0, 2021.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yue Gao
- Vanderbilt University Medical Center
| | | | | |
Collapse
|
47
|
Leal GC, Souza-Marques B, Mello RP, Bandeira ID, Caliman-Fontes AT, Carneiro BA, Faria-Guimarães D, Guerreiro-Costa LNF, Jesus-Nunes AP, Silva SS, Lins-Silva DH, Fontes MA, Alves-Pereira R, Cordeiro V, Rugieri-Pacheco S, Santos-Lima C, Correia-Melo FS, Vieira F, Sanacora G, Lacerda ALT, Quarantini LC. Arketamine as adjunctive therapy for treatment-resistant depression: A placebo-controlled pilot study. J Affect Disord 2023; 330:7-15. [PMID: 36871913 DOI: 10.1016/j.jad.2023.02.151] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Racemic ketamine is a mixture of (R)-ketamine (arketamine) and (S)-ketamine (esketamine), with the latter regarded as the main isomer for antidepressant effects. However, preclinical data and one open-label human trial suggest arketamine might exert a more potent and longer-lasting antidepressant effect with fewer side effects. We aimed to explore the feasibility of a randomized controlled trial of arketamine for treatment-resistant depression (TRD) and to assess its efficacy and safety compared to placebo. METHODS This is a, randomized, double-blind, crossover, pilot trial (n = 10). All participants received saline and arketamine (0.5 mg/kg) with a one-week interval. Treatment effects were analyzed with a linear mixed effects (LME) model. RESULTS Our analysis suggested the presence of a carryover effect, so the main efficacy analysis was limited to the first week, which demonstrated a main effect of time (p = 0.038) but not for treatment (p = 0.40) or their interaction (p = 0.95). This indicates that depression improved over time, but without significant difference between arketamine and placebo. Analyzing the two weeks together, findings were the same. Dissociation and other adverse events were minimal. LIMITATIONS This was a pilot study with a small sample and underpowered. CONCLUSIONS Arketamine was not superior to placebo for TRD but demonstrated to be extremely safe. Our findings reinforce the importance of continuing studies with this drug, with better powered clinical trials, perhaps considering a parallel design with higher or flexible doses and repeated administrations.
Collapse
Affiliation(s)
- Gustavo C Leal
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Breno Souza-Marques
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Rodrigo P Mello
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Igor D Bandeira
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, USA
| | - Ana Teresa Caliman-Fontes
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Beatriz A Carneiro
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Daniela Faria-Guimarães
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Lívia N F Guerreiro-Costa
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Ana Paula Jesus-Nunes
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Samantha S Silva
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Daniel H Lins-Silva
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Mariana A Fontes
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Raíza Alves-Pereira
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Vivian Cordeiro
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Sidelcina Rugieri-Pacheco
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Cássio Santos-Lima
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Fernanda S Correia-Melo
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Flavia Vieira
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA
| | - Acioly L T Lacerda
- Laboratório Interdisciplinar de Neurociências Clínicas, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas C Quarantini
- Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil; Departamento de Neurociências e Saúde Mental, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.
| |
Collapse
|
48
|
Driver C, Jackson TNW, Lagopoulos J, Hermens DF. Molecular mechanisms underlying the N-methyl-d-aspartate receptor antagonists: Highlighting their potential for transdiagnostic therapeutics. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110609. [PMID: 35878675 DOI: 10.1016/j.pnpbp.2022.110609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
The so-called "psychedelic renaissance" has stimulated expanded interest in several classes of drugs that appear to possess transdiagnostic effects in the treatment of mental health disorders, specifically. N-methyl-d-aspartate receptor (NMDAR) antagonists are one such class with diverse therapeutic potential. NMDARs mediate excitatory postsynaptic signalling in the central nervous system (CNS) and are integral to normal neurobiological processes including neuronal development, synaptic transmission, and plasticity, and thus involved in learning and memory. However, NMDAR hyper-function is also implicated in acute CNS trauma, neuropsychiatric and neurodegenerative disorders, as well as chronic pain. The complex structure of NMDARs permits several locations for therapeutic inhibition, making these receptors a potential target for multiple drugs which modulate them in different ways. NMDAR antagonists, which may be competitive, non-competitive, or uncompetitive, either block glutamate from binding the receptor or modulate the response to glutamate binding. Despite longstanding concerns about side effects of NMDAR antagonists, recent research suggests that, when appropriately used, these agents have favourable safety profiles. Furthermore, their fast-acting mechanism of action, resulting in rapid effects compared to other therapeutic agents, makes them a promising class of drugs that may yield effective therapeutics for multiple CNS disorders.
Collapse
Affiliation(s)
- Christina Driver
- Mental Health and Neuroscience, Thompson Institute, University of the Sunshine Coast, Queensland, Australia.
| | - Timothy N W Jackson
- Australian Venom Research Unit, Department of Biochemistry and Pharmacology, University of Melbourne, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Daniel F Hermens
- Youth Mental Health and Neurobiology, Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
49
|
Anderson DJ, Vazirnia P, Loehr C, Sternfels W, Hasoon J, Viswanath O, Kaye AD, Urits I. Testosterone Replacement Therapy in the Treatment of Depression. Health Psychol Res 2022; 10:38956. [PMID: 36452903 PMCID: PMC9704723 DOI: 10.52965/001c.38956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Depression is a common disorder that affects millions globally and is linked to reduced quality of life and mortality. Its pathophysiology is complex and there are several forms of treatment proposed in the literature with differing side effect profiles. Many patients do not respond to treatment which warrants augmentation with other treatments and the investigation of novel treatments. One of these treatments includes testosterone therapy which evidence suggests might improve depressed mood in older patients with low levels of testosterone and helps restore physical impairments caused by age-related hormonal changes. OBJECTIVE The objective of this review is to synthesize information regarding clinical depression, its treatment options, and the efficacy and safety of testosterone treatment for the treatment of depression. METHODS This review utilized comprehensive secondary and tertiary data analysis across many academic databases and published work pertaining to the topic of interest. RESULTS Within some subpopulations such as men with dysthymic disorder, treatment resistant depression, or low testosterone levels, testosterone administration yielded positive results in the treatment of depression. Additionally, rodent models have shown that administering testosterone to gonadectomized male animals reduces symptoms of depression. Conversely, some studies have found no difference in depressive symptoms after treatment with testosterone when compared with placebo. It was also noted that over administration of testosterone is associated with multiple adverse effects and complications. CONCLUSION The current evidence provides mixed conclusions on the effectiveness of testosterone therapy for treating depression. More research is needed in adult men to see if declining testosterone levels directly influence the development of depression.
Collapse
Affiliation(s)
| | | | - Catherine Loehr
- School of Medicine, Louisiana State University Health Sciences Center
| | - Whitney Sternfels
- School of Medicine, Louisiana State University Health Sciences Center
| | - Jamal Hasoon
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Omar Viswanath
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School; Valley Anesthesiology and Pain Consultants, Envision Physician Services; Department of Anesthesiology, University of Arizona College of Medicine Phoenix; Department of Anesthesiology, Creighton University School of Medicine
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center
| | - Ivan Urits
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School; Department of Anesthesiology, Louisiana State University Health Shreveport
| |
Collapse
|
50
|
Schappi JM, Rasenick MM. Gα s, adenylyl cyclase, and their relationship to the diagnosis and treatment of depression. Front Pharmacol 2022; 13:1012778. [PMID: 36467104 PMCID: PMC9716287 DOI: 10.3389/fphar.2022.1012778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
The relationship between depression, its etiology and therapy, and the cAMP signaling system have been studies for decades. This review will focus on cAMP, G proteins and adenylyl cyclase and depression or antidepressant action. Both human and animal studies are compared and contrasted. It is concluded that there is some synteny in the findings that cAMP signaling is attenuated in depression and that this is reversed by successful antidepressant therapy. The G protein that activates adenylyl cyclase, Gαs, appears to have diminished access to adenylyl cyclase in depression, and this is rectified by successful antidepressant treatment. Unfortunately, attempts to link specific isoforms of adenylyl cyclase to depression or antidepressant action suffer from discontinuity between human and animal studies.
Collapse
Affiliation(s)
- Jeffrey M. Schappi
- Departments of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States,Jesse Brown VAMC, Chicago, IL, United States,*Correspondence: Mark M. Rasenick, ; Jeffrey M. Schappi,
| | - Mark M. Rasenick
- Departments of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States,Jesse Brown VAMC, Chicago, IL, United States,Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States,Pax Neuroscience, Glenview, IL, United States,*Correspondence: Mark M. Rasenick, ; Jeffrey M. Schappi,
| |
Collapse
|