1
|
Handler NS, Handler MZ, Stephany MP, Handler GA, Schwartz RA. Porphyria cutanea tarda: an intriguing genetic disease and marker. Int J Dermatol 2017; 56:e106-e117. [PMID: 28321838 DOI: 10.1111/ijd.13580] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 01/10/2017] [Indexed: 12/21/2022]
Abstract
Porphyrias are a group of intriguing genetic diseases of the heme pathway, of which porphyria cutanea tarda (PCT) is the most common. Resulting from a defect in enzymes in the porphyria pathway, PCT has been linked to several conditions. Recent studies have demonstrated a change in thinking regarding the human immunodeficiency virus (HIV) and development of PCT. The exacerbation of PCT with contraction of HIV is now believed to result from coinfection from the hepatitis C virus (HCV). Blistering of sun-exposed skin, a classic presenting sign of PCT, is not exclusive to the condition. Cutaneous findings must also trigger physicians to consider additional types of porphyrias, such as variegate porphyria. The diagnosis of pseudoporphyria, which does not result from enzymatic absence, must be considered in patients with photosensitivity and cutaneous bullae. Recent health food trends, such as chlorophyll, have been linked to pseudoporphyria. PCT is a serious condition in which accurate diagnosis is necessary for appropriate management.
Collapse
Affiliation(s)
| | - Marc Z Handler
- Dermatology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Glenn A Handler
- Dermatology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | |
Collapse
|
2
|
Frank J, Poblete-Gutiérrez P. Porphyria cutanea tarda--when skin meets liver. Best Pract Res Clin Gastroenterol 2010; 24:735-45. [PMID: 20955974 DOI: 10.1016/j.bpg.2010.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 07/14/2010] [Indexed: 01/31/2023]
Abstract
Porphyria cutanea tarda (PCT) is the most frequent type of porphyria worldwide and results from a catalytic deficiency of uroporphyrinogen decarboxylase (UROD), the fifth enzyme in heme biosynthesis. At least two different types of PCT are currently distinguished: an acquired variant, also referred to as sporadic or type I PCT, in which the enzymatic deficiency is limited to the liver; and an autosomal dominantly inherited form, also known as familial or type II PCT, in which there is a decrease of enzymatic activity in all tissues. The cutaneous findings include increased photosensitivity, skin fragility, blistering, erosions, crusts, and miliae on the sun-exposed areas of the body. Additionally, hyperpigmentation, hypertrichosis, sclerodermoid plaques, and scarring alopecia might be observed. In patients with type I PCT, there is a significant association with liver disease that can be triggered by genetic and environmental factors, such as alcohol abuse, iron overload, haemochromatosis, polychlorinated hydrocarbons, and hepatitis C virus infection. The diagnosis of PCT can be made based on the skin symptoms, a characteristic urinary porphyrin excretion profile, and the detection of isocoproporphyrin in the feces. In red blood cells of individuals with type II PCT, UROD activity is decreased by approximately 50% due to heterozygous mutations in the UROD gene. Here we provide an update on clinical, diagnostic and therapeutic aspects of PCT, a disorder that affects both skin and liver.
Collapse
Affiliation(s)
- Jorge Frank
- Department of Dermatology, Euregional Porphyria Center Maastricht, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands.
| | | |
Collapse
|
3
|
Han X, O'Connor JC, Donner EM, Nabb DL, Mingoia RT, Snajdr SI, Clarke JJ, Kaplan AM. Non-coplanar 2,2',3,3',4,4',5,5',6,6'-decachlorobiphenyl (PCB 209) did not induce cytochrome P450 enzyme activities in primary cultured rat hepatocytes, was not genotoxic, and did not exhibit endocrine-modulating activities. Toxicology 2008; 255:177-86. [PMID: 19022331 DOI: 10.1016/j.tox.2008.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 11/25/2022]
Abstract
2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl (PCB 209) is a fully chlorinated, non-coplanar biphenyl. To demonstrate that PCB 209 is not likely to exhibit human health hazards common to coplanar PCBs it was tested for cytochrome P450 (P450) enzyme induction potentials, genetic toxicity, and endocrine-modulating activity. PCB 209 (dose from 0.005 to 5000 ng/mL) did not significantly induce P450 CYP1A, 2A, 2B, 3A, or 4A enzyme activities in primary cultured rat hepatocytes. In contrast, Aroclor 1260, a PCB mixture that contains approximately 60% chlorine by weight, showed significant induction of P450 CYP1A, 2A, 2B, and 3A within the same dose range. PCB 209 (dose from 100 to 5000 microg/plate) was negative in the bacterial mutagenicity (Ames) test in Salmonella typhimurium strains TA98, TA100, TA1535 and TA1537 or in Eschericia coli strain WP2uvrA. PCB 209 (dose from 25 to 150 microg/mL) was also negative for forward mutations at the thymidine kinase (TK+/-) locus of L5178Y mouse lymphoma cells. The Ames and the mouse lymphoma assays were both conducted in the absence and presence of rat liver S9 fraction. PCB 209 (dose from 500 to 2000 mg/kg by single dose oral gavage) did not induce an increase in the frequency of micronuclei in polychromatic erythrocytes in mouse bone marrow in vivo. PCB 209 did not induce estrogenic effects when administered by gavage to ovariectomized adult female rats at 500 and 1000 mg/kg for 4 days, nor did it produce alterations consistent with endocrine-modulating activity in adult intact male rats when administered by gavage at 500 and 1000 mg/kg for 15 consecutive days.
Collapse
Affiliation(s)
- Xing Han
- DuPont Haskell Global Centers for Health & Environmental Sciences, Newark, DE 19714, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Wolf KK, Wood SG, Allard JL, Hunt JA, Gorman N, Walton-Strong BW, Szakacs JG, Duan SX, Hao Q, Court MH, von Moltke LL, Greenblatt DJ, Kostrubsky V, Jeffery EH, Wrighton SA, Gonzalez FJ, Sinclair PR, Sinclair JF. Role of CYP3A and CYP2E1 in alcohol-mediated increases in acetaminophen hepatotoxicity: comparison of wild-type and Cyp2e1(-/-) mice. Drug Metab Dispos 2007; 35:1223-31. [PMID: 17392391 DOI: 10.1124/dmd.107.014738] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP2E1 is widely accepted as the sole form of cytochrome P450 responsible for alcohol-mediated increases in acetaminophen (APAP) hepatotoxicity. However, we previously found that alcohol [ethanol and isopentanol (EIP)] causes increases in APAP hepatotoxicity in Cyp2e1(-/-) mice, indicating that CYP2E1 is not essential. Here, using wild-type and Cyp2e1(-/-) mice, we investigated the relative roles of CYP2E1 and CYP3A in EIP-mediated increases in APAP hepatotoxicity. We found that EIP-mediated increases in APAP hepatotoxicity occurred at lower APAP doses in wild-type mice (300 mg/kg) than in Cyp2e1(-/-) mice (600 mg/kg). Although this result suggests that CYP2E1 has a role in the different susceptibilities of these mouse lines, our findings that EIP-mediated increases in CYP3A activities were greater in wild-type mice compared with Cyp2e1(-/-) mice raises the possibility that differential increases in CYP3A may also contribute to the greater APAP sensitivity in EIP-pretreated wild-type mice. At the time of APAP administration, which followed an 11 h withdrawal from the alcohols, alcohol-induced levels of CYP3A were sustained in both mouse lines, whereas CYP2E1 was decreased to constitutive levels in wild-type mice. The CYP3A inhibitor triacetyloleandomycin (TAO) decreased APAP hepatotoxicity in EIP-pretreated wild-type and Cyp2e1(-/-) mice. TAO treatment in vivo resulted in inhibition of microsomal CYP3A-catalyzed activity, measured in vitro, with no inhibition of CYP1A2 and CYP2E1 activities. In conclusion, these findings suggest that both CYP3A and CYP2E1 contribute to APAP hepatotoxicity in alcohol-treated mice.
Collapse
Affiliation(s)
- Kristina K Wolf
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Phillips JD, Bergonia HA, Reilly CA, Franklin MR, Kushner JP. A porphomethene inhibitor of uroporphyrinogen decarboxylase causes porphyria cutanea tarda. Proc Natl Acad Sci U S A 2007; 104:5079-84. [PMID: 17360334 PMCID: PMC1820519 DOI: 10.1073/pnas.0700547104] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Porphyria cutanea tarda (PCT), the most common form of porphyria in humans, is due to reduced activity of uroporphyrinogen decarboxylase (URO-D) in the liver. Previous studies have demonstrated that protein levels of URO-D do not change when catalytic activity is reduced, suggesting that an inhibitor of URO-D is generated in hepatocytes. Here, we describe the identification and characterization of an inhibitor of URO-D in liver cytosolic extracts from two murine models of PCT: wild-type mice treated with iron, delta-aminolevulinic acid, and polychlorinated biphenyls; and mice with one null allele of Uro-d and two null alleles of the hemochromatosis gene (Uro-d(+/-), Hfe(-/-)) that develop PCT with no treatments. In both models, we identified an inhibitor of recombinant human URO-D (rhURO-D). The inhibitor was characterized by solid-phase extraction, chromatography, UV-visible spectroscopy, and mass spectroscopy and proved to be uroporphomethene, a compound in which one bridge carbon in the uroporphyrinogen macrocycle is oxidized. We synthesized uroporphomethene by photooxidation of enzymatically generated uroporphyrinogen I or III. Both uroporphomethenes inhibited rhURO-D, but the III isomer porphomethene was a more potent inhibitor. Finally, we detected an inhibitor of rhURO-D in cytosolic extracts of liver biopsy samples of patients with PCT. These studies define the mechanism underlying clinical expression of the PCT phenotype, namely oxidation of uroporphyrinogen to uroporphomethene, a competitive inhibitor of URO-D. The oxidation reaction is iron-dependent.
Collapse
Affiliation(s)
- John D Phillips
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | | | | | | | |
Collapse
|
6
|
Genter MB, Clay CD, Dalton TP, Dong H, Nebert DW, Shertzer HG. Comparison of mouse hepatic mitochondrial versus microsomal cytochromes P450 following TCDD treatment. Biochem Biophys Res Commun 2006; 342:1375-81. [PMID: 16516144 DOI: 10.1016/j.bbrc.2006.02.121] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 02/21/2006] [Indexed: 11/19/2022]
Abstract
TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces cytochromes P450 (CYPs) such as CYP1A1 and CYP1A2 via activation of the aromatic hydrocarbon receptor (AHR). Herein we describe the TCDD-dependent enrichment of CYPs in liver microsomes and mitoplasts from C57BL/6J mice. TCDD-induced accumulation of CYP1A1 and CYP1A2 was observed in microsomes and mitoplasts after treatment with 15 microg TCDD/kg/d for 3d. While microsomal CYP1 proteins peaked at 1 week and diminished thereafter, mitoplast CYP1 proteins persisted 8 weeks at high levels. TCDD also induced microsomal CYP2A5, but not microsomal proteins immunoreactive to CYP2C11, CYP3A2 or CYP4A1 antibodies. Nevertheless, each of these proteins increased in mitoplasts following TCDD exposure. These results suggest that TCDD increases mitochondrial CYP immunoreactive proteins under the transcriptional control of the AHR, as well as CYPs that are not under AHR control. We speculate that such mitochondrial CYPs may be involved in the generation, or mitigation, of the well-known TCDD-inducible oxidative stress response.
Collapse
Affiliation(s)
- Mary Beth Genter
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | |
Collapse
|
7
|
Greaves P, Clothier B, Davies R, Higginson FM, Edwards RE, Dalton TP, Nebert DW, Smith AG. Uroporphyria and hepatic carcinogenesis induced by polychlorinated biphenyls–iron interaction: Absence in the Cyp1a2(−/−) knockout mouse. Biochem Biophys Res Commun 2005; 331:147-52. [PMID: 15845371 DOI: 10.1016/j.bbrc.2005.03.136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Indexed: 12/12/2022]
Abstract
Aryl hydrocarbon receptor ligands, such as polychlorinated biphenyls (PCBs), cause inhibition of the heme biosynthesis enzyme, uroporphyrinogen decarboxylase; this leads to uroporphyria and hepatic tumors, which are markedly enhanced by iron overload in C57BL/10 and C57BL/6 strains of mice. Cyp1a2(-/-) knockout mice were used to compare the effects of CYP1A2 expression on uroporphyria and liver carcinogenesis. PCBs in the diet (100ppm) of Cyp1a2(+/+) wild-type mice caused hepatic uroporphyria, which was strongly increased by iron-dextran (800mg Fe/kg). In contrast, uroporphyria was not detected in Cyp1a2(-/-) knockout mice, although expression of CYP1A1 and CYP2B10 was greatly induced. After 57 weeks on this diet, hepatic preneoplastic foci and tumors were seen in the Cyp1a2(+/+) mice; numbers and severity were enhanced by iron. No foci or tumors were detected in Cyp1a2(-/-) mice, although evidence for other forms of liver injury was observed. Our findings suggest a link not only between CYP1A2, iron metabolism, and the induction of uroporphyria by PCBs, but also with subsequent hepatocarcinogenesis.
Collapse
Affiliation(s)
- Peter Greaves
- MRC Toxicology Unit, University of Leicester, Leicester, UK
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Nichols RC, Cooper S, Trask HW, Gorman N, Dalton TP, Nebert DW, Sinclair JF, Sinclair PR. Uroporphyrin accumulation in hepatoma cells expressing human or mouse CYP1A2: relation to the role of CYP1A2 in human porphyria cutanea tarda. Biochem Pharmacol 2003; 65:545-50. [PMID: 12566081 DOI: 10.1016/s0006-2952(02)01550-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In experimental animals, CYP1A2 is absolutely required for the development of uroporphyria induced by treatment with polyhalogenated aromatic compounds or other compounds. Although the role of this CYP in clinical uroporphyria, porphyria cutanea tarda (PCT), is not clear, Cyp1a2(-/-) mice are resistant to the development of uroporphyria. Here, we compared the abilities of human and mouse CYP1A2 expressed in mouse hepatoma Hepa-1 cells to: (i) catalyze CYP1A2-dependent methoxyresorufin demethylase (MROD), and (ii) support uroporphyrin (URO) accumulation. Both CYP1A2 orthologs were expressed at similar levels as indicated by immunodetectable CYP1A2 proteins and MROD activities. URO accumulation was increased in cultures expressing either ortholog when supplemented with 5-aminolevulinic acid, the porphyrin precursor. Cells expressing mouse CYP1A2 produced more URO than cells expressing human CYP1A2. The results indicate that human CYP1A2 can support URO accumulation in hepatoma cells and thus may play a role in human PCT.
Collapse
Affiliation(s)
- Ralph C Nichols
- VA Medical Center, 215 N. Main Street, White River Junction, VT 05009, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gorman N, Ross KL, Walton HS, Bement WJ, Szakacs JG, Gerhard GS, Dalton TP, Nebert DW, Eisenstein RS, Sinclair JF, Sinclair PR. Uroporphyria in mice: thresholds for hepatic CYP1A2 and iron. Hepatology 2002; 35:912-21. [PMID: 11915039 DOI: 10.1053/jhep.2002.32487] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In mice treated with 5-aminolevulinic acid (ALA) and polyhalogenated aromatic compounds, the levels of both hepatic cytochrome P450 (CYP)1A2 and iron-which can be quite different among inbred strains-are critical in causing experimental uroporphyria. Here we investigate the development of uroporphyria as a function of CYP1A2 and iron levels in the liver of mice having a common C57BL/6 genetic background. We compared Cyp1a2(-/-) knockout mice, Cyp1a2(+/-) heterozygotes, Cyp1a2(+/+) wild type, and Cyp1a2(+/+) mice pretreated with a low dose of 3,3',4,4',5-pentachlorobiphenyl (PCB126) (4 microg/kg). Cyp1a2(+/-) mice contain about 60% of the hepatic CYP1A2 content of Cyp1a2(+/+) mice, and the PCB126-pretreated Cyp1a2(+/+) mice have about twice the wild-type levels of CYP1A2. ALA- and iron-treated Cyp1a2(+/+) mice are known to accumulate hepatic uroporphyrin; this accumulation was increased 7-fold by pretreatment with the low dose of PCB126. ALA- and iron-treated Cyp1a2(+/-) heterozygote mice accumulated no uroporphyrin in 4 weeks, but by 8 weeks accumulated significant amounts of uroporphyrin. As previously reported, the ALA- and iron-treated Cyp1a2(-/-) knockout mouse has no CYP1A2 and exhibits no detectable uroporphyrin accumulation. Iron dose-response curves in ALA- and PCB126-treated Cyp1a2(+/+) mice showed that hepatic iron levels greater than 850 microg/g liver were required to produce significant uroporphyrin accumulation in the liver. Other measures of hepatic effects of iron (iron-response element-binding protein [IRP]-iron response element [IRE] binding activity and accumulation of protoporphyrin from ALA) decreased when the level of iron was considerably lower than 850 microg/g liver. At low iron doses, accumulation of iron was principally in Kupffer cells, whereas at the higher doses (required to stimulate uroporphyrin accumulation), more iron was found in parenchymal cells. We conclude that small changes in hepatic CYP1A2 levels can dramatically affect uroporphyria in C57BL/6 mice, providing the animals have been sufficiently loaded with iron; these data might be clinically relevant to acquired (sporadic) porphyria cutanea tarda, because humans show greater than 60-fold genetic differences in hepatic basal CYP1A2.
Collapse
Affiliation(s)
- Nadia Gorman
- VA Medical Center, White River Junction, VT 05009, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Robinson SW, Clothier B, Akhtar RA, Yang AL, Latour I, Van Ijperen C, Festing MFW, Smith AG. Non-ahr gene susceptibility Loci for porphyria and liver injury induced by the interaction of 'dioxin' with iron overload in mice. Mol Pharmacol 2002; 61:674-81. [PMID: 11854449 DOI: 10.1124/mol.61.3.674] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Among the actions of 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) in mice is the induction of hepatic porphyria. This is similar to the most common disease of this type in humans, sporadic porphyria cutanea tarda (PCT). Evidence is consistent with the actions of dioxin being mediated through binding to the aryl hydrocarbon receptor (AHR) with different Ahr alleles in mouse strains apparently accounting for differential downstream gene expression and susceptibility. However, studies of dioxin-induced porphyria and liver injury indicate that the mechanisms must involve interactions with other genes, perhaps associated with iron metabolism. We performed a quantitative trait locus (QTL) analysis of an F(2) cross between susceptible C57BL/6J (Ahr(b1) allele) and the highly resistant DBA/2 (Ahr(d) allele) strains after treatment with dioxin and iron. For porphyria we found QTLs on chromosomes 11 and 14 in addition to the Ahr gene (chromosome 12). Studies with C57BL/6.D2 Ahr(d) mice confirmed that the Ahr(d) allele alone did not completely negate the response. SWR mice are syngenic for the Ahr(d) allele with the DBA/2 strain but are susceptible to porphyria after elevation of hepatic iron. Analysis of SWRxD2 F(2) mice treated with iron and dioxin showed a QTL on chromosome 11, as well as finding other loci on chromosomes 1 (and possibly 9), for both porphyria and liver injury. These findings show for the first time the location of genes, other than Ahr, that modulate the mechanism of hepatic porphyria and injury caused by dioxin in mice. Orthologous loci may contribute to the pathogenesis of human sporadic PCT.
Collapse
Affiliation(s)
- Susan W Robinson
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Smith AG, Clothier B, Carthew P, Childs NL, Sinclair PR, Nebert DW, Dalton TP. Protection of the Cyp1a2(-/-) null mouse against uroporphyria and hepatic injury following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 2001; 173:89-98. [PMID: 11384210 DOI: 10.1006/taap.2001.9167] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the liver of C57BL/6J mice is a model for clinical sporadic porphyria cutanea tarda (PCT). There is massive uroporphyria, inhibition of uroporphyrinogen decarboxylase (UROD) activity, and hepatocellular damage. A variety of evidence implicates the CYP1A2 enzyme as necessary for mouse uroporphyria. Here we report that, 5 weeks after a single oral dose of TCDD (75 microg/kg), Cyp1a2(+/+) wild-type mice showed severe uroporphyria and greater than 90% decreases in UROD activity; in contrast, despite exposure to this potent agent Cyp1a2(-/-) knockout mice displayed absolutely no increases in hepatic porphyrin levels, even after prior iron overload, and no detectable inhibition of UROD activity. Plasma levels of alanine-aminotransferase (ALT) and aspartate aminotransferase (AST)-although elevated in both genotypes after TCDD exposure-were significantly less in Cyp1a2(-/-) than in Cyp1a2(+/+) mice, suggesting that the absence of CYP1A2 also affords partial protection against TCDD-induced liver toxicity. Histological examination confirmed a decrease in hepatocellular damage in TCDD-treated Cyp1a2(-/-) mice; in particular, there was no bile duct damage or proliferation that in the Cyp1a2(+/+) mice might be caused by uroporphyrin. We conclude that CYP1A2 is both necessary and essential for the potent uroporphyrinogenic effects of TCDD in mice, and that CYP1A2 also plays a role in contributing to TCDD-induced hepatocellular injury. This study has implications for both the toxicity assessment of TCDD and the hepatic injury seen in PCT patients.
Collapse
Affiliation(s)
- A G Smith
- MRC Toxicology Unit, Leicester University, Leicester, LEI 9HN, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
12
|
Sinclair PR, Gorman N, Walton HS, Bement WJ, Szakacs J, Gonzalez FJ, Dalton TP, Nebert DW, Sinclair JF. Relative Roles of CYP2E1 and CYP1A2 in Mouse Uroporphyria Caused by Acetone. Arch Biochem Biophys 2000; 384:383-90. [PMID: 11368328 DOI: 10.1006/abbi.2000.2124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Porphyria cutanea tarda is a liver disease characterized by excess production of uroporphyrin. We previously reported that acetone, an inducer of CYP2E1, enhances hepatic uroporphyrin accumulation in mice treated with iron dextran (Fe) and 5-aminolevulinic acid (ALA). Cyp2e1(-/-) mice treated with Fe and ALA were used to investigate whether CYP2E1 is required for the acetone effect. Hepatic uroporphyrin accumulation was stimulated by acetone in Cyp2e1(-/-) mice to the same extent as in wild-type mice. In the absence of acetone, uroporphyrin accumulated in Cyp2e1(-/-) mice treated with Fe and ALA, but less than in wildtype mice. However, in Cypla2(-/-) mice, uroporphyrin accumulation caused by Fe and ALA, with or without acetone, was completely prevented. Acetone was not an inducer of hepatic CYP1A2 in the wild-type mice. Although acetone is an inducer of CYP2E1, CYP1A2 appears to have the essential role in acetone-enhancement of uroporphyria.
Collapse
Affiliation(s)
- P R Sinclair
- VA Medical Center, White River Junction, Vermont 05009, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schlezinger JJ, Keller J, Verbrugge LA, Stegeman JJ. 3,3',4,4'-Tetrachlorobiphenyl oxidation in fish, bird and reptile species: relationship to cytochrome P450 1A inactivation and reactive oxygen production. Comp Biochem Physiol C Toxicol Pharmacol 2000; 125:273-86. [PMID: 11790349 DOI: 10.1016/s0742-8413(99)00112-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previously we showed that the polychlorinated biphenyl 3,3',4,4'-tetrachlorobiphenyl (TCB) caused a release of reactive oxygen species (ROS) from cytochrome P450 1A (CYP1A) of the fish scup (Stenotomus chrysops), and from rat and human CYP1A1. This was linked to a TCB- and NADPH-dependent oxidative inactivation of the enzyme, which in scup and rat was inversely related to the rates of TCB oxidation. We examined the relationship between rates of TCB oxidation, CYP1A inactivation and ROS production in liver microsomes from additional vertebrate species, including skate (Raja erinacea), eel (Anguilla rostrata), killifish (Fundulus heteroclitus), winter flounder (Pleuronectes americanus), chicken (Gallus domesticus), cormorant (Phalacrocorax auritus), gull (Larus argentatus), and turtle (Chrysemys picta picta). TCB oxidation rates were induced in all fish and birds treated with aryl hydrocarbon receptor agonists. Induced rates of TCB oxidation were <1 pmol/min/mg microsomal protein in all fish, and 6-14 pmol/min/mg in the birds. In all species but one, TCB oxidation rates correlated positively with EROD rates, indicating likely involvement of CYP1A in TCB oxidation. Incubation of liver microsomes of most species with TCB+NADPH resulted in an immediate (TCB-dependent) inhibition of EROD, and a progressive loss of EROD capacity, indicating an oxidative inactivation of CYP1A like that in scup. NADPH stimulated production of ROS (H(2)O(2) and/or O(2)(-*)) by liver microsomes, slightly in some species (eel) and greatly in others (chicken, turtle). Among the birds and the fish, NADPH-stimulated ROS production correlated positively with EROD activity. TCB caused a significant stimulation of ROS production by liver microsomes of flounder, killifish, cormorant and gull, as well as scup. The stimulation of CYP1A inactivation and ROS generation indicates an uncoupling of CYP1A by TCB in many species, and when compared between species, the rates of CYP1A inactivation correlated inversely with rates of TCB oxidation. Some feature(s) of binding/active site topology may hinder TCB oxidation, enhancing the likelihood for attack of an oxidizing species in the active site.
Collapse
Affiliation(s)
- J J Schlezinger
- Biology Department, Redfield 342, MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | | | | |
Collapse
|
14
|
Sinclair PR, Gorman N, Walton HS, Bement WJ, Dalton TP, Sinclair JF, Smith AG, Nebert DW. CYP1A2 is essential in murine uroporphyria caused by hexachlorobenzene and iron. Toxicol Appl Pharmacol 2000; 162:60-7. [PMID: 10631128 DOI: 10.1006/taap.1999.8832] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using Cyp1a2(-/-) mice we previously showed that CYP1A2 is absolutely required for hepatic uroporphyrin accumulation caused by iron and 5-aminolevulinate (ALA) treatment, both in the presence and absence of an inducer of CYP1A2. In this study we have used these mice to investigate whether CYP1A2 has an obligatory role in hepatic uroporphyria caused by hexachlorobenzene (HCBZ), an inducer of CYP2B and CYP3A, as well as CYP1A2. Here we treated mice with HCBZ and iron, with and without the porphyrin precursor, ALA, in the drinking water. In iron-loaded wild-type mice given a single dose of HCBZ and ALA, hepatic uroporphyrin (URO) accumulated to 300 nmol/g liver after 37 days, whereas in Cyp1a2(-/-) mice, there was no hepatic URO, even after an additional dose of HCBZ, and a further 29 days of ALA treatment. A similar requirement for CYP1A2 was found in uroporphyria produced in HCBZ and iron-treated mice in the absence of ALA. As detected by Western immunoblotting, HCBZ induced small increases in CYP2B and CYP3A in the livers of all animals. In the wild-type animals, HCBZ also induced CYP1A2 and associated enzyme activities, including uroporphyrinogen oxidation, by about 2-3-fold. In the Cyp1a2(-/-) mice, HCBZ did not increase hepatic microsomal uroporphyrinogen oxidation. These results indicate that, in mice, CYP1A2 is essential in the process leading to HCBZ-induced uroporphyria. Contributions by other CYP forms induced by HCBZ appear to be minimal.
Collapse
Affiliation(s)
- P R Sinclair
- VA Medical Center, White River Junction, Vermont, 05009, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gorman N, Walton HS, Bement WJ, Honsinger CP, Szakacs JG, Sinclair JF, Sinclair PR. Role of small differences in CYP1A2 in the development of uroporphyria produced by iron and 5-aminolevulinate in C57BL/6 and SWR strains of mice. Biochem Pharmacol 1999; 58:375-82. [PMID: 10423181 DOI: 10.1016/s0006-2952(99)00088-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous work has implicated CYP1A2 in experimental uroporphyria caused by polyhalogenated aromatic compounds, and in uroporphyria caused by iron and 5-aminolevulinate (ALA) in the absence of inducers of CYP1A2. Here we examined whether the different susceptibilities of SWR and C57BL/6 strains of mice to uroporphyria in the absence of inducers of CYP1A2 are related to different levels of CYP1A2. Enzymological assays (ethoxy- and methoxyresorufin dealkylases, and uroporphyrinogen oxidation) and immunoblots indicated that there was about twice the amount of hepatic CYP1A2 in SWR mice compared with C57BL/6 mice. Immunohistochemistry revealed that CYP1A2 was located centrilobularly in the liver, and the staining was more intense in SWR mice than in C57BL/6 mice. Hepatic non-heme iron was about double in SWR compared with C57BL/6 mice. In SWR mice given iron dextran, hepatic iron was 1.7-fold that of C57BL/6 mice given iron dextran. SWR mice administered ALA in the drinking water accumulated much less hepatic protoporphyrin than did C57BL/6 mice. To confirm the importance of small increases in CYP1A2, C57BL/6 mice were given a low dose of 3-methylcholanthrene (MC) (15 mg/kg), as well as iron and ALA. There was about a 5- to 6-fold increase in hepatic uroporphyrin accumulation after 32 days on ALA compared with animals not given MC. In these animals, CYP1A2 was increased by 10-fold at 2 days, but returned to basal levels by 14 days. We conclude that small and transient differences in CYP1A2 may be important in the development of uroporphyria.
Collapse
Affiliation(s)
- N Gorman
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Gorman N, Walton HS, Sinclair JF, Sinclair PR. CYP1A-catalyzed uroporphyrinogen oxidation in hepatic microsomes from non-mammalian vertebrates (chick and duck embryos, scup and alligator). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 121:405-12. [PMID: 9972481 DOI: 10.1016/s0742-8413(98)10059-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Uroporphyrin (URO) accumulation in the liver of animals treated with polyhalogenated aromatic hydrocarbons (PHAH) is associated with increased microsomal oxidation of uroporphyrinogen catalyzed by rodent CYP1A2 and by a similar form in chicken, CYP1A5. The planar biphenyl, 3,3',4,4'-tetrachlorobiphenyl (TCB) stimulates uroporphyrinogen oxidation (UROX) in chick hepatic microsomes, but inhibits UROX activity in hepatic microsomes from mice and rats pre-induced by CYP1A2. Here we investigated whether TCB would stimulate or inhibit UROX in other non-mammalian species. UROX was stimulated 1.5-3-fold by TCB and 2-4-fold by 3,3',4,4',5,5'-hexachlorobiphenyl in hepatic microsomes from duck, alligator and scup treated with inducers of CYP1A. Hexachlorobenzene stimulated chick UROX, but was ineffective with microsomes from the other species. The stimulation of UROX by TCB was also observed in chick hepatocyte cultures. Pretreatment with up to 5 nM TCB induced CYP1A, but did not result in accumulation of URO. However, URO did accumulate if additional (post-induction) TCB was added along with 5-aminolevulinic acid. In this post-inductional TCB treatment, cycloheximide was included to prevent further induction of CYP1A. In duck hepatocytes, pretreatment with 25 nM TCB resulted in URO accumulation from 5-aminolevulinic acid. Post-induction TCB was not required and caused no further increase in URO accumulation. The differences in PHAH stimulation of UROX among the non-mammalian species have implications in the evolutionary changes in CYP1A, as well as the mechanism of development of PHAH-stimulated uroporphyria in different species.
Collapse
Affiliation(s)
- N Gorman
- VA Medical Center (151), White River Junction, VT 05009, USA
| | | | | | | |
Collapse
|
17
|
Sinclair PR, Gorman N, Dalton T, Walton HS, Bement WJ, Sinclair JF, Smith AG, Nebert DW. Uroporphyria produced in mice by iron and 5-aminolaevulinic acid does not occur in Cyp1a2(-/-) null mutant mice. Biochem J 1998; 330 ( Pt 1):149-53. [PMID: 9461503 PMCID: PMC1219120 DOI: 10.1042/bj3300149] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study we have investigated the putative requirement for the cytochrome P-450 isoform CYP1A2 in murine uroporphyria, by comparing Cyp1a2(-/-) knockout mice with Cyp1a2(+/+) wild-type mice. Uroporphyria was produced by injecting animals with iron-dextran and giving the porphyrin precursor 5-aminolaevulinic acid in the drinking water. Some animals also received 3-methylcholanthrene (MC) to induce hepatic CYP1A2. In both protocols, uroporphyria was elicited by these treatments in the Cyp1a2(+/+) wild-type mice, but not in the null mutant mice. Uroporphyrinogen oxidation activity in hepatic microsomes from untreated Cyp1a2(+/+) mice was 2.5-fold higher than in Cyp1a2(-/-) mice. Treatment with MC increased hepatic CYP1A1 in both mouse lines and hepatic CYP1A2 only in the Cyp1a2(+/+) line, as determined by Western immunoblotting. MC increased hepatic ethoxy- and methoxy-resorufin O-dealkylase activities in both mouse lines, but increased uroporphyrinogen oxidation activity in the Cyp1a2(+/+) wild-type mice only. These results indicate the absolute requirement for hepatic CYP1A2 in causing experimental uroporphyria under the conditions used.
Collapse
Affiliation(s)
- P R Sinclair
- VA Medical Center, White River Junction, VT 05009, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sinclair PR, Walton HS, Gorman N, Jacobs JM, Sinclair JF. Multiple roles of polyhalogenated biphenyls in causing increases in cytochrome P450 and uroporphyrin accumulation in cultured hepatocytes. Toxicol Appl Pharmacol 1997; 147:171-9. [PMID: 9439713 DOI: 10.1006/taap.1997.8273] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Uroporphyrin (URO) accumulation occurs in chick embryo hepatocytes treated with a number of polyhalogenated aromatic hydrocarbons (PHAHs) that are known inducers of cytochrome P4501As (CYP1A). Previous dose response studies had shown that URO accumulation does not begin until CYP1A, as indicated by ethoxyresorufin O-deethylase (EROD) activity, is maximally induced. The reason why the concentrations of PHAHs required for URO accumulation were higher than those required to induce EROD had not been explained. PHAHs, such as 3,3',4,4'-tetrachlorobiphenyl (PCB77, IUPAC nomenclature, TCB) stimulate uroporphyrinogen (UROGEN) oxidation by microsomes from 3-methylcholanthrene (MC)-treated chick embryos. Here we used a new protocol to investigate whether the requirement for more TCB to stimulate in vitro microsomal UROGEN oxidation extended to TCB-induced URO accumulation in intact cultured hepatocytes. Cultures were treated with increasing concentrations of TCB or other PHAHs to induce CYP1As, then with cycloheximide (CX) to prevent further P450 synthesis. The CX treatment was shown to block any further increases in CYP1A as determined by immunoblots. 5-Aminolevulinic acid and a high concentration of TCB ("postinduction TCB") were then added to stimulate intracellular UROGEN oxidation. Using the protocol with postinduction TCB, the inducing concentrations of TCB which caused URO to begin to accumulate were now much lower than in the absence of postinduction TCB. Increases in CYP1A proteins, measured immunochemically, were detected at about the same inducing TCB concentrations that began to increase URO accumulation. The new protocol, with postinduction TCB, using URO accumulation as the end point, greatly increased the sensitivity of the culture system for detection of PHAHs with EC50s (nM) for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), TCB, 3,3',4,4',5,5'-hexachlorobiphenyl, MC, and hexachlorobenzene being about 0.003, 0.11, 0.75, 3.5, and 30, respectively. As little as 2-4 fmol TCDD per culture dish caused detectible increases in URO accumulation. We conclude that URO accumulation in chick hepatocyte cultures is limited not only by the induction of CYP1A, but also by the stimulation of intracellular UROGEN oxidation.
Collapse
Affiliation(s)
- P R Sinclair
- VA Medical Center, White River Junction, Vermont 05009, USA.
| | | | | | | | | |
Collapse
|
19
|
Lorenzen A, Kennedy SW, Bastien LJ, Hahn ME. Halogenated aromatic hydrocarbon-mediated porphyrin accumulation and induction of cytochrome P4501A in chicken embryo hepatocytes. Biochem Pharmacol 1997; 53:373-84. [PMID: 9065741 DOI: 10.1016/s0006-2952(96)00739-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Concentration-dependent induction of cytochrome P4501A (CYP1A) and intracellular porphyrin accumulation were observed following treatment of chicken embryo hepatocyte (CEH) cultures with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), 3,3',4,4'-tetrachlorobiphenyl (PCB 77, IUPAC nomenclature), 2,3',4,4',5-pentachlorobiphenyl (PCB 118), 3,3',4,4',5-pentachlorobiphenyl (PCB 126), 3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169), and a commercial mixture of PCBs (Aroclor 1254). For these halogenated aromatic hydrocarbons (HAHs), or mixture, maximal CYP1A activity [measured as ethoxyresorufin-O-deethylase (EROD) activity] and immunodetectable protein were observed at concentrations just prior to, or coincident with, the concentrations at which porphyrin accumulation became evident. Both immunodetectable CYP1A protein and catalytic activity decreased at high concentrations of these compounds, but the rate and extent of decrease of immunodetectable CYP1A protein varied. Time-course studies with PCB 77 indicated a decrease in potency and an increase in maximal CYP1A induction between 24 and 48 hr of exposure which may indicate in vitro metabolism of this HAH. Intracellular accumulation of total porphyrins without CYP1A induction, was observed for 2,2',5,5'-tetrachlorobiphenyl (PCB 52), 2,2',6,6'-tetrachlorobiphenyl (PCB 54), 2,2',3,5',6-pentachlorobiphenyl (PCB 95), 2,2',4,5,5'-pentachlorobiphenyl (PCB 101), 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136), and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153). Overall, these results are consistent with a role for CYP1A induction and/or Ah receptor activation in porphyrin accumulation mediated by HAHs with a planar configuration, whereas those that are not planar may mediate porphyrin accumulation by a mechanism not involving induction of CYP1A.
Collapse
Affiliation(s)
- A Lorenzen
- Environment Canada, Canadian Wildlife Service, National Wildlife Research Centre, Hull, Quebec.
| | | | | | | |
Collapse
|
20
|
Constantin D, Francis JE, Akhtar RA, Clothier B, Smith AG. Uroporphyria induced by 5-aminolaevulinic acid alone in Ahrd SWR mice. Biochem Pharmacol 1996; 52:1407-13. [PMID: 8937451 DOI: 10.1016/s0006-2952(96)00475-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In mice, depression of hepatic uroporphyrinogen decarboxylase (UROD) leading to porphyrin accumulation (uroporphyria) occurs with chlorinated ligands of the aryl hydrocarbon (AH) receptor especially after iron overload. However, in the absence of chlorinated ligands, iron itself will eventually cause uroporphyria, but this response is not associated with the Ahr genotype. These effects are potentiated by administration of the haem precursor 5-aminolaevulinate (ALA). The aim of this study was to investigate the effects of ALA alone. Prolonged administration of 2 mg ALA/mL in the drinking water to SWR mice also led to decarboxylase insufficiency (11% of control) and uroporphyria by 8 weeks, whereas DBA/2 mice did not show reduced enzyme activity. Both strains are considered AH nonresponsive and analysis of the Ahr gene using restriction fragment length polymorphism was consistent with SWR, like DBA/2, possessing the Ahrd allele. Exposure of isolated hepatocytes to ALA (150-500 microM) for up to 48 hr showed a significant accumulation of both uroporphyrin and coproporphyrin in the medium, which for uroporphyrin particularly was significantly greater with SWR than with DBA/2 cells. Basal in vivo CYP1A2 activity, measured as microsomal methoxyresorufin dealkylation, was significantly greater in SWR than in DBA/2 mice (1.3-fold), but it was unclear whether this was sufficient to explain the marked difference in sensitivities of the two strains. Despite SWR mice being AH nonresponsive, uroporphyria and decarboxylase depression after an initial iron overload and ALA for 3 weeks were greatly potentiated by a single dose (100 mg/kg) of hexachlorobenzene (a weak AH ligand). The results demonstrate that there is a genetic difference in mice independent of the Ahr genotype and response to iron, which influences the susceptibility to ALA-induced uroporphyria. Thus chemicals, iron and ALA can act independently, but also together, to cause porphyria in susceptible individuals.
Collapse
Affiliation(s)
- D Constantin
- MRC Toxicology Unit, University of Leicester, U.K
| | | | | | | | | |
Collapse
|
21
|
Beebe LE, Fornwald LW, Alworth WL, Dragnev KH, Lubet RA. Effect of dietary Aroclor 1254 exposure on lung and kidney cytochromes P450 in female rats: evidence for P4501A2 expression in kidney. Chem Biol Interact 1995; 97:215-27. [PMID: 7671339 DOI: 10.1016/0009-2797(95)03617-u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this report, we have investigated the effect of dietary exposure to Aroclor 1254 (1-100 ppm) given chronically or discontinuously over an 84-day time interval to the female F344 rat. Cytochrome P4501A was quantified in lung and kidney by measuring the dealkylation of ethoxyresorufin substrate and by Western immunoblotting. P4501A displayed a dose- and time-dependent increase in both extrahepatic organs. The kidney appeared to be more responsive to induction than lung at all doses (maximum of 500-fold induction following 84 days exposure to 100 ppm). Further, there was evidence by enzymatic activity, immunoblotting and Northern analysis of total RNA for the presence of 1A2 in the most highly induced kidneys. The decline in 1A induction observed following discontinuous exposure was more prominent in the kidney than in the lung. These data demonstrate the sensitivity of kidney to P4501A induction capacity as compared to lung, although the persistence of the induction response was evident in lung and not kidney.
Collapse
Affiliation(s)
- L E Beebe
- Laboratory of Comparative Carcinogenesis, National Cancer Institute-Frederick Cancer Research and Development Center, MD 21702, USA
| | | | | | | | | |
Collapse
|
22
|
Tysklind M, Bosveld AB, Andersson P, Verhallen E, Sinnige T, Seinen W, Rappe C, van den Berg M. Inhibition of ethoxyresorufin-O-deethylase (EROD) activity in mixtures of 2,3,7,8-tetrachlorodibenzo-p-dioxin and polychlorinated biphenyls : EROD acitivity as biomarker in TCDD and PCB risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 1995; 2:211-216. [PMID: 24234689 DOI: 10.1007/bf02986768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/1995] [Accepted: 09/14/1995] [Indexed: 06/02/2023]
Abstract
Induction of ethoxyresorufin-O-deethylase (EROD) activity and porphyrin accumulation shows different structure-activity relationships for different polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Interactions between the two responses can strongly influence the induction and activity of EROD. The results support the conclusion that there are nonadditive interactions between nondioxin-like PCBs and dioxin-like compounds. The interaction between EROD activity and the porphyrin biosynthesis makes the prerequisite of additivity in the toxic equivalency factor concept for environmental mixtures highly spurious. Inhibition of EROD activity caused by non-dioxin like compounds could have a significant impact on the value of EROD activity as a biomarker in the present methods of risk assessment for these compounds.
Collapse
Affiliation(s)
- M Tysklind
- Institute of Environmental Chemistry, Umeå University, S-901 87, Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zoładek T, Chełstowska A, Labbe-Bois R, Rytka J. Isolation and characterization of extragenic mutations affecting the expression of the uroporphyrinogen decarboxylase gene (HEM12) in Sacharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:471-81. [PMID: 7770055 DOI: 10.1007/bf00293149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Uroporphyrinogen decarboxylase (Uro-d; EC 4.1.1.37), the fifth enzyme in the heme biosynthetic pathway, which catalyzes the sequential decarboxylation of uroporphyrinogen to coproporphyrinogen, is encoded by the HEM12 gene in Saccharomyces cerevisiae. The HEM12 gene is transcribed into a major short mRNA and a minor longer one, approximately 1.35 and 1.55 kb, respectively, in size, and that differ in the 5' untranslated region. "Uroporphyric" mutants, which have no mutations in the HEM12 gene but accumulate uroporphyrinogen, a phenotype characteristic of partial Uro-d deficiency, were investigated. Genetic analysis showed that the mutant phenotype depends on the combined action of two unlinked mutations, udt1 and either ipa1, ipa2, or ipa3. ipa1 is tightly linked to HEM12. The mutation udt1 apparently acts specifically on the HEM12 gene, and causes a six to tenfold decrease in the levels of the short HEM12 mRNA, in the beta-galactosidase activity of a HEM12-lacZ fusion, in immunodetectable protein and enzyme activity. But heme synthesis is normal and porphyrin accumulation was modest. The mutations ipa1, ipa2, and ipa3 had no phenotype on their own, but they caused an increase in porphyrin accumulation in a udt1 background. This multiplicity of genetic factors leading to uroporphyric yeast cells closely resembles the situation in human porphyria cutanea tarda.
Collapse
Affiliation(s)
- T Zoładek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa
| | | | | | | |
Collapse
|
24
|
Abstract
Uroporphyrinogen decarboxylase (EC 4.1.1.37) catalyzes the decarboxylation of uroporphyrinogen III to coproporphyrinogen III. The amino acid sequences, kinetic properties, and physicochemical characteristics of enzymes from different sources (mammals, yeast, bacteria) are similar, but little is known about the structure/function relationships of uroporphyrinogen decarboxylases. Halogenated and other aromatic hydrocarbons cause hepatic uroporphyria by decreasing hepatic uroporphyrinogen decarboxylase activity. Two related human porphyrias, porphyria cutanea tarda and hepatoerythropoietic porphyria, also result from deficiency of this enzyme. The roles of inherited and acquired factors, including iron, in the pathogenesis of human and experimental uroporphyrias are reviewed.
Collapse
Affiliation(s)
- G H Elder
- Department of Medical Biochemistry, University of Wales College of Medicine, Cardiff, England
| | | |
Collapse
|
25
|
Safe SH. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol 1994; 24:87-149. [PMID: 8037844 DOI: 10.3109/10408449409049308] [Citation(s) in RCA: 1008] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Commercial polychlorinated biphenyls (PCBs) and environmental extracts contain complex mixtures of congeners that can be unequivocally identified and quantitated. Some PCB mixtures elicit a spectrum of biochemical and toxic responses in humans and laboratory animals and many of these effects resemble those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons, which act through the aryl hydrocarbon (Ah)-receptor signal transduction pathway. Structure-activity relationships developed for PCB congeners and metabolites have demonstrated that several structural classes of compounds exhibit diverse biochemical and toxic responses. Structure-toxicity studies suggest that the coplanar PCBs, namely, 3,3',4,4'-tetrachlorobiphenyl (tetraCB), 3,3',4,4',5-pentaCB, 3,3',4,4',5,5'-hexaCB, and their monoortho analogs are Ah-receptor agonists and contribute significantly to the toxicity of the PCB mixtures. Previous studies with TCDD and structurally related compounds have utilized a toxic equivalency factor (TEF) approach for the hazard and risk assessment of polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) congeners in which the TCDD or toxic TEQ = sigma([PCDFi x TEFi]n)+sigma([PCDDi x TEFi]n) equivalent (TEQ) of a mixture is related to the TEFs and concentrations of the individual (i) congeners as indicated in the equation (note: n = the number of congeners). Based on the results of quantitative structure-activity studies, the following TEF values have been estimated by making use of the data available for the coplanar and monoortho coplanar PCBs: 3,3',4,4',5-pentaCB, 0.1; 3,3',4,4',5,5'-hexaCB, 0.05; 3,3',4,4'-tetraCB, 0.01; 2,3,3',4,4'-pentaCB, 0.001; 2,3',4,4',5-pentaCB, 0.0001; 2,3,3',4,4',5-hexaCB, 0.0003; 2,3,3',4,4',5'-hexaCB, 0.0003; 2',3,4,4',5-pentaCB, 0.00005; and 2,3,4,4',5-pentaCB, 0.0002. Application of the TEF approach for the risk assessment of PCBs must be used with considerable caution. Analysis of the results of laboratory animal and wildlife studies suggests that the predictive value of TEQs for PCBs may be both species- and response-dependent because both additive and nonadditive (antagonistic) interactions have been observed with PCB mixtures. In the latter case, the TEF approach would significantly overestimate the toxicity of a PCB mixture. Analysis of the rodent carcinogenicity data for Aroclor 1260 using the TEF approach suggests that this response is primarily Ah-receptor-independent. Thus, risk assessment of PCB mixtures that uses cancer as the endpoint cannot solely utilize a TEF approach and requires more quantitative information on the individual congeners contributing to the tumor-promoter activity of PCB mixtures.
Collapse
Affiliation(s)
- S H Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station 77843-4466
| |
Collapse
|
26
|
Abstract
Expression of Cyp1a1 and Cyp1a2 genes was investigated in adult C57BL/6NCrj mouse hepatocytes in primary culture for up to 5 days. When the cells were cultivated as monolayers on collagen-coated dishes, CYP1A1 mRNA species were prominently induced after treatment with 3-methylcholanthrene (MCA) throughout the observation period. Substantial induction of CYP1A2 mRNA by MCA was also observed at day 1 of cultivation, followed by a decrease to very low levels thereafter. In contrast, when cultivated on non-coated dishes, the hepatocytes formed multicellular aggregates (spheroids) and prominent induction of both mRNA species was found for up to 5 days. Constitutive expression of CYP1A2 mRNA in spheroid culture was maintained throughout the observation period, whereas that in monolayer culture decreased rapidly. The time-course of the induced CYP1A2 mRNA amounts after the treatment with MCA or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) followed the same pattern as that of CYP1A1 mRNA. Expressed amounts of CYP1A1 or CYP1A2 mRNA in spheroid culture were higher than or similar to the levels in the case of in vivo production, respectively. Induction of both mRNA species was also observed in hepatocytes from nonresponsive DBA/2NCrj mouse in spheroid culture, but the expressed amount after MCA treatment was far smaller than for C57BL/6NCrj cells, despite equivalent expression in the two strains after TCDD. Activities of aryl hydrocarbon hydroxylase (AHH) and acetanilide 4-hydroxylase (AAH) were elevated with either type of cultivation after treatment with MCA or TCDD. Ratios of AAH to AHH were not changed between the two cultures after 24 h treatment. However, the ratios in spheroid culture after 48 h treatment increased, whereas they did not change in monolayer culture. The present observations indicate that the spheroid culture is more suitable than the monolayer system for studying the mechanism of Cyp1a2 gene expression in adult mouse hepatocytes.
Collapse
Affiliation(s)
- N Nemoto
- Department of Experimental Pathology, Cancer Institute, Tokyo
| | | |
Collapse
|
27
|
Nemoto N, Sakurai J. Cell-density-dependent expression of Cyp1a2 gene in monolayer-cultured adult mouse hepatocytes. Jpn J Cancer Res 1993; 84:265-71. [PMID: 8486527 PMCID: PMC5919153 DOI: 10.1111/j.1349-7006.1993.tb02866.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Expression of Cyp1a1 and Cyp1a2 genes was investigated in adult C57BL/6NCrj mouse hepatocytes for up to 5 days after transfer to monolayer culture. CYP1A1 mRNA was substantially induced by treatment with 3-methylcholanthrene during the observation period, independently of the seeded cell density. However, expression of CYP1A2 mRNA was dependent on cell density and was higher in cells cultivated at lower density. With increasing culture period the expression was decreased, so that only negligible levels were evident by day 5, and reduced expression of constitutive and induced CYP-1A2 mRNA became apparent earlier in more densely seeded cells. This was not related to differences in numbers of inducer molecules per cell. While mouse hepatocytes incorporated tritium-labeled thymidine under the given culture conditions, induction of expression of the two Cyp1a genes did not show any direct relationship with DNA synthesizing activity. These observations suggest some role for Cyp1a2 during changes in physiological state.
Collapse
Affiliation(s)
- N Nemoto
- Department of Experimental Pathology, Cancer Institute, Tokyo
| | | |
Collapse
|
28
|
Xu LC, Sinclair PR, Bresnick E. Induction of cytochrome P450IA1 and its recombinant construct in H4IIE rat hepatoma cells. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:13-21. [PMID: 8381749 DOI: 10.1016/0020-711x(93)90484-v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. Our previous studies have shown that benzo(a)pyrene (BP), 3-methylcholanthrene (3MC) and tetrachlorodibenzofuran (TCDBF) can induce the expression of the cytochrome P450IA1 mRNA in the rat hepatoma cell line, H4IIE, although the kinetics of induction differed. 2. In the present study, by using biochemical, immunochemical and recombinant DNA approaches, the effects of these inducers have been examined on the steady state level of endogenous cytochrome P450IA1 protein and on induction of chloramphenicol acetyltransferase activity (CAT) in the H4IIE cells transfected with pMC1CAT (a recombinant construct consisting of CAT linked to 5' upstream DNA sequence of the rat cytochrome P450IA1 gene). 3. From 7-ethoxyresorufin O-deethylase activity (EROD) and immunochemical analysis of cytochrome P450IA1, the optimal concentrations of BP, 3MC and TCDBF for induction in the H4IIE cells were determined as 1, 0.1-1 and 0.1 microM, respectively. 4. The elevated expression of the protein was more sustained in the TCDBF-exposed cells than in the BP or 3MC-treated cells. 5. After 1.5 hr of treatment, little if any detectable P450IA1 protein was observed in the H4IIE cells although a considerable amount of mRNA was present. 6. In addition, no cytochrome P450IA2 protein was detected in the control or induced H4IIE cells. 7. H4IIE cells were transfected by pMC1CAT, and the induction ratio of CAT expression in the transfected H4IIE cells after BP, 3MC or TCDBF treatment was 10-, 17- and 40-fold, respectively. 8. These results indicate that the rat H4IIE cell line offers a valid homologous system for studies of the regulation of the rat cytochrome P450IA1 gene.
Collapse
Affiliation(s)
- L C Xu
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH 03756
| | | | | |
Collapse
|
29
|
Madra S, Smith AG. Induction of cytochrome P450 activities by polychlorinated biphenyls in isolated mouse hepatocytes. Influence of Ah-phenotype and iron. Biochem Pharmacol 1992; 44:455-64. [PMID: 1510696 DOI: 10.1016/0006-2952(92)90436-m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Exposure of cultured primary hepatocytes from Ah-responsive male C57BL/10ScSn mice to a polychlorinated biphenyl (PCB) mixture (Aroclor 1254) at 0.1-20 micrograms/mL for up to 96 hr induced cytochrome P4501AI-mediated activity (ethoxyresorufin O-deethylase, EROD) up to 50-fold. In contrast, pentoxyresorufin O-dealkylase (PROD), which in some circumstances is a measure of phenobarbitone-induced cytochrome P450 isoenzymes, was induced only 5-fold. There were similar findings on EROD activities with the pure compounds 3,3',4,4',5,5'-hexachlorobiphenyl, 3,3',4,4',5,5'-hexabromobiphenyl and 3,3',4,4'-tetrachlorobiphenyl(TCB) and also beta-naphthoflavone but not with 2,2',4,4'-TCB or phenobarbitone. The higher concentrations of Aroclor 1254 were also associated with cytotoxicity as estimated by release of alanine aminotransferase (ALT) into the medium. Unlike in C57BL/10ScSn hepatocytes induction of EROD and cytotoxicity was minimal in hepatocytes from the Ah-non-responsive strain DBA/2. Although in vivo the hepatic toxicity and carcinogenicity of polyhalogenated aromatics are markedly potentiated by iron, no enhancement of the cytotoxicity of Aroclor 1254 towards C57BL/10ScSn hepatocytes by iron was observed in vitro. However, iron caused decreased EROD activities and possibly cytochrome P4501AI (as judged by Western blotting) as in vivo. Even in the presence of iron and the haem precursor 5-aminolaevulinic acid (5-ALA) there was no development of uroporphyria in this system although this occurs with Aroclor in vivo and is enhanced by iron. Accumulation of uroporphyrin did occur after extended culture of C57BL/10ScSn hepatocytes on matrigel for 8 days in the presence of 5-ALA and Aroclor 1254 but again no potentiation by iron was observed. Thus, although culture of Ah-responsive and -non-responsive hepatocytes mimics some aspects of the mechanisms of in vivo toxicity of PCBs, there is some unknown associated influence of iron metabolism which cannot, as yet, be produced in vitro but which is of importance in vivo.
Collapse
Affiliation(s)
- S Madra
- MRC Toxicology Unit, Carshalton, Surrey, U.K
| | | |
Collapse
|
30
|
Lambrecht RW, Sinclair PR, Gorman N, Sinclair JF. Uroporphyrinogen oxidation catalyzed by reconstituted cytochrome P450IA2. Arch Biochem Biophys 1992; 294:504-10. [PMID: 1567206 DOI: 10.1016/0003-9861(92)90717-b] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous work suggested that the oxidation of uroporphyrinogen to uroporphyrin is catalyzed by cytochrome P450IA2. Here we determined whether purified reconstituted mouse P450IA1 and IA2 oxidize uroporphyrinogen. Cytochromes P450IA1 and IA2 were purified from hepatic microsomes from 3-methylcholanthrene (MC)-treated C57BL/6 mice, using a combination of affinity chromatography and high performance liquid chromatography. Reconstituted P450IA1 was more active than P450IA2 in catalyzing ethoxyresorufin-O-deethylase (EROD) activity, whereas P450IA2 was more active than P450IA1 in catalyzing uroporphyrinogen oxidation (UROX). Both reactions required NADPH, NADPH-cytochrome P450 reductase, and either P450IA1 or IA2. Ketoconazole competitively inhibited both EROD and UROX activities, in microsomes from MC-treated mice. Ketoconazole also inhibited UROX catalyzed by reconstituted P450IA2. In contrast, ketoconazole did not inhibit UROX catalyzed by xanthine oxidase in the presence of iron-EDTA. Superoxide dismutase, catalase, and mannitol inhibited UROX catalyzed by xanthine oxidase/iron-EDTA, but did not affect UROX catalyzed by either microsomes or reconstituted P450IA2. These results suggest that UROX catalyzed by P450IA2 in microsomes and reconstituted systems does not involve free reactive oxygen species. Two known substrates of cytochrome P450IA2, 2-amino-3,4-dimethylimidazole[4,5-f]quinoline and phenacetin, were shown to inhibit the microsomal UROX reaction, suggesting that uroporphyrinogen binds to a substrate-binding site on the cytochrome P450.
Collapse
Affiliation(s)
- R W Lambrecht
- Veterans Administration, White River Junction, Vermont 05009
| | | | | | | |
Collapse
|