1
|
Amaral WZ, Kokroko N, Treangen TJ, Villapol S, Gomez-Pinilla F. Probiotic therapy modulates the brain-gut-liver microbiota axis in a mouse model of traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167483. [PMID: 39209236 PMCID: PMC11526848 DOI: 10.1016/j.bbadis.2024.167483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The interplay between gut microbiota and host health is crucial for maintaining the overall health of the body and brain, and it is even more crucial how changes in the bacterial profile can influence the aftermath of traumatic brain injury (TBI). We studied the effects of probiotic treatment after TBI to identify potential changes in hepatic lipid species relevant to brain function. Bioinformatic analysis of the gut microbiota indicated a significant increase in the Firmicutes/Bacteroidetes ratio in the probiotic-treated TBI group compared to sham and untreated TBI groups. Although strong correlations between gut bacteria and hepatic lipids were found in sham mice, TBI disrupted these links, and probiotic treatment did not fully restore them. Probiotic treatment influenced systemic glucose metabolism, suggesting altered metabolic regulation. Behavioral tests confirmed memory improvement in probiotic-treated TBI mice. While TBI reduced hippocampal mRNA expression of CaMKII and CREB, probiotics reversed these effects yet did not alter BDNF mRNA levels. Elevated pro-inflammatory markers TNF-α and IL1-β in TBI mice were not significantly affected by probiotic treatment, pointing to different mechanisms underlying the probiotic benefits. In summary, our study suggests that TBI induces dysbiosis, alters hepatic lipid profiles, and preemptive administration of Lactobacillus helveticus and Bifidobacterium longum probiotics can counter neuroplasticity deficits and memory impairment. Altogether, these findings highlight the potential of probiotics for attenuating TBI's detrimental cognitive and metabolic effects through gut microbiome modulation and hepatic lipidomic alteration, laying the groundwork for probiotics as a potential TBI therapy.
Collapse
Affiliation(s)
- Wellington Z Amaral
- Departments of Neurosurgery and Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Natalie Kokroko
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Sonia Villapol
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Fernando Gomez-Pinilla
- Departments of Neurosurgery and Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Ottemann Abbamonte CJ, Overton TR, Beaulieu AD, Drackley JK. In vitro addition of epinephrine, norepinephrine, and carnitine alters palmitate oxidation and esterification in isolated ovine hepatocytes. J Dairy Sci 2023; 106:3633-3640. [PMID: 36894428 DOI: 10.3168/jds.2022-22867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/29/2022] [Indexed: 03/09/2023]
Abstract
Hepatocytes from 4 wethers were used to study the effects of carnitine and increasing concentrations of epinephrine and norepinephrine on palmitate oxidation and esterification. Liver cells were isolated from the wethers and incubated in Krebs-Ringer bicarbonate buffer with 1 mM [14C]-palmitate. Radiolabel incorporation was measured in CO2, acid-soluble products, and esterified products, including triglyceride, diglyceride, and cholesterol esters. Carnitine increased production of CO2 and acid-soluble products from palmitate by 41% and 216%, respectively, but had no effect on conversion of palmitate to esterified products. Epinephrine had a quadratic-increasing effect on palmitate oxidation to CO2, but norepinephrine did not increase palmitate oxidation to CO2. Neither epinephrine nor norepinephrine affected the production of acid-soluble products from palmitate. Increasing concentrations of norepinephrine and epinephrine linearly increased rates of triglyceride formation from palmitate. Increasing norepinephrine concentrations linearly increased diglyceride and cholesterol ester formation from palmitate in the presence of carnitine; epinephrine did not affect diglyceride or cholesterol ester formation. In general, catecholamine treatment had the greatest effect on the formation of esterified products from palmitate, and effects of norepinephrine were more pronounced than epinephrine. Conditions that result in catecholamine release might lead to fat accumulation in liver.
Collapse
Affiliation(s)
| | - T R Overton
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana 61801
| | - A D Beaulieu
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana 61801
| | - J K Drackley
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana 61801.
| |
Collapse
|
3
|
Liu Y, Wang J, Wang Q, Han F, Shi L, Han C, Huang Z, Xu L. Effects of insufficient serine on health and selenoprotein expression in rats and their offspring. Front Nutr 2022; 9:1012362. [PMID: 36185664 PMCID: PMC9515570 DOI: 10.3389/fnut.2022.1012362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Objective To observe the impact of insufficient exogenous and/or endogenous serine on selenoprotein expression and health of pregnant rats and their offspring. Method Experiment 1 was conducted in male rats, in which the dose-dependent effects of serine on selenoprotein expression and thyroid hormones (T3, T4 and TSH) were investigated by feeding either a serine adequate diet (20C), serine-deprived diet (20CSD) or 20CSD with different serine levels (0.5, 1.0, and 2.0 times the amount of serine in 20C). In experiment 2, a PHGDH inhibitor was administrated to pregnant rats fed either 20C or 20CSD. Blood and organ tissues of pregnant rats and offspring were subjected to the analyses of thyroid hormone, serine and homocysteine and GPx3 and SELENOP in plasma and expression of GPx1 and DIO1, 2 in tissues respectively. Result In experiment 1, plasma SELENOP and GPx3 levels in adult male rats increased with the increasing dose of serine. Immunohistochemical results showed that GPx1 expression in liver and kidney of male rats also increased with increasing serine supplementation. Amongst all diet groups, only male rats fed 20CSD had significantly lower plasma TSH and T4 levels (P < 0.05). In experiment 2, GPx1 and DIO2 expression in the liver and kidney were suppressed in pregnant rats administered with a PHGDH compared to those who were not (P < 0.05). There were no significant differences in plasma T4 and T3 amongst all diet groups (P > 0.05). Also, offspring born to pregnant rats administered with a PHGDH inhibitor exhibited slower growth rates and hyperhomocysteinemia compared to offspring from mothers not administered with the inhibitor (P < 0.05). Conclusions: Insufficient exogenous serine through the diet decreased selenoprotein synthesis in adult male rats. However, this was not observed in pregnant rats, whereby exogenous or endogenous serine deficiency had no effect on the selenoprotein levels. A possible explanation is that dams may have an adaptive mechanism to limit maternal serine utilization and ensure adequate supply to the fetus.
Collapse
Affiliation(s)
- Yiqun Liu
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianrong Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qin Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Han
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lili Shi
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chao Han
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
- The Key Laboratory of Micronutrients Nutrition, National Health Commission of The People's Republic of China, Beijing, China
- *Correspondence: Zhenwu Huang
| | - Liang Xu
- Urology Department, The Third Medical Centre of Chinese PLA General Hospital, Beijing, China
- Liang Xu
| |
Collapse
|
4
|
Ottemann Abbamonte CJ, Overton TR, Beaulieu AD, Drackley JK. Effects of in vivo phlorizin treatment and in vitro addition of carnitine, propionate, acetate, and 5-tetradecyloxy-2-furoic acid on palmitate metabolism in ovine hepatocytes. J Dairy Sci 2021; 104:7749-7760. [PMID: 33838888 DOI: 10.3168/jds.2020-20015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
Modulatory effects of l-carnitine, acetate, propionate, and 5-tetradecyloxy-2-furoic acid (TOFA; an inhibitor of acetyl-CoA carboxylase) on oxidation and esterification of [1-14C]-palmitate were studied in hepatocytes isolated from phlorizin-treated and control wethers. Our hypotheses were that (1) palmitate oxidation would be greater in hepatocytes from sheep injected with phlorizin; (2) l-carnitine would increase palmitate oxidation more in hepatocytes from sheep injected with phlorizin; and (3) acetate and propionate would decrease oxidation in sheep hepatocytes partly through action of acetyl-CoA carboxylase. Palmitate metabolism did not differ between cells from control and those from phlorizin-treated wethers. Carnitine increased oxidation of palmitate to CO2 and acid-soluble products (ASP; mainly ketone bodies) and decreased esterification of palmitate in isolated hepatocytes from both groups of wethers, but the increase in oxidation to ASP was greater in cells from phlorizin-treated wethers. Propionate increased palmitate oxidation to CO2 in phlorizin-treated wethers. Propionate increased oxidation of palmitate to ASP in control wethers but decreased oxidation to ASP in phlorizin-treated wethers. Propionate increased esterification of palmitate to total esterified products and triglyceride, and the effect was larger in phlorizin-treated wethers. Acetate decreased palmitate esterification to total esterified products in control wethers, but the effect was blunted in phlorizin-treated wethers. Acetate did not affect palmitate oxidation. Addition of TOFA increased production of triglyceride from palmitate in the presence of propionate. The lack of interaction between TOFA and propionate indicates that propionate does not inhibit carnitine palmitoyltransferase I via cytosolic generation of methylmalonyl-CoA by acetyl-CoA carboxylase. In conclusion, although in vivo phlorizin treatment did not affect in vitro metabolism of palmitate by isolated ovine hepatocytes, phlorizin increased the stimulatory effect of carnitine on oxidation of palmitate to ASP and the inhibitory effect of propionate on oxidation of palmitate to ASP. Metabolism of acetate and propionate by acetyl-CoA carboxylase did not affect palmitate oxidation or esterification. Results provide additional insight into control of fatty acid metabolism in hepatocytes.
Collapse
Affiliation(s)
| | - T R Overton
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - A D Beaulieu
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - J K Drackley
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
5
|
The effect of N-stearoylethanolamine on the lipid composition of the rat testes and testosterone level during the early stages of streptozotocin-іnduced diabetes. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Balgoma D, Zelleroth S, Grönbladh A, Hallberg M, Pettersson C, Hedeland M. Anabolic androgenic steroids exert a selective remodeling of the plasma lipidome that mirrors the decrease of the de novo lipogenesis in the liver. Metabolomics 2020; 16:12. [PMID: 31925559 PMCID: PMC6954146 DOI: 10.1007/s11306-019-1632-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/31/2019] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The abuse of anabolic androgenic steroids (AASs) is a source of public concern because of their adverse effects. Supratherapeutic doses of AASs are known to be hepatotoxic and regulate the lipoproteins in plasma by modifying the metabolism of lipids in the liver, which is associated with metabolic diseases. However, the effect of AASs on the profile of lipids in plasma is unknown. OBJECTIVES To describe the changes in the plasma lipidome exerted by AASs and to discuss these changes in the light of previous research about AASs and de novo lipogenesis in the liver. METHODS We treated male Wistar rats with supratherapeutic doses of nandrolone decanoate and testosterone undecanoate. Subsequently, we isolated the blood plasma and performed lipidomics analysis by liquid chromatography-high resolution mass spectrometry. RESULTS Lipid profiling revealed a decrease of sphingolipids and glycerolipids with palmitic, palmitoleic, stearic, and oleic acids. In addition, lipid profiling revealed an increase in free fatty acids and glycerophospholipids with odd-numbered chain fatty acids and/or arachidonic acid. CONCLUSION The lipid profile presented herein reports the imprint of AASs on the plasma lipidome, which mirrors the downregulation of de novo lipogenesis in the liver. In a broader perspective, this profile will help to understand the influence of androgens on the lipid metabolism in future studies of diseases with dysregulated lipogenesis (e.g. type 2 diabetes, fatty liver disease, and hepatocellular carcinoma).
Collapse
Affiliation(s)
- David Balgoma
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
- Uppsala Biomedicinska Centrum BMC, Husargatan 3, Box 574, 751 23, Uppsala, Sweden.
| | - Sofia Zelleroth
- The Beijer Laboratory, Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Alfhild Grönbladh
- The Beijer Laboratory, Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mathias Hallberg
- The Beijer Laboratory, Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Curt Pettersson
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Mikael Hedeland
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Fernández-Cisnal R, García-Sevillano MA, García-Barrera T, Gómez-Ariza JL, Abril N. Metabolomic alterations and oxidative stress are associated with environmental pollution in Procambarus clarkii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:76-88. [PMID: 30343212 DOI: 10.1016/j.aquatox.2018.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
Soils contaminated by toxic metallic elements from agricultural activities raise grave concern about their potential risk to human health through direct intake, bioaccumulation through the food chain, and their impacts on ecological systems. We have measured here the lipid and protein oxidation status and used metabolomic methodologies to identify and characterize the changes caused by metal pollution exposure in the digestive glands and gills of Procambarus clarkii, the red swamp crayfish. Specimens captured at two sites with intensive agriculture practices using diverse types of agrochemicals, located in the borders of Doñana Natural Park, were compared to ones caught in the core of the Park, a proven non-polluted place. As a highly metabolically active organ, the digestive gland accumulated more metallic elements than the gills and was consequently more affected at the metabolic level. Results also indicate that chronic pollution exposure generates oxidative stress and mitochondrial dysfunction that imposes a metabolic shift to enhanced aerobic glycolysis and lipid metabolism alteration. The integration of metabolomics with previous proteomic data gives a comprehensive vision of the metabolic disorders caused by chronic metal exposure to P. clarkii and identifies potential biomarkers useful for routine risk assessment of the aquatic ecosystems health.
Collapse
Affiliation(s)
- Ricardo Fernández-Cisnal
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Miguel A García-Sevillano
- Departmento de Química, Facultad de Ciencias Experimentales, Campus de Excelencia Internacional Agroalimentario CeiA3, Centro de Investigación en Recursos Naturales, Salud y Medioambiente (RENSMA). Universidad de Huelva, Avda, de las Fuerzas Armadas s/n, E-21071, Huelva, Spain
| | - Tamara García-Barrera
- Departmento de Química, Facultad de Ciencias Experimentales, Campus de Excelencia Internacional Agroalimentario CeiA3, Centro de Investigación en Recursos Naturales, Salud y Medioambiente (RENSMA). Universidad de Huelva, Avda, de las Fuerzas Armadas s/n, E-21071, Huelva, Spain
| | - José L Gómez-Ariza
- Departmento de Química, Facultad de Ciencias Experimentales, Campus de Excelencia Internacional Agroalimentario CeiA3, Centro de Investigación en Recursos Naturales, Salud y Medioambiente (RENSMA). Universidad de Huelva, Avda, de las Fuerzas Armadas s/n, E-21071, Huelva, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| |
Collapse
|
8
|
Adamyan LV, Starodubtseva N, Borisova A, Stepanian AA, Chagovets V, Salimova D, Wang Z, Kononikhin A, Popov I, Bugrova A, Chingin K, Kozachenko A, Chen H, Frankevich V. Direct Mass Spectrometry Differentiation of Ectopic and Eutopic Endometrium in Patients with Endometriosis. J Minim Invasive Gynecol 2017; 25:426-433. [PMID: 28888701 DOI: 10.1016/j.jmig.2017.08.658] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023]
Abstract
STUDY OBJECTIVE To introduce a method for the rapid assessment of endometriotic tissues using direct mass spectrometry (MS)-based lipidomics. DESIGN A prospective observational cohort study (Canadian Task Force classification II2). SETTING Department of Operative Gynecology of the Research Centre for Obstetrics, Gynecology and Perinatology. PATIENTS Fifty patients with ovarian cysts and peritoneal endometriosis who underwent laparoscopic surgery between 2014 and 2016. INTERVENTION Differences in mass spectrometric profiles of ectopic endometria (endometriosis) and eutopic endometria were analyzed for each patient in combination with morphohistologic evaluation. The lipidomic approach was applied using a direct high-resolution MS method. MEASUREMENTS AND MAIN RESULTS Of 148 metabolites, 15 showed significant differences between endometriotic tissue and a healthy endometrium of the same patient, considered as a control in this study. The main lipids prevalent in endometriotic tissues were phosphoethanolamine (PE O-20:0), sphingomyelin (SM 34:1), diglycerides (DG 44:9), phosphatidylcholines (PC 32:1, PC O-36:3, PC 38:7, PC 38:6, PC 40:8, PC 40:7, PC 40:6, PC 40:9, and PC O-42:1), and triglycerides (TG 41:2, TG 49:4, and TG 52:3). Using partial least squares discriminant analysis models, MS showed that the lipidomic profile of endometriotic tissue (peritoneal endometriosis and ovarian endometriomas) was clearly separated from the eutopic endometrium, indicating tissue-type differentiation. CONCLUSION Our results suggest that direct MS may play an important role for endometriotic tissue identification. Such an approach has potential usefulness for real-time tissue determination and differentiation during surgical treatment. Lipids of 3 important classes, sphingolipids, phospholipids, and the fatty acids (di- and triglycerides), were identified. Validation is required to determine whether these lipids can be used to discriminate between patients with endometriosis and those with other gynecologic diseases.
Collapse
Affiliation(s)
- Leila V Adamyan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Natalia Starodubtseva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Moscow Institute of Physics and Technology, Moscow, Russia
| | - Anna Borisova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Assia A Stepanian
- Academia of Women's Health and Endoscopic Surgery, Atlanta, Georgia.
| | - Vitaliy Chagovets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Dinara Salimova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Zhihao Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, China
| | - Alexey Kononikhin
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Moscow Institute of Physics and Technology, Moscow, Russia
| | - Igor Popov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Moscow Institute of Physics and Technology, Moscow, Russia
| | - Anna Bugrova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, China
| | - Andrey Kozachenko
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, China
| | - Vladimir Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
9
|
Li Y, Yan J, Ding W, Chen Y, Pack LM, Chen T. Genotoxicity and gene expression analyses of liver and lung tissues of mice treated with titanium dioxide nanoparticles. Mutagenesis 2017; 32:33-46. [PMID: 28011748 DOI: 10.1093/mutage/gew065] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are used in paints, plastics, papers, inks, foods, toothpaste, pharmaceuticals and cosmetics. However, TiO2 NPs cause inflammation, pulmonary damage, fibrosis and lung tumours in animals and are possibly carcinogenic to humans. Although there are a large number of studies on the toxicities of TiO2 NPs, the data are inconclusive and the mechanisms underlying the toxicity are not clear. In this study, we used the Comet assay to evaluate genotoxicity and whole-genome microarray technology to analyse gene expression pattern in vivo to explore the possible mechanisms for toxicity and genotoxicity of TiO2 NPs. Mice were treated with three daily i.p. injections of 50 mg/kg 10 nm anatase TiO2 NPs and sacrificed 4 h after the last treatment. The livers and lungs were then isolated for the Comet assay and whole genome microarray analysis of gene expression. The NPs were heavily accumulated in liver and lung tissues. However, the treatment was positive for DNA strand breaks only in liver measured with the standard Comet assay, but positive for oxidative DNA adducts in both liver and lung as determined with the enzyme-modified Comet assay. The genotoxicity results suggest that DNA damage mainly resulted from oxidised nucleotides. Gene expression profiles and functional analyses revealed that exposure to TiO2 NPs triggered distinct gene expression patterns in both liver and lung tissues. The gene expression results suggest that TiO2 NPs impair DNA and cells by interrupting metabolic homeostasis in liver and by inducing oxidative stress, inflammatory responses and apoptosis in lung. These findings have broad implications when evaluating the safety of TiO2 NPs used in numerous consumer products.
Collapse
Affiliation(s)
- Yan Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, USA.,Covance Laboratories, Inc., Greenfield, IN 46140, USA and
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, USA
| | - Wei Ding
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, USA
| | - Lindsay M Pack
- Nanotechnology Core Facility, National Center for Toxicological Research, Jefferson, AR 72079, USA.,Present address: Arkansas Children's Nutrition Center, Arkansas Children's Hospital, Little Rock, AR 72202, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, USA,
| |
Collapse
|
10
|
Viecili PRN, da Silva B, Hirsch GE, Porto FG, Parisi MM, Castanho AR, Wender M, Klafke JZ. Triglycerides Revisited to the Serial. Adv Clin Chem 2017; 80:1-44. [PMID: 28431638 DOI: 10.1016/bs.acc.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review discusses the role of triglycerides (TGs) in the normal cardiovascular system as well as in the development and clinical manifestation of cardiovascular diseases. Regulation of TGs at the enzymatic and genetic level, in addition to their possible relevance as preclinical and clinical biomarkers, is discussed, culminating with a description of available and emerging treatments. Due to the high complexity of the subject and the vast amount of material in the literature, the objective of this review was not to exhaust the subject, but rather to compile the information to facilitate and improve the understanding of those interested in this topic. The main publications on the topic were sought out, especially those from the last 5 years. The data in the literature still give reason to believe that there is room for doubt regarding the use of TG as disease biomarkers; however, there is increasing evidence for the role of hypertriglyceridemia on the atherosclerotic inflammatory process, cardiovascular outcomes, and mortality.
Collapse
|
11
|
Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance. Cell Metab 2016; 24:172-84. [PMID: 27345421 PMCID: PMC6666317 DOI: 10.1016/j.cmet.2016.05.026] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/04/2016] [Accepted: 05/28/2016] [Indexed: 12/19/2022]
Abstract
To investigate the biological processes that are altered in obese subjects, we generated cell-specific integrated networks (INs) by merging genome-scale metabolic, transcriptional regulatory and protein-protein interaction networks. We performed genome-wide transcriptomics analysis to determine the global gene expression changes in the liver and three adipose tissues from obese subjects undergoing bariatric surgery and integrated these data into the cell-specific INs. We found dysregulations in mannose metabolism in obese subjects and validated our predictions by detecting mannose levels in the plasma of the lean and obese subjects. We observed significant correlations between plasma mannose levels, BMI, and insulin resistance (IR). We also measured plasma mannose levels of the subjects in two additional different cohorts and observed that an increased plasma mannose level was associated with IR and insulin secretion. We finally identified mannose as one of the best plasma metabolites in explaining the variance in obesity-independent IR.
Collapse
|
12
|
Suppression effects of betaine-enriched spinach on hyperhomocysteinemia induced by guanidinoacetic acid and choline deficiency in rats. ScientificWorldJournal 2014; 2014:904501. [PMID: 25250392 PMCID: PMC4163418 DOI: 10.1155/2014/904501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/06/2014] [Indexed: 12/15/2022] Open
Abstract
Betaine is an important natural component of rich food sources, especially spinach. Rats were fed diets with betaine or spinach powder at the same level of betaine for 10 days to investigate the dose-dependent effects of spinach powder supplementation on hyperhomocysteinemia induced by guanidinoacetic acid (GAA) addition and choline deprivation. The GAA-induced hyperhomocysteinemia in rats fed 25% casein diet (25C) was significantly suppressed by supplementation with betaine or spinach, and it was completely suppressed by taking 11.0% spinach supplementation. The choline deprivation-induced enhancement of plasma homocysteine concentration in rats fed 25% soybean protein diet (25S) was markedly suppressed by 3.82% spinach. Supplementation with betaine or spinach partially prevented the effects of GAA on hepatic concentrations of methionine metabolites. The decrease in activity of betaine-homocysteine S-methyltransferase (BHMT) and cystathionine β-synthase (CBS) in GAA-induced hyperhomocysteinemia was recovered by supplementation with betaine or spinach. Supplementation with betaine or spinach did not affect BHMT activity, whereas it partially restored CBS activity in choline-deprived 25S. The results indicated that betaine or spinach could completely suppress the hyperhomocysteinemia induced by choline deficiency resulting from stimulating the homocysteine removal by both remethylation and cystathionine formation.
Collapse
|
13
|
Hyperhomocysteinemia Induced by Guanidinoacetic Acid Is Effectively Suppressed by Choline and Betaine in Rats. Biosci Biotechnol Biochem 2014; 72:1696-703. [DOI: 10.1271/bbb.70791] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Formation and regulation of mitochondrial membranes. Int J Cell Biol 2014; 2014:709828. [PMID: 24578708 PMCID: PMC3918842 DOI: 10.1155/2014/709828] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER) and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.
Collapse
|
15
|
Milk phospholipid and plant sterol-dependent modulation of plasma lipids in healthy volunteers. Eur J Nutr 2012; 52:1169-79. [PMID: 22836514 DOI: 10.1007/s00394-012-0427-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/16/2012] [Indexed: 01/02/2023]
Abstract
PURPOSE Hypolipidemic and/or hypocholesterolemic effects are presumed for dietary milk phospholipid (PL) as well as plant sterol (PSt) supplementation. The aim was to induce changes in plasma lipid profile by giving different doses of milk PL and a combination of milk PL with PSt to healthy volunteers. METHODS In an open-label intervention study, 14 women received dairy products enriched with moderate (3 g PL/day) or high (6 g PL/day) dose of milk PL or a high dose of milk PL combined with PSt (6 g PL/day + 2 g PSt/day) during 3 periods each lasting 10 days. RESULTS Total cholesterol concentration and HDL cholesterol concentration were reduced following supplementation with 3 g PL/day. No significant change in LDL cholesterol concentration was found compared with baseline. High PL dose resulted in an increase of LDL cholesterol and unchanged HDL cholesterol compared with moderate PL dose. The LDL/HDL ratio and triglyceride concentration remained constant within the study. Except for increased phosphatidyl ethanolamine concentrations, plasma PL concentrations were not altered during exclusive PL supplementations. A combined high-dose PL and PSt supplementation led to decreased plasma LDL cholesterol concentration, decreased PL excretion, increased plasma sphingomyelin/phosphatidyl choline ratio, and significant changes in plasma fatty acid distribution compared with exclusive high-dose PL supplementation. CONCLUSION Milk PL supplementations influence plasma cholesterol concentrations, but without changes of LDL/HDL ratio. A combined high-dose milk PL and PSt supplementation decreases plasma LDL cholesterol concentration, but it probably enforces absorption of fatty acids or fatty acid-containing hydrolysis products that originated during lipid digestion.
Collapse
|
16
|
Khrustova NV, Kozlov MV, Shishkina LN. Effect of physicochemical properties of murine liver lipids on the interrelation between the parameters of their composition. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911040105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Kamisaka Y, Kimura K, Uemura H, Shibakami M. Activation of diacylglycerol acyltransferase expressed in Saccharomyces cerevisiae: overexpression of Dga1p lacking the N-terminal region in the ∆snf2 disruptant produces a significant increase in its enzyme activity. Appl Microbiol Biotechnol 2010; 88:105-15. [DOI: 10.1007/s00253-010-2725-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 05/28/2010] [Accepted: 06/11/2010] [Indexed: 12/11/2022]
|
18
|
Gallego-Ortega D, Ramirez de Molina A, Ramos MA, Valdes-Mora F, Barderas MG, Sarmentero-Estrada J, Lacal JC. Differential role of human choline kinase alpha and beta enzymes in lipid metabolism: implications in cancer onset and treatment. PLoS One 2009; 4:e7819. [PMID: 19915674 PMCID: PMC2773002 DOI: 10.1371/journal.pone.0007819] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 10/07/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Kennedy pathway generates phosphocoline and phosphoethanolamine through its two branches. Choline Kinase (ChoK) is the first enzyme of the Kennedy branch of synthesis of phosphocholine, the major component of the plasma membrane. ChoK family of proteins is composed by ChoKalpha and ChoKbeta isoforms, the first one with two different variants of splicing. Recently ChoKalpha has been implicated in the carcinogenic process, since it is over-expressed in a variety of human cancers. However, no evidence for a role of ChoKbeta in carcinogenesis has been reported. METHODOLOGY/PRINCIPAL FINDINGS Here we compare the in vitro and in vivo properties of ChoKalpha1 and ChoKbeta in lipid metabolism, and their potential role in carcinogenesis. Both ChoKalpha1 and ChoKbeta showed choline and ethanolamine kinase activities when assayed in cell extracts, though with different affinity for their substrates. However, they behave differentially when overexpressed in whole cells. Whereas ChoKbeta display an ethanolamine kinase role, ChoKalpha1 present a dual choline/ethanolamine kinase role, suggesting the involvement of each ChoK isoform in distinct biochemical pathways under in vivo conditions. In addition, while overexpression of ChoKalpha1 is oncogenic when overexpressed in HEK293T or MDCK cells, ChoKbeta overexpression is not sufficient to induce in vitro cell transformation nor in vivo tumor growth. Furthermore, a significant upregulation of ChoKalpha1 mRNA levels in a panel of breast and lung cancer cell lines was found, but no changes in ChoKbeta mRNA levels were observed. Finally, MN58b, a previously described potent inhibitor of ChoK with in vivo antitumoral activity, shows more than 20-fold higher efficiency towards ChoKalpha1 than ChoKbeta. CONCLUSION/SIGNIFICANCE This study represents the first evidence of the distinct metabolic role of ChoKalpha and ChoKbeta isoforms, suggesting different physiological roles and implications in human carcinogenesis. These findings constitute a step forward in the design of an antitumoral strategy based on ChoK inhibition.
Collapse
Affiliation(s)
- David Gallego-Ortega
- Translational Oncology Unit, CSIC-UAM-La Paz, Instituto de Investigaciones Biomédicas, Madrid, Spain
| | - Ana Ramirez de Molina
- Translational Oncology Unit, CSIC-UAM-La Paz, Instituto de Investigaciones Biomédicas, Madrid, Spain
- TCD Pharma, Centro Nacional de Biotecnología, Madrid, Spain
| | - Maria Angeles Ramos
- Translational Oncology Unit, CSIC-UAM-La Paz, Instituto de Investigaciones Biomédicas, Madrid, Spain
- TCD Pharma, Centro Nacional de Biotecnología, Madrid, Spain
| | - Fatima Valdes-Mora
- Translational Oncology Unit, CSIC-UAM-La Paz, Instituto de Investigaciones Biomédicas, Madrid, Spain
| | - Maria Gonzalez Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Jacinto Sarmentero-Estrada
- Translational Oncology Unit, CSIC-UAM-La Paz, Instituto de Investigaciones Biomédicas, Madrid, Spain
- TCD Pharma, Centro Nacional de Biotecnología, Madrid, Spain
| | - Juan Carlos Lacal
- Translational Oncology Unit, CSIC-UAM-La Paz, Instituto de Investigaciones Biomédicas, Madrid, Spain
- TCD Pharma, Centro Nacional de Biotecnología, Madrid, Spain
- * E-mail:
| |
Collapse
|
19
|
Wang L, Ponde DE. Radiosynthesis of [ 11C] N-Methyl and N,N′-Dimethyl Ethanolamine for Measuring Phospholipid Metabolism Using PET Imaging. SYNTHETIC COMMUN 2009. [DOI: 10.1080/00397910902796086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Mishra S, Dwivedi SP, Dwivedi N, Kumar A, Rawat A, Kamisaka Y. A molecular model for diacylglycerol acyltransferase from Mortierella ramanniana var. angulispora. Bioinformation 2009; 3:394-8. [PMID: 19759814 PMCID: PMC2732034 DOI: 10.6026/97320630003394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/19/2009] [Accepted: 04/14/2009] [Indexed: 12/01/2022] Open
Abstract
Acyl CoA diacylglycerol acyltransferase (DGAT, EC 2.3.120) is recognized as a key player of cellular diacylglycerol
metabolism. It catalyzes the terminal, yet the committed step in triacylglycerol synthesis using diacylglycerol and fatty acyl CoA
as substrates. The protein sequence of diacylglycerol acyltransferse (DGAT) Type 2B in Moretierella ramanniana var.
angulispora (Protein_ID = AAK84180.1) was retrieved from GenBank. However, a structure is not yet available for this
sequence. The 3D structure of DGAT Type 2B was modeled using a template structure (PDB ID: 1K30) obtained from Protein
databank (PDB) identified by searching with position specific iterative BLAST (PSI-BLAST). The template (PDB ID: 1K30)
describes the structure of DGAT from Cucurbita moschata. Modeling was performed using Modeller 9v2 and protein model is
hence generated. The DGAT type 2B protein model was subsequently docked with six inhibitors (sphingosine; trifluoroperazine;
phosphatidic acid; lysophospatidylserine; KCl; 1, 2-diolein) using AutoDock (a molecular docking program). The binding of
inhibitors to the protein model of DGAT type 2B is discussed.
Collapse
Affiliation(s)
- Sanjay Mishra
- Department of Biotechnology, College of Engineering and Technology, IFTM Campus, Lodhipur-Rajput, Delhi Road, Moradabad 244 001, U.P., India.
| | | | | | | | | | | |
Collapse
|
21
|
Sánchez-Patán F, Anchuelo R, Aller MA, Vara E, García C, Nava MP, Arias J. Chronic prehepatic portal hypertension in the rat: is it a type of metabolic inflammatory syndrome? Lipids Health Dis 2008; 7:4. [PMID: 18271959 PMCID: PMC2262079 DOI: 10.1186/1476-511x-7-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 02/13/2008] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A progressive development of hepatic steatosis with an increase in the lipid hepatocyte content and the formation of megamitochondria have been demonstrated in rats with prehepatic portal hypertension. The aim of this study is to verify the existence of liver and serum lipid metabolism impairments in rats with long-term (2 years) portal hypertension. METHODS Male Wistar rats: Control (n = 10) and with prehepatic portal hypertension by triple partial portal vein ligation (n = 9) were used. Liver content of Triglycerides (TG), phospholipids (PL) and cholesterol and serum cholesterol, lipoproteins (HDL and LDL), TG, glucose and Lipid Binding Protein (LBP) were assayed with specific colorimetric commercial kits. Serum levels of insulin and somatostatin were assayed by RIA. RESULTS The liver content of TG (6.30 +/- 1.95 vs. 4.17 +/- 0.59 microg/ml; p < 0.01) and cholesterol (1.48 +/- 0.15 vs. 1.10 +/- 0.13 microg/ml; p < 0.001) increased in rats with portal hypertension. The serum levels of cholesterol (97.00+26.02 vs. 114.78 +/- 37.72 mg/dl), TG (153.41 +/- 80.39 vs. 324.39 +/- 134.9 mg/dl; p < 0.01), HDL (20.45 +/- 5.14 vs. 55.15 +/- 17.47 mg/dl; p < 0.001) and somatostatin (1.32 +/- 0.31 vs. 1.59 +0.37 mg/dl) decreased, whereas LDL (37.83 +/- 15.39 vs. 16.77 +/- 6.81 mg/dl; p < 0.001) and LBP (308.47 +/- 194.53 vs. 60.27 +/- 42.96 ng/ml; p < 0.001) increased. CONCLUSION Portal hypertension in the rat presents changes in the lipid and carbohydrate metabolisms similar to those produced in chronic inflammatory conditions and sepsis in humans. These underlying alterations could be involved in the development of hepatic steatosis and, therefore, in those described in the metabolic syndrome in humans.
Collapse
Affiliation(s)
| | - Raquel Anchuelo
- Surgery I Department, School of Medicine, Complutense University of Madrid, Spain
| | - Maria-Angeles Aller
- Surgery I Department, School of Medicine, Complutense University of Madrid, Spain
| | - Elena Vara
- Biochemistry and Molecular Biology III Department, School of Medicine, Complutense University of Madrid, Spain
| | - Cruz García
- Biochemistry and Molecular Biology III Department, School of Medicine, Complutense University of Madrid, Spain
| | - Maria-Paz Nava
- Department of Physiology (Animal Physiology II), School of Biology, Complutense University of Madrid, Spain
| | - Jaime Arias
- Surgery I Department, School of Medicine, Complutense University of Madrid, Spain
| |
Collapse
|
22
|
Chang HM, Mai FD, Chen BJ, Wu UI, Huang YL, Lan CT, Ling YC. Sleep deprivation predisposes liver to oxidative stress and phospholipid damage: a quantitative molecular imaging study. J Anat 2008; 212:295-305. [PMID: 18221481 DOI: 10.1111/j.1469-7580.2008.00860.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sleep disorders are associated with an increased rate of various metabolic disturbances, which may be related to oxidative stress and consequent lipid peroxidation. Since hepatic phosphatidylcholine plays an important role in metabolic regulation, the aim of the present study was to determine phosphatidylcholine expression in the liver following total sleep deprivation. To determine the effects of total sleep deprivation, we used adult rats implanted for polygraphic recording. Phosphatidylcholine expression was examined molecularly by the use of time-of-flight secondary ion mass spectrometry, along with biochemical solid-phase extraction. The parameters of oxidative stress were investigated by evaluating the hepatic malondialdehyde levels as well as heat shock protein 25 immunoblotting and immunohistochemistry. In normal rats, the time-of-flight secondary ion mass spectrometry spectra revealed specific peaks (m/z 184 and 224) that could be identified as molecular ions for phosphatidylcholine. However, following total sleep deprivation, the signals for phosphatidylcholine were significantly reduced to nearly one-third of the normal values. The results of solid-phase extraction also revealed that the phosphatidylcholine concentration was noticeably decreased, from 15.7 micromol g-1 to 9.4 micromol g-1, after total sleep deprivation. By contrast, the biomarkers for oxidative stress were drastically up-regulated in the total sleep deprivation-treated rats as compared with the normal ones (4.03 vs. 1.58 nmol mg-1 for malondialdehyde levels, and 17.1 vs. 6.7 as well as 1.8 vs. 0.7 for heat shock protein 25 immunoblotting and immunoreactivity, respectively). Given that phosphatidylcholine is the most prominent component of all plasma lipoproteins, decreased expression of hepatic phosphatidylcholine following total sleep deprivation may be attributed to the enhanced oxidative stress and the subsequent lipid peroxidation, which would play an important role in the formation or progression of total sleep deprivation-induced metabolic diseases.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Kamisaka Y, Tomita N, Kimura K, Kainou K, Uemura H. DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Deltasnf2 disruptant of Saccharomyces cerevisiae. Biochem J 2007; 408:61-8. [PMID: 17688423 PMCID: PMC2049070 DOI: 10.1042/bj20070449] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We previously found that SNF2, a gene encoding a transcription factor forming part of the SWI/SNF (switching/sucrose non-fermenting) chromatin-remodelling complex, is involved in lipid accumulation, because the Deltasnf2 disruptant of Saccharomyces cerevisiae has a higher lipid content. The present study was conducted to identify other factors that might further increase lipid accumulation in the Deltasnf2 disruptant. First, expression of LEU2 (a gene encoding beta-isopropylmalate dehydrogenase), which was used to select transformed strains by complementation of the leucine axotroph, unexpectedly increased both growth and lipid accumulation, especially in the Deltasnf2 disruptant. The effect of LEU2 expression on growth and lipid accumulation could be reproduced by adding large amounts of leucine to the culture medium, indicating that the effect was not due to Leu2p (beta-isopropylmalate dehydrogenase) itself, but rather to leucine biosynthesis. To increase lipid accumulation further, genes encoding the triacylglycerol biosynthetic enzymes diacylglycerol acyltransferase (DGA1) and phospholipid:diacylglycerol acyltransferase (LRO1) were overexpressed in the Deltasnf2 disruptant. Overexpression of DGA1 significantly increased lipid accumulation, especially in the Deltasnf2 disruptant, whereas LRO1 overexpression decreased lipid accumulation in the Deltasnf2 disruptant. Furthermore, the effect of overexpression of acyl-CoA synthase genes (FAA1, FAA2, FAA3 and FAA4), which each supply a substrate for Dga1p (diacylglycerol acyltransferase), was investigated. Overexpression of FAA3, together with that of DGA1, did not further increase lipid accumulation in the Deltasnf2 disruptant, but did enhance lipid accumulation in the presence of exogenous fatty acids. Lastly, the total lipid content in the Deltasnf2 disruptant transformed with DGA1 and FAA3 overexpression vectors reached approx. 30%, of which triacylglycerol was the most abundant lipid. Diacylglycerol acyltransferase activity was significantly increased in the Deltasnf2 disruptant strain overexpressing DGA1 as compared with the wild-type strain overexpressing DGA1; this higher activity may account for the prominent increase in lipid accumulation in the Deltasnf2 disruptant with DGA1 overexpression. The strains obtained have a lipid content that is high enough to act as a model of oleaginous yeast and they may be useful for the metabolic engineering of lipid production in yeast.
Collapse
Affiliation(s)
- Yasushi Kamisaka
- Lipid Engineering Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | | | |
Collapse
|
24
|
Tie A, Bakovic M. Alternative splicing of CTP:phosphoethanolamine cytidylyltransferase produces two isoforms that differ in catalytic properties. J Lipid Res 2007; 48:2172-81. [PMID: 17646670 DOI: 10.1194/jlr.m600536-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) catalyzes the rate-controlling reaction of the CDP-ethanolamine (Kennedy) pathway. We have previously established that Pcyt2 is encoded by a single gene that can be alternatively spliced from an internal exon into two transcripts, designated Pcyt2alpha and Pcyt2beta. Little is currently known about the regulation of Pcyt2. Here, we functionally express both murine Pcyt2 (mPcyt2) transcripts and investigate the roles of the two proteins in the regulation of mPcyt2 activity. We demonstrate that the tagged and purified alpha and beta proteins differ significantly in their kinetic properties. The K(m) of mPcyt2alpha for phosphoethanolamine was 318.4 microM, compared with 140.3 microM for mPcyt2beta. The maximal velocities of the alpha and beta isoforms at saturating conditions for both substrates were 138.0 and 114.4 nmol/min/mumol enzyme, respectively. When phosphoethanolamine was used at a fixed concentration of 1 mM, the K(m) of mPcyt2alpha for CTP was 102.0 microM and that of mPcyt2beta was 84.09 microM. Using a combination of nondenaturing PAGE, gel filtration chromatography, and immunoprecipitation, we provide evidence that mPcyt2alpha and mPcyt2beta proteins can form both homodimeric and heterodimeric complexes. We show that alternative splicing of the mPcyt2 transcript is ubiquitous but could also be regulated in a tissue-specific manner, producing a variable ratio of mPcyt2alpha/mPcyt2beta mRNAs. The expression of two distinct protein isoforms maybe an important mechanism by which Pcyt2 activity is regulated.
Collapse
Affiliation(s)
- Angela Tie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
25
|
Bakovic M, Fullerton MD, Michel V. Metabolic and molecular aspects of ethanolamine phospholipid biosynthesis: the role of CTP:phosphoethanolamine cytidylyltransferase (Pcyt2). Biochem Cell Biol 2007; 85:283-300. [PMID: 17612623 DOI: 10.1139/o07-006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CDP-ethanolamine branch of the Kennedy pathway is the major route for the formation of ethanolamine-derived phospholipids, including diacyl phosphatidylethanolamine and alkenylacyl phosphatidylethanolamine derivatives, known as plasmalogens. Ethanolamine phospholipids are essential structural components of the cell membranes and play regulatory roles in cell division, cell signaling, activation, autophagy, and phagocytosis. The physiological importance of plasmalogens has not been not fully elucidated, although they are known for their antioxidant properties and deficiencies in a number of inherited peroxisomal disorders. This review highlights important aspects of ethanolamine phospholipid metabolism and reports current molecular information on 1 of the regulatory enzymes in their synthesis, CTP:phosphoethanolamine cytidylyltransferase (Pcyt2). Pcyt2 is encoded by a single, nonredundant gene in animal species that could be alternatively spliced into 2 potential protein products. We describe properties of the mouse and human Pcyt2 genes and their regulatory promoters and provide molecular evidence for the existence of 2 distinct Pcyt2 proteins. The goal is to obtain more insight into Pcyt2 catalytic function and regulation to facilitate a better understanding of the production of ethanolamine phospholipids via the CDP-ethanolamine branch of the Kennedy pathway.
Collapse
Affiliation(s)
- Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | | | | |
Collapse
|
26
|
Müller H, Grande T, Ahlstrøm O, Skrede A. A diet rich in phosphatidylethanolamine increases plasma homocysteine in mink: a comparison with a soyabean oil diet. Br J Nutr 2007; 94:684-90. [PMID: 16277769 DOI: 10.1079/bjn20051549] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effects of high dietary levels of phosphatidylethanolamine (PE) on plasma concentrations of homocysteine (tHcy) have not previously been studied. Eighteen mink (Mustela vison) studied were fed one of three diets during a 25d period in a parallel-group design. The compared diets had 0, 17 and 67% extracted lipids from natural gas-utilising bacteria (LNGB), which were rich in PE. The group with 0% LNGB was fed a diet of 100% soyabean oil (SB diet). Phospholipids are the main lipid components in LNGB andMethylococcus capsulatusis the main bacteria (90%). The fasting plasma concentration of tHcy was significantly higher when the mink consumed the diet with 67% LNGB than when they consumed the SB diet (P=0·039). A significantly lower glutathione peroxidase activity was observed in mink consuming the 17% LNGB diet or the 67% LNGB diet than was observed in mink fed the SB diet. The lack of significant differences in the level of plasma PE due to the diets indicates that most of the PE from the 67% LNGB diet was converted to phosphatidylcholine (PC) in the liver. It has previously been hypothesised that phosphatidylethanolamine N-methyltransferase is an important source of tHcy. The present results indicate that plasma tHcy is at least partly regulated by phospholipid methylation from PE to PC. This methylation reaction is a regulator of physiological importance.
Collapse
Affiliation(s)
- Hanne Müller
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432 As, Norway.
| | | | | | | |
Collapse
|
27
|
Aller MA, Vara E, García C, Nava MP, Angulo A, Sánchez-Patán F, Calderón A, Vergara P, Arias J. Hepatic lipid metabolism changes in short- and long-term prehepatic portal hypertensive rats. World J Gastroenterol 2006; 12:6828-34. [PMID: 17106932 PMCID: PMC4087438 DOI: 10.3748/wjg.v12.i42.6828] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To verify the impairment of the hepatic lipid metabolism in prehepatic portal hypertension.
METHODS: The concentrations of free fatty acids, diacylglycerol, triglycerides, and phospholipids were assayed by using D-[U-14C] glucose incorporation in the different lipid fractions and thin-layer chromatography and cholesterol was measured by spectrophotometry, in liver samples of Wistar rats with partial portal vein ligation at short- (1 mo) and long-term (1 year) (i.e. portal hypertensive rats) and the control rats.
RESULTS: In the portal hypertensive rats, liver phospholipid synthesis significantly decreased (7.42 ± 0.50 vs 4.70 ± 0.44 nCi/g protein; P < 0.01) and was associated with an increased synthesis of free fatty acids (2.08 ± 0.14 vs 3.36 ± 0.33 nCi/g protein; P < 0.05), diacylglycerol (1.93 ± 0.2 vs 2.26 ± 0.28 nCi/g protein), triglycerides (2.40 ± 0.30 vs 4.49 ± 0.15 nCi/g protein) and cholesterol (24.28 ± 2.12 vs 57.66 ± 3.26 mg/g protein; P < 0.01).
CONCLUSION: Prehepatic portal hypertension in rats impairs the liver lipid metabolism. This impairment consists in an increase in lipid deposits (triglycerides, diacylglycerol and cholesterol) in the liver, accompanied by a decrease in phospholipid synthesis.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Surgery I Department, School of Medicine, Complutense University of Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
SZULCZEWSKA-REMI A, NOGALA-KALUCKA M, NOWAK K, RUDZINSKA M, CHALUPKA D. THE INFLUENCE OF DIET ENRICHED WITH RED PALM OIL ON THE FATTY ACID COMPOSITION OF PLASMA AND LIVER IN EXPERIMENTAL RATS. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1745-4522.2006.00040.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Caballero MJ, Gallardo G, Robaina L, Montero D, Fernández A, Izquierdo M. Vegetable lipid sources affect in vitro biosynthesis of triacylglycerols and phospholipids in the intestine of sea bream (Sparus aurata). Br J Nutr 2006; 95:448-54. [PMID: 16512929 DOI: 10.1079/bjn20051529] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the good growth performance of several fish species when dietary fish oil is partly replaced by vegetable oils, recent studies have reported several types of intestinal morphological alterations in cultured fish fed high contents of vegetable lipid sources. However, the physiological process implied in these morphological changes have not been clarified yet, since alterations in the physiological mechanisms involved in the different processes of lipid absorption could be responsible for such gut morphological features. The objective of the present study was to investigate the activities of reacylation pathways in fish, the glycerol-3-phosphate and the monoacylglycerol pathways, in order to clarify the intestinal triacylglycerol (TAG) and phospholipid biosynthesis to better understand the morphological alterations observed in the intestine of fish fed vegetable oils. Intestinal microsomes of sea bream fed different lipid sources (fish, soyabean and rapeseed oils) at three different inclusion levels were isolated and incubated with L-[(14)C(U)]glycerol-3-phosphate and [1-(14)C]palmitoyl CoA. The results showed that in this fish species the glycerol-3-phosphate pathway is mainly involved in phospholipid synthesis, whereas TAG synthesis is mainly mediated by the monoacylglycerol pathway. Feeding with rapeseed oil reduced the reacylation activity in both pathways, explaining the high accumulation of lipid droplets in the supranuclear portion of the intestinal epithelium, whereas soyabean oil enhanced phosphatidylcholine synthesis, being associated with the increase in VLDL found in previous studies.
Collapse
Affiliation(s)
- Maria José Caballero
- Department of Comparative Pathology, Las Palmas de Gran Canaria, Canary Islands, Spain.
| | | | | | | | | | | |
Collapse
|
30
|
Müller H, Hellgren LI, Olsen E, Skrede A. Lipids rich in phosphatidylethanolamine from natural gas-utilizing bacteria reduce plasma cholesterol and classes of phospholipids: a comparison with soybean oil. Lipids 2005; 39:833-41. [PMID: 15669758 DOI: 10.1007/s11745-004-1304-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We compared the effects of three different high-lipid diets on plasma lipoproteins and phospholipids in mink (Mustela vison). The 18 mink studied were fed one of the three diets during a 25-d period in a parallel group design. The compared diets had 0, 17, and 67% extracted lipids from natural gas-utilizing bacteria (LNGB), which were rich in PE. The group with 0% LNGB was fed a diet for which the lipid content was 100% soybean oil. The total cholesterol, LDL cholesterol, and HDL cholesterol of animals consuming a diet with 67% LNGB (67LNGB-diet), were significantly lowered by 35, 49, and 29%, respectively, and unesterified cholesterol increased by 17% compared with the animals fed a diet of 100% lipids from soybean oil (SB-diet). In addition, the ratio of LDL cholesterol to HDL cholesterol was 27% lower in mink fed the 67LNGB-diet than those fed the SB-diet. When the mink were fed the 67LNGB-diet, plasma PC, total phospholipids, lysoPC, and PI were lowered significantly compared with the mink fed a SB-diet. Plasma total cholesterol was correlated with total phospholipids as well as with PC (R = 0.8, P< 0.001). A significantly higher fecal excretion of unesterified cholesterol, cholesteryl ester, PC, lysoPC, and PE was observed in the 67LNGB-fed mink compared with the SB-fed mink. We conclude that phospholipids from the 67LNGB-diet decreased plasma lipoprotein levels, the LDL/HDL cholesterol ratio, and plasma phospholipid levels, especially lysoPC and PC, compared with the highly unsaturated soybean oil. Our findings indicate that the decrease of plasma cholesterol is mainly caused by a specific mixture of phospholipids containing a high level of PE, and not by the dietary FA composition. The lack of significant differences in the level of plasma PE due to the diets indicates that most of the PE from LNGB has been converted to PC in the liver. Thus, plasma cholesterol may at least be partly regulated by phospholipid methylation from PE to PC in the liver.
Collapse
Affiliation(s)
- Hanne Müller
- Department of Animal and Aquacultural Sciences, Agricultural University of Norway, N-1432 As, Norway.
| | | | | | | |
Collapse
|
31
|
Elabbadi N, Day CP, Gamouh A, Zyad A, Yeaman SJ. Relationship between the inhibition of phosphatidic acid phosphohydrolase-1 by oleate and oleoyl-CoA ester and its apparent translocation. Biochimie 2005; 87:437-43. [PMID: 15820750 DOI: 10.1016/j.biochi.2005.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 01/04/2005] [Indexed: 11/29/2022]
Abstract
Phosphatidic acid phosphohydrolase-1 (PAP-1) activity is reversibly inhibited by fatty acids and their acyl-CoA esters and it appears paradoxical that these effectors have been reported to increase the liver's esterification capacity by translocating the rate-limiting enzyme PAP-1 from cytosol to the endoplasmic reticulum. Therefore, we have examined the effect of oleate, oleoyl-CoA, and spermine on the activation and translocation of PAP-1 of rat liver. PAP-1 activity is directly inhibited by oleic acid and oleoyl-CoA ester in an allosteric manner, resulting in the formation of inactive PAP-1-fatty acid (or -acyl-CoA) complex, even in the absence of any subcellular structures. Such association/aggregation of PAP-1 can be easily collected by centrifugation and may explain the apparent translocation phenomenon of this enzyme to a particular structure in the presence of fatty acids or acyl-CoA esters as reported in many works. Indeed, incubation of cytosol fraction alone with oleate or oleoyl-CoA at 37 degrees C, followed by centrifugation, induces a significant increase (sevenfold) in PAP-1 activity in the pellet fraction. This displacement is accompanied by an increase in the specific activity of PAP-1 in the pellet fraction. Spermine is less effective than oleate in inducing the displacement of PAP-1 activity from cytosol to the pellet fraction in the absence of any membrane structures. This apparent translocation of PAP-1 is also promoted when homogenate fraction was incubated with oleate prior to the preparation of cytosol and microsomal fraction. Thus, many of the announced factors, including fatty acids, would promote the in vitro association/aggregation of PAP-1 enzyme rather than its translocation, and therefore, re-evaluation of the reported effects on PAP-1 translocation phenomenon is required. It is proposed that fatty acids and their esters would favour beta-oxidation over esterification by promoting the forming of inactive associated PAP-1 in situations such as starvation and metabolic stress in which there is an increased supply of fatty acids to the liver.
Collapse
Affiliation(s)
- N Elabbadi
- Laboratoire d'Immunologie, Biochimie et Biologie Moléculaire, Faculté des Sciences et Techniques, Université Cadi Ayyad, B.P. 523 Beni-Mellal, Morocco.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Identification of the genes and gene products involved in the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine has lagged behind that in many other fields because of difficulties encountered in purifying the respective proteins. Nevertheless, most of these genes have now been identified. In this review article, we have highlighted important new findings on the individual enzymes and the corresponding genes of phosphatidylcholine synthesis via its two major biosynthetic pathways: the CDP-choline pathway and the methylation pathway. We also review recent studies on phosphatidylethanolamine biosynthesis by two pathways: the CDP-ethanolamine pathway, which is active in the endoplasmic reticulum, and the phosphatidylserine decarboxylase pathway, which operates in mitochondria. Finally, the two base-exchange enzymes, phosphatidylserine synthase-1 and phosphatidylserine synthase-2, that synthesize phosphatidylserine in mammalian cells are also discussed.
Collapse
Affiliation(s)
- Jean E Vance
- Department of Medicine and CIHR Group on the Molecualr and Cell Biology of Lipids, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
33
|
Bleijerveld OB, Klein W, Vaandrager AB, Helms JB, Houweling M. Control of the CDPethanolamine pathway in mammalian cells: effect of CTP:phosphoethanolamine cytidylyltransferase overexpression and the amount of intracellular diacylglycerol. Biochem J 2004; 379:711-9. [PMID: 14759225 PMCID: PMC1224125 DOI: 10.1042/bj20031422] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 01/23/2004] [Accepted: 02/03/2004] [Indexed: 11/17/2022]
Abstract
For an insight regarding the control of PtdEtn (phosphatidylethanolamine) synthesis via the CDPethanolamine pathway, rat liver cDNA encoding ECT (CTP:phosphoethanolamine cytidylyltransferase) was transiently or stably transfected in Chinese-hamster ovary cells and a rat liver-derived cell line (McA-RH7777), resulting in a maximum of 26- and 4-fold increase in specific activity of ECT respectively. However, no effect of ECT overexpression on the rate of [3H]ethanolamine incorporation into PtdEtn was detected in both cell lines. This was explored further in cells overexpressing four times ECT activity (McA-ECT1). The rate of PtdEtn breakdown and PtdEtn mass were not changed in McA-ECT1 cells in comparison with control-transfected cells. Instead, an accumulation of CDPethanolamine (label and mass) was observed, suggesting that in McA-ECT1 cells the ethanolaminephosphotransferase-catalysed reaction became rate-limiting. However, overexpression of the human choline/ethanolaminephosphotransferase in McA-ECT1 and control-transfected cells had no effect on PtdEtn synthesis. To investigate whether the availability of DAG (diacylglycerol) limited PtdEtn synthesis in these cells, intracellular DAG levels were increased using PMA or phospholipase C. Exposure of cells to PMA or phospholipase C stimulated PtdEtn synthesis and this effect was much more pronounced in McA-ECT1 than in control-transfected cells. In line with this, the DAG produced after PMA exposure was consumed more rapidly in McA-ECT1 cells and the CDPethanolamine level decreased accordingly. In conclusion, our results suggest that the supply of CDPethanolamine, via the expression level of ECT, is an important factor governing the rate of PtdEtn biosynthesis in mammalian cells, under the condition that the amount of DAG is not limiting.
Collapse
Affiliation(s)
- Onno B Bleijerveld
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine and Institute of Biomembranes, University of Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Lin DS, Neuringer M, Connor WE. Selective changes of docosahexaenoic acid-containing phospholipid molecular species in monkey testis during puberty. J Lipid Res 2004; 45:529-35. [PMID: 14657201 DOI: 10.1194/jlr.m300374-jlr200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Puberty has a profound effect upon the biochemical composition of the testis. We previously demonstrated that puberty was accompanied by great increases in the content of docosahexaenoic acid (DHA; 22:6 n-3) and dihomogamma-linoleic acid (20:3 n-6) and decreases in arachidonic acid (AA; 20:4 n-6) in the phospholipids of testis. In this report, we analyze the composition of the phospholipid molecular species of the ethanolamine and choline glycerophospholipids in the testis of prepubertal (2 years old) and young adult (7-8 years old) monkeys, There was an increase in the DHA species and a decrease in arachidonic species. Interestingly, with few exceptions, among the three molecules with DHA or AA at the sn-2 position, only 16:0-22:6 and 18:0-20:4 changed selectively in opposite directions for both ethanolamine and choline glycerophospholipids. In contrast, there was no such selectivity seen in molecular species containing dihomogamma-linoleic acid or linoleic acid at the sn-2 position. All three dihomogamma-linoleic acid species increased and all three linoleic acid species decreased during puberty. In summary, at puberty, i.e., the onset of spermatogenesis, there are selective changes in the phospholipid molecular species, particularly those containing DHA and AA. These changes suggest a specific functional role of DHA-containing molecular species in the lipid bilayer membranes of sperm cells. A possible link between the composition of DHA-phospholipid molecular species and cellular function is discussed.
Collapse
Affiliation(s)
- Don S Lin
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97201, USA
| | | | | |
Collapse
|
35
|
Kerkhoff C, Kaever V. A systematic approach for the solubilization of the integral membrane protein lysophospholipid: Acyl-Coa acyltransferase (LAT). Methods Mol Biol 2004; 228:111-27. [PMID: 12824548 DOI: 10.1385/1-59259-400-x:111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Claus Kerkhoff
- Institute of Experimental Dermatology, University of Münster, Germany
| | | |
Collapse
|
36
|
Abstract
Metallic medical devices undergo degradation in vivo and the degradation products affect the chemistry and biological responses of cells and tissues in the immediate vicinity. The responses vary with the metal and cell type. In the current study, we examined the effects of several metals on a human monocytic cell line. Monocytes are important effector cells capable of responding rapidly to inflammatory and immune stimuli in a variety of ways, including production of inflammatory proteins, differential expression of surface adhesion molecules, enhanced phagocytic activity, and activation and differentiation to macrophages. Cells were exposed in the presence of (14)C-acetate to titanium, nickel, chromium, copper, or cobalt or vanadium at concentrations that were subinhibitory or inhibitory based on cellular mitochondrial dehydrogenase activity. Cell lipids were then extracted, separated by thin layer chromatography, and quantitated by liquid scintillation spectrometry. Total cell protein also was measured. Titanium reduced cell protein content at concentrations that were noninhibitory to mitochondrial dehydrogenase activity, whereas neither chromium nor cobalt affected protein amounts at dehydrogenase-inhibitory concentrations. In cells exposed to vanadium, the protein- and dehydrogenase-inhibitory concentrations were similar. The major effects on cell lipids appeared to occur in the neutral lipids, although chromium, cobalt, and titanium produced changes in some major phospholipids. These results suggest that metals differentially affect various metabolic pathways in THP-1 cells, perhaps related to their abilities to enter the cells or interact with the membrane. These alterations to the cells may affect the cells' abilities to respond to various stimuli that can damage the tissues.
Collapse
Affiliation(s)
- George S Schuster
- Department of Oral Biology and Maxillofacial Pathology, Medical College of Georgia, School of Dentistry, Augusta, Georgia 30912-1126, USA.
| | | |
Collapse
|
37
|
Datar R, Rueggeberg FA, Caughman GB, Wataha JC, Lewis J, Schuster GS. Effects of subtoxic concentrations of benzoyl peroxide on cell lipid metabolism. ACTA ACUST UNITED AC 2004; 71:685-92. [PMID: 15514964 DOI: 10.1002/jbm.a.30207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Benzoyl peroxide (BP), a tumor promoter, has been shown to cause free-radical-induced lipid peroxidation and membrane damage at toxic concentrations. However, its effects on lipid metabolism at concentrations that were not overtly toxic have not been investigated. The purpose of the current study was to examine the effects of BP and its final degradation product, benzoic acid (BA), on lipid metabolism. Two cell lines, hamster cheek pouch (HCP) and human monocytes (THP-1), were used to determine the effects of BP, BA, and BP combined with FeCl2 on cell lipid metabolism. Cells were exposed to BP and 14C acetate for 24 h, or cells with prelabeled lipids were harvested, and the lipids were extracted and separated with the use of thin-layer chromatography. Lipid metabolism of some neutral lipids such as triglycerides was altered for both cell types in response to BP. Also, cholesterol content was reduced in THP-1 cells and a phospholipid, phosphatidylethanolamine (PE), was reduced in HCP cells. The final degradation product of BP, BA, failed to elicit any response in lipid metabolism. Subtoxic concentrations of BP induced changes in neutral lipids such as triglycerides and cholesterol. The metabolism of major phospholipids except PE remained unchanged. The effects were related to BP and its degradation and varied with the cell type.
Collapse
Affiliation(s)
- R Datar
- Department of Oral Biology and Maxillofacial Pathology, School of Dentistry, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912, USA
| | | | | | | | | | | |
Collapse
|
38
|
Huff PW, Lozeman FJ, Kazala EC, Prozniak C, Wegner J, Deng J, Laroche A, Mir PS, Aalhus J, Weselake RJ. Stability of diacylglycerol acyltransferase in dehydrated bovine muscle tissue. Anal Biochem 2003; 318:254-9. [PMID: 12814629 DOI: 10.1016/s0003-2697(03)00216-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Meaningful estimates of diacylglycerol acyltransferase (EC 2.3.1.20) activity in different tissue samples require effective, unbiased methods of sample storage. Samples of the pars costalis diaphragmatis muscle (skirt muscle of the diaphragm) were obtained from 18- to 20-month-old cattle and assayed for microsomal protein content and diacylglycerol acyltransferase activity after having been stored under various conditions as dissected tissue or microsomes prepared from dissected tissue. There was relative enrichment of diacylglycerol acyltransferase specific activity (p<0.05) when samples prepared from the pars costalis diaphragmatis muscle were dehydrated and stored for 2 weeks, as compared to the control condition (in which the microsome fraction was prepared from fresh pars costalis diaphragmatis muscle and assayed immediately). The results suggested that dehydration was an effective method of storage for bovine muscle samples destined for estimation of the microsomal diacylglycerol acyltransferase activity. The dehydration approach for preparing samples for analysis of diacylglycerol acyltransferase activity might also prove useful to investigators who are interested in obtaining reliable estimates of the activity of other enzymes in tissue samples.
Collapse
Affiliation(s)
- Phillip W Huff
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gangar A, Raychaudhuri S, Rajasekharan R. Alteration in the cytosolic triacylglycerol biosynthetic machinery leads to decreased cell growth and triacylglycerol synthesis in oleaginous yeast. Biochem J 2002; 365:577-89. [PMID: 11972450 PMCID: PMC1222718 DOI: 10.1042/bj20011654] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2001] [Revised: 03/27/2002] [Accepted: 04/24/2002] [Indexed: 11/17/2022]
Abstract
Altered nutrient content (levels of glucose) caused a drastic reduction in cell growth and triacylglycerol (TAG) production in the wild-type (WT) Rhodotorula glutinis. This was due to the decreased level of synthesis of TAG biosynthetic enzymes, reflected by a reduction in enzyme activity. A similar observation was made in the case of non-lethal mutants of TAG-deficient oleaginous yeast, namely TAG1 and TAG2, which were generated by ethyl methane sulphonate mutagenesis. Metabolic labelling of TAG-deficient cells with [(14)C]acetate, [(32)P]orthophosphate and [(14)C]mevalonate showed a negligible TAG formation with minimal alterations in phospholipid and sterol compositions. Assays on the activities of cytosolic TAG biosynthetic enzymes revealed that lysophosphatidic acid and diacylglycerol acyltransferases (ATs) were defective in TAG1 and TAG2 respectively. The activity of membrane-bound isoforms of TAG biosynthetic enzymes remains unaltered in the mutants. Analysis of cytosolic TAG biosynthetic enzymes by immunoblotting and immunoprecipitation indicated that the defective ATs were a part of the TAG biosynthetic multienzyme complex. Quantitatively, the cytosolic lysophosphatidic acid-AT was comparable between TAG1 and the WT. However, diacylglycerol-AT was relatively less in TAG2 than the WT. These results demonstrated that either by decreasing the nutrient content or mutating the enzymes of the soluble TAG biosynthetic pathway, TAG production was decreased with concomitant reduction in the cell growth.
Collapse
Affiliation(s)
- Akanksha Gangar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
40
|
Vaandrager AB, Houweling M. Effect of ceramides on phospholipid biosynthesis and its implication for apoptosis. Subcell Biochem 2002; 36:207-27. [PMID: 12037983 DOI: 10.1007/0-306-47931-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Arie B Vaandrager
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, University of Utrecht, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | | |
Collapse
|
41
|
Roglans N, Verd JC, Peris C, Alegret M, Vázquez M, Adzet T, Díaz C, Hernández G, Laguna JC, Sánchez RM. High doses of atorvastatin and simvastatin induce key enzymes involved in VLDL production. Lipids 2002; 37:445-54. [PMID: 12056585 DOI: 10.1007/s11745-002-0916-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Treatments with high doses of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors may induce the expression of sterol regulatory element binding protein (SREBP)-target genes, causing different effects from those attributed to the reduction of hepatic cholesterol content. The aim of this study was to investigate the effects of high doses of statins on the key enzymes involved in VLDL production in normolipidemic rats. To examine whether the effects caused by statin treatment are a consequence of HMG-CoA reductase inhibition, we tested the effect of atorvastatin on these enzymes in mevalonate-fed rats. Atorvastatin and simvastatin enhanced not only HMG-CoA reductase but also the expression of the SREBP-2 gene itself. As a result of the overexpression of SREBP-2 caused by the statin treatment, genes regulated basically by SREBP-1, as FA synthase and acetyl-coenzyme A carboxylase, were also induced and their mRNA levels increased. DAG acyltransferase and microsomal TG transfer protein mRNA levels as well as phosphatidate phosphohydrolase activity were increased by both statins. Simvastatin raised liver cholesterol content, ACAT mRNA levels, and CTP:phosphocholine cytidylyltransferase activity, whereas it reduced liver DAG and phospholipid content. Mevalonate feeding reversed all changes induced by the atorvastatin treatment. These results show that treatment with high doses of statins induces key enzymes controlling rat liver lipid synthesis and VLDL assembly, probably as a result of SREBP-2 overexpression. Despite the induction of the key enzymes involved in VLDL production, both statins markedly reduced plasma TG levels, suggesting that different mechanisms may be involved in the hypotriglyceridemic effect of statins at high or low doses.
Collapse
Affiliation(s)
- Núria Roglans
- Departamento Farmacología y Química Terapéutica, Facultad de Farmacia, Núcleo Universitario de Pedralbes, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Elabbadi N, Day CP, Virden R, Yeaman SJ. Regulation of phosphatidic acid phosphohydrolase 1 by fatty acids. Lipids 2002; 37:69-73. [PMID: 11876265 DOI: 10.1007/s11745-002-0865-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the starved state and during metabolic stress, free fatty acids (FFA) are the principal hepatic energy supply, undergoing beta-oxidation. Accordingly, it appears paradoxical that FFA have been reported to increase the liver's esterification capacity by translocating the rate-limiting enzyme phosphatidic acid phosphohydrolase (PAP-1) from the cytosol to the endoplasmic reticulum. We have therefore investigated the regulation of rat liver PAP-1. Oleic acid inhibited PAP activity in all subcellular fractions, with PAP-1 activity in cytosol being the most sensitive. Inhibition was also observed with oleoyl-CoA, linoleate, and palmitate. Fatty acids and their derivatives show detergent effects at high concentrations, and such effects can lead to enzyme inhibition. Inhibition by oleate, however, was reversed by phosphatidic acid and albumin and exhibited sigmoidal kinetics. These results demonstrate that PAP-1 is reversibly inhibited by FFA and their CoA esters, which may play a role in directing hepatic FFA to beta-oxidation during times of increased energy demand.
Collapse
Affiliation(s)
- Noureddine Elabbadi
- School of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, United Kingdom
| | | | | | | |
Collapse
|
43
|
Lozeman FJ, Middleton CK, Deng J, Kazala EC, Verhaege C, Mir PS, Laroche A, Bailey DR, Weselake RJ. Characterization of microsomal diacylglycerol acyltransferase activity from bovine adipose and muscle tissue. Comp Biochem Physiol B Biochem Mol Biol 2001; 130:105-15. [PMID: 11470449 DOI: 10.1016/s1096-4959(01)00413-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The activity of the triacylglycerol bioassembly enzyme, diacylglycerol acyltransferase (DGAT), was characterized in microsomal fractions prepared from bovine subcutaneous (SC) adipose, intramuscular (IM) adipose, and muscle (pars costalis diaphragmatis) tissue. The activity of DGAT was generally higher from SC adipose tissue than from IM adipose or muscle tissue. The characteristics of DGAT activity from the three bovine tissues resembled the activity characteristics observed in previous studies from various other organisms and tissues; the pH optimum was near neutrality, the activity was almost completely inhibited by pre-incubation with N-ethylmaleimide (NEM), and the enzyme accepted a broad range of acyl-CoAs and sn-1,2-diacylglycerols. In some aspects, the SC adipose tissue DGAT activity was different from the DGAT activity from the other two tissues. The SC adipose tissue DGAT activity was not as susceptible to inhibition by NEM as the enzymes from the two other tissue sources, and it exhibited increased specificity for substrates containing oleoyl moieties. The differences in DGAT properties between the three bovine tissues may account to some extent for the differences in the relative fatty acid composition and the positional distribution of fatty acids in triacylglycerol between bovine tissues. The observed differences in enzymatic properties also support recent biochemical and molecular genetic observations that imply the existence of multiple DGAT genes and/or isoforms.
Collapse
Affiliation(s)
- F J Lozeman
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, T1K 3M4, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. PLANT PHYSIOLOGY 2001; 126:861-74. [PMID: 11402213 PMCID: PMC111175 DOI: 10.1104/pp.126.2.861] [Citation(s) in RCA: 333] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2001] [Accepted: 03/12/2001] [Indexed: 05/17/2023]
Abstract
We recently reported the cloning and characterization of an Arabidopsis (ecotype Columbia) diacylglycerol acyltransferase cDNA (Zou et al., 1999) and found that in Arabidopsis mutant line AS11, an ethyl methanesulfonate-induced mutation at a locus on chromosome II designated as Tag1 consists of a 147-bp insertion in the DNA, which results in a repeat of the 81-bp exon 2 in the Tag1 cDNA. This insertion mutation is correlated with an altered seed fatty acid composition, reduced diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) activity, reduced seed triacylglycerol content, and delayed seed development in the AS11 mutant. The effect of the insertion mutation on microsomal acyl-coenzyme A-dependent DGAT is examined with respect to DGAT activity and its substrate specificity in the AS11 mutant relative to wild type. We demonstrate that transformation of mutant AS11 with a single copy of the wild-type Tag1 DGAT cDNA can complement the fatty acid and reduced oil phenotype of mutant AS11. More importantly, we show for the first time that seed-specific over-expression of the DGAT cDNA in wild-type Arabidopsis enhances oil deposition and average seed weight, which are correlated with DGAT transcript levels. The DGAT activity in developing seed of transgenic lines was enhanced by 10% to 70%. Thus, the current study confirms the important role of DGAT in regulating the quantity of seed triacylglycerols and the sink size in developing seeds.
Collapse
Affiliation(s)
- C Jako
- Seed Oil Biotechnology Group, National Research Council of Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gulaya NM, Margitich VM, Govseeva NM, Klimashevsky VM, Gorpynchenko II, Boyko MI. Phospholipid composition of human sperm and seminal plasma in relation to sperm fertility. ARCHIVES OF ANDROLOGY 2001; 46:169-75. [PMID: 11339641 DOI: 10.1080/01485010151096405] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The phospholipid and fatty acid composition of sperm was studied in 8 healthy and 16 infertile men. Infertile men randomly formed from the patients with normal semen parameters according to WHO criterion. Therefore, all semen parameters of infertile patients were similar to the same characteristics of the semen of healthy men, except the abnormal forms. The amount of abnormal forms in infertile men was significantly higher than in healthy men. Sperm from infertile men show a drastic loss of phosphatidyl ethanolamine. At the same time, the significant increase of phosphatidyl serine in the sperm and seminal plasma of sterile patients was found. Lysophosphatidyl serine in the sperm of the infertile men was detected. Fatty acid composition of the semen of infertile men was altered. The levels of stearic and n-3 polyunsaturated fatty acids (eicosopentaenoic and docosahexaenoic acids) was dramatically lowered, but the values of some n-6 polyunsaturated fatty acids (linolenic and docosatetraenoic) acids increased. There was significant positive correlation between docosahexaenoic acid and sperm motility (r = .82, p < .001) and negative correlation between linolenic acid and spermatozoa motility (r = -0.58. p < .05). Infertility of men with normal semen quality can originate from the disorder of sperm lipid metabolism. The drastic loss of phosphatidyl ethanolamine and n-3 polyunsaturated fatty acids with simultaneous enhancement of phosphatidyl serine and some n-6 polyunsaturated fatty acids in sperm could be an important cause of male infertility.
Collapse
Affiliation(s)
- N M Gulaya
- Department of Lipid Biochemistry, O.V. Palladin Institute of Biochemistry, National Academy of Sciences, Kiev, Ukraine
| | | | | | | | | | | |
Collapse
|
46
|
Mishra S, Kamisaka Y. Purification and characterization of thiol-reagent-sensitive glycerol-3-phosphate acyltransferase from the membrane fraction of an oleaginous fungus. Biochem J 2001; 355:315-22. [PMID: 11284717 PMCID: PMC1221741 DOI: 10.1042/0264-6021:3550315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glycerol-3-phosphate acyltransferase (GPAT), responsible for the first committed, rate-limiting, step of glycerolipid synthesis, was purified to homogeneity from the membrane fraction of an oleaginous fungus, Mortierella ramanniana var. angulispora. The enzyme was solubilized from the membrane fraction by pretreatment with 0.05% Triton X-100 and treatment of the resulting pellet with 0.3% Triton X-100. The enzyme was subsequently purified by column chromatography on heparin-Sepharose, Yellow 86 agarose, a second heparin-Sepharose column, Superdex-200 and hydroxylapatite Bio-Gel. Enzyme activity was finally enriched 1308-fold over that of the starting membrane fraction. SDS/PAGE of the purified fraction revealed a single band with a molecular mass of 45 kDa. Native PAGE showed a major band that corresponded to GPAT activity. Enzyme activity was inhibited by thiol reagents, suggesting that it originated from microsomes rather than mitochondria. Purified GPAT depended on exogenous oleoyl-CoA and sn-glycerol-3-phosphate, with the highest activity at approx. 50 and 250 microM, respectively, and preferred oleoyl-CoA 5.4-fold over palmitoyl-CoA as an acyl donor. Anionic phospholipids, such as phosphatidic acid and phosphatidylserine, were absolutely required for activity of the purified enzyme, and their ability to activate GPAT was influenced by the purity of the GPAT preparation. Bivalent cations, such as Mg(2+) and Ca(2+), inhibited purified GPAT activity, whereas 5 mM Mn(2+) elevated activity approx. 2-fold. These results provide new insights into the molecular characterization of microsomal GPAT, which has not been well characterized compared with mitochondrial and plastidic GPAT.
Collapse
Affiliation(s)
- S Mishra
- Applied Microbiology Department, National Institute of Bioscience & Human Technology, Tsukuba, Ibaraki 305-8566, Japan
| | | |
Collapse
|
47
|
Coleman RA, Lewin TM, Muoio DM. Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr 2001; 20:77-103. [PMID: 10940327 DOI: 10.1146/annurev.nutr.20.1.77] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although triacylglycerol stores play the critical role in an organism's ability to withstand fuel deprivation and are strongly associated with such disorders as diabetes, obesity, and atherosclerotic heart disease, information concerning the enzymes of triacylglycerol synthesis, their regulation by hormones, nutrients, and physiological conditions, their mechanisms of action, and the roles of specific isoforms has been limited by a lack of cloned cDNAs and purified proteins. Fortunately, molecular tools for several key enzymes in the synthetic pathway are becoming available. This review summarizes recent studies of these enzymes, their regulation under varying physiological conditions, their purported roles in synthesis of triacylglycerol and related glycerolipids, the possible functions of different isoenzymes, and the evidence for specialized cellular pools of triacylglycerol and glycerolipid intermediates.
Collapse
Affiliation(s)
- R A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
48
|
Lykidis A, Wang J, Karim MA, Jackowski S. Overexpression of a mammalian ethanolamine-specific kinase accelerates the CDP-ethanolamine pathway. J Biol Chem 2001; 276:2174-9. [PMID: 11044454 DOI: 10.1074/jbc.m008794200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ethanolamine kinase (EKI) is the first committed step in phosphatidylethanolamine (PtdEtn) biosynthesis via the CDP-ethanolamine pathway. We identify a human cDNA encoding an ethanolamine-specific kinase EKI1 and the structure of the EKI1 gene located on chromosome 12. EKI1 overexpression in COS-7 cells results in a 170-fold increase in ethanolamine kinase-specific activity and accelerates the rate of [3H]ethanolamine incorporation into PtdEtn as a function of the ethanolamine concentration in the culture medium. Acceleration of the CDP-ethanolamine pathway does not result in elevated cellular PtdEtn levels, but rather the excess PtdEtn is degraded to glycerophosphoethanolamine. EKI1 has negligible choline kinase activity in vitro and does not influence phosphatidylcholine biosynthesis. Acceleration of the CDP-ethanolamine pathway also does not change the rate of PtdEtn formation via the decarboxylation of phosphatidylserine. The data demonstrate the existence of separate ethanolamine and choline kinases in mammals and show that ethanolamine kinase can be a rate-controlling step in PtdEtn biosynthesis.
Collapse
Affiliation(s)
- A Lykidis
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
49
|
Kerkhoff C, Trümbach B, Gehring L, Habben K, Schmitz G, Kaever V. Solubilization, partial purification and photolabeling of the integral membrane protein lysophospholipid:acyl-CoA acyltransferase (LAT). EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6339-45. [PMID: 11029575 DOI: 10.1046/j.1432-1327.2000.01724.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, we defined experimental conditions that allowed the extraction of the integral membrane protein lysophospholipid:acyl-CoA acyltransferase (LAT, EC 2.3.1.23) from membranes while maintaining the full enzyme activity using the nonionic detergent n-octyl glucopyranoside (OGP) and solutions of high ionic strength. We found that the optimal OGP concentration depended on the ionic strength of the solubilization buffer. Fluorescence measurements with 1,6-diphenyl-1,3,5-hexatriene indicated that the critical micellar concentration (CMC) of OGP decreased with increasing salt concentrations. Analogous studies revealed that the zwitterionic detergent Chaps was ineffective in extracting LAT from membranes in the absence of salt, whereas its solubilization efficiency increased with increasing salt concentrations. Detailed lipid analysis of the different protein/lipid/detergent mixed micelles showed that the protein/lipid/OGP mixed micelles were relatively enriched with sphingomyelin (SPM) compared to protein/lipid/Chaps mixed micelles, indicating that the differences in the solubilization efficiency may be due to the ability to extract more SPM from membranes. When the protein/lipid/OGP mixed micelles were dissociated into protein/detergent and lipid/detergent complexes by the addition of increasing Chaps concentrations, one-tenth of the LAT enzyme activity was preserved making the enzyme accessible to protein purification. Analysis by native PAGE revealed that in the presence of excess Chaps a high molecular mass protein complex migrated into the gel which could be photolabeled by 125I-labelled-18-(4'-azido-2'-hydroxybenzoylamino)-oleyl-CoA. This fatty acid analogue has been shown to be a competitive inhibitor of LAT enzyme activity in the dark, and an irreversible inhibitor after photolysis. Therefore, this protein complex is assumed to contain the LAT enzyme.
Collapse
Affiliation(s)
- C Kerkhoff
- Institute of Pharmacology, Medical School Hannover, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Lykidis A, Jackowski S. Regulation of mammalian cell membrane biosynthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:361-93. [PMID: 11008493 DOI: 10.1016/s0079-6603(00)65010-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This review explores current information on the interrelationship between phospholipid biochemistry and cell biology. Phosphatidylcholine is the most abundant phospholipid and it biosynthesis has been studied extensively. The choline cytidylyltransferase regulates phosphatidylcholine production, and recent advances in our understanding of the mechanisms that govern cytidylyltransferase include the discovery of multiple isoforms and a more complete understanding of the lipid regulation of enzyme activity. Similarities between phosphatidylcholine formation and the phosphatidylethanolamine and phosphatidylinositol biosynthetic pathways are discussed, together with current insight into control mechanisms. Membrane phospholipid doubling during cell cycle progression is a function of periodic biosynthesis and degradation. Membrane homeostasis is maintained by a phospholipase A-mediated degradation of excess phospholipid, whereas insufficient phosphatidylcholine triggers apoptosis in cells.
Collapse
Affiliation(s)
- A Lykidis
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|