1
|
Kiiski JI, Neuvonen M, Kurkela M, Hirvensalo P, Hämäläinen K, Tarkiainen EK, Sistonen J, Korhonen M, Khan S, Orpana A, Filppula AM, Lehtonen M, Niemi M. Solanidine is a sensitive and specific dietary biomarker for CYP2D6 activity. Hum Genomics 2024; 18:11. [PMID: 38303026 PMCID: PMC10835938 DOI: 10.1186/s40246-024-00579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Individual assessment of CYP enzyme activities can be challenging. Recently, the potato alkaloid solanidine was suggested as a biomarker for CYP2D6 activity. Here, we aimed to characterize the sensitivity and specificity of solanidine as a CYP2D6 biomarker among Finnish volunteers with known CYP2D6 genotypes. RESULTS Using non-targeted metabolomics analysis, we identified 9152 metabolite features in the fasting plasma samples of 356 healthy volunteers. Machine learning models suggested strong association between CYP2D6 genotype-based phenotype classes with a metabolite feature identified as solanidine. Plasma solanidine concentration was 1887% higher in genetically poor CYP2D6 metabolizers (gPM) (n = 9; 95% confidence interval 755%, 4515%; P = 1.88 × 10-11), 74% higher in intermediate CYP2D6 metabolizers (gIM) (n = 89; 27%, 138%; P = 6.40 × 10-4), and 35% lower in ultrarapid CYP2D6 metabolizers (gUM) (n = 20; 64%, - 17%; P = 0.151) than in genetically normal CYP2D6 metabolizers (gNM; n = 196). The solanidine metabolites m/z 444 and 430 to solanidine concentration ratios showed even stronger associations with CYP2D6 phenotypes. Furthermore, the areas under the receiver operating characteristic and precision-recall curves for these metabolic ratios showed equal or better performances for identifying the gPM, gIM, and gUM phenotype groups than the other metabolites, their ratios to solanidine, or solanidine alone. In vitro studies with human recombinant CYP enzymes showed that solanidine was metabolized mainly by CYP2D6, with a minor contribution from CYP3A4/5. In human liver microsomes, the CYP2D6 inhibitor paroxetine nearly completely (95%) inhibited the metabolism of solanidine. In a genome-wide association study, several variants near the CYP2D6 gene associated with plasma solanidine metabolite ratios. CONCLUSIONS These results are in line with earlier studies and further indicate that solanidine and its metabolites are sensitive and specific biomarkers for measuring CYP2D6 activity. Since potato consumption is common worldwide, this biomarker could be useful for evaluating CYP2D6-mediated drug-drug interactions and to improve prediction of CYP2D6 activity in addition to genotyping.
Collapse
Affiliation(s)
- Johanna I Kiiski
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Mikko Neuvonen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Mika Kurkela
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Päivi Hirvensalo
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Kreetta Hämäläinen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - E Katriina Tarkiainen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Johanna Sistonen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Genetics Laboratory, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mari Korhonen
- Genetics Laboratory, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Sofia Khan
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Genetics Laboratory, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Arto Orpana
- Genetics Laboratory, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Anne M Filppula
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Mikko Niemi
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
2
|
Ingelman-Sundberg M. Cytochrome P450 polymorphism: From evolution to clinical use. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:393-416. [PMID: 35953162 DOI: 10.1016/bs.apha.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cytochromes P450s can be divided in two groups, those of high importance for endogenous functions being evolutionary quite stable and those participating in detoxification of drugs and other xenobiotics having less important endogenous functions. In the latter group extensive genetic diversity has been allowed and in addition this is of high importance for survival in different environments. The genetic polymorphisms in these genes have evolved to some extent based on dietary restrictions and environmental factors and have not been subject of conservation due to less importance for survival. In cases of high dietary selection events, gene multiplication and amplification events have been seen. The different variants in genes encoding drug metabolizing enzymes can be used as genetic biomarkers (pharmacogenomic labels) for adjustment of drug treatment leading to less adverse drug reactions and better response. Indeed, this has improved the use of personalized medicine, although the missing heredity seen based on twin studies indicates that there are indeed many more genetic variants to be discovered before one can achieve a satisfactory relationship between genotype and phenotype with respect to drug metabolism and toxicity.
Collapse
Affiliation(s)
- Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Windley HR, Starrs D, Stalenberg E, Rothman JM, Ganzhorn JU, Foley WJ. Plant secondary metabolites and primate food choices: A meta-analysis and future directions. Am J Primatol 2022; 84:e23397. [PMID: 35700311 DOI: 10.1002/ajp.23397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/07/2022]
Abstract
The role of plant secondary metabolites (PSMs) in shaping the feeding decisions, habitat suitability, and reproductive success of herbivorous mammals has been a major theme in ecology for decades. Although primatologists were among the first to test these ideas, studies of PSMs in the feeding ecology of non-human primates have lagged in recent years, leading to a recent call for primatologists to reconnect with phytochemists to advance our understanding of the primate nutrition. To further this case, we present a formal meta-analysis of diet choice in response to PSMs based on field studies on wild primates. Our analysis of 155 measurements of primate feeding response to PSMs is drawn from 53 studies across 43 primate species which focussed primarily on the effect of three classes of PSMs tannins, phenolics, and alkaloids. We found a small but significant effect of PSMs on the diet choice of wild primates, which was largely driven by the finding that colobine primates showed a moderate aversion to condensed tannins. Conversely, there was no evidence that PSMs had a significant deterrent effect on food choices of non-colobine primates when all were combined into a single group. Furthermore, within the colobine primates, no other PSMs influenced feeding choices and we found no evidence that foregut anatomy significantly affected food choice with respect to PSMs. We suggest that methodological improvements related to experimental approaches and the adoption of new techniques including metabolomics are needed to advance our understanding of primate diet choice.
Collapse
Affiliation(s)
- Hannah R Windley
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,Wildlife Ecology Laboratory, Department of Wildlife Biology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Danswell Starrs
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Eleanor Stalenberg
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,Hawkesbury Institute of the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Jessica M Rothman
- Department of Anthropology, Hunter College of the City University of New York, and New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Joerg U Ganzhorn
- Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
| | - William J Foley
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Stocco MR, Tyndale RF. Cytochrome P450 enzymes and metabolism of drugs and neurotoxins within the mammalian brain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:73-106. [PMID: 35953164 DOI: 10.1016/bs.apha.2022.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 enzymes (CYPs) that metabolize xenobiotics are expressed and active in the brain. These CYPs contribute to the metabolism of many centrally acting compounds, including clinically used drugs, drugs of abuse, and neurotoxins. Although CYP levels are lower in the brain than in the liver, they may influence central substrate and metabolite concentrations, which could alter resulting centrally-mediated responses to these compounds. Additionally, xenobiotic metabolizing CYPs are highly variable due to genetic polymorphisms and regulation by endogenous and xenobiotic molecules. In the brain, these CYPs are sensitive to xenobiotic induction. As a result, CYPs in the brain vary widely, including among humans, and this CYP variation may influence central metabolism and resulting response to centrally acting compounds. It has been demonstrated, using experimental manipulation of CYP activity in vivo selectively within the brain, that CYP metabolism in the brain alters central substrate and metabolite concentrations, as well as drug response and neurotoxic effects. This suggests that variability in xenobiotic metabolizing CYPs in the human brain may meaningfully contribute to individual differences in response to, and effects of, centrally acting drugs and neurotoxins. This chapter will provide an overview of CYP expression in the brain, endogenous- and xenobiotic-mediated CYP regulation, and the functional impact of CYP-mediated metabolism of drugs and neurotoxins in the brain, with a focus on experimental approaches in mice, rats, and non-human primates, and a discussion regarding the potential role of xenobiotic metabolizing CYPs in the human brain.
Collapse
Affiliation(s)
- Marlaina R Stocco
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Wang Y, Tian J, Han Q, Zhang Y, Liu Z. Genomic organization and expression pattern of cytochrome P450 genes in the wolf spider Pardosa pseudoannulata. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109118. [PMID: 34182095 DOI: 10.1016/j.cbpc.2021.109118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
As one of the dominant natural enemies for insect pests, the pond wolf spider, Pardosa pseudoannulata, plays important roles in pest control. Insecticide applications threaten P. pseudoannulata and consequently weaken its control effects. The roles of P450 monooxygenases in insecticide detoxifications have been richly reported in insects, but there are few reported in spiders. In this study, 120 transcripts encoding P. pseudoannulata P450s were identified based on whole genome sequencing. Compared to P450s of Aedes aegypti and Nilaparvata lugens, several novel P450 families were found, such as CYP3310. KEGG analysis of the CYP3310 family indicated that the family might be involved in the synthesis and metabolism of polyunsaturated fatty acids and hydrocarbons. The potential P450s involved in insecticide metabolism were obtained according to the high FPKM values in fat bodies based on transcriptome sequencing. However, none of the selected P450 genes was significantly upregulated by the treatments of deltamethrin or imidacloprid. The present study provides genomic and transcriptomic information of spider P450s, especially for their roles in the synthesis and metabolism of endogenous and exogenous compounds, such as polyunsaturated fatty acids, hydrocarbons and insecticides.
Collapse
Affiliation(s)
- Yunchao Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Jiahua Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Qianqian Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
6
|
In Silico Structural, Functional, and Phylogenetic Analysis of Cytochrome (CYPD) Protein Family. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5574789. [PMID: 34046497 PMCID: PMC8128545 DOI: 10.1155/2021/5574789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Cytochrome (CYP) enzymes catalyze the metabolic reactions of endogenous and exogenous compounds. The superfamily of enzymes is found across many organisms, regardless of type, except for plants. Information was gathered about CYP2D enzymes through protein sequences of humans and other organisms. The secondary structure was predicted using the SOPMA. The structural and functional study of human CYP2D was conducted using ProtParam, SOPMA, Predotar 1.03, SignalP, TMHMM 2.0, and ExPASy. Most animals shared five central motifs according to motif analysis results. The tertiary structure of human CYP2D, as well as other animal species, was predicted by Phyre2. Human CYP2D proteins are heavily conserved across organisms, according to the findings. This indicates that they are descended from a single ancestor. They calculate the ratio of alpha-helices to extended strands to beta sheets to random coils. Most of the enzymes are alpha-helix, but small amounts of the random coil were also found. The data were obtained to provide us with a better understanding of mammalian proteins' functions and evolutionary relationships.
Collapse
|
7
|
Rao T, Tan Z, Peng J, Guo Y, Chen Y, Zhou H, Ouyang D. The pharmacogenetics of natural products: A pharmacokinetic and pharmacodynamic perspective. Pharmacol Res 2019; 146:104283. [PMID: 31129178 DOI: 10.1016/j.phrs.2019.104283] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 11/19/2022]
Abstract
Natural products have represented attractive alternatives for disease prevention and treatment over the course of human history and have contributed to the development of modern drugs. These natural products possess beneficial efficacies as well as adverse efffects, which vary largely among individuals because of genetic variations in their pharmacokinetics and pharmacodynamics. As with other synthetic chemical drugs, the dosing of natural products can be optimized to improve efficacy and reduce toxicity according to the pharmacogenetic properties. With the emergence and development of pharmacogenomics, it is possible to discover and identify the targets/mechanisms of pharmacological effects and therapeutic responses of natural products effectively and efficiently on the whole genome level. This review covers the effects of genetic variations in drug metabolizing enzymes, drug transporters, and direct and indirect interactions with the pharmacological targets/pathways on the individual response to natural products, and provides suggestions on dosing regimen adjustments of natural products based on their pharmacokinetic and pharmacogenetic paratmeters. Finally, we provide our viewpoints on the importance and necessity of pharmacogenetic and pharmacogenomic research of natural products in natural medicine's rational development and clinical application of precision medicine.
Collapse
Affiliation(s)
- Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Jingbo Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China.
| |
Collapse
|
8
|
Feng P, Liu Z. Complex gene expansion of the CYP2D gene subfamily. Ecol Evol 2018; 8:11022-11030. [PMID: 30519424 PMCID: PMC6262912 DOI: 10.1002/ece3.4568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 08/08/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022] Open
Abstract
Cytochrome P450 (CYP) superfamily genes encode enzymes that play a role in metabolizing endogenous compounds and in detoxifying exogenous chemicals. The CYP2D subfamily is a member of the CYP2 family, and its gene expansion in herbivores is presumably linked with the need to detoxify abundant plant toxins in the diet, which indicates that CYP2D gene expansion is associated with dietary preferences. To test this hypothesis, the dietary information and CYP2D gene number for 73 vertebrates from different taxonomic groups including 22 mammals, 49 birds, 1 reptile, and 1 amphibian were collected, and correlation analysis and ANOVA were conducted. The results showed that most species (45/73) had only one CYP2D gene, despite their different diets, and dietary preferences were not correlated with CYP2D gene numbers. Specifically, the majority of birds and 7 mammals had only 1 CYP2D gene, and the CYP2D gene number of mammals ranged from 1 to 11, irrespective of their feeding habits. Species with a CYP2D gene number ≥5 included carnivores, herbivores, and omnivores. Furthermore, statistical analyses revealed that no significant correlation existed between dietary preferences and CYP2D gene number, and there was no significant CYP2D gene number variation among species with different dietary preferences, regardless of whether all vertebrates or specific lineages were considered. Furthermore, gene dynamics which indicated by gene duplication events and loss events showed that CYP2D gene number variation had no relationship with diet, suggesting that diet was not a driving force of CYP2D gene expansion and that CYP2D gene expansion was more complex than previously recognized.
Collapse
Affiliation(s)
- Ping Feng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
- College of Life SciencesGuangxi Normal UniversityGuilinChina
| | - Zhijun Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
- College of Life SciencesGuangxi Normal UniversityGuilinChina
| |
Collapse
|
9
|
Yasukochi Y, Satta Y. Molecular evolution of the CYP2D subfamily in primates: purifying selection on substrate recognition sites without the frequent or long-tract gene conversion. Genome Biol Evol 2015; 7:1053-67. [PMID: 25808902 PMCID: PMC4419802 DOI: 10.1093/gbe/evv056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2015] [Indexed: 01/21/2023] Open
Abstract
The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa, 240-0193 Japan
| |
Collapse
|
10
|
Wang A, Stout CD, Zhang Q, Johnson EF. Contributions of ionic interactions and protein dynamics to cytochrome P450 2D6 (CYP2D6) substrate and inhibitor binding. J Biol Chem 2015; 290:5092-5104. [PMID: 25555909 PMCID: PMC4335244 DOI: 10.1074/jbc.m114.627661] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/30/2014] [Indexed: 11/06/2022] Open
Abstract
P450 2D6 contributes significantly to the metabolism of >15% of the 200 most marketed drugs. Open and closed crystal structures of P450 2D6 thioridazine complexes were obtained using different crystallization conditions. The protonated piperidine moiety of thioridazine forms a charge-stabilized hydrogen bond with Asp-301 in the active sites of both complexes. The more open conformation exhibits a second molecule of thioridazine bound in an expanded substrate access channel antechamber with its piperidine moiety forming a charge-stabilized hydrogen bond with Glu-222. Incubation of the crystalline open thioridazine complex with alternative ligands, prinomastat, quinidine, quinine, or ajmalicine, displaced both thioridazines. Quinine and ajmalicine formed charge-stabilized hydrogen bonds with Glu-216, whereas the protonated nitrogen of quinidine is equidistant from Asp-301 and Glu-216 with protonated nitrogen H-bonded to a water molecule in the access channel. Prinomastat is not ionized. Adaptations of active site side-chain rotamers and polypeptide conformations were evident between the complexes, with the binding of ajmalicine eliciting a closure of the open structure reflecting in part the inward movement of Glu-216 to form a hydrogen bond with ajmalicine as well as sparse lattice restraints that would hinder adaptations. These results indicate that P450 2D6 exhibits sufficient elasticity within the crystal lattice to allow the passage of compounds between the active site and bulk solvent and to adopt a more closed form that adapts for binding alternative ligands with different degrees of closure. These crystals provide a means to characterize substrate and inhibitor binding to the enzyme after replacement of thioridazine with alternative compounds.
Collapse
Affiliation(s)
- An Wang
- From the Department of Molecular and Experimental Medicine and
| | - C David Stout
- the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Qinghai Zhang
- the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Eric F Johnson
- From the Department of Molecular and Experimental Medicine and.
| |
Collapse
|
11
|
Lazalde-Ramos BP, Martínez-Fierro MDLL, Galaviz-Hernández C, Garza-Veloz I, Naranjo MEG, Sosa-Macías M, Llerena A. CYP2D6 gene polymorphisms and predicted phenotypes in eight indigenous groups from northwestern Mexico. Pharmacogenomics 2014; 15:339-48. [PMID: 24533713 DOI: 10.2217/pgs.13.203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Polymorphisms in CYP2D6 impact the interindividual and interethnic variability of drug efficiency; therefore, we determined the CYP2D6 allele distribution in eight Amerindian groups from northwestern Mexico and compared them with the frequencies in Mexican Mestizos. MATERIALS & METHODS A total of 508 Amerindians were studied. Genotyping of CYP2D6*5 and multiplication alleles was performed by long-range PCR, while CYP2D6*2, *3, *4, *6, *10, *17, *29, *35, *41 and copy number were evaluated by real-time PCR. RESULTS The most frequent alleles were CYP2D6*2 (0.05-0.28), CYP2D6*4 (0.003-0.21) and multiplications (0.043-0.107). CYP2D6*5, *6, * 10 and *41 were not observed in the majority of Amerindians, and CYP2D6*3, *17, *35 and *29 were not detected. The poor metabolizer genotype ( *4/*5) was lower (0.2%) in Amerindians than in Mestizos (5%); conversely, the ultrarapid metabolizer genotype was higher (12.6%) in indigenous groups than in Mestizos (7%). CONCLUSION Our data show a lower frequency of CYP2D6 inactive alleles and a higher frequency of duplication/multiplication of CYP2D6 active alleles in indigenous populations that in Mestizos. Original submitted 14 August 2013; Revision submitted 7 October 2013.
Collapse
Affiliation(s)
- Blanca Patricia Lazalde-Ramos
- Laboratorio de Medicina Molecular, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas, México
| | | | | | | | | | | | | |
Collapse
|
12
|
Tydén E, Tjälve H, Larsson P. Gene and protein expression and cellular localisation of cytochrome P450 enzymes of the 1A, 2A, 2C, 2D and 2E subfamilies in equine intestine and liver. Acta Vet Scand 2014; 56:69. [PMID: 25288196 PMCID: PMC4192735 DOI: 10.1186/s13028-014-0069-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/03/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Among the cytochrome P450 enzymes (CYP), families 1-3 constitute almost half of total CYPs in mammals and play a central role in metabolism of a wide range of pharmaceuticals. This study investigated gene and protein expression and cellular localisation of CYP1A, CYP2A, CYP2C, CYP2D and CYP2E in equine intestine and liver. Real-time polymerase chain reaction (RT-PCR) was used to analyse gene expression, western blot to examine protein expression and immunohistochemical analyses to investigate cellular localisation. RESULTS CYP1A and CYP2C were the CYPs with the highest gene expression in the intestine and also showed considerable gene expression in the liver. CYP2E and CYP2A showed the highest gene expression in the liver. CYP2E showed moderate intestinal gene expression, whereas that of CYP2A was very low or undetectable. For CYP2D, rather low gene expression levels were found in both intestine and the liver. In the intestine, CYP gene expression levels, except for CYP2E, exhibited patterns resembling those of the proteins, indicating that intestinal protein expression of these CYPs is regulated at the transcriptional level. For CYP2E, the results showed that the intestinal gene expression did not correlate to any visible protein expression, indicating that intestinal protein expression of this CYP is regulated at the post-transcriptional level. Immunostaining of intestine tissue samples showed preferential CYP staining in enterocytes at the tips of intestinal villi in the small intestine. In the liver, all CYPs showed preferential localisation in the centrilobular hepatocytes. CONCLUSIONS Overall, different gene expression profiles were displayed by the CYPs examined in equine intestine and liver. The CYPs present in the intestine may act in concert with those in the liver to affect the oral bioavailability and therapeutic efficiency of substrate drugs. In addition, they may play a role in first-pass metabolism of feed constituents and of herbal supplements used in equine practice.
Collapse
Affiliation(s)
- Eva Tydén
- Department of Biomedical Sciences and Veterinary Public Health, Division of Pathology, Pharmacology and Toxicology, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
| | - Hans Tjälve
- Department of Biomedical Sciences and Veterinary Public Health, Division of Pathology, Pharmacology and Toxicology, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
| | - Pia Larsson
- Department of Biomedical Sciences and Veterinary Public Health, Division of Pathology, Pharmacology and Toxicology, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
| |
Collapse
|
13
|
Vaglini F, Viaggi C, Piro V, Pardini C, Gerace C, Scarselli M, Corsini GU. Acetaldehyde and parkinsonism: role of CYP450 2E1. Front Behav Neurosci 2013; 7:71. [PMID: 23801948 PMCID: PMC3689266 DOI: 10.3389/fnbeh.2013.00071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/01/2013] [Indexed: 11/23/2022] Open
Abstract
The present review update the relationship between acetaldehyde (ACE) and parkinsonism with a specific focus on the role of P450 system and CYP 2E1 isozyme particularly. We have indicated that ACE is able to enhance the parkinsonism induced in mice by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin able to damage the nigrostriatal dopaminergic pathway. Similarly diethyldithiocarbamate, the main metabolite of disulfiram, a drug widely used to control alcoholism, diallylsulfide (DAS) and phenylisothiocyanate also markedly enhance the toxin-related parkinsonism. All these compounds are substrate/inhibitors of CYP450 2E1 isozyme. The presence of CYP 2E1 has been detected in the dopamine (DA) neurons of rodent Substantia Nigra (SN), but a precise function of the enzyme has not been elucidated yet. By treating CYP 2E1 knockout (KO) mice with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, the SN induced lesion was significantly reduced when compared with the lesion observed in wild-type animals. Several in vivo and in vitro studies led to the conclusion that CYP 2E1 may enhance the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice by increasing free radical production inside the dopaminergic neurons. ACE is a good substrate for CYP 2E1 enzyme as the other substrate-inhibitors and by this way may facilitate the susceptibility of dopaminergic neurons to toxic events. The literature suggests that ethanol and/or disulfiram may be responsible for toxic parkinsonism in human and it indicates that basal ganglia are the major targets of disulfiram toxicity. A very recent study reports that there are a decreased methylation of the CYP 2E1 gene and increased expression of CYP 2E1 mRNA in Parkinson's disease (PD) patient brains. This study suggests that epigenetic variants of this cytochrome contribute to the susceptibility, thus confirming multiples lines of evidence which indicate a link between environmental toxins and PD.
Collapse
Affiliation(s)
- Francesca Vaglini
- Department of Translational Research and New Technology in Medicine, University of PisaPisa, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Yasukochi Y, Satta Y. Evolution of the CYP2D gene cluster in humans and four non-human primates. Genes Genet Syst 2011; 86:109-16. [PMID: 21670550 DOI: 10.1266/ggs.86.109] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The human cytochrome P450 2D6 (CYP2D6) is a primary enzyme involved in the metabolism of about 25% of commonly used therapeutic drugs. CYP2D6 belongs to the CYP2D subfamily, a gene cluster located on chromosome 22, which comprises the CYP2D6 gene and pseudogenes CYP2D7P and CYP2D8P. Although the chemical and physiological properties of CYP2D6 have been extensively studied, there has been no study to date on molecular evolution of the CYP2D subfamily in the human genome. Such knowledge could greatly contribute to the understanding of drug metabolism in humans because it makes us to know when and how the current metabolic system has been constructed. The knowledge moreover can be useful to find differences in exogenous substrates in a particular metabolism between human and other animals such as experimental animals. Here, we conducted a preliminary study to investigate the evolution and gene organization of the CYP2D subfamily, focused on humans and four non-human primates (chimpanzees, orangutans, rhesus monkeys, and common marmosets). Our results indicate that CYP2D7P has been duplicated from CYP2D6 before the divergence between humans and great apes, whereas CYP2D6 and CYP2D8P have been already present in the stem lineages of New World monkeys and Catarrhini. Furthermore, the origin of the CYP2D subfamily in the human genome can be traced back to before the divergence between amniotes and amphibians. Our analyses also show that reported chimeric sequences of the CYP2D6 and CYP2D7 genes in the chimpanzee genome appear to be exchanged in its genome database.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Evolutionary Studies of Biosystems, the Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193, Japan.
| | | |
Collapse
|
16
|
Abstract
Herbal usage remains popular as an alternative or complementary form of treatment, especially in Africa. However, the misconception that herbal remedies are safe due to their "natural" origins jeopardizes human safety, as many different interactions can occur with concomitant use with other pharmaceuticals on top of potential inherent toxicity. Cytochrome P450 enzymes are highly polymorphic, and pose a problem for pharmaceutical drug tailoring to meet an individual's specific metabolic activity. The influence of herbal remedies further complicates this. The plants included in this review have been mainly researched for determining their effect on cytochrome P450 enzymes and P-glycoprotein drug transporters. Usage of herbal remedies, such as Hypoxis hemerocallidea, Sutherlandia frutescens and Harpagophytum procumbensis popular in Africa. The literature suggests that there is a potential for drug-herb interactions, which could occur through alterations in metabolism and transportation of drugs. Research has primarily been conducted in vitro, whereas in vivo data are lacking. Research concerning the effect of African herbals on drug metabolism should also be approached, as specific plants are especially popular in conjunction with certain treatments. Although these interactions can be beneficial, the harm they pose is just as great.
Collapse
Affiliation(s)
- Werner Cordier
- Department of Pharmacology, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
17
|
Murray M. Role of CYP pharmacogenetics and drug-drug interactions in the efficacy and safety of atypical and other antipsychotic agents. J Pharm Pharmacol 2010; 58:871-85. [PMID: 16805946 DOI: 10.1211/jpp.58.7.0001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Cytochrome P450 (CYP) drug oxidases play a pivotal role in the elimination of antipsychotic agents, and therefore influence the toxicity and efficacy of these drugs. Factors that affect CYP function and expression have a major impact on treatment outcomes with antipsychotic agents. In particular, aspects of CYP pharmacogenetics, and the processes of CYP induction and inhibition all influence in-vivo rates of drug elimination. Certain CYPs that mediate the oxidation of antipsychotic drugs exhibit genetic variants that may influence in-vivo activity. Thus, single nucleotide polymorphisms (SNPs) in CYP genes have been shown to encode enzymes that have decreased drug oxidation capacity. Additionally, psychopharmacotherapy has the potential for drug-drug inhibitory interactions involving CYPs, as well as drug-mediated CYP induction. Literature evidence supports a role for CYP1A2 in the clearance of the atypical antipsychotics clozapine and olanzapine; CYP1A2 is inducible by certain drugs and environmental chemicals. Recent studies have suggested that specific CYP1A2 variants possessing individual SNPs, and possibly also SNP combinations (haplotypes), in the 5′-regulatory regions may respond differently to inducing chemicals. CYP2D6 is an important catalyst of the oxidation of chlorpromazine, thioridazine, risperidone and haloperidol. Certain CYP2D6 allelic variants that encode enzymes with decreased drug oxidation capacity are more common in particular ethnic groups, which may lead to adverse effects with standard doses of psychoactive drugs. Thus, genotyping may be useful for dose optimization with certain psychoactive drugs that are substrates for CYP2D6. However, genotyping for inducible CYPs is unlikely to be sufficient to direct therapy with all antipsychotic agents. In-vivo CYP phenotyping with cocktails of drug substrates may assist at the commencement of therapy, but this approach could be complicated by pharmacokinetic interactions if applied when an antipsychotic drug regimen is ongoing.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
18
|
Dagliyan O, Kavakli IH, Turkay M. Classification of cytochrome P450 inhibitors with respect to binding free energy and pIC50 using common molecular descriptors. J Chem Inf Model 2009; 49:2403-11. [PMID: 19777996 DOI: 10.1021/ci900247t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Virtual screening of chemical libraries following experimental assays of drug candidates is a common procedure in structure based drug discovery. However, the relationship between binding free energies and biological activities (pIC50) of drug candidates is still an unsolved issue that limits the efficiency and speed of drug development processes. In this study, the relationship between them is investigated based on a common molecular descriptor set for human cytochrome P450 enzymes (CYPs). CYPs play an important role in drug-drug interactions, drug metabolism, and toxicity. Therefore, in silico prediction of CYP inhibition by drug candidates is one of the major considerations in drug discovery. The combination of partial least-squares regression (PLSR) and a variety of classification algorithms were employed by considering this relationship as a classification problem. Our results indicate that PLSR with classification is a powerful tool to predict more than one output such as binding free energy and pIC50 simultaneously. PLSR with mixed-integer linear programming based hyperboxes predicts the binding free energy and pIC50 with a mean accuracy of 87.18% (min: 81.67% max: 97.05%) and 88.09% (min: 79.83% max: 92.90%), respectively, for the cytochrome p450 superfamily using the common 6 molecular descriptors with a 10-fold cross-validation.
Collapse
Affiliation(s)
- Onur Dagliyan
- Department of Chemical and Biological Engineering, College of Engineering and Center for Computational Biology and Bioinformatics, Koç University, Rumelifeneri yolu, Sariyer, Istanbul, 34450 Turkey
| | | | | |
Collapse
|
19
|
Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. THE PHARMACOGENOMICS JOURNAL 2005; 5:6-13. [PMID: 15492763 DOI: 10.1038/sj.tpj.6500285] [Citation(s) in RCA: 757] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CYP2D6 is of great importance for the metabolism of clinically used drugs and about 20-25% of those are metabolised by this enzyme. In addition, the enzyme utilises hydroxytryptamines as endogenous substrates. The polymorphism of the enzyme results in poor, intermediate, efficient or ultrarapid metabolisers (UMs) of CYP2D6 drugs. It is plausible that the UM genotype, where more than one active gene on one allele occurs, is the outcome of selective dietary selection in certain populations in North East Africa. The UM phenotype affects 5.5% of the population in Western Europe. A hypothesis for the evolutionary basis behind selection for CYP2D6 gene duplications is presented in relation to selection for Cyp6 variants in insecticide resistant Drosophila strains. The polymorphism of CYP2D6 significantly affects the pharmacokinetics of about 50% of the drugs in clinical use, which are CYP2D6 substrates. The consequences of the polymorphism at ordinary drug doses can be either adverse drug reactions or no drug response. Examples are presented where CYP2D6 polymorphism affects the efficacy and costs of drug treatment. Predictive CYP2D6 genotyping is estimated by the author to be beneficial for treatment of about 30-40% of CYP2D6 drug substrates, that is, for about 7-10% of all drugs clinically used, although prospective clinical studies are necessary to evaluate the exact benefit of drug selection and dosage based on the CYP2D6 genotype.
Collapse
Affiliation(s)
- M Ingelman-Sundberg
- Division of Molecular Toxicology, IMM, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Usia T, Watabe T, Kadota S, Tezuka Y. Cytochrome P450 2D6 (CYP2D6) Inhibitory Constituents of Catharanthus roseus. Biol Pharm Bull 2005; 28:1021-4. [PMID: 15930738 DOI: 10.1248/bpb.28.1021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The MeOH-soluble fraction of the water extract of Catharanthus roseus from Indonesia, having shown potent inhibitory activity on the metabolism mediated by CYP2D6, was subjected to activity-guided isolation to yield two triterpenes, ursolic acid (1) and oleanolic acid (2), and three alkaloids, vindoline (3), ajmalicine (4), and serpentine (5). The isolated compounds were tested for their inhibitory activity on the metabolism mediated by CYP3A4 or CYP2D6 using [N-methyl-14C]erythromycin or [O-methyl-14C]dextromethorphan as a substrate, respectively. Ajmalicine (4) and serpentine (5) showed very potent inhibitory activity against CYP2D6 with IC50 values of 0.0023 and 3.51 microM, respectively. All isolated compounds showed weak or no inhibition against CYP3A4. On time-, concentration-, and NADPH-dependent assay, serpentine (5) appear to be the mechanism-based inhibitor for CYP2D6 enzyme in which the inhibition was irreversible and driven by catalytic process. K(I) and k(inact) values for serpentine (5) were 0.148 microM and 0.090 min-1, respectively. On the other hand, ajmalicine (4) showed no time-dependent inhibition or reversible inhibition, and thus appear to be not mechanism-based inhibitor.
Collapse
Affiliation(s)
- Tepy Usia
- Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | |
Collapse
|
21
|
Lin JJ, Yueh KC, Chang DC, Chang CY, Yeh YH, Lin SZ. The homozygote 10-copy genotype of variable number tandem repeat dopamine transporter gene may confer protection against Parkinson's disease for male, but not to female patients. J Neurol Sci 2003; 209:87-92. [PMID: 12686408 DOI: 10.1016/s0022-510x(03)00002-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the role of variable number tandem repeat (VNTR) polymorphism of the dopamine transporter gene (DAT) in the pathogenesis of Parkinson's disease (PD) in Taiwanese. A case-control study was carried out to examine the association of the VNTR polymorphism within the DAT between 193 sporadic PD patients and 254 controls, matched by age and sex. Six alleles of VNTR polymorphism in the DAT, consisting of 6, 7, 8, 9, 10 and 11 copies of the 40-base-pair (bp) repeat sequence, were detected in the study. There were no differences of allele frequency (chi(2)=5.239, p=0.387) and genotype polymorphism of the DAT VNTR (chi(2)=11.873, p=0.157) in PD patients from the controls. Further analysis stratified by sex and age at onset did not show associations. However, PD patients carrying homozygote 10-copy genotype of the DAT VNTR polymorphism were 0.67 times fewer than controls (chi(2)=4.569, odds radio (OR)=0.67, 95% confidence interval (CI)=0.45-0.97, p=0.033). The reduced risk of the homozygosity with PD genotype was only in male PD patients (chi(2)=2.923, OR=0.48, 95% CI=0.25-0.93, p=0.026), but not in female PD patients (chi(2)=0.002, OR=1.02, 95% CI=0.49-2.11, p=0.966). In conclusion, the results of our study show that homozygote 10-copy genotype of the VNTR polymorphism within the DAT may confer a protective factor for male PD patients, but not for female PD patients.
Collapse
Affiliation(s)
- Juei-Jueng Lin
- Department of Neurology, Chushang Show-Chwan Hospital, Nantou, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
22
|
Aklillu E, Herrlin K, Gustafsson LL, Bertilsson L, Ingelman-Sundberg M. Evidence for environmental influence on CYP2D6-catalysed debrisoquine hydroxylation as demonstrated by phenotyping and genotyping of Ethiopians living in Ethiopia or in Sweden. PHARMACOGENETICS 2002; 12:375-83. [PMID: 12142727 DOI: 10.1097/00008571-200207000-00005] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Black Africans show lower rates of CYP2D6- and CYP2C19-dependent drug metabolism compared to Caucasians of the same apparent genotype. To determine if environmental factors are responsible for this difference, the genotypes and phenotypes of CYP2D6 and CYP2C19 among Ethiopians living in Sweden (n = 70) were assessed and compared to our previously published data from Ethiopians living in Ethiopia (n = 114) and Swedish Caucasians (n = 134). There was no significant difference in CYP2C19 genotype or phenotype as assessed by mephenytoin between Ethiopians in Sweden or in Ethiopia. However, Swedes were significantly more rapid for CYP2C19 activity than both Ethiopian groups (P < 0.01). A comparison of the debrisoquine MR among individuals of the same CYP2D6 genotype revealed that Swedes exhibited the highest rate of debrisoquine metabolism, followed by Ethiopians in Sweden and Ethiopians in Ethiopia. The difference between the Ethiopian groups was significant (P < 0.02 using a univariate test ANOVA) and amounted to approximately 50% of the magnitude of the MR difference between Swedes and Ethiopians in Ethiopia. It is tempting to speculate that inhibitory dietary factors may explain the differences seen between the two Ethiopian groups and that these components in the past might have contributed to dietary stress-mediated selection of duplicated and multiduplicated active CYP2D6 genes, as frequently seen in Ethiopians. In conclusion, the results indicate a significant influence of environmental factors as an explanation for the difference in capacity for CYP2D6, but not CYP2C19 metabolism between Caucasians and Black Africans. Additional factors remain to be elucidated to fully explain the interethnic differences in CYP2D6 activity.
Collapse
Affiliation(s)
- Eleni Aklillu
- Division of Molecular Toxicology, IMM, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
23
|
Kortunay S, Bozkurt A, Basci NE, Kayaalp SO. Effects of terfenadine and diphenhydramine on the CYP2D6 activity in healthy volunteers. Eur J Drug Metab Pharmacokinet 2002; 27:171-4. [PMID: 12365197 DOI: 10.1007/bf03190453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate the effects of two antihistaminic drugs, terfenadine and diphenhydramine on CYP2D6 activity by using debrisoquine as a model substrate. The study was carried out as an in vivo single-dose study in 12 young, healthy men. All volunteers had previously been identified as debrisoquine-extensive metabolizers. The volunteers took increasing single oral doses of one of the two antihistaminic drugs in randomized order, at weekly intervals, followed 1 h later by debrisoquine test. Terfenadine and diphenhydramine were given in the doses of 60 and 120 mg; 100 and 150 mg, respectively. The 8-hr urinary concentrations of debrisoquine and 4-hydroxydebrisoquine were determined by high-performance liquid chromatography (HPLC). With increasing doses of terfenadine and diphenhydramine, there was no statistically significant increase in the debrisoquine metabolic ratios (P > 0.05, Page's test for trend). The difference between the median debrisoquine metabolic ratios before and after treatments with terfenadine or diphenhydramine were not statistically significant (Wilcoxon's test). This investigation indicates that single-dose administration of diphenhydramine or terfenadine has no effect on the CYP2D6-mediated hydroxylation of debrisoquine in healthy volunteers.
Collapse
Affiliation(s)
- Selim Kortunay
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | | |
Collapse
|
24
|
Wan YJ, Poland RE, Han G, Konishi T, Zheng YP, Berman N, Lin KM. Analysis of the CYP2D6 gene polymorphism and enzyme activity in African-Americans in southern California. PHARMACOGENETICS 2001; 11:489-99. [PMID: 11505219 DOI: 10.1097/00008571-200108000-00004] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Despite its importance in drug metabolism and disease susceptibility, CYP2D6 activity and genetic polymorphism have rarely been investigated in African-American populations. In order to bridge this gap, we examined the genotype and phenotype of the enzyme in 154 African-American (AA) and 143 Caucasian (C) normal volunteers. AAs are significantly more likely to possess *17 and *5, but less likely to have *4. Overall, the two groups were similar in their CYP2D6 activity as measured with dextromethorphan as the probe (metabolic ratio 2.21 +/- 0.78 for AAs; 2.11 +/- 0.86 for Cs; t = 1.02, NS). Two of four AAs and six of seven Cs were classified as poor metabolizers and have two nonfunctioning alleles. CYP2D6 activity is determined by *17, *4, *5 and age in AAs (r2 = 0.33, f = 18.8, P < 0.001) and by *4 and *XN in Cs (r2 = 0.14, f = 10.8, P < 0.001). These results support previous findings demonstrating the importance of *17 in determining CYP2D6 activity in AAs.
Collapse
Affiliation(s)
- Y J Wan
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Bilirubin is a product of heme catabolism which by virtue of its lipid solubility can cross the blood-brain barrier and enter the brain. Neonatal jaundice is a common transitional phenomenon which is due to the combination of increased heme catabolism and rate limitations as far as hepatic conjugation and biliary excretion of bilirubin. In the great majority of cases this is an innocuous condition, which is even posited to have some beneficial effects due to the ability of bilirubin to quench free oxygen radicals. However, because bilirubin is neurotoxic, hyperbilirubinemia in the newborn may exceptionally result in death in the neonatal period, or survival with severe neurological sequelae (kernicterus). Bilirubin enters the brain through an intact blood-brain barrier. Clearance of bilirubin from brain partly involves retro-transfer through the blood-brain barrier, and possibly also through the brain-CSF barrier into CSF. Work in our lab during the past 5 years has substantiated earlier work which had suggested that bilirubin may also be metabolized in brain. The responsible enzyme is found on the inner mitochondrial membrane, and oxidizes bilirubin at a rate of 100-300 pmol bilirubin/mg protein/minute. The enzyme activity is lower in the newborn compared with the mature animal, and is also lower in neurons compared with glia. Studies of different rat strains have documented genetic variability. The enzyme is cytochrome-c-dependent, but has as yet not been unequivocally identified. The rate of oxidation of bilirubin is such that this enzyme probably contributes meaningfully to the clearance of bilirubin from brain.
Collapse
Affiliation(s)
- T W Hansen
- Section on Neonatology, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
26
|
Iwahashi K, Yoshihara E, Nakamura K, Ameno K, Watanabe M, Tsuneoka Y, Ichikawa Y, Igarashi K. CYP2D6 HhaI genotype and the neuroleptic malignant syndrome. Neuropsychobiology 2000; 39:33-7. [PMID: 9892857 DOI: 10.1159/000026557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate the relationship between CYP2D6 genotypes (reported to be associated with the susceptibilities to Parkinson's disease and multisystem atrophy) and the possible susceptibility to neuroleptic malignant syndrome (NMS) and subacute myelo-optico-neuropathy (SMON), we analyzed the CYP2D6 gene by polymerase chain reaction and restriction fragment length polymorphism in Japanese schizophrenia patients with a history of NMS. There was no significant difference in the frequency of the poor metabolizer genotype of CYP2D6 between the cases with a history of NMS and controls (p > 0.05). The frequency of the mutation located at the HhaI site in exon 6 of CYP2D6 in the cases was higher, but not significantly (p > 0.05; the mutated allele frequency was 0.25), than that in the controls, schizophrenia patients without NMS (0.11) and healthy controls (0.09). The frequency (0.10) of the HhaI mutation type in patients with a diagnosis of SMON was also not significantly higher than in healthy controls. These results suggest that the poor metabolizer and HhaI polymorphism of CYP2D6 may not be a useful molecular marker for predicting the onset of NMS and SMON.
Collapse
Affiliation(s)
- K Iwahashi
- Health Administration Center, Department of Physiology, Azabu University, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hansen TW, Allen JW, Tommarello S. Oxidation of bilirubin in the brain-further characterization of a potentially protective mechanism. Mol Genet Metab 1999; 68:404-9. [PMID: 10562468 DOI: 10.1006/mgme.1999.2899] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bilirubin is a well-known neurotoxin and presents a particular problem in newborn infants. This is partly due to the high incidence of unconjugated hyperbilirubinemia in that age group, but may also be due to increased vulnerability to bilirubin toxicity. The brain may be able to protect itself against bilirubin toxicity through a process of oxidation. The responsible enzyme is localized on the inner mitochondrial membrane and appears to be more active in glia than in neurons and to increase in activity with postnatal maturation. Here we have investigated the possibility that the responsible enzyme might be a cytochrome oxidase, malate dehydrogenase, or monoamine oxidase, all enzymes located on the inner mitochondrial membrane. Mitochondria were obtained from rat brains through homogenization and differential centrifugation in sucrose medium. The ability of mitochondrial membranes to oxidize bilirubin was measured by following the change in optical density at 440 nm of a bilirubin solution to which a membrane suspension had been added. The activity was not changed by in vitro inhibitors of malate dehydrogenase or monoamine oxidase, but was moderately inhibited by ketoconazole and clotrimazole, both known inhibitors of hepatic cytochrome P450 oxidases. Activity was inhibited by depletion of cytochrome c in the mitochondria and reconstituted by reintroducing cytochrome c into the reaction mixture. The reaction was not modified by the addition of a free radical quencher, but was inhibited by removal of oxygen from the reaction mixture. The activity was significantly inhibited by cyanide. Activity was retained in a 100,000-g pellet and was not influenced by the addition of NAD, NADP, NADH, NADPH, GSH, or GSSH to this pellet. We conclude that the bilirubin-oxidizing activity in brain mitochondrial membranes is cytochrome c dependent, but does not appear to be unequivocally identifiable as a cytochrome P450 oxidase.
Collapse
Affiliation(s)
- T W Hansen
- Neonatal Critical Care, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
28
|
Fang J, Gorrod JW. Metabolism, pharmacogenetics, and metabolic drug-drug interactions of antipsychotic drugs. Cell Mol Neurobiol 1999; 19:491-510. [PMID: 10379422 DOI: 10.1023/a:1006938908284] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Antipsychotic drugs are extensively metabolised by cytochrome P450 (CYP) enzymes. 2. Dispositions of a number of antipsychotic drugs have been shown to cosegregate with polymorphism of CYP2D6. 3. Metabolic drug-drug interactions have frequently been observed when antipsychotics are coadministered with other drugs. 4. Many antipsychotic drugs are converted to active metabolites which can contribute to the therapeutic or side effects of the parent drug. 5. Information concerning the individual CYP isoenzymes involved in the metabolism of antipsychotic drugs is important for the safe clinical use of this group of drugs.
Collapse
Affiliation(s)
- J Fang
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
29
|
Ingelman-Sundberg M, Oscarson M, McLellan RA. Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol Sci 1999; 20:342-9. [PMID: 10431214 DOI: 10.1016/s0165-6147(99)01363-2] [Citation(s) in RCA: 319] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Approximately 40% of human P450-dependent drug metabolism is carried out by polymorphic enzymes, which can cause abolished, quantitatively or qualitatively altered or enhanced drug metabolism. The latter situation is due to stable duplication, multiduplication or amplification of active genes, most likely in response to dietary components that have resulted in a selection of alleles with multiple non-inducible genes. Several examples exist where subjects carrying certain alleles suffer from a lack of drug efficacy due to ultrarapid metabolism or, alternatively, adverse effects from the drug treatment due to the presence of defective alleles. Knowledge in this field has grown rapidly and can now be applied to both drug development and clinical practice. This is facilitated by the recent development of high-throughput methods for mutation detection and oligonucleotide chips array technology for the identification of a multitude of mutations in the genes encoding drug-metabolizing enzymes. The outcome will allow for safer and more efficient drug therapies.
Collapse
Affiliation(s)
- M Ingelman-Sundberg
- Division of Molecular Toxicology, IMM, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | |
Collapse
|
30
|
Ingelman-Sundberg M. Duplication, multiduplication, and amplification of genes encoding drug-metabolizing enzymes: evolutionary, toxicological, and clinical pharmacological aspects. Drug Metab Rev 1999; 31:449-59. [PMID: 10335447 DOI: 10.1081/dmr-100101930] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Moody GC, Griffin SJ, Mather AN, McGinnity DF, Riley RJ. Fully automated analysis of activities catalysed by the major human liver cytochrome P450 (CYP) enzymes: assessment of human CYP inhibition potential. Xenobiotica 1999; 29:53-75. [PMID: 10078840 DOI: 10.1080/004982599238812] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. Fully automated inhibition screens for the major human hepatic cytochrome P450s have been developed and validated. Probe assays were the fluorometric-based ethoxyresorufin O-deethylation for CYP1A2 and radiometric analysis of erythromycin N-demethylation for CYP3A4, dextromethorphan O-demethylation for CYP2D6, naproxen O-demethylation for CYP2C9 and diazepam N-demethylation for CYP2C19. For the radiometric assays > 99.7% of 14C-labelled substrate was routinely extracted from incubations by solid-phase extraction. 2. Furafylline, sulphaphenazole, omeprazole, quinidine and ketoconazole were identified as specific markers for the respective CYP1A2 (IC50 = 6 microM), CYP2C9 (0.7 microM), CYP2C19 (6 microM), CYP2D6 (0.02 microM) and CYP3A4 (0.2 microM) inhibition screens. 3. For the radiometric methods, a two-point IC50 estimate was validated by correlating the IC50 obtained with a full (seven-point) assay (r2 = 0.98, p < 0.001). The two-point IC50 estimate is useful for initial screening, while the full IC50 method provides more definitive quantitation, where required. 4. IC50 determined for a series of test compounds in human liver microsomes and cytochrome P450 cDNA-expressed enzymes were similar (r2 = 0.89, p < 0.001). In particular, the CYP1A2, CYP2D6 and CYP3A4 screens demonstrated the flexibility to accept either enzyme source. As a result of incomplete substrate selectivity, expressed enzymes were utilized for analysis of CYP2C9 and CYP2C19 inhibition. Good agreement was demonstrated between IC50 determined in these assays to IC50 published by other laboratories using a wide range of analytical techniques, which provided confidence in the universality of these inhibition screens. 5. These automated screens for initial assessment of P450 inhibition potential allow rapid determination of IC50. The radiometric assays are flexible, sensitive, robust and free from analytical interference, and they should permit the identification and eradication of inhibitory structural motifs within a series of potential drug candidates.
Collapse
Affiliation(s)
- G C Moody
- Department of Physical & Metabolic Sciences, Astra Charnwood, Loughborough, UK
| | | | | | | | | |
Collapse
|
32
|
Guengerich FP. Role of cytochrome P450 enzymes in drug-drug interactions. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 43:7-35. [PMID: 9342171 DOI: 10.1016/s1054-3589(08)60200-8] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many adverse drug-drug interactions are attributable to pharmacokinetic problems and can be understood in terms of alterations of P450-catalyzed reactions. Much is now known about the human P450 enzymes and what they do, and it has been possible to apply this information to issues related to practical problems. A relatively small subset of the total number of human P450s appears to be responsible for a large fraction of the oxidation of drugs. The three major reasons for drug-drug interactions involving the P450s are induction, inhibition, and possibly stimulation, with inhibition appearing to be the most important in terms of known clinical problems. With the available knowledge of human P450s and reagents, it is possible to do in vitro experiments with drugs and make useful predictions. The results can be tested in vivo, again using assays based on our knowledge of human P450s. This approach has the capability of not only improving predictions about which drugs might show serious interaction problems, but also decreasing the number of in vivo interaction studies that must be performed. These approaches should improve with further refinement and technical advances.
Collapse
Affiliation(s)
- F P Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| |
Collapse
|
33
|
Norlén M, Allard P. [3H]GBR 12935 binding in platelets: a possible association with cytochrome P-450IID6? Eur J Pharmacol 1997; 332:227-30. [PMID: 9286626 DOI: 10.1016/s0014-2999(97)01094-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nature of [3H] (1-[2-(diphenylmethoxy)ethyl)-4-(3-phenylpropyl) piperazine dihydrochloride) (GBR 12935) binding to human platelets was investigated. A common property of the inhibitors of this binding was their association with the cytochrome P-450 system. cis-Flupenthixol and (1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-[3-phenylpropyl) piperazine dihydrochloride) (GBR 12909) biphasically inhibited the binding. The fraction of [3H]GBR 12935 binding that was inhibited by low concentrations of cis-flupenthixol was sensitive to protease treatment. [3H]GBR 12935 binding in this fraction was saturable and of high affinity (Kd 4.5 nM). The present results reveal that [3H]GBR 12935 binds to multiple sites in platelets and suggest that part of the binding is associated with cytochrome P-450IID6.
Collapse
Affiliation(s)
- M Norlén
- Department of Geriatric Medicine, Umeä University, Sweden
| | | |
Collapse
|
34
|
Iwahashi K, Nakamura K, Furukawa A, Okuyama E, Miyatake R, Ichikawa Y, Suwaki H. No linkage of the cytochrome P-450IIE1 (CYP2E1) C1/C2 polymorphism to schizophrenia. Hum Exp Toxicol 1997; 16:208-11. [PMID: 9154445 DOI: 10.1177/096032719701600409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated, using PCR-SSCP analysis, the relationship between schizophrenia and the polymorphism of d-benzphetamine N-demethylase (cytochrome P-450j or CYP2E1), which metabolizes psychotropic substances such as d-benzphetamine and alcohols. Among 41 patients with schizophrenia, no statistically significant change in the frequency of the mutant (C2) allele relative to in controls was found, and no novel structural mutation in the CYP2E1 gene, which would be expected to alter the CYP2E1 protein, was found. This could be explained by no linkage of the CYP2E1 gene (mutations in the exon 1-9, and C1/C2 polymorphism) to schizophrenia.
Collapse
Affiliation(s)
- K Iwahashi
- Department of Neuropsychiatry, Kagawa Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
de Groot MJ, Bijloo GJ, van Acker FA, Fonseca Guerra C, Snijders JG, Vermeulen NP. Extension of a predictive substrate model for human cytochrome P4502D6. Xenobiotica 1997; 27:357-68. [PMID: 9149375 DOI: 10.1080/004982597240514] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Metoprolol, indoramine, codeine, tamoxifen and prodipine, compounds which are clinically used, and MDMA (ecstasy) were fitted in a small molecule model for substrates of human cytochrome P4502D6. 2. For both the R- and S-enantiomer of metoprolol, the R- and S-enantiomer of MDMA, and for indoramine and codeine (all proven substrates of cytochrome P4502D6) an acceptable fit in the substrate model was obtained. 3. For tamoxifen, for which the involvement of cytochrome P4502D6 in the 4-hydroxylation is uncertain, no acceptable fit could be obtained in the substrate model. 4. For prodipine, a competitive inhibitor of P4502D6, for which the involvement of P4502D6 in the metabolism is uncertain, no acceptable fit in the substrate model could be obtained. 5. The substrate model was extended in a direction in which two large known substrates extend from the original substrate model. This extension did not change the flat hydrophobic region of the original substrate model.
Collapse
Affiliation(s)
- M J de Groot
- Leiden/Amsterdam Center for Drug Research (LACDR), Department of Pharmacochemistry, Vrije Universiteit, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Meyer UA. Overview of enzymes of drug metabolism. JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS 1996; 24:449-59. [PMID: 9131484 DOI: 10.1007/bf02353473] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Most pharmacologically active molecules are lipophilic and remain un-ionized or only partially ionized at physiological pH. Biotransformation means that a lipid-soluble xenobiotic or endobiotic compound is enzymatically transformed into polar, water-soluble, and excretable metabolites. The major organ for drug biotransformation is the liver. The metabolic products often are less active than the parent drug or inactive. However, some biotransformation products (metabolites) may have enhanced activity or toxic effects. Thus biotransformation may include both "detoxication" and "toxication" processes. One of the major enzyme systems that determines the organism's capability of dealing with drugs and chemicals is represented by the cytochrome P450 monooxygenases. Studies in the last 15 years have provided evidence that cytochrome P450 occurs in many different forms or "isozymes" which differ in spectral, chemical, and immunological properties and have different substrate affinities. These isozymes also differ in their regulation and tissue distribution. Recombinant DNA studies indicate that between 40 and 60 structural genes code for different cytochrome P450 isozymes in a single organism. Other enzyme systems include dehydrogenases, oxidases, esterases, reductases, and a number of conjugating enzyme systems including glucuronosyltransferases, sulfotransferases, glutathione S-transferases, etc. Environmental and genetic factors cause interindividual and intraindividual differences in drug metabolism and may alter the balance between toxification and detoxification reactions. Genetic polymorphisms lead to subpopulations of patients with decreased, absent, or even increased activities of certain reactions (e.g., CYP2D6, CYP2C19, N-acetyltransferase polymorphism). Environmental factors such as other drugs, steroids, dietary factors, alcohol, and cigarette smoke can induce or inhibit drug-metabolizing enzymes and cause intraindividual variation.
Collapse
Affiliation(s)
- U A Meyer
- University of Basel, Department of Pharmacology, Switzerland
| |
Collapse
|
37
|
Suzuki A, Otani K, Ishida M, Yasui N, Kondo T, Mihara K, Kaneko S, Inoue Y. No interaction between desipramine and bromperidol. Prog Neuropsychopharmacol Biol Psychiatry 1996; 20:1265-71. [PMID: 8938825 DOI: 10.1016/s0278-5846(96)00111-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. The authors studied the effects of coadministration of desipramine, which is a substrate of CYP2D6, on plasma concentrations of bromperidol and its reduced metabolite (reduced bromperidol). Clinical changes were also evaluated by the CGI and UKU. 2. The subjects were 13 schizophrenic inpatients receiving bromperidol 12.24 mg/day for 1.20 weeks. Desipramine 50 mg/day was coadministered for 1 week, and blood samplings and clinical ratings were performed before and after the coadministration. 3. Plasma concentrations of bromperidol and reduced bromperidol were measured by a HPLC method. 4. Desipramine coadministration did not affect plasma concentration of bromperidol (9.6 +/- 4.5 vs. 9.6 +/- 2.8 ng/ml) nor that of reduced bromperidol (2.8 +/- 2.5 vs. 2.8 +/- 2.1 ng/ml). 5. There was no significant change in the CGI scores nor UKU scores after desipramine coadministration. 6. The present study thus suggests that there is no interaction between desipramine and bromperidol.
Collapse
Affiliation(s)
- A Suzuki
- Department of Neuropsychiatry, Hirosaki University Hospital, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Norlén M, Allard P. Reduction in number of dopamine uptake sites but unchanged number of piperazine-acceptor/CYP450IID6 binding sites in the human caudate nucleus in aging. Neurosci Lett 1996; 209:161-4. [PMID: 8736635 DOI: 10.1016/0304-3940(96)12636-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A substantial decrease in number of striatal dopamine uptake sites is a characteristic finding in aging. This decrease resembles the dopaminergic nigro-striatal degeneration in Parkinson's disease (PD). A dysfunction of cytochrome P450IID6 (debrisoquine-4-hydroxylase) is suggested to be involved in the pathogenesis of PD. In this study, binding sites associated with the neuronal form of P450IID6 were studied in the caudate nucleus from individuals in the age range 20-81 years using [3H]GBR 12935 as a radioligand. No significant changes in binding parameters were obtained, while in the same region a significant decrease in number of dopamine uptake sites occurred. Thus, in aging, P450IID6 and dopaminergic degeneration seem not to be functionally related in this region. Whether such a relation exists in PD is still to be examined.
Collapse
Affiliation(s)
- M Norlén
- Department of Geriatric Medicine, Umeå University, Sweden
| | | |
Collapse
|
39
|
Engel G, Hofmann U, Kroemer HK. Prediction of CYP2D6-mediated polymorphic drug metabolism (sparteine type) based on in vitro investigations. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 678:93-103. [PMID: 8861659 DOI: 10.1016/0378-4347(95)00234-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Discovery of genetic polymorphism in drug metabolism has contributed a great deal to understanding the variability in dose-concentration relationships introduced by genetic factors, thereby elucidating the mechanisms responsible for unexpected drug reactions. This knowledge should find its way into clinical practice in order to make therapy more efficient and safe. Moreover, genetic factors in drug metabolism should be taken into account during drug development. Therefore, in vitro methods for identifying the metabolic pattern of new compounds during early stages of drug development should be improved. This review summarizes in vitro methods available to identify genetic polymorphism in drug oxidation, in particular the CYP2D6-related polymorphism.
Collapse
Affiliation(s)
- G Engel
- Dr. Margarete Fischer-Bosch-Institut fur Klinische Pharmakologie, Auerbachstrasse, Stuttgart, Germany
| | | | | |
Collapse
|
40
|
Vercruysse I, Massart DL, Dupont AG. Increase in plasma propranolol caused by nicardipine is dependent on the delivery rate of propranolol. Eur J Clin Pharmacol 1995; 49:121-5. [PMID: 8751033 DOI: 10.1007/bf00192370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The influence of a single oral dose of nicardipine 30 mg on the pharmacokinetics and pharmacodynamics of propranolol 80 mg given as a conventional release formulation and as a slow release formulation was studied in two separate groups of 12 healthy volunteers. Nicardipine doubled the area under the curve (AUC) and Cmax of propranolol when given as a conventional formulation, but increased it only slightly when given as a slow release formulation. This pharmacokinetic interaction did not result in clinically relevant changes in pharmacodynamic responses. These results indicate that the enhancement of the bioavailability of propranolol by coadministration of nicardipine is dependent on the delivery rate of propranolol, suggesting that the interaction is mainly due to short-term haemodynamic effects of nicardipine leading to saturation of hepatic enzymes or functional shunting.
Collapse
Affiliation(s)
- I Vercruysse
- Department of Pharmaceutical and Biomedical Analysis, Vrije Universiteit Brussel, Belgium
| | | | | |
Collapse
|
41
|
Ladero JM, Benítez J, Serrano M, García-Paredes J, Diaz-Rubio M. Debrisoquine oxidation polymorphism in patients with chronic inflammatory bowel disease. Ann Med 1995; 27:555-8. [PMID: 8541031 DOI: 10.3109/07853899509002468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Polymorphic hydroxylation of debrisoquine (DBQ) is a Mendelian genetic trait related to the risk of suffering some spontaneous disorders. To elucidate whether such a relation exists between this polymorphism and chronic inflammatory bowel disease (CIBD), 67 (39 males) patients with ulcerative colitis (UC), 52 (35 males) patients with Crohn's disease (CD) and 837 healthy controls (391 males) received 10 mg debrisoquine. DBQ and its metabolite, 4-OH-DBQ, were measured in urine to calculate metabolic ratio. Subjects with MR < 12.6 (log 10 MR < 1.1) were extensive metabolizers (EM) of DBQ, whereas those with MR < 12.6 were poor metabolizers (PM). Four UC (5.97%), 1 CD (1.92%) patients and 42 controls (5.03%) were PM of DBQ (nonsignificant difference). When analysing the EM subjects separately, log10 MR were lower in controls (mean = -0.295, SD 0.427, P = 0.0015)) and in Crohn's disease patients (man = -0.281, SD 0.495, P = 0.03) than in ulcerative colitis patients (mean = -0.085, SD = 0.495). There is no relationship between oxidative phenotype of DBQ and the risk for CIBD. Nevertheless, the EM phenotype includes both homo- and heterozygote genotypes for functioning alleles exerting a gene-dose effect that gives a higher oxidative capability to homozygote EMs, reflected in a lower MR value. Genotyping studies are needed to disclose whether heterozygote EMs are over-represented among UC patients and to identify any nonfunctioning allele possibly linked to the risk of developing this disease.
Collapse
Affiliation(s)
- J M Ladero
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
42
|
Masimirembwa CM, Hasler JA, Johansson I. Inhibitory effects of antiparasitic drugs on cytochrome P450 2D6. Eur J Clin Pharmacol 1995; 48:35-8. [PMID: 7621845 DOI: 10.1007/bf00202169] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The interaction of antiparasitic drugs with the polymorphic cytochrome P450 2D6 was studied in human liver microsomes. Of ten different drugs tested, three quinolines, oxamniquine, primaquine and chloroquine inhibited microsomal CYP2D6-catalysed formation of 1'hydroxybufuralol at concentrations that might have clinical consequences in drug use. These drugs inhibited competitively bufuralol metabolism with Ki values of 22, 23 and 15 microM, respectively, indicative of high affinity for the CYP2D6-active site. The results imply that oxamniquine, primaquine and chloroquine could be substrates of cytochrome P4502 D6 or that they are potent non-substrate inhibitors of the enzyme similar to quinidine. In either case, the inhibition of CYP2D6 by these agents could lead to interference with in vivo population-phenotyping procedures in the tropical regions where treatment with the drugs is common.
Collapse
Affiliation(s)
- C M Masimirembwa
- Department of Biochemistry, University of Zimbabwe, Mt Pleasant, Harare
| | | | | |
Collapse
|
43
|
Daniels J, Williams J, Asherson P, McGuffin P, Owen M. No association between schizophrenia and polymorphisms within the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT). AMERICAN JOURNAL OF MEDICAL GENETICS 1995; 60:85-7. [PMID: 7485241 DOI: 10.1002/ajmg.1320600115] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has been suggested that the cytochrome P450 mono-oxygenase, debrisoquine 4-hydroxylase, is involved in the catabolism and processing of neurotransmitters subsequent to their reuptake into target cells. It is also thought to be related to the dopamine transporter that acts to take released dopamine back up into presynaptic terminals. The present study used the association approach to test the hypothesis that mutations in the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT) confer susceptibility to schizophrenia. There were no differences in allele or genotype frequencies between patients and controls in the mutations causing the poor metaboliser phenotype in CYP2D6. In addition there was no association found between schizophrenia and a 48bp repeat within the 3' untranslated region of DAT.
Collapse
Affiliation(s)
- J Daniels
- Department of Psychological Medicine, University of Wales College of Medicine, Cardiff, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Nedelcheva V, Gut I. P450 in the rat and man: methods of investigation, substrate specificities and relevance to cancer. Xenobiotica 1994; 24:1151-75. [PMID: 7771104 DOI: 10.3109/00498259409038673] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
1. Considerable evidence has been accumulated that orthologous rat and human P450 forms oxidize numerous chemicals in a highly similar manner, including the detoxication and activation of mutagens and carcinogens. 2. Nevertheless, certain specific substrates of rat P450s are not so well oxidized by the orthologous human forms, and vice versa. 3. Certain mutagens and carcinogens can be activated in a similar way by different (non-orthologous) forms in rat and man, confirming that studies on animals, directed ultimately to man, can be indicative but not predicative of chemical mutagenesis and carcinogenesis.
Collapse
Affiliation(s)
- V Nedelcheva
- National Institute of Public Health, Department of Occupational Medicine, Praha, Czech Republic
| | | |
Collapse
|
45
|
Hals PA, Dahl SG. Effect of levomepromazine and metabolites on debrisoquine hydroxylation in the rat. PHARMACOLOGY & TOXICOLOGY 1994; 75:255-60. [PMID: 7870695 DOI: 10.1111/j.1600-0773.1994.tb00357.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The influence of the major metabolites of the phenothiazine derivative, levomepromazine (methotrimeprazine), on hydroxylation of debrisoquine was examined in male Sprague-Dawley rats. The metabolic ratio of debrisoquine/4-hydroxy debrisoquine was first determined in rats after oral administration of 10 mg/kg of debrisoquine. Then the same dose of debrisoquine was co-administered with various doses of levomepromazine or one of its metabolites. Levomepromazine and its sulphoxidated, N-demethylated and O-demethylated metabolites caused highly significant and dose-dependent increases in the debrisoquine metabolic ratio. 3-Hydroxy levomepromazine had no significant effect on the metabolism of debrisoquine. This indicates that the non-hydroxylated metabolites of levomepromazine have relatively high affinities for the cytochrome P450 enzyme which converts debrisoquine to 4-hydroxy debrisoquine in the rat. Such metabolites may therefore be responsible for a considerable part of the inhibitory effect of debrisoquine hydroxylation previously reported in patients treated with phenothiazine neuroleptics.
Collapse
Affiliation(s)
- P A Hals
- Department of Pharmacology, University of Tromsø, Norway
| | | |
Collapse
|
46
|
Wu RF, Ichikawa Y. Characteristic properties and kinetic analysis with neurotoxins of porcine FAD-containing monooxygenase. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1208:204-10. [PMID: 7947951 DOI: 10.1016/0167-4838(94)90105-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An FAD-containing monooxygenase (EC 1.14.13.8) was purified from porcine liver microsomes by a new purification procedure and confirmed to give an electrophoretically single protein band. The optical and CD spectra, fluorescence and molar extinction coefficients of the FMO were investigated. The activity of the FMO was examined kinetically with neurotoxins, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1,2,3,4-tetrahydroisoquinoline (TIQ), and 1-methyl-6,7-dihydroxytetrahydroisoquinoline (MDTIQ), as substrates. The kinetic parameters of the FMO for the neurotoxins, molecular oxygen and electron donors were determined, in comparison with those of dimethylaniline. The CD spectrum of the FMO was measured in the absence and presence of NADP+, dimethylaniline or both. The results showed that the FMO metabolized the neurotoxins, and that NADH was a weak electron donor for it. The CD spectrum of the FMO in the oxidized form, which acts as an oxidase and oxygenase, unlike that of D-amino-acid oxidase, showed negative ellipticity, the secondary structure of the FMO changed, and the alpha-helix structure of the monooxygenase was affected by the formation of a complex of the FMO with NADP+, DMA or both.
Collapse
Affiliation(s)
- R F Wu
- Department of Biochemistry, Kagawa Medical School, Japan
| | | |
Collapse
|
47
|
Abstract
Genetic polymorphisms of drug metabolizing enzymes are well recognized. This review presents molecular mechanisms, ontogeny and clinical implications of genetically determined intersubject variation in some of these enzymes. Included are the polymorphic enzymes N-acetyl transferase, cytochromes P4502D6 and 2C, which have been well described in humans. Information regarding other Phase I and Phase II polymorphic pathways, such as glutathione and methyl conjugation and alcohol and acetaldehyde oxidation continues to increase and are also discussed. Genetic factors effecting enzyme activity are frequently important determinants of the disposition of drugs and their efficacy and toxicity. In addition, associations between genetic differences in these enzymes and susceptibility to carcinogens and teratogens have been reported. Ultimately, the application of knowledge regarding these genetic factors of enzyme activity may guide medical therapy and minimize xenobiotic-induced disease.
Collapse
Affiliation(s)
- D G May
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit 48201
| |
Collapse
|
48
|
Abstract
Inter- and intraindividual variability in pharmacokinetics of most drugs is largely determined by variable liver function as described by parameters of hepatic blood flow and metabolic capacity. These parameters may be altered as a result of disease affecting the liver, genetic differences in metabolising enzymes, and various types of drug interactions, including enzyme induction, enzyme inhibition or down-regulation. With the now known large number of drug metabolising enzymes, their differential substrate specificity, and their differential induction or inhibition, each test substance of liver function should be used as a probe for its specific metabolising enzyme. Thus, the concept of model test-substances providing general information about liver function has severe limitations. To test the metabolic activity of several enzymes, either several test substances may be given (cocktail approach) or several metabolites of a single test substance may be analysed (metabolic fingerprint approach). The enzyme-specific analysis of liver function results in a preference for analysis of the metabolites rather than analysis of the clearance of the parent test substance. There are specific methods to quantify the activity of cytochrome P450 enzymes such as CYP1A2, CYP2C9, CYP2C19MEPH, CYP2D6, CYP2E1, and CYP3A, and phase II enzymes, such as glutathione S-transferases, glucuronyl-transferases or N-acetyltransferases, in vivo. Interactions based on competitive or noncompetitive inhibition should be analysed specifically for the cytochrome P450 enzyme involved. At least 5 different types of cytochrome P450 enzyme induction may result in major variability of hepatic function; this may be quantified by biochemical parameters, clearance methods, or highly enzyme-specific methods such as Western blot analysis or molecular biological techniques such as mRNA quantification in blood and tissues. Therapeutic drug monitoring is already implicitly used for quantification of the enzyme activities relevant for a specific drug. Selective impairment of hepatic enzymes due to gene mutations may have an effect on the pharmacokinetics of certain drugs similar to that caused by cirrhosis. Assessment of this heritable source of variability in liver function is possible by in vivo or ex vivo enzymological methods. For genetically polymorphic enzymes and carrier proteins involved in drug disposition, molecular genetic methods using a patient's blood sample may be used for classification of the individual into: (i) the impaired or poor metaboliser (homozygous deficient); (ii) the extensive (homozygous active) metaboliser group; and (iii) the moderately extensive metaboliser (heterozygous) group. For hepatic blood flow determinations, galactose or sorbitol given at relatively low doses may be much better indicators than the indocyanine green.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Brockmöller
- Institut für Klinische Pharmakologie, Universitätsklinikum Charité, Humboldt-Universität, Berlin, Germany
| | | |
Collapse
|
49
|
Benitez J, Ladero JM, Andres MP, Jover JA, Morado C, Bañares A. Debrisoquine oxidation polymorphism in patients with rheumatoid arthritis. Ann Rheum Dis 1994; 53:211. [PMID: 8154943 PMCID: PMC1005290 DOI: 10.1136/ard.53.3.211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
50
|
Spina E, Caputi AP. Pharmacogenetic aspects in the metabolism of psychotropic drugs: pharmacokinetic and clinical implications. Pharmacol Res 1994; 29:121-37. [PMID: 8058586 DOI: 10.1016/1043-6618(94)80036-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- E Spina
- Institute of Pharmacology, University of Messina, Italy
| | | |
Collapse
|