1
|
Sánchez Triviño CA, Landinez MP, Duran S, Gomez MDP, Nasi E. Modulation of Gq/PLC-Mediated Signaling by Acute Lithium Exposure. Front Cell Neurosci 2022; 16:838939. [PMID: 35242014 PMCID: PMC8885521 DOI: 10.3389/fncel.2022.838939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although lithium has long been one of the most widely used pharmacological agents in psychiatry, its mechanisms of action at the cellular and molecular levels remain poorly understood. One of the targets of Li+ is the phosphoinositide pathway, but whereas the impact of Li+ on inositol lipid metabolism is well documented, information on physiological effects at the cellular level is lacking. We examined in two mammalian cell lines the effect of acute Li+ exposure on the mobilization of internal Ca2+ and phospholipase C (PLC)-dependent membrane conductances. We first corroborated by Western blots and immunofluorescence in HEK293 cells the presence of key signaling elements of a muscarinic PLC pathway (M1AchR, Gq, PLC-β1, and IP3Rs). Stimulation with carbachol evoked a dose-dependent mobilization of Ca, as determined with fluorescent indicators. This was due to release from internal stores and proved susceptible to the PLC antagonist U73122. Li+ exposure reproducibly potentiated the Ca response in a concentration-dependent manner extending to the low millimolar range. To broaden those observations to a neuronal context and probe potential Li modulation of electrical signaling, we next examined the cell line SHsy5y. We replicated the potentiating effects of Li on the mobilization of internal Ca, and, after characterizing the basic properties of the electrical response to cholinergic stimulation, we also demonstrated an equally robust upregulation of muscarinic membrane currents. Finally, by directly stimulating the signaling pathway at different links downstream of the receptor, the site of action of the observed Li effects could be narrowed down to the G protein and its interaction with PLC-β. These observations document a modulation of Gq/PLC/IP3-mediated signaling by acute exposure to lithium, reflected in distinct physiological changes in cellular responses.
Collapse
Affiliation(s)
- Cesar Adolfo Sánchez Triviño
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
- Centro Internacional de Física, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Maria Paula Landinez
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
- Centro Internacional de Física, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sara Duran
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
- Centro Internacional de Física, Universidad Nacional de Colombia, Bogotá, Colombia
| | - María Del Pilar Gomez
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Enrico Nasi
- Marine Biological Laboratory, Woods Hole, MA, United States
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
2
|
Ethylbutyrate, a valproate-like compound, exhibits inositol-depleting effects — A potential mood-stabilizing drug. Life Sci 2009; 84:38-44. [DOI: 10.1016/j.lfs.2008.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 10/19/2008] [Accepted: 10/28/2008] [Indexed: 11/23/2022]
|
3
|
Azab AN, Agam G, Kaplanski J, Delbar V, Greenberg ML. Inositol depletion: a good or bad outcome of valproate treatment? FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.3.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bipolar affective disorder is a severe and chronic disabling illness affecting 1.5% of the general population. Lithium, valproate and other mood stabilizers are used to treat bipolar disorder; however, these are ineffective for, and not tolerated by, a significant percentage of patients, underscoring the urgent need for better medications. Although not universally accepted, the inositol-depletion hypothesis is one of the main hypotheses suggested to explain the therapeutic mechanism of mood-stabilizing drugs. This paper reviews the relevance of the inositol-depletion hypothesis, paying special attention to the inhibition of inositol de novo synthesis by valproate. It also discusses inositol supplementation as a treatment strategy for multiple neurological disorders, including prophylactic use against valproate-induced neural tube defects.
Collapse
Affiliation(s)
- Abed N Azab
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Galila Agam
- Ben-Gurion University of the Negev, Psychiatry Research Unit & Department of Clinical Biochemistry, Faculty of Health Sciences, PO Box 4600, Beer-Sheva 84170, Israel
| | - Jacob Kaplanski
- Ben-Gurion University of the Negev, Department of Clinical Pharmacology, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Vered Delbar
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Miriam L Greenberg
- Wayne State University, Department of Biological Sciences, Detroit, MI 48202, USA
| |
Collapse
|
4
|
McNamara RK, Ostrander M, Abplanalp W, Richtand NM, Benoit SC, Clegg DJ. Modulation of phosphoinositide-protein kinase C signal transduction by omega-3 fatty acids: implications for the pathophysiology and treatment of recurrent neuropsychiatric illness. Prostaglandins Leukot Essent Fatty Acids 2006; 75:237-57. [PMID: 16935483 DOI: 10.1016/j.plefa.2006.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The phosphoinositide (PI)-protein kinase C (PKC) signal transduction pathway is initiated by pre- and postsynaptic Galphaq-coupled receptors, and regulates several clinically relevant neurochemical events, including neurotransmitter release efficacy, monoamine receptor function and trafficking, monoamine transporter function and trafficking, axonal myelination, and gene expression. Mounting evidence for PI-PKC signaling hyperactivity in the peripheral (platelets) and central (premortem and postmortem brain) tissues of patients with schizophrenia, bipolar disorder, and major depressive disorder, coupled with evidence that PI-PKC signal transduction is down-regulated in rat brain following chronic, but not acute, treatment with antipsychotic, mood-stabilizer, and antidepressant medications, suggest that PI-PKC hyperactivity is central to an underlying pathophysiology. Evidence that membrane omega-3 fatty acids act as endogenous antagonists of the PI-PKC signal transduction pathway, coupled with evidence that omega-3 fatty acid deficiency is observed in peripheral and central tissues of patients with schizophrenia, bipolar disorder, and major depressive disorder, support the hypothesis that omega-3 fatty acid deficiency may contribute to elevated PI-PKC activity in these illnesses. The data reviewed in this paper outline a potential molecular mechanism by which omega-3 fatty acids could contribute to the pathophysiology and treatment of recurrent neuropsychiatric illness.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0559, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Marangell LB, Suppes T, Ketter TA, Dennehy EB, Zboyan H, Kertz B, Nierenberg A, Calabrese J, Wisniewski SR, Sachs G. Omega-3 fatty acids in bipolar disorder: clinical and research considerations. Prostaglandins Leukot Essent Fatty Acids 2006; 75:315-21. [PMID: 16928441 DOI: 10.1016/j.plefa.2006.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Several lines of evidence suggest that omega-3 fatty acids may be important in the pathophysiology, treatment or prevention of bipolar disorder (BD). Electronic and manual searches were conducted in order to review the literature relevant to the etiology and treatment of BDs with omega-3 fatty acids. We also present data from a randomized, double-blind, placebo-controlled pilot study conducted at three sites (N = 10) comparing an omega-3 fatty acid (docosahexaenoic acid, DHA) versus placebo, added to psychosocial treatment for women with BD who chose to discontinue standard pharmacologic treatment while attempting to conceive. While some epidemiologic and preclinical data support the role of omega-3 fatty acids in BD, clinical trials to date have yielded conflicting results. In our pilot study of 10 Caucasian women taking DHA while attempting to conceive (BP1 = 9, BPII = 1), age 27-42 years, DHA was well tolerated and suggests that a larger study would be feasible. The elucidation of the potential role of omega-3 fatty acids as a treatment for BD requires further study. The current data are not sufficient to support a recommendation of monotherapy treatment as a substitute for standard pharmacologic treatments. However, judicious monotherapy in selected clinical situations, or adjunctive use, may be warranted pending further data from adequately powered controlled clinical trials. Our pilot trial of DHA in women who plan to stop conventional psychotropics in order to conceive suggests that such trials are feasible.
Collapse
Affiliation(s)
- Lauren B Marangell
- Mood Disorders Center, Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Basselin M, Chang L, Bell JM, Rapoport SI. Chronic lithium chloride administration to unanesthetized rats attenuates brain dopamine D2-like receptor-initiated signaling via arachidonic acid. Neuropsychopharmacology 2005; 30:1064-75. [PMID: 15812572 DOI: 10.1038/sj.npp.1300671] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We studied the effect of lithium chloride on dopaminergic neurotransmission via D2-like receptors coupled to phospholipase A2 (PLA2). In unanesthetized rats injected i.v. with radiolabeled arachidonic acid (AA, 20:4 n-6), regional PLA2 activation was imaged by measuring regional incorporation coefficients k* of AA (brain radioactivity divided by integrated plasma radioactivity) using quantitative autoradiography, following administration of the D2-like receptor agonist, quinpirole. In rats fed a control diet, quinpirole at 1 mg/kg i.v. increased k* for AA significantly in 17 regions with high densities of D2-like receptors, of 61 regions examined. Increases in k* were found in the prefrontal cortex, frontal cortex, accumbens nucleus, caudate-putamen, substantia nigra, and ventral tegmental area. Quinpirole, 0.25 mg/kg i.v. enhanced k* significantly only in the caudate-putamen. In rats fed LiCl for 6 weeks to produce a therapeutically relevant brain lithium concentration, neither 0.25 mg/kg nor 1 mg/kg quinpirole increased k* significantly in any region. Orofacial movements following quinpirole were modified but not abolished by LiCl feeding. The results suggest that downregulation by lithium of D2-like receptor signaling involving PLA2 and AA may contribute to lithium's therapeutic efficacy in bipolar disorder.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
7
|
Basselin M, Chang L, Seemann R, Bell JM, Rapoport SI. Chronic lithium administration to rats selectively modifies 5-HT2A/2C receptor-mediated brain signaling via arachidonic acid. Neuropsychopharmacology 2005; 30:461-72. [PMID: 15562295 DOI: 10.1038/sj.npp.1300611] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effects of chronic lithium administration on regional brain incorporation coefficients k* of arachidonic acid (AA), a marker of phospholipase A2 (PLA2) activation, were determined in unanesthetized rats administered i.p. saline or 1 mg/kg i.p. (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), a 5-HT2A/2C receptor agonist. After injecting [1-(14)C]AA intravenously, k* (brain radioactivity/integrated plasma radioactivity) was measured in each of 94 brain regions by quantitative autoradiography. Studies were performed in rats fed a LiCl or a control diet for 6 weeks. In the control diet rats, DOI significantly increased k* in widespread brain areas containing 5-HT2A/2C receptors. In the LiCl-fed rats, the significant positive k* response to DOI did not differ from that in control diet rats in most brain regions, except in auditory and visual areas, where the response was absent. LiCl did not change the head turning response to DOI seen in control rats. In summary, LiCl feeding blocked PLA2-mediated signal involving AA in response to DOI in visual and auditory regions, but not generally elsewhere. These selective effects may be related to lithium's therapeutic efficacy in patients with bipolar disorder, particularly its ability to ameliorate hallucinations in that disease.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
8
|
Shaltiel G, Shamir A, Shapiro J, Ding D, Dalton E, Bialer M, Harwood AJ, Belmaker RH, Greenberg ML, Agam G. Valproate decreases inositol biosynthesis. Biol Psychiatry 2004; 56:868-74. [PMID: 15576064 DOI: 10.1016/j.biopsych.2004.08.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 07/20/2004] [Accepted: 08/28/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Lithium and valproate (VPA) are used for treating bipolar disorder. The mechanism of mood stabilization has not been elucidated, but the role of inositol has gained substantial support. Lithium inhibition of inositol monophosphatase, an enzyme required for inositol recycling and de novo synthesis, suggested the hypothesis that lithium depletes brain inositol and attenuates phosphoinositide signaling. Valproate also depletes inositol in yeast, Dictyostelium, and rat neurons. This raised the possibility that the effect is the result of myo-inositol-1-phosphate (MIP) synthase inhibition. METHODS Inositol was measured by gas chromatography. Human prefrontal cortex MIP synthase activity was assayed in crude homogenate. INO1 was assessed by Northern blotting. Growth cones morphology was evaluated in cultured rat neurons. RESULTS We found a 20% in vivo reduction of inositol in mouse frontal cortex after acute VPA administration. As hypothesized, inositol reduction resulted from decreased MIP synthase activity: .21-.28 mmol/LVPA reduced the activity by 50%. Among psychotropic drugs, the effect is specific to VPA. Accordingly, only VPA upregulates the yeast INO1 gene coding for MIP synthase. The VPA derivative N-methyl-2,2,3,3,-tetramethyl-cyclopropane carboxamide reduces MIP synthase activity and has an affect similar to that of VPA on rat neurons, whereas another VPA derivative, valpromide, poorly affects the activity and has no affect on neurons. CONCLUSIONS The rate-limiting step of inositol biosynthesis, catalyzed by MIP synthase, is inhibited by VPA; inositol depletion is a first event shown to be common to lithium and VPA.
Collapse
Affiliation(s)
- Galit Shaltiel
- Stanley Research Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Mental Health Center, Beersheva, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Lithium is an effective drug for both the treatment and prophylaxis of bipolar disorder. However, the precise mechanism of lithium action is not yet well understood. Extensive research aiming to elucidate the molecular mechanisms underlying the therapeutic effects of lithium has revealed several possible targets. The behavioral and physiological manifestations of the illness are complex and are mediated by a network of interconnected neurotransmitter pathways. Thus, lithium's ability to modulate the release of serotonin at presynaptic sites and modulate receptor-mediated supersensitivity in the brain remains a relevant line of investigation. However, it is at the molecular level that some of the most exciting advances in the understanding of the long-term therapeutic action of lithium will continue in the coming years. The lithium cation possesses the selective ability, at clinically relevant concentrations, to alter the PI second-messenger system, potentially altering the activity and dynamic regulation of receptors that are coupled to this intracellular response. Subtypes of muscarinic receptors in the limbic system may represent particularly sensitive targets in this regard. Likewise, preclinical data have shown that lithium regulates arachidonic acid and the protein kinase C signaling cascades. It also indirectly regulates a number of factors involved in cell survival pathways, including cAMP response element binding protein, brain-derived neurotrophic factor, bcl-2 and mitogen-activated protein kinases, and may thus bring about delayed long-term beneficial effects via under-appreciated neurotrophic effects. Identification of the molecular targets for lithium in the brain could lead to the elucidation of the pathophysiology of bipolar disorder and the discovery of a new generation of mood stabilizers, which in turn may lead to improvements in the long-term outcome of this devastating illness (1).
Collapse
Affiliation(s)
- B Corbella
- 1Clinical Institute of Psychiatry and Psychology, University of Barcelona, Barcelona, Spain
| | - E Vieta
- 1Clinical Institute of Psychiatry and Psychology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Kang HJ, Noh JS, Bae YS, Gwag BJ. Calcium-dependent prevention of neuronal apoptosis by lithium ion: essential role of phosphoinositide 3-kinase and phospholipase Cgamma. Mol Pharmacol 2003; 64:228-34. [PMID: 12869627 DOI: 10.1124/mol.64.2.228] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the possibility that the neuroprotective effects of Li+ would depend upon the patterns of neuronal death, apoptosis versus necrosis, and whether Ca2+ as well as phosphoinositide 3-kinase (PI3-K) would mediate the neuroprotective effect of Li+. Cortical neurons treated with Li+ showed marked increase in [Ca2+]i within 2 min. Addition of BAPTA-acetoxymethyl ester, a selective Ca2+ chelator, abrogated the antiapoptotic effect of Li+. PI3-K was activated rapidly within 1 min after exposure to Li+, which mediated Ca2+-dependent neuroprotective effects of Li+. Activated PI3-K seemed to increase [Ca2+]i via the phospholipase Cgamma (PLCgamma) pathway. Antiapoptosis action of Li+ was prevented in the presence of U-73122, a selective phospholipase C inhibitor, and was not observed in PLCgamma1-null fibroblasts. In contrast to antiapoptosis action, administration of Li+ did not prevent neuronal cell necrosis by excitotoxicity or free radicals. Li+ selectively prevents apoptosis by increasing [Ca2+]i through activation of PI3-K and PLCgamma pathways.
Collapse
Affiliation(s)
- Hyo Jung Kang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea, 442-749
| | | | | | | |
Collapse
|
11
|
Basselin M, Chang L, Seemann R, Bell JM, Rapoport SI. Chronic lithium administration potentiates brain arachidonic acid signaling at rest and during cholinergic activation in awake rats. J Neurochem 2003; 85:1553-62. [PMID: 12787074 DOI: 10.1046/j.1471-4159.2003.01811.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies were performed to determine if the reported 'proconvulsant' action of lithium in rats given cholinergic drugs is related to receptor-initiated phospholipase A2 signaling via arachidonic acid. Regional brain incorporation coefficients k* of intravenously injected [1-14C]arachidonic acid, which represent this signaling, were measured by quantitative autoradiography in unanesthetized rats at baseline and following administration of subconvulsant doses of the cholinergic muscarinic agonist, arecoline. In rats fed LiCl for 6 weeks to produce a therapeutically relevant brain lithium concentration, the mean baseline values of k* in brain auditory and visual areas were significantly greater than in rats fed control diet. Arecoline at doses of 2 and 5 mg/kg intraperitoneally increased k* in widespread brain areas in rats fed the control diet as well as the LiCl diet. However, the arecoline-induced increments often were significantly greater in the LiCl-fed than in the control diet-fed rats. Lithium's elevation of baseline k* in auditory and visual regions may correspond to its ability in humans to increase auditory and visual evoked responses. Additionally, its augmentation of the k* responses to arecoline may underlie its reported 'proconvulsant' action with cholinergic drugs, as arachidonic acid and its eicosanoid metabolites can increase neuronal excitability and seizure propagation.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
12
|
Agam G, Shamir A, Shaltiel G, Greenberg ML. Myo-inositol-1-phosphate (MIP) synthase: a possible new target for antibipolar drugs. Bipolar Disord 2003; 4 Suppl 1:15-20. [PMID: 12479670 DOI: 10.1034/j.1399-5618.4.s1.2.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inositol metabolism is well characterized in yeast at a molecular level, and yeast is the only eukaryote in which genetic, molecular and functional genomic approaches to identify lithium. valproate and inositol targets may be combined readily. It has been shown that lithium inhibits yeast inositol monophosphatase (encoded by INM1 and INM2), and both valproate and lithium reduce intracellular inositol. Unlike lithium, valproate causes a decrease in intracellular inositol-1-phosphate as well. suggesting that myo-inositol-1-P (MIP) synthase is a site of valproate action in the yeast PI cycle. MIP synthase is the rate-limiting step in inositol biosynthesis and is highly regulated in response to inositol. Yeast genes that are affected by both lithium and valproate in the phosphoinositide pathways (INO1 increased over 10-fold, INO2 increased twofold and INM1 decreased about twofold) have been identified. It has also been reported previously that both lithium and inositol mildly up-regulate IMPA1 (encoding mammalian inositol monophosphatase) expression in human cells. These findings indicate that IMPA is regulated only mildly by lithium, and therefore may not be the major target in the inositol pathway. Given the substantial evidence for the role of inositol in the mechanism of action of lithium and valproate. the opposing and mild effects of lithium on the genes encoding inositol monophosphatase in yeast and human cells, but the powerful effect of lithium and valproate on INO1 in yeast, it is hypothesized that human hIANO1 is a factor in the psychopharmacology of mood stabilizers.
Collapse
Affiliation(s)
- Galila Agam
- Stanley Foundation Research Center, Ministry of Health Mental Health Center, Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Guron University of the Negev, Beersheva Israel
| | | | | | | |
Collapse
|
13
|
Vaden DL, Ding D, Peterson B, Greenberg ML. Lithium and valproate decrease inositol mass and increase expression of the yeast INO1 and INO2 genes for inositol biosynthesis. J Biol Chem 2001; 276:15466-71. [PMID: 11278273 DOI: 10.1074/jbc.m004179200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bipolar affective disorder (manic-depressive illness) is a chronic, severe, debilitating illness affecting 1-2% of the population. The Food and Drug Administration-approved drugs lithium and valproate are not completely effective in the treatment of this disorder, and the mechanisms underlying their therapeutic effects have not been established. We are employing genetic and molecular approaches to identify common targets of lithium and valproate in the yeast Saccharomyces cerevisiae. We show that both drugs affect molecular targets in the inositol metabolic pathway. Lithium and valproate cause a decrease in intracellular myo-inositol mass and an increase in expression of both a structural (INO1) and a regulatory (INO2) gene required for inositol biosynthesis. The opi1 mutant, which exhibits constitutive expression of INO1, is more resistant to inhibition of growth by lithium but not by valproate, suggesting that valproate may inhibit the Ino1p-catalyzed synthesis of inositol 1-phosphate. Consistent with this possibility, growth in valproate leads to decreased synthesis of inositol monophosphate. Thus, both lithium and valproate perturb regulation of the inositol biosynthetic pathway, albeit via different mechanisms. This is the first demonstration of increased expression of genes in the inositol biosynthetic pathway by both lithium and valproate. Because inositol is a key regulator of many cellular processes, the effects of lithium and valproate on inositol synthesis have far-reaching implications for predicting genetic determinants of responsiveness and resistance to these agents.
Collapse
Affiliation(s)
- D L Vaden
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
14
|
Murray M, Greenberg ML. Expression of yeast INM1 encoding inositol monophosphatase is regulated by inositol, carbon source and growth stage and is decreased by lithium and valproate. Mol Microbiol 2000; 36:651-61. [PMID: 10844654 DOI: 10.1046/j.1365-2958.2000.01886.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inositol monophosphatase plays a vital role in the de novo biosynthesis of inositol and in the phosphoinositide second messenger signalling pathway. We cloned the Saccharomyces cerevisiae open reading frame (ORF) YHR046c (termed INM1), which encodes inositol monophosphatase, characterized the protein Inm1p and analysed expression of the INM1 gene. INM1 was expressed in bacteria under the control of the lacZ promoter. The purified protein has inositol monophosphatase activity that is inhibited by the antibipolar drug lithium, but not valproate. In the inm1Delta:URA3 null mutant, inositol monophosphatase activity was reduced but not eliminated. The disruption had little effect on growth in the presence of lithium or valproate and no effect on growth in the absence of inositol. To characterize the regulation of INM1, we examined the effects of inositol, carbon source, growth phase, and the antibipolar drugs lithium and valproate on INM1 expression using an INM1-lacZ reporter gene. Unlike all other phospholipid biosynthetic enzyme-encoding genes studied, which contain the UASINO regulatory element, INM1 expression is increased in the presence of inositol. In addition, INM1 expression was repressed during growth in glycerol and derepressed as glucose-grown cells entered stationary. Both lithium and valproate, which cause a decrease in intracellular inositol, effect a decrease in INM1 expression. A model is presented to account for regulation of INM1 expression.
Collapse
Affiliation(s)
- M Murray
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
15
|
Manji HK, McNamara R, Chen G, Lenox RH. Signalling pathways in the brain: cellular transduction of mood stabilisation in the treatment of manic-depressive illness. Aust N Z J Psychiatry 1999; 33 Suppl:S65-83. [PMID: 10622182 DOI: 10.1111/j.1440-1614.1999.00670.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The long-term treatment of manic-depressive illness (MDI) likely involves the strategic regulation of signalling pathways and gene expression in critical neuronal circuits. Accumulated evidence has identified signalling pathways, in particular the family of protein kinase C (PKC) isozymes, as targets for the long-term action of lithium. Chronic lithium administration produces a reduction in the expression of PKC alpha and epsilon, as well as a major PKC substrate, MARCKS, which has been implicated in long-term neuroplastic events in the developing and adult brain. More recently, studies have demonstrated robust effects of lithium on another kinase system, GSK-3beta, and on neuroprotective/neurotrophic proteins in the brain. Given the key roles of these signalling cascades in the amplification and integration of signals in the central nervous system, these findings have clear implications not only for research into the neurobiology of MDI, but also for the future development of novel and innovative treatment strategies.
Collapse
Affiliation(s)
- H K Manji
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
16
|
Chen G, Hasanat KA, Bebchuk JM, Moore GJ, Glitz D, Manji HK. Regulation of signal transduction pathways and gene expression by mood stabilizers and antidepressants. Psychosom Med 1999; 61:599-617. [PMID: 10511011 DOI: 10.1097/00006842-199909000-00004] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine whether the currently available evidence supports the hypothesis that antidepressants and mood stabilizers may bring about some of their long-term therapeutic effects by regulating signal transduction pathways and gene expression in the central nervous system. METHODS To address this question, we reviewed the evidence showing that chronic administration of antidepressants and mood stabilizers involves alterations in signaling pathways and gene expression in the central nervous system. RESULTS A large body of data has shown that lithium and valproate exert effects on the protein kinase C signaling pathway and the activator protein 1 family of transcription factors; in contrast, antidepressants affect the cyclic adenosine monophosphate pathway and may bring about their therapeutic effects by modulating cyclic adenosine monophosphate-regulated gene expression in the central nervous system. CONCLUSIONS Given the key roles of these signaling cascades in the amplification and integration of signals in the central nervous system, the findings have clear implications not only for research into the etiology and pathophysiology of the severe mood disorders but also for the development of novel and innovative treatment strategies.
Collapse
Affiliation(s)
- G Chen
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
17
|
Marinho MM, de Sousa FC, de Bruin VM, Vale MR, Viana GS. Effects of lithium, alone or associated with pilocarpine, on muscarinic and dopaminergic receptors and on phosphoinositide metabolism in rat hippocampus and striatum. Neurochem Int 1998; 33:299-306. [PMID: 9840220 DOI: 10.1016/s0197-0186(98)00028-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mechanism of action of lithium (Li) alone or with pilocarpine (Pilo), focusing on muscarinic and dopaminergic systems and also on phosphoinositide metabolism was studied. Li (3 mEq/kg) administered to rats once (1 d) or daily for 7 days (7 d), 24 h before Pilo (15 mg/kg), exacerbated cholinergic signs, leading to tremors. convulsions and brain lesions. Increases in muscarinic receptors (MR) of 29 and 49% were observed in the hippocampus after atropine (Atro) and Li-Atro-Pilo treatments, respectively, as compared to controls (Atro) and the Li-Pilo group (Li-Atro-Pilo). In the striatum, except for the 37% increase in the Li-Atro (50 mg/kg)-Pilo group as compared to the Li-Pilo one, no other changes were observed in MR. A decrease of 32% on average in D2-like receptors (D2R) was detected in the hippocampus in the group Li-7d. On the contrary, in the striatum an increase (25%) in the Li-7d group was observed and this effect was blocked by Li-Pilo. As far as inositol phosphates (IP) and phosphatidylinositol-4,5-biphosphate (PIP2) metabolism is concerned, Li caused a decrease (28%) and an increase (60%) in IP and PIP2 accumulations, respectively, in hippocampus slices while Pilo only altered IP accumulation (32% decrease). In this area the association of Li-Atro (10 mg/kg)-Pilo also caused a decrease (36%) in PIP2 as compared to the Li-Pilo group. In striatal slices, except for the Li, Atro (10 mg/kg) and Li-Atro (10 mg/kg)-Pilo groups which showed a decrease (33 40%) in IP accumulation, no other alteration was detected. The potentiation of the effect of Pilo by Li does not seem to depend on the PI metabolism, but instead on its involvement with muscarinic and dopaminergic systems.
Collapse
Affiliation(s)
- M M Marinho
- Department of Pharmacy, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | |
Collapse
|
18
|
Dwivedi Y, Pandey GN. Effects of subchronic administration of antidepressants and anxiolytics on levels of the alpha subunits of G proteins in the rat brain. J Neural Transm (Vienna) 1998; 104:747-60. [PMID: 9444573 DOI: 10.1007/bf01291891] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to examine the effects of subchronic administration of psychoactive drugs on the alpha subunits of G proteins in the rat brain, and also to determine if different classes of psychoactive drugs share a common property, i.e., of altering levels of these proteins. For this purpose, we selected the psychoactive drugs desipramine and phenelzine (antidepressants), lithium (antimanic), alprazolam and buspirone (anxiolytics), and metachlorophenylpiperazine (anxiogenic). The levels of alpha subunits of G proteins (Gs, Gi 1/2, Gq/11) expressed in cortical, hippocampal, and cerebellar brain regions were studied by the Western blot technique. We observed that subchronic treatment with lithium significantly decreased, and with phenelzine significantly increased levels of Gi 1/2 alpha protein in the cortex and the hippocampus. On the other hand, buspirone significantly decreased levels of Gi 1/2 alpha protein only in the cerebellum. Other psychoactive drugs, however, namely desipramine, meta-chlorophenylpiperazine, and alprazolam, did not alter levels of Gs, Gi 1/2, or Gq/11 alpha proteins in any of the brain regions studied. Since other studies have shown the involvement of G proteins in the mechanism of action of psychoactive drugs, our results demonstrate that expressed protein levels of the alpha subunit of G proteins are not altered by all the psychoactive drugs.
Collapse
Affiliation(s)
- Y Dwivedi
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, USA
| | | |
Collapse
|
19
|
Jakobsen SN, Wiborg O. Selective effects of long-term lithium and carbamazepine administration on G-protein subunit expression in rat brain. Brain Res 1998; 780:46-55. [PMID: 9473582 DOI: 10.1016/s0006-8993(97)01181-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The efficacy of lithium and carbamazepine in treatment of bipolar affective disorder is well established. Although a number of biochemical effects have been found the exact molecular mechanisms underlying their therapeutic actions have not been elucidated. Nor have the target regions in the brain been located. The objectives of the present investigation were to identify the selective effects and target regions of long-term treatment, with either lithium or carbamazepine, on G-protein subunit expression in rat brain. Effects were measured in hippocampus, hypothalamus, amygdala, frontal cortex, neostriatum, thalamus, raphe nuclei and cerebellum. At the protein level amounts of Galphao decreased significantly (P < 0.01) in neostriatum and Gbeta increased in frontal cortex in response to both drug treatments. At the mRNA level amounts of Galphai1 increased significantly (P < 0.01) in neostriatum. Galphas messenger amounts decreased in frontal cortex and increased in thalamus. These effects were common for both drugs, however, in addition also some differential effects, specific for either of the two drugs, were observed. We conclude frontal cortex and neostriatum are important target regions of long-term treatment with either lithium or carbamazepine and suggest Galphao, Galphas, Galphai1 and Gbeta to be selective target molecules.
Collapse
Affiliation(s)
- S N Jakobsen
- Department of Biological Psychiatry, Psychiatric Hospital, Risskov, Denmark
| | | |
Collapse
|
20
|
Jensen JB, Mørk A. Altered protein phosphorylation in the rat brain following chronic lithium and carbamazepine treatments. Eur Neuropsychopharmacol 1997; 7:173-9. [PMID: 9213075 DOI: 10.1016/s0924-977x(96)00396-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lithium and carbamazepine (CBZ) alter levels of specific kinase-activating second messengers generated by adenylate cyclases and the phosphoinositide system. Thus, lithium and CBZ may change endogenous protein phosphorylation mediated by cyclic AMP-dependent protein kinase (PKA) and protein kinase C (PKC). The present study aimed at comparing the chronic effects of lithium and CBZ on protein phosphorylation in the rat brain by using quantitative autoradiography. Long-term treatments yielded plasma levels within the therapeutic range. In the particulate hippocampal fraction PKA-mediated phosphorylation of a 42 kDa protein and PKC-mediated phosphorylation of a 88 kDa protein were decreased after lithium treatment. In the cortical particulate fraction approximately 30% reduction in the PKA-mediated protein phosphorylation of several proteins was observed after lithium and CBZ treatments. In the same fraction, CBZ treatment significantly reduced PKC-mediated phosphorylation of several substrates by 30-40%. PKA activity was significantly reduced in cortex, but not in the hippocampus. Thus, both drugs exhibited fraction and region specificities.
Collapse
Affiliation(s)
- J B Jensen
- Department of Pharmacology, Panum Institute, University of Copenhagen, Denmark
| | | |
Collapse
|
21
|
Podskalny GD, Factor SA. Chorea caused by lithium intoxication: a case report and literature review. Mov Disord 1996; 11:733-7. [PMID: 8914104 DOI: 10.1002/mds.870110623] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report a patient who developed an acute, reversible, generalized choreiform disorder from lithium (Li) intoxication. This medication was prescribed for manic-depressive disorder, and serum levels became elevated after the addition of a diuretic for the treatment of hypertension. There were no other apparent causes for the movement disorder, and it was associated with other known features of Li intoxication, including ataxia and encephalopathy. There was a delay between the initial symptoms of Li intoxication and the onset of chorea. The chorea improved as serum Li levels diminished, with some lag time. This represents the eleventh case report of Li-induced chorea, but only the sixth in a patient without concomitant neuroleptic therapy, and the first presented with videotape confirmation. A review of these other cases is included, and possible mechanisms are discussed.
Collapse
Affiliation(s)
- G D Podskalny
- Albany Medical College, Department of Neurology, New York 12208, USA
| | | |
Collapse
|
22
|
Patishi Y, Bersudsky Y, Belmaker RH. Phorbol ester intracerebroventricularly induces a behavioral hypoactivity that is not affected by chronic or acute lithium. Eur Neuropsychopharmacol 1996; 6:39-41. [PMID: 8866936 DOI: 10.1016/0924-977x(95)00054-s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic lithium treatment in rats has been reported to decrease protein kinase C alpha isozyme in hippocampal membranes. We gave phorbol ester, a protein kinase C activator, i.c.v. to rats treated with acute or chronic lithium. Low dose phorbol ester causes a marked hypoactivity and high dose phorbol ester causes a barrel rolling behavior, but no behavioral interactions with lithium treatment were observed.
Collapse
Affiliation(s)
- Y Patishi
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | | | | |
Collapse
|
23
|
Manji HK, Potter WZ. Affective Disorders. Neurotherapeutics 1996. [DOI: 10.1007/978-1-59259-466-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Kragh J, Jørgensen MB, Diemer NH, Bolwig TG. Long-term decrease in the hippocampal [3H]inositoltriphosphate binding following repeated electroshock in the rat. Biol Psychiatry 1995; 38:471-4. [PMID: 8672608 DOI: 10.1016/0006-3223(94)00322-t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A quantitative autoradiographic study was made on the binding of the phosphatidylinositol system ligand [3H]inositol(1,4,5)-triphosphate (IP3) to forebrain sections from electroconvulsive shock (ECS)-treated rats. One group of rats was sacrificed 1 day and 1 month, respectively, after 12 ECSs administered three times weekly for 4 weeks. SHAM-stimulated rats served as controls. A single ECS did not change the [3H]IP3 binding in any of the brain regions examined. One day after the last of 12 ECSs, a decrease in [3H]IP3 binding (21%) was found within the CA1 region of the hippocampus and the piriform cortex (39%). In rats sacrificed 1 month after the last of 12 ECSs, the [3H]IP3 binding in piriform cortex had returned to control level. In the CA1 region of the hippocampus, the binding was still decreased (24%). It is possible that changes in the phosphatidylinositol system may play a part in the neurobiological events responsible for the therapeutic effect of electroconvulsive therapy.
Collapse
Affiliation(s)
- J Kragh
- Laboratory for Experimental Neuropsychiatry, State University Hospital, Copenhagen, Denmark
| | | | | | | |
Collapse
|
25
|
Overstreet DH, Pucilowski O, Rezvani AH, Janowsky DS. Administration of antidepressants, diazepam and psychomotor stimulants further confirms the utility of Flinders Sensitive Line rats as an animal model of depression. Psychopharmacology (Berl) 1995; 121:27-37. [PMID: 8539339 DOI: 10.1007/bf02245589] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Flinders Sensitive Line (FSL) rats have been proposed as an animal model of depression because they resemble depressed humans in that they have elevated REM sleep, reduced activity, and increased immobility and anhedonia after exposure to stressors. The present paper reviews experiments on the drug treatment of FSL and control Flinders Resistant Line (FRL) rats related to their utility as an animal model of depression, and presents new information. FSL rats exhibited exaggerated immobility in the forced swim test which is counteracted by the tricyclic antidepressants imipramine and desipramine and the serotonin reuptake blocker sertraline; the low immobility exhibited by the FRL rats is generally unaffected by these compounds. In contrast to these "therapeutic" effects of well recognized antidepressants, lithium and bright light treatment did not alter the exaggerated immobility of FSL rats. Novel data indicated that neither FSL nor FRL rats exhibited alterations in swim test immobility following chronic administration of the psychomotor stimulant amphetamine (2 mg/kg) and the anticholinergic scopolamine (2 mg/kg), which typically reduce immobility after acute administration. However, it was found that the calcium channel blockers verapamil (5 and 15 mg/kg) and nicardipine (10 mg/kg) did reduce the exaggerated immobility in FSL rats following chronic administration, suggesting that these compounds need to be evaluated further in humans. Previous studies have indicated no differences between FSL and FRL rats evaluated in the elevated plus maze, either at baseline or after the administration of diazepam, suggesting that the FSL rat may not differ from controls in anxiety-related behavior. Another recently published study showed that the FSL rat also did not differ from normal Sprague-Dawley rats in startle tests, indicating that the FSL rats do not exhibit behaviors shown in animal models of schizophrenia. These findings confirm the utility of FSL rats as an animal model of depression because the FSL rats do not appear to exhibit behaviors analogous to anxiety or schizophrenia and because they respond "therapeutically" to antidepressants and not psychomotor stimulants.
Collapse
Affiliation(s)
- D H Overstreet
- Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill 27599-7178, USA
| | | | | | | |
Collapse
|
26
|
Okamoto Y, Kagaya A, Motohashi N, Yamawaki S. Inhibitory effects of lithium ion on intracellular Ca2+ mobilization in the rat hippocampal slices. Neurochem Int 1995; 26:233-8. [PMID: 7787770 DOI: 10.1016/0197-0186(94)00130-m] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lithium is well established as a treatment of manic-depressive illness. As for the mechanism of action of lithium, it is proposed that lithium has effects on intracellular calcium ion (Ca2+) movement. But there are few reports in which the effects of lithium on intracellular Ca2+ movement are observed in the mammalian brain. We therefore examined the effects of lithium on intracellular Ca2+ changes in the rat hippocampal slices with a Ca2+ sensitive dye fura-2, and analyzed by means of a fluorescence microscope, a video-camera and photometrical devices. From the results of treatment with various noradrenergic agonists or antagonists, noradrenaline (NA)-induced intracellular Ca2+ change appears to be mainly mediated by alpha 1-adrenoceptors (AR) rather than alpha 2- or beta-AR. Furthermore, they are considered to be mediated by both alpha 1A-AR and alpha 1B-AR, and to be partly dependent on extracellular Ca2+. Lithium decreased NA-induced intracellular Ca2+ mobilization by attenuation of T1/2 rather than a change in the peak value, and antagonized ouabain-induced intracellular Ca2+ increase. Lithium may therefore suppress intracellular Ca2+ movement by enhancing the extrusion of intracellular Ca2+.
Collapse
Affiliation(s)
- Y Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University School of Medicine, Japan
| | | | | | | |
Collapse
|
27
|
Rapaport MH, Schmidt ME, Risinger R, Manji H. The effects of prolonged lithium exposure on the immune system of normal control subjects: serial serum soluble interleukin-2 receptor and antithyroid antibody measurements. Biol Psychiatry 1994; 35:761-6. [PMID: 8043704 DOI: 10.1016/0006-3223(94)91136-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of this study was to begin evaluating the effects of lithium carbonate on in vivo immune function in normal controls. We postulated that lithium carbonate would stimulate lymphocytes but would not affect the production of antithyroid antibodies. Twenty-seven normal controls had blood samples drawn for measurements of serum soluble interleukin-2 receptors (SIL-2Rs), antithyroglobulin antibodies, and antimicrosomal antibodies prior to and after approximately 1 and 4 weeks of treatment with lithium carbonate at therapeutic blood levels. Subjects had a small but statistically significant increase in serum SIL-2Rs after 4 weeks of lithium treatment (446.3 +/- 177.2 U/ml versus 497.6 +/- 232.3 U/ml, p = 0.033). There was no increase in the prevalence of antithyroglobulin or antimicrosomal antibodies with lithium treatment nor did lithium act as an adjuvant to increase the titers in subjects with preexisting antithyroid antibodies.
Collapse
Affiliation(s)
- M H Rapaport
- Department of Psychiatry, University of California, San Diego School of Medicine, La Jolla 92093-0655
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- R S Jope
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham 35294
| | | |
Collapse
|
29
|
Manji HK, Etcheberrigaray R, Chen G, Olds JL. Lithium decreases membrane-associated protein kinase C in hippocampus: selectivity for the alpha isozyme. J Neurochem 1993; 61:2303-10. [PMID: 8245981 DOI: 10.1111/j.1471-4159.1993.tb07474.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We investigated the effects of lithium on alterations in the amount and distribution of protein kinase C (PKC) in discrete areas of rat brain by using [3H]phorbol 12,13-dibutyrate quantitative autoradiography as well as western blotting. Chronic administration of lithium resulted in a significant decrease in membrane-associated PKC in several hippocampal structures, most notably the subiculum and the CA1 region. In contrast, only modest changes in [3H]phorbol 12,13-dibutyrate binding were observed in the various other cortical and subcortical structures examined. Immunoblotting using monoclonal anti-PKC antibodies revealed an isozyme-specific 30% decrease in hippocampal membrane-associated PKC alpha, in the absence of any changes in the labeling of either the beta (I/II) or gamma isozymes. These changes were observed only after chronic (4 week) treatment with lithium, and not after acute (5 days) treatment, suggesting potential clinical relevance. Given the critical role of PKC in regulating neuronal signal transduction, lithium's effects on PKC in the limbic system represent an attractive molecular mechanism for its efficacy in treating both poles of manic-depressive illness. In addition, the decreased hippocampal membrane-associated PKC observed in the present study offers a possible explanation for lithium-induced memory impairment.
Collapse
Affiliation(s)
- H K Manji
- Section on Clinical Pharmacology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
30
|
Li PP, Sibony D, Green MA, Warsh JJ. Lithium modulation of phosphoinositide signaling system in rat cortex: selective effect on phorbol ester binding. J Neurochem 1993; 61:1722-30. [PMID: 8228988 DOI: 10.1111/j.1471-4159.1993.tb09809.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent work indicates that the therapeutic action of lithium may be mediated through perturbation of postreceptor second messenger systems. To elucidate further the postreceptor cellular sites of action(s) of lithium, the effect of chronic lithium treatment on various components of the receptor-activated phosphoinositide pathway was investigated. We found that chronic administration of lithium (0.2% LiCl, 21 days) to adult male rats did not significantly affect phosphoinositide hydrolysis in cerebral cortical slices induced by carbachol (1 mM) or NaF (10 mM). Nor did the same treatment alter the carbachol (1 mM) potentiation of guanosine 5'-(gamma-thio)triphosphate (30 microM) stimulation of phosphoinositide hydrolysis (an index of receptor/G protein coupling) in cortical membranes. Immunoblotting studies revealed no changes in the levels of G alpha q/11 immunoreactivity in the cortex after chronic lithium treatment. The levels of protein kinase C, as revealed by specific binding of [3H]phorbol dibutyrate ([3H]PDBu), were significantly reduced in the cytosolic fraction and increased in the particulate fraction of rat cortex after chronic lithium, whereas the KD of [3H]PDBu binding remained relatively constant. A small and insignificant decrease in the density of [3H]inositol 1,4,5-trisphosphate binding was also found in the cortex. The above data suggest that chronic lithium treatment affects neither the muscarinic cholinergic-linked phosphoinositide turnover nor the putative G protein alpha subunit (G alpha q/11) responsible for phospholipase C activation. However, a possible translocation and activation of protein kinase C activity may be significant in the therapeutic effect of this mood-stabilizing agent.
Collapse
Affiliation(s)
- P P Li
- Section of Biochemical Psychiatry, Clarke Institute of Psychiatry, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Li PP, Young LT, Tam YK, Sibony D, Warsh JJ. Effects of chronic lithium and carbamazepine treatment on G-protein subunit expression in rat cerebral cortex. Biol Psychiatry 1993; 34:162-70. [PMID: 8399809 DOI: 10.1016/0006-3223(93)90387-s] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although lithium and carbamazepine (CBZ) are effective in the treatment of bipolar affective disorder, their mechanism of action is still unknown. Recent evidence suggests that lithium and CBZ might exert their therapeutic effects by modulating the function of guanosine triphosphate (GTP)-regulatory (G) proteins associated with central nervous system second messenger systems. In the present study, we showed that chronic lithium administration decreases G alpha s, G alpha i1, and G alpha i2 messenger RNA (mRNA) abundance by 25%-30% in rat cerebral cortex. However, the levels of G alpha s, G alpha i1, and G alpha i2 mRNA were unaffected by chronic CBZ treatment. The effects of lithium on G alpha s, G alpha i1, and G alpha i2 mRNA levels appear to be selective, as the mRNA levels of G alpha o, G alpha x, G beta 1, G beta 2, and G beta 3 subunits remained unchanged. Two days after terminating chronic lithium treatment, changes in G alpha s, G alpha i1, and G alpha i2 mRNA levels were not demonstrable. Short-term administration of lithium (2 days), however, reduced only the G alpha i2 mRNA levels. Surprisingly, there was no significant difference in the amount of immunologically detectable G alpha s-s, G alpha s-1, G alpha i(1 + 2), G alpha 0, and G beta (1 + 2) in the cortex of rats chronically treated with lithium or CBZ, compared with controls.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P P Li
- Section of Biochemical Psychiatry, Clarke Institute of Psychiatry, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
32
|
Hirvonen MR, Komulainen H, Savolainen K. Carbachol- and KCl-induced changes in phosphoinositide metabolism and free calcium in guinea pig cerebral cortex synaptosomes. Neurochem Res 1993; 18:579-83. [PMID: 8386337 DOI: 10.1007/bf00966934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Phosphoinositide (PI) and calcium metabolism were studied in guinea pig cerebral cortex synaptosomes. Mass amounts of inositol and inositol monophosphates, and the levels of free intrasynaptosomal calcium ([Ca2+]i) were measured after KCl (60 mM), after a direct cholinergic agonist carbachol (CA, 1mM), and after their combination. Inositol, inositol-1-phosphate (Ins1P), inositol-4-phosphate (Ins4P) and [Ca2+]i were measured with and without 10 mM LiCl in the incubation medium. CA-induced cholinergic stimulation elevated synaptosomal Ins4P levels by 40% but did not affect Ins1P or [Ca2+]i. On the contrary, KCl elevated Ins1P by 50% and [Ca2+]i by 40% above the resting level, and decreased inositol by 20%, whereas no alterations in Ins4P occurred. CA did not modify the responses of KCl, but KCl abolished the elevation of Ins4P by CA. LiCl attenuated KCl-induced elevation of Ins1P but amplified the CA-induced elevation of Ins4P. The elevation of presynaptic [Ca2+]i was accompanied by accumulation of Ins1P but not that of Ins4P. Hence, the present results suggest that presynaptic cholinergic stimulation and KCl-induced depolarization may activate different degradation pathways of inositolphosphate metabolism.
Collapse
Affiliation(s)
- M R Hirvonen
- Division of Environmental Health, National Public Health Institute, Kuopio, Finland
| | | | | |
Collapse
|
33
|
Hudson CJ, Young LT, Li PP, Warsh JJ. CNS signal transduction in the pathophysiology and pharmacotherapy of affective disorders and schizophrenia. Synapse 1993; 13:278-93. [PMID: 8497811 DOI: 10.1002/syn.890130311] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Until recently, research on the neurochemical basis of affective disorders (AD) and schizophrenia (SCZ) focused on detecting postulated disturbances in presynaptic neurotransmitter release and metabolism, or postsynaptic receptor function. New insights into the molecular mechanisms involved in the propagation of neurotransmitter signals across biological membranes and in the regulation of neuronal responses have allowed the development of novel hypotheses, which may explain the altered postsynaptic neuroreceptor responsivity thought to be integral to the pathophysiology of these disorders. In this review we evaluate evidence from both basic science and clinical research implicating disturbances in postreceptor signal transduction in the pathophysiology and pharmacotherapy of AD and SCZ. Specific findings regarding potential postreceptor sites of pathophysiology are highlighted in each of these disorders, together with the growing body of data on the possible postreceptor loci of psychotropic drug action, especially lithium and antidepressants.
Collapse
Affiliation(s)
- C J Hudson
- Department of Psychiatry, University of Toronto, Clarke Institute of Psychiatry, Canada
| | | | | | | |
Collapse
|
34
|
Abstract
The Flinders Sensitive Line (FSL) rat, selectively bred for increased responses to the anticholinesterase DFP, was originally proposed as an animal model of depression because, like depressed humans, it is supersensitive to the behavioral and hormonal effects of cholinergic (muscarinic) agonists. The present review critically examines earlier and recent data collected on FSL rats to assess whether the model has good face, construct and/or predictive validity. With respect to face validity, FSL rats resemble depressed humans, at least superficially, in that they demonstrate: (a) reduced locomotor activity, (b) reduced body weight, (c) increased REM sleep, and (d) cognitive (learning) difficulties. So far, studies designed to assess the presence of anhedonia, a cardinal symptom of melancholic depression, have been inconclusive, but there are trends for the FSL rats to be more anhedonic than their control counterparts, the Flinders Resistant Line (FRL) rats, when exposed to chronic mild stress. Thus, FSL rats fulfill the criterion of face validity. Because FSL rats also are more sensitive to cholinergic agonists and have phase advanced circadian rhythms, they meet the criteria for the cholinergic and circadian rhythm models of depression and, therefore, have good construct validity. A key behavioral symptom exhibited by the FSL rat is demonstration of an exaggerated immobility when exposed to stressors such as foot shock and forced swimming. This behavioral abnormality has been normalized by a number of well-recognized antidepressant drugs such as imipramine and desipramine, as well as newer generation antidepressants with promising clinical effects such as sertraline and rolipram. However, several treatments that have not been routinely used to treat depression (lithium, exposure to bright light, the anticholinesterase DFP) have been ineffective in reversing the exaggerated immobility. Thus, the evidence in the present review indicates that the FSL rat model of depression fulfills the criteria of face, construct, and predictive validities.
Collapse
Affiliation(s)
- D H Overstreet
- Skipper Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill 27599-7175
| |
Collapse
|
35
|
Species Differences in the Response of Second Messenger Inositol 1,4,5-Trisphosphate to Lithium. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/b978-0-12-185285-6.50034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Dixon JF, Lee CH, Los GV, Hokin LE. Lithium enhances accumulation of [3H]inositol radioactivity and mass of second messenger inositol 1,4,5-trisphosphate in monkey cerebral cortex slices. J Neurochem 1992; 59:2332-5. [PMID: 1431911 DOI: 10.1111/j.1471-4159.1992.tb10129.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We previously reported that lithium, in the presence of acetylcholine, increased accumulations of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in brain cortex slices from the guinea pig, rabbit, rat, and mouse. In the mouse and rat, the Li(+)-induced increases required supplementation of the medium with inositol. This probably relates to the following facts: (a) Brain cortices of the mouse and rat contain in vivo concentrations of inositol half of that of the guinea pig. (b) Incubated rat brain cortex slices are depleted of inositol by 80%. (c) The slices require 10 mM inositol supplementation to restore in vivo concentrations. We now show that in monkey brain cortex slices, therapeutic concentrations of Li+ increase accumulation of inositol 1,4,5-trisphosphate. The inositol 1,3,4,5-tetrakisphosphate level is not increased. Neither inositol nor an agonist is required. The same effects are seen whether inositol 1,4,5-trisphosphate is quantified by the [3H]inositol prelabeling technique or by mass assay, although mass includes a pool of inositol 1,4,5-trisphosphate that is metabolically inactive. Thus, in a therapeutically relevant model for humans, Li+ increases inositol 1,4,5-trisphosphate levels in brain cortex slices, as was previously seen in lower mammals at non-rate-limiting concentrations of inositol.
Collapse
Affiliation(s)
- J F Dixon
- Department of Pharmacology, University of Wisconsin Medical School, Madison 53706
| | | | | | | |
Collapse
|
37
|
Peters DJ, Snaar-Jagalska BE, Van Haastert PJ, Schaap P. Lithium, an inhibitor of cAMP-induced inositol 1,4,5-trisphosphate accumulation in Dictyostelium discoideum, inhibits activation of guanine-nucleotide-binding regulatory proteins, reduces activation of adenylylcyclase, but potentiates activation of guanylyl cyclase by cAMP. ACTA ACUST UNITED AC 1992; 209:299-304. [PMID: 1356770 DOI: 10.1111/j.1432-1033.1992.tb17289.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Li+ drastically alters pattern formation in Dictyostelium by inhibiting cAMP-induced prespore-gene expression and promoting cAMP-induced prestalk-gene expression. We reported previously that Li+ inhibits inositol monophosphatases in this organism and strongly reduces basal and cAMP-stimulated inositol 1,4,5-trisphosphate levels. We show here that Li+ also reduces cAMP-induced accumulation of cAMP, but promotes cAMP-induced accumulation of cGMP. This effect is not due to inhibition of cGMP hydrolysis or inhibition of adaptation and may therefore reflect stimulation of guanylyl-cyclase activation. Li+ does not affect the binding of cAMP to surface receptors but interferes with the interaction between receptors and guanine-nucleotide-binding regulatory (G) proteins. These effects are complex; in the absence of Mg2+, Li+ increases guanosine 5'-[gamma-thio]triphosphate(GTP[S])-binding activity to similar levels as 1 mM Mg2+. However, while Mg2+ potentiates cAMP-induced stimulation of GTP[S]-binding activity, Li+ effectively inhibits stimulation. Li+ also inhibits cAMP-stimulated, but not basal high-affinity GTP-ase activity, indicating an inhibitory effect on cAMP-induced activation of G-proteins. Our data suggest that in addition to inositolphosphate metabolism, the activation of G-proteins may be a second biochemical target for Li+ effects on pattern formation and signal transduction in Dictyostelium.
Collapse
Affiliation(s)
- D J Peters
- Department of Biology, University of Leiden, The Netherlands
| | | | | | | |
Collapse
|
38
|
Abstract
Lithium is known to potentiate the ability of pilocarpine to induce status epilepticus in rats. The goal of this study was to determine whether lithium could potentiate pilocarpine-induced seizures in developing animals. Behavioral, electroencephalographic (EEG), and histopathological changes induced by systemic administration of lithium (3 meq/kg) followed 20 h later by pilocarpine (3, 10, 30, 60 mg/kg) were studied in 3-30-day-old rats. Lithium followed by pilocarpine (30 and 60 mg/kg) induced hyperactivity, tremor, loss of postural control and scratching but no electrographic seizures in 3-8-day-old rats. In the 7-10-day-old animals pretreatment with lithium and pilocarpine 60 mg/kg induced status epilepticus with sustained myoclonus and continuous bilateral synchronous spike and sharp wave, but doses of pilocarpine lower than 60 mg/kg had no effect. The susceptibility to lithium-pilocarpine-induced status epilepticus increased markedly during the third postnatal week of life. During this time period, rats treated with lithium (3 meq/kg) plus pilocarpine 10 mg/kg exhibited behavioral and EEG manifestations of status epilepticus. The same combination of lithium and pilocarpine failed to induce status epilepticus either before or after the third week of life. Histopathological analysis of the brains of the animals used in these studies failed to demonstrate the widespread damage reported in adult rats that have undergone lithium-pilocarpine-induced status epilepticus.
Collapse
Affiliation(s)
- E Hirsch
- Department of Neurology, University of Southern California, Los Angeles
| | | | | |
Collapse
|
39
|
Song L, Jope RS. Chronic lithium treatment impairs phosphatidylinositol hydrolysis in membranes from rat brain regions. J Neurochem 1992; 58:2200-6. [PMID: 1573399 DOI: 10.1111/j.1471-4159.1992.tb10964.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Membranes prepared from rat brain regions were used to measure the receptor-coupled and/or guanine nucleotide-binding protein (G protein)-mediated hydrolysis of exogenous [3H]phosphatidylinositol ([3H]PI). Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and NaF (in the presence of AlCl3) caused concentration-dependent stimulations of [3H]PI hydrolysis, supporting the conclusion that G proteins mediating [3H]PI hydrolysis can be activated in this preparation. Neither of these responses was altered by in vitro incubation with 8 mM LiCl, but both were reduced in hippocampal, striatal, and cortical membranes from rats that had been treated with lithium for 4 weeks compared with controls. Two cholinergic agonists, carbachol and pilocarpine, induced no hydrolysis of [3H]PI unless GTP gamma S was also present, in which case each equally stimulated [3H]PI hydrolysis above that obtained with GTP gamma S alone. In the presence of GTP gamma S several excitatory amino acid agonists stimulated [3H]PI hydrolysis to an extent similar to that of carbachol. After chronic lithium treatment, [3H]PI hydrolysis stimulated by carbachol was significantly attenuated, but the response to quisqualate was unaffected. Therefore, lithium added in vitro does not have an effect on cholinergic receptor- or G protein-mediated [3H]PI hydrolysis, but each of these is reduced by chronic lithium treatment. Because exogenous [3H]PI was provided as the substrate, it is evident that the inhibitory effect of chronic lithium treatment cannot be due to substrate depletion. Impaired function of G proteins appears to be the most likely mechanism accounting for attenuated [3H]PI hydrolysis after chronic administration of lithium.
Collapse
Affiliation(s)
- L Song
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
40
|
Jope RS, Song L, Kolasa K. Inositol trisphosphate, cyclic AMP, and cyclic GMP in rat brain regions after lithium and seizures. Biol Psychiatry 1992; 31:505-14. [PMID: 1316177 DOI: 10.1016/0006-3223(92)90261-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mechanism of action of lithium, the primary treatment for bipolar affective disorder, is unknown but may involve inhibition of second messenger production in the brain. Therefore, the concentrations of three second messengers, inositol 1,4,5 trisphosphate (Ins 1,4,5P3), cyclic adenosine monophosphate (AMP), and cyclic guanosine monophosphate (GMP), were measured in rat cerebral cortex and hippocampus after acute or chronic lithium administration, as well as after treatment with the cholinergic agonist pilocarpine alone or in combination with lithium at a dose that induces seizures only in lithium pretreated rats. Neither acute nor chronic lithium treatment altered the hippocampal or cortical concentration of Ins 1,4,5P3, cyclic AMP, or cyclic GMP. Pilocarpine administered alone increased Ins 1,4,5P3 in both regions, did not alter cyclic AMP, and slightly increased cyclic GMP in the cortex. Coadministration of lithium plus pilocarpine caused large increases in the concentrations of all three second messengers and the production of each of them was uniquely attenuated: lithium reduced pilocarpine-induced increases of Ins 1,4,5P3 in the cortex at 60 min; chronic lithium administration reduced stimulated cyclic AMP production in the hippocampus; and chronic lithium treatment impaired stimulated cyclic GMP production in both regions. In summary, chronic lithium treatment appeared only to reduce Ins 1,4,5P3 and cyclic AMP concentrations after a long period of stimulation whereas cyclic GMP production was reduced by chronic lithium administration after both short and long periods of stimulation. Thus cyclic GMP was most sensitive to lithium and lithium attenuation of second messenger formation may be most important in excessively activated pathways.
Collapse
Affiliation(s)
- R S Jope
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham 35294
| | | | | |
Collapse
|
41
|
Hsiao JK, Manji HK, Chen GA, Bitran JA, Risby ED, Potter WZ. Lithium administration modulates platelet Gi in humans. Life Sci 1992; 50:227-33. [PMID: 1731175 DOI: 10.1016/0024-3205(92)90276-u] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platelet G proteins were assessed in 7 normal volunteers before and after 14 days of lithium administration at therapeutic plasma levels. Cholera and pertussis toxin catalyzed ADP-ribosylation of platelet membrane proteins were measured by SDS-PAGE. Immunoblotting with specific antibodies was used to measure platelet membrane alpha i content. There was a statistically significant 37% increase in pertussis toxin mediated ADP-ribosylation of a 40,000 Mr protein in platelet membranes after lithium administration, but cholera toxin mediated ADP-ribosylation of a 45,000 Mr protein and alpha i immunoblotting were unchanged by lithium. Increased pertussis toxin stimulated ADP-ribosylation in the absence of changes in alpha i content could be explained by a shift in platelet Gi in favor of its undissociated, inactive form. This would be consistent with increased platelet adenylyl cyclase activity found in these same subjects after lithium.
Collapse
Affiliation(s)
- J K Hsiao
- Section on Clinical Pharmacology, National Institute of Mental Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
42
|
Meston CM, Gorzalka BB. Psychoactive drugs and human sexual behavior: the role of serotonergic activity. J Psychoactive Drugs 1992; 24:1-40. [PMID: 1619520 DOI: 10.1080/02791072.1992.10471616] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A wide range of both prescription and nonprescription drugs has been reported to affect human sexual functioning. While the sexual side effects resulting from drug use have often been attributed to adrenergic, anticholinergic or dopaminergic activity, the present review considers the potential role of serotonin. Based on animal studies, serotonin has been shown to either facilitate or inhibit sexual activity depending on which serotonin receptor subtype is activated. However, few studies have been done in the human that assess the effects of drugs that bind selectively to serotonin receptors. Consequently, little is known about the role of serotonin in human sexual functioning. In this review, a wide range of drugs that affect both brain serotonergic systems and human sexual behavior is examined in an effort to determine the possible role of serotonin in human sexual behavior. A review of the literature is consistent with the hypothesis that the 5-HT1A and the 5-HT2 receptor subtypes play a facilitatory role in human sexual behavior. The evidence suggests that drugs that act as agonists on these receptor sites enhance sexual functioning in the human, while those that act as antagonists inhibit sexual functioning.
Collapse
Affiliation(s)
- C M Meston
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
43
|
Caldecott-Hazard S, Morgan DG, DeLeon-Jones F, Overstreet DH, Janowsky D. Clinical and biochemical aspects of depressive disorders: II. Transmitter/receptor theories. Synapse 1991; 9:251-301. [PMID: 1685032 DOI: 10.1002/syn.890090404] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present document is the second of three parts in a review that focuses on recent data from clinical and animal research concerning the biochemical bases of depressive disorders, diagnosis, and treatment. Various receptor/transmitter theories of depressive disorders are discussed in this section. Specifically, data supporting noradrenergic, serotonergic, cholinergic, dopaminergic, GABAergic, and peptidergic theories, as well as interactions between noradrenergic and serotonergic, or cholinergic and catecholaminergic systems are presented. Problems with the data and future directions for research are also discussed. A previous publication, Part I of this review, dealt with the classification of depressive disorders and research techniques for studying the biochemical mechanisms of these disorders. A future publication, Part III of this review, discusses treatments for depression and some of the controversies in this field.
Collapse
Affiliation(s)
- S Caldecott-Hazard
- Laboratory of Biomedical and Environmental Science, University of California, Los Angeles 90024
| | | | | | | | | |
Collapse
|
44
|
Newman ME, Shapira B, Lerer B. Effects of lithium and desimipramine on second messenger responses in rat hippocampus: relation to G protein effects. Neuropharmacology 1991; 30:1297-301. [PMID: 1787883 DOI: 10.1016/0028-3908(91)90026-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of chronic administration of lithium, short-term administration of lithium, chronic administration of DMI and a combination of short-term administration of lithium and chronic administration of DMI on second messenger responses were studied in the hippocampus of the rat. Lithium reduced the ability of carbachol to inhibit forskolin-stimulated activity of adenylate cyclase in hippocampal membranes but had no effect on carbachol-stimulated formation of inositol phosphate in hippocampal slices. Lithium, however, reduced the degree of stimulation of formation of inositol phosphate, induced by noradrenaline. Desimipramine alone did not affect carbachol- or noradrenaline-mediated reactions and a combination of short-term administration of lithium and chronic administration of DMI did not potentiate the action of lithium on adenylate cyclase. Both lithium and DMI abolished the inhibition by 5-HT of carbachol-stimulated formation of inositol phosphate a 5-HT1A receptor-mediated response. It is concluded that the chronic effects of administration of lithium may be related to actions at the G protein level and that different modes of coupling of receptors to G proteins may be responsible for the variety of effects observed.
Collapse
Affiliation(s)
- M E Newman
- Yaacov Herzog Centre for Brain and Psychiatry Research, Ezrath Nashim Hospital, Jerusalem, Israel
| | | | | |
Collapse
|
45
|
Abstract
Phosphorylation of protein tyrosines is an important modulatory process for cell signaling and other cellular functions. Rat brain regions were examined for altered protein phosphotyrosines, using Western blot analysis and microwave irradiation to limit postmortem alterations, after administration of two convulsants: lithium plus pilocarpine or kainic acid (KA). Most phosphotyrosine proteins were unaltered by these treatments, but there was a large, specific increase in the tyrosine phosphorylation of a 40-Kd protein. This increase was evident in all three regions examined: cerebral cortex, hippocampus, and striatum; it occurred abruptly with onset of generalized status epilepticus (SE) and remained elevated for at least 90 min. Most of the tyrosine phosphorylated 40-Kd protein was in the cytosolic fraction. These results demonstrate a large, specific effect of chemically induced seizures on a single phosphotyrosine protein in rat brain.
Collapse
Affiliation(s)
- R S Jope
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham 35294
| | | | | |
Collapse
|
46
|
Greil W, Steber R, van Calker D. The agonist-stimulated accumulation of inositol phosphates is attenuated in neutrophils from male patients under chronic lithium therapy. Biol Psychiatry 1991; 30:443-51. [PMID: 1657220 DOI: 10.1016/0006-3223(91)90305-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neutrophils from 22 patients (11 men, 11 women) under chronic lithium therapy and from 22 age- and sex-matched healthy controls were assessed for the activity of the agonist-stimulated inositol-phospholipid second messenger-producing system. [3H]inositol-labeled cells were stimulated with the chemotactic peptide formylmethionylleucylphenyl-alanin (fMLP). The fMLP-evoked increase in the accumulation of [3H]inositol phosphates was significantly attenuated in neutrophils from chronically lithium-treated male but not female patients. Furthermore, the fMLP-stimulated accumulation of inositol phosphates was attenuated in neutrophils from male volunteers, when the labeling of the cells with [3H]inositol was performed in the presence of 1mM Li (4 hr, 37 degrees C). However, the presence of lithium ions during the labeling did not further reduce the already diminished response of neutrophils from patients under lithium therapy. These results suggest that lithium treatment induces an inhibition of the agonist-evoked breakdown of inositol phospholipids in human cells, as already shown for rat brain slices.
Collapse
Affiliation(s)
- W Greil
- Department of Psychiatry, University of Munich, F.R.G
| | | | | |
Collapse
|
47
|
Ormandy GC, Jope RS. Pertussis toxin potentiates seizures induced by pilocarpine, kainic acid and N-methyl-D-aspartate. Brain Res 1991; 553:51-7. [PMID: 1933276 DOI: 10.1016/0006-8993(91)90229-o] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous studies with lithium have shown that it potentiated the in vivo response to cholinomimetics in rats, resulting in seizures at otherwise non-convulsant doses, but did not affect seizure activity induced by a number of chemical convulsants including kainic acid and N-methyl-D-aspartate (NMDA). In vitro experiments have suggested that lithium interferes with receptor-mediated second messenger production, possibly due to an action at G-proteins. The present study tested the hypothesis that selective inhibition of G-proteins by in vivo administration of pertussis toxin would induce effects similar to those of lithium. The results reported here demonstrate that pertussis toxin mimics lithium in potentiating the convulsant response to pilocarpine in rats. The effect of pertussis toxin was dose-dependent and the extent of potentiation was over 13-fold, which was remarkably similar to lithium. The seizures were prevented by pretreatment with atropine, phenobarbital or diazepam. L-Phenylisopropyladenosine (L-PIA) and MK-801 also demonstrated anticonvulsant activity, with MK-801 also protecting the rats against the rapid death associated with pertussis toxin/pilocarpine-induced seizures. Thus, seizures were cholinergically initiated and were controlled by the same drugs as were lithium/pilocarpine-induced seizures. The results illustrate that in several respects the response to cholinomimetics is modified in a similar manner by lithium and pertussis toxin. However, pertussis toxin lacks the specificity of lithium as it also potentiated the convulsant effects of kainic acid and NMDA.
Collapse
Affiliation(s)
- G C Ormandy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
48
|
Van Calker D, Steber R, Klotz KN, Greil W. Carbamazepine distinguishes between adenosine receptors that mediate different second messenger responses. Eur J Pharmacol 1991; 206:285-90. [PMID: 1915589 DOI: 10.1016/0922-4106(91)90111-t] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mechanism of the therapeutic and prophylactic effects of carbamazepine (CBZ) in affective psychoses is unknown but may in part be related to the potent competitive interaction of CBZ with adenosine-binding sites in the brain. The anticonvulsant and sedative properties of CBZ are reminiscent of the effects evoked by adenosine-agonists and contrast sharply with the opposite actions of adenosine-antagonists like caffeine. However, indirect evidence suggests an antagonist- rather than an agonist-like activity of CBZ at adenosine-receptors. We have used various model systems, in which adenosine receptor subtypes mediate different second messenger-responses, to investigate this-apparent paradox. CBZ was found to antagonize the A1-receptor-mediated inhibition of cyclic AMP accumulation in cultured astroblasts and in GH3-cells. Furthermore, CBZ also inhibits the adenosine-induced increase in the level of cyclic AMP in cultured astroblasts, which is mediated by low-affinity A2b-receptors. In contrast, CBZ does not block the inhibition elicited by adenosine-agonists of the agonist-induced increased formation of inositolphosphates in human neutrophils, which is mediated by high-affinity A2a-receptors. The specific antagonism by CBZ of A1- but not of high-affinity A2a-receptors was further supported by binding experiments using rat brain membranes. These results suggest that the paradox of CBZ's antagonistic effects at adenosine-receptors might be at least partially reconciled by a selective antagonistic action of CBZ at A1 receptors but not at high-affinity A2a-receptors.
Collapse
Affiliation(s)
- D Van Calker
- Psychiatric Hospital, University of Munich, F.R.G
| | | | | | | |
Collapse
|
49
|
Barone P, Palma V, DeBartolomeis A, Tedeschi E, Muscettola G, Campanella G. Dopamine D1 and D2 receptors mediate opposite functions in seizures induced by lithium-pilocarpine. Eur J Pharmacol 1991; 195:157-62. [PMID: 1829682 DOI: 10.1016/0014-2999(91)90394-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effect of selective dopamine receptor blockade on epileptic activity was tested in rats, using the lithium-pilocarpine seizure model. One day after lithium pretreatment, systemic administration of the dopamine D1 antagonist, SCH 23390, prevented the convulsive activity induced by either 10 or 15 mg/kg of pilocarpine in a dose-dependent manner as revealed by behavioral and electroencephalographic alterations. No anticonvulsant effect was observed when SCH 23390 was injected at the same time as lithium and 24 h prior to pilocarpine. Furthermore, the D2 antagonists, raclopride and haloperidol, potently reduced the threshold for convulsions induced by 10 mg/kg of pilocarpine, following lithium pretreatment. Neither dopamine D1 nor D2 antagonists altered the limbic stereotypies induced by pilocarpine, supporting the view that the dopamine system is primarily involved in the mechanisms of convulsion generation and seizure spreading. These results indicate that dopamine receptor subtypes exert opposite functions on the regulation of convulsive activity.
Collapse
Affiliation(s)
- P Barone
- Department of Neurology, 2nd School of Medicine, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Lithium pretreatment of rats has previously been shown to potentiate the convulsant effects of cholinomimetic drugs, such as pilocarpine. The first objective of this project was to determine if lithium also potentiates seizures induced by other classes of drugs. Lithium pretreatment of rats did not affect seizure activity induced by administration of N-methyl-D-aspartate, kainic acid, bicuculline, or pentylenetetrazole. This suggests that the proconvulsant effect of lithium is largely selective for cholinomimetics. A second series of experiments investigated possible mechanisms of the lithium potentiation of pilocarpine-induced seizures. The alpha 2-adrenergic receptor agonist clonidine suppressed seizure development, and the antagonist idazoxan enhanced the onset of seizures, suggesting that endogenous norepinephrine provides anticonvulsant properties. Administration of the norepinephrine depleter DSP-4 potentiated pilocarpine-induced seizures. These results suggest that the previously reported impairment of noradrenergic function by lithium may play a role in its potentiation of cholinomimetic-induced seizures.
Collapse
Affiliation(s)
- G C Ormandy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham 35294
| | | | | |
Collapse
|