1
|
Mensah-Nyagan AG, Meyer L, Patte-Mensah C. Modulatory role of neurosteroidogenesis in the spinal cord during peripheral nerve injury-induced chronic pain. Front Neuroendocrinol 2024; 72:101116. [PMID: 38182090 DOI: 10.1016/j.yfrne.2023.101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
The brain and spinal cord (SC) are both targeted by various hormones, including steroid hormones. However, investigations of the modulatory role of hormones on neurobiological functions usually focus only on the brain. The SC received little attention although this structure pivotally controls motor and sensory functions. Here, we critically reviewed key data showing that the process of neurosteroid biosynthesis or neurosteroidogenesis occurring in the SC plays a pivotal role in the modulation of peripheral nerve injury-induced chronic pain (PNICP) or neuropathic pain. Indeed, several active steroidogenic enzymes expressed in the SC produce endogenous neurosteroids that interact with receptors of neurotransmitters controlling pain. The spinal neurosteroidogenesis is differentially regulated during PNICP condition and its blockade modifies painful sensations. The paper suggests that future investigations aiming to develop effective strategies against PNICP or neuropathic pain must integrate in a gender or sex dependent manner the regulatory effects exerted by spinal neurosteroidogenesis.
Collapse
Affiliation(s)
- Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, 67 000 Strasbourg, France.
| | - Laurence Meyer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, 67 000 Strasbourg, France
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, 67 000 Strasbourg, France
| |
Collapse
|
2
|
Pince CL, Whiting KE, Wang T, Lékó AH, Farinelli LA, Cooper D, Farokhnia M, Vendruscolo LF, Leggio L. Role of aldosterone and mineralocorticoid receptor (MR) in addiction: A scoping review. Neurosci Biobehav Rev 2023; 154:105427. [PMID: 37858908 PMCID: PMC10865927 DOI: 10.1016/j.neubiorev.2023.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Preclinical and human studies suggest a role of aldosterone and mineralocorticoid receptor (MR) in addiction. This scoping review aimed to summarize (1) the relationship between alcohol and other substance use disorders (ASUDs) and dysfunctions of the aldosterone and MR, and (2) how pharmacological manipulations of MR may affect ASUD-related outcomes. Our search in four databases (MEDLINE, Embase, Web of Science, and Cochrane Library) indicated that most studies focused on the relationship between aldosterone, MR, and alcohol (n = 30), with the rest focused on opioids (n = 5), nicotine (n = 9), and other addictive substances (n = 9). Despite some inconsistencies, the overall results suggest peripheral and central dysregulations of aldosterone and MR in several species and that these dysregulations depended on the pattern of drug exposure and genetic factors. We conclude that MR antagonism may be a promising target in ASUD, yet future studies are warranted.
Collapse
Affiliation(s)
- Claire L Pince
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Kimberly E Whiting
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Tammy Wang
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - András H Lékó
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa A Farinelli
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Diane Cooper
- Office of Research Services, Division of Library Services, National Institutes of Health, Building 10, Bethesda, MD 20892, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|
3
|
Morris DJ, Brem AS, Odermatt A. Modulation of 11β-hydroxysteroid dehydrogenase functions by the cloud of endogenous metabolites in a local microenvironment: The glycyrrhetinic acid-like factor (GALF) hypothesis. J Steroid Biochem Mol Biol 2021; 214:105988. [PMID: 34464733 DOI: 10.1016/j.jsbmb.2021.105988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/08/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023]
Abstract
11β-Hydroxysteroid dehydrogenase (11β-HSD)-dependent conversion of cortisol to cortisone and corticosterone to 11-dehydrocorticosterone are essential in regulating transcriptional activities of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Inhibition of 11β-HSD by glycyrrhetinic acid metabolites, bioactive components of licorice, causes sodium retention and potassium loss, with hypertension characterized by low renin and aldosterone. Essential hypertension is a major disease, mostly with unknown underlying mechanisms. Here, we discuss a putative mechanism for essential hypertension, the concept that endogenous steroidal compounds acting as glycyrrhetinic acid-like factors (GALFs) inhibit 11β-HSD dehydrogenase, and allow for glucocorticoid-induced MR and GR activation with resulting hypertension. Initially, several metabolites of adrenally produced glucocorticoids and mineralocorticoids were shown to be potent 11β-HSD inhibitors. Such GALFs include modifications in the A-ring and/or at positions 3, 7 and 21 of the steroid backbone. These metabolites may be formed in peripheral tissues or by gut microbiota. More recently, metabolites of 11β-hydroxy-Δ4androstene-3,17-dione and 7-oxygenated oxysterols have been identified as potent 11β-HSD inhibitors. In a living system, 11β-HSD isoforms are not exposed to a single substrate but to several substrates, cofactors, and various inhibitors simultaneously, all at different concentrations depending on physical state, tissue and cell type. We propose that this "cloud" of steroids and steroid-like substances in the microenvironment determines the 11β-HSD-dependent control of MR and GR activity. A dysregulated composition of this cloud of metabolites in the respective microenvironment needs to be taken into account when investigating disease mechanisms, for forms of low renin, low aldosterone hypertension.
Collapse
Affiliation(s)
- David J Morris
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Andrew S Brem
- Division of Kidney Diseases and Hypertension, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
4
|
Neurosteroids and neuropathic pain management: Basic evidence and therapeutic perspectives. Front Neuroendocrinol 2019; 55:100795. [PMID: 31562849 DOI: 10.1016/j.yfrne.2019.100795] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 01/18/2023]
Abstract
Complex mechanisms involved in neuropathic pain that represents a major health concern make its management complicated. Because neurosteroids are bioactive steroids endogenously synthesized in the nervous system, including in pain pathways, they appear relevant to develop effective treatments against neuropathic pain. Neurosteroids act in paracrine or autocrine manner through genomic mechanisms and/or via membrane receptors of neurotransmitters that pivotally modulate pain sensation. Basic studies which uncovered a direct link between neuropathic pain symptoms and endogenous neurosteroid production/regulation, paved the way for the investigations of neurosteroid therapeutic potential against pathological pain. Concordantly, antinociceptive properties of synthetic neurosteroids were evidenced in humans and animals. Neurosteroids promote peripheral analgesia mediated by T-type calcium and gamma-aminobutyric acid type A channels, counteract chemotherapy-induced neuropathic pain and ameliorate neuropathic symptoms of injured spinal cord animals by stimulating anti-inflammatory, remyelinating and neuroprotective processes. Together, these data open interesting perspectives for neurosteroid-based strategies to manage/alleviate efficiently neuropathic pain.
Collapse
|
5
|
Brunton PJ. Neuroactive steroids and stress axis regulation: Pregnancy and beyond. J Steroid Biochem Mol Biol 2016; 160:160-8. [PMID: 26259885 DOI: 10.1016/j.jsbmb.2015.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 01/09/2023]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis plays a critical role in regulating responses to stress and long term dysregulation of the HPA axis is associated with higher rates of mood disorders. There are circumstances where the HPA axis is more or less responsive to stress. For example, during late pregnancy ACTH and corticosterone responses to stress are markedly suppressed, whereas in offspring born to mothers that experienced repeated stress during pregnancy, the HPA axis is hyper-responsive to stress. Neuroactive steroids such as allopregnanolone, tetrahydrodeoxycorticosterone (THDOC) and androstanediol can modulate HPA axis activity and concentrations of some neuroactive steroids in the brain are altered during pregnancy and following stress. Thus, here altered neurosteroidogenesis is proposed as a mechanism that could underpin the dynamic changes in HPA axis regulation typically observed in late pregnant and in prenatally stressed individuals. In support of this hypothesis, evidence in rats demonstrates that elevated levels of allopregnanolone in pregnancy induce a central inhibitory opioid mechanism that serves to minimize stress-induced HPA axis activity. Conversely, in prenatally stressed rodents, where HPA axis stress responses are enhanced, evidence indicates the capacity of the brain for neurosteroidogenesis is reduced. Understanding the mechanisms involved in adaptations in HPA axis regulation may provide insights for manipulating stress sensitivity and for developing therapies for stress-related disorders in humans.
Collapse
Affiliation(s)
- Paula J Brunton
- Division of Neurobiology, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, Scotland, UK.
| |
Collapse
|
6
|
Grafe LA, Flanagan-Cato LM. Differential effects of mineralocorticoid and angiotensin II on incentive and mesolimbic activity. Horm Behav 2016; 79:28-36. [PMID: 26730722 PMCID: PMC4765502 DOI: 10.1016/j.yhbeh.2015.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 01/22/2023]
Abstract
The controls of thirst and sodium appetite are mediated in part by the hormones aldosterone and angiotensin II (AngII). The present study examined the behavioral and neural mechanisms of altered effort-value in animals treated with systemic mineralocorticoids, intracerebroventricular AngII, or both. First, rats treated with mineralocorticoid and AngII were tested in the progressive ratio operant task. The willingness to work for sodium versus water depended on hormonal treatment. In particular, rats treated with both mineralocorticoid and AngII preferentially worked for access to sodium versus water compared with rats given only one of these hormones. Second, components of the mesolimbic dopamine pathway were examined for modulation by mineralocorticoids and AngII. Based on cFos immunohistochemistry, AngII treatment activated neurons in the ventral tegmental area and nucleus accumbens, with no enhancement by mineralocorticoid pretreatment. In contrast, Western blot analysis revealed that combined hormone treatment increased levels of phospho-tyrosine hydroxylase in the ventral tegmental area. Thus, mineralocorticoid and AngII treatments differentially engaged the mesolimbic pathway based on tyrosine hydroxylase levels versus cFos activation.
Collapse
Affiliation(s)
- Laura A Grafe
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Loretta M Flanagan-Cato
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Mahoney Institute of Neurological Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Brunton PJ. Programming the brain and behaviour by early-life stress: a focus on neuroactive steroids. J Neuroendocrinol 2015; 27:468-80. [PMID: 25688636 DOI: 10.1111/jne.12265] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
Abstract
Animal studies have amply demonstrated that stress exposure during pregnancy or in early postnatal life can adversely influence brain development and have long-term 'programming' effects on future brain function and behaviour. Furthermore, a growing body of evidence from human studies supports the hypothesis that some psychiatric disorders may have developmental origins. Here, the focus is on three adverse consequences of early-life stress: dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, heightened anxiety behaviour and cognitive impairments, with review of what is known about the underlying central mechanisms. Neuroactive steroids modulate neuronal activity and play a key role in neurodevelopment. Moreover they can negatively modulate activity of the HPA axis, exert anxiolytic actions and influence cognitive performance. Thus, neuroactive steroids may provide a link between early-life stress and the resultant adverse effects on the brain and behaviour. Here, a role for neuroactive steroids, in particular the 5α-reduced/3α-hydroxylated metabolites of progesterone, testosterone and deoxycorticosterone, is discussed in the context of early-life stress. Furthermore, the impact of early-life stress on the brain's capacity to generate neurosteroids is considered and the evidence for an ability of neuroactive steroids to over-write the negative effects of early-life stress on the brain and behaviour is examined. An enhanced understanding of the influence of early-life stress on brain neurosteroid systems could aid the identification of new targets for developing treatments for stress-related conditions in humans.
Collapse
Affiliation(s)
- P J Brunton
- Division of Neurobiology, The Roslin Institute & R(D)SVS, University of Edinburgh, Midlothian, UK
| |
Collapse
|
8
|
Patte-Mensah C, Meyer L, Taleb O, Mensah-Nyagan AG. Potential role of allopregnanolone for a safe and effective therapy of neuropathic pain. Prog Neurobiol 2013; 113:70-8. [PMID: 23948490 DOI: 10.1016/j.pneurobio.2013.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 01/12/2023]
Abstract
Because the treatment and management of neuropathic pain are extremely complicated, the characterization of novel analgesics and neuroprotectors with safe toxicological profiles is a crucial need to develop efficient therapies. Several investigations revealed that the natural neurosteroid allopregnanolone (AP) exerts analgesic, neuroprotective, antidepressant and anxiolytic effects. These effects result from AP ability to modulate GABA(A), glycine, L- and T-type calcium channels. It has been shown that AP treatment induced beneficial actions in humans and animal models with no toxic side effects. In particular, a multi-parametric analysis revealed that AP efficiently counteracted chemotherapy-evoked neuropathic pain in rats. It has also been demonstrated that the modulation of AP-producing enzyme, 3α-hydroxysteroid oxido-reductase (3α-HSOR), in the spinal cord regulates thermal and mechanical pain thresholds of peripheral nerve injured neuropathic rats. The painful symptoms were exacerbated by intrathecal injections of provera (pharmacological inhibitor of 3α-HSOR) which decreased AP production in the spinal cord. By contrast, the enhancement of AP concentration in the intrathecal space induced analgesia and suppression of neuropathic symptoms. Moreover, in vivo siRNA-knockdown of 3α-HSOR expression in healthy rat dorsal root ganglia increased thermal and mechanical pain perceptions while AP evoked a potent antinociceptive action. In humans, blood levels of AP were inversely associated with low back and chest pain. Furthermore, oral administration of AP analogs induced antinociception. Altogether, these data indicate that AP, which possesses a high therapeutic potential and a good toxicological profile, may be used to develop effective and safe strategies against chronic neuropathic pain.
Collapse
Affiliation(s)
- C Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - L Meyer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - O Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - A G Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France.
| |
Collapse
|
9
|
Gabor A, Leenen FHH. Central neuromodulatory pathways regulating sympathetic activity in hypertension. J Appl Physiol (1985) 2012; 113:1294-303. [PMID: 22773773 DOI: 10.1152/japplphysiol.00553.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The classical neurotransmitters, glutamate and GABA, mediate fast (milliseconds) synaptic transmission and modulate its effectiveness through slow (seconds to minutes) signaling processes. Angiotensinergic pathways, from the lamina terminalis to the paraventricular nucleus (PVN)/supraoptic nucleus and rostral ventrolateral medulla (RVLM), are activated by stimuli such as circulating angiotensin type II (Ang II), cerebrospinal fluid (CSF) sodium ion concentration ([Na(+)]), and possibly plasma aldosterone, leading to sympathoexcitation, largely by decreasing GABA and increasing glutamate release. The aldosterone-endogenous ouabain (EO) pathway is a much slower neuromodulatory pathway. Aldosterone enhances EO release, and the latter increases chronic activity in angiotensinergic pathways by, e.g., increasing expression for Ang I receptor (AT(1)R) and NADPH oxidase subunits in the PVN. Blockade of this pathway does not affect the initial sympathoexcitatory and pressor responses but to a large extent, prevents chronic responses to CSF [Na(+)] or Ang II. Recruitment of these two neuromodulatory pathways allows the central nervous system (CNS) to shift gears to rapidly cause and sustain sympathetic hyperactivity in an efficient manner. Decreased GABA release, increased glutamate release, and enhanced AT(1)R activation in, e.g., the PVN and RVLM contribute to the elevated blood pressure in a number of hypertension models. In Dahl S rats and spontaneous hypertensive rats, high salt activates the CNS aldosterone-EO pathway, and the salt-induced hypertension can be prevented/reversed by specific CNS blockade of any of the steps in the cascade from aldosterone synthase to AT(1)R. Further studies are needed to advance our understanding of how and where in the brain these rapid, slow, and very slow CNS pathways are activated and interact in models of hypertension and other disease states associated with chronic sympathetic hyperactivity.
Collapse
Affiliation(s)
- Alexander Gabor
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
10
|
Huang BS, Leenen FHH. Mineralocorticoid Actions in the Brain and Hypertension. Curr Hypertens Rep 2011; 13:214-20. [DOI: 10.1007/s11906-011-0192-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Patte-Mensah C, Meyer L, Mensah-Nyagan AG. Steroids, spinal cord and pain sensation. Horm Mol Biol Clin Investig 2011; 7:377-84. [DOI: 10.1515/hmbci.2011.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/02/2011] [Indexed: 11/15/2022]
Abstract
AbstractDuring the whole life, the nervous system is continuously submitted to the actions of different categories of hormones, including steroids. Therefore, the interactions between hormonal compounds and neural tissues are subjected to intense investigations. While a majority of studies focus on the brain, the spinal cord (SC) has received little attention, although this structure is also an important part of the central nervous system, controlling motor and sensory functions. To point out the importance of interactions between hormones and the SC in the regulation of neurobiological activities, we recapitulated and discussed herein various key data, revealing that the pivotal role played by the SC in nociception and pain modulation, directly depends on the SC ability to metabolize and synthesize steroidal molecules. The paper suggests that future investigations aiming to develop effective strategies against chronic pain, must integrate regulatory effects exerted by hormonal steroids on the SC activity, as well as the actions of endogenous neurosteroids locally synthesized in spinal neural networks.
Collapse
|
12
|
Mensah-Nyagan AG, Meyer L, Schaeffer V, Kibaly C, Patte-Mensah C. Evidence for a key role of steroids in the modulation of pain. Psychoneuroendocrinology 2009; 34 Suppl 1:S169-77. [PMID: 19577851 DOI: 10.1016/j.psyneuen.2009.06.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/11/2009] [Accepted: 06/06/2009] [Indexed: 12/24/2022]
Abstract
Neurotransmitters such as glutamate, substance P, serotonin and gamma-aminobutyric acid pivotally control pain mechanisms. It is also well known that inflammatory and/or neuropathic pain may depend on the action of diverse cytokines and other molecules including eicosanoids, endorphins, calcitonin-gene related peptide, free radicals and transcription factors. Because steroids control the development, activities and plasticity of the nervous system, these compounds are of particular interest in the modulation of pain. The paper discusses various data supporting the existence of key regulatory effects of steroids in the control of pain. In particular, we analyzed three categories of observations which historically contributed to demonstrate that endogenous and synthetic steroids play a crucial role in the regulation of neurobiological processes involved in pain sensation. The first series of data, which present the chemical characteristics enabling steroids to act on several tissues, also summarize pertinent results supporting the modulation of pain sensation by steroidal compounds. The second category of data evokes psychosocial, fundamental and clinical results suggesting the existence of sex steroid-based differences in pain perception. Finally, we discuss recent evidence showing the endogenous production of neurosteroids and their effects in the spinal cord which crucially controls pain transmission. Taken together, the data reviewed herein suggest that future investigations aiming to develop effective steroid-based strategies against chronic pain must integrate in a complementary manner anti-inflammatory properties of steroids, sex steroid-induced dimorphism in pain perception and regulatory effects exerted by endogenous neurosteroids in pain neural circuits.
Collapse
Affiliation(s)
- Ayikoe G Mensah-Nyagan
- Equipe Stéroïdes, Neuromodulateurs et Neuropathologies, Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 Rue Humann, 67000 Strasbourg, France.
| | | | | | | | | |
Collapse
|
13
|
Boyd KN, Kumar S, O'Buckley TK, Porcu P, Morrow AL. Ethanol induction of steroidogenesis in rat adrenal and brain is dependent upon pituitary ACTH release and de novo adrenal StAR synthesis. J Neurochem 2009; 112:784-96. [PMID: 20021565 DOI: 10.1111/j.1471-4159.2009.06509.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms of ethanol actions that produce its behavioral sequelae involve the synthesis of potent GABAergic neuroactive steroids, specifically the GABAergic metabolites of progesterone, (3alpha,5alpha)-3-hydroxypregnan-20-one (3alpha,5alpha-THP), and deoxycorticosterone, (3alpha,5alpha)-3,21-dihydroxypregnan-20-one. We investigated the mechanisms that underlie the effect of ethanol on adrenal steroidogenesis. We found that ethanol effects on plasma pregnenolone, progesterone, 3alpha,5alpha-THP and cortical 3alpha,5alpha-THP are highly correlated, exhibit a threshold of 1.5 g/kg, but show no dose dependence. Ethanol increases plasma adrenocorticotropic hormone (ACTH), adrenal steroidogenic acute regulatory protein (StAR), and adrenal StAR phosphorylation, but does not alter levels of other adrenal cholesterol transporters. The inhibition of ACTH release, de novo adrenal StAR synthesis or cytochrome P450 side chain cleavage activity prevents ethanol-induced increases in GABAergic steroids in plasma and brain. ACTH release and de novo StAR synthesis are independently regulated following ethanol administration and both are necessary, but not sufficient, for ethanol-induced elevation of plasma and brain neuroactive steroids. As GABAergic steroids contribute to ethanol actions and ethanol sensitivity, the mechanisms of this effect of ethanol may be important factors that contribute to the behavioral actions of ethanol and risk for alcohol abuse disorders.
Collapse
Affiliation(s)
- Kevin N Boyd
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Pharmacological and physiological phenomena suggest that cells somewhere inside the central nervous system are responsive to aldosterone. Here, we present the fundamental physiological limitations for aldosterone action in the brain, including its limited blood-brain barrier penetration and its substantial competition from glucocorticoids. Recently, a small group of neurons with unusual sensitivity to circulating aldosterone were identified in the nucleus of the solitary tract. We review the discovery and characterization of these neurons, which express the enzyme 11beta-hydroxysteroid dehydrogenase type 2, and consider alternative proposals regarding sites and mechanisms for mineralocorticoid action within the brain.
Collapse
Affiliation(s)
- Joel C Geerling
- Dept. of Anatomy and Neurobiology-Box 8108, Washington Univ. School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| | | |
Collapse
|
15
|
Majewska MD. Steroid regulation of the GABAA receptor: ligand binding, chloride transport and behaviour. CIBA FOUNDATION SYMPOSIUM 2007; 153:83-97; discussion 97-106. [PMID: 1963401 DOI: 10.1002/9780470513989.ch5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Certain endogenous steroids are modulators of GABAA receptors. Tetrahydroprogesterone (THP, 5 alpha-pregnan-3 alpha-ol-20-one) and tetrahydrodeoxy-corticosterone (THDOC, 5 alpha-pregnane-3 alpha, 21-diol-20-one) behave as allosteric agonists of GABAA receptors whereas pregnenolone sulphate acts as an antagonist. THP and THDOC modulate ligand binding to GABAA receptors like barbiturates; they potentiate binding of the GABAA receptor agonist muscimol and the benzodiazepine flunitrazepam and they allosterically inhibit binding of the convulsant t-butylbicyclophosphorothionate. THP and THDOC also stimulate chloride uptake and currents in synaptoneurosomes and neurons. Pregnenolone sulphate acts principally as an allosteric GABAA receptor antagonist; it competitively inhibits binding of [35S] TBPS and blocks GABA agonist-activated Cl- uptake and currents in synaptoneurosomes and neurons. In behavioural experiments the GABA-agonistic steroid THDOC shows anxiolytic actions whereas the GABA-antagonistic steroid pregnenolone sulphate antagonizes barbiturate-induced hypnosis. Changes in physiological levels of GABAergic steroids may alter GABAA receptor function, influencing neuronal excitability and CNS arousal. For example, pregnancy and the puerperium are associated with alterations in GABAA receptor binding which might be attributable to steroid actions.
Collapse
Affiliation(s)
- M D Majewska
- Addiction Research Center, National Institute on Drug Abuse, Baltimore, MD 21224
| |
Collapse
|
16
|
Karavolas HJ, Hodges DR. Neuroendocrine metabolism of progesterone and related progestins. CIBA FOUNDATION SYMPOSIUM 2007; 153:22-44; discussion 44-55. [PMID: 2292213 DOI: 10.1002/9780470513989.ch3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In mammalian neuroendocrine structures the metabolic processing of progesterone and related natural progestins is primarily a reductive process involving the C-4,5 double bond and the C-3 and C-20 ketones. The principal products of the neuroendocrine metabolism of progesterone in female rats are the two 5 alpha- and 3 alpha-reduced metabolites, 5 alpha-dihydroprogesterone and 3 alpha,5 alpha-tetrahydroprogesterone, with lesser amounts of the corresponding 20 alpha-reduced products. Certain of these metabolites produce some, but not all, of progesterone's biological effects. 5 alpha-Dihydroprogesterone and 3 alpha,5 alpha-tetrahydroprogesterone, in particular, have potent progesterone-like effects on neuroendocrine functions, such as gonadotropin regulation. The two other principal ovarian progestins, 20 alpha-dihydroprogesterone and 17 alpha-hydroxyprogesterone, are metabolized in an analogous manner. The major neuroendocrine progestin conversions therefore appear to be 5 alpha-reduction and 3 alpha-hydroxysteroid oxidoreduction. In the hypothalamus and anterior pituitary, the enzymic activities that catalyse these conversions appear to be under ovarian control and appear to vary with changing reproductive states. These quantitative changes in processing, together with the potent progesterone-like effects of certain metabolites, suggest that these neuroendocrine conversions may provide an important mechanism for mediating some of the effects of progesterone. Alternatively, some metabolites, by duplicating selected effects of progesterone, may provide a means of prolonging certain of its effects while others are terminated.
Collapse
Affiliation(s)
- H J Karavolas
- Department of Physiological Chemistry, University of Wisconsin, Madison 53706
| | | |
Collapse
|
17
|
Dubrovsky B, Filipini D, Gijsbers K, Birmingham MK. Early and late effects of steroid hormones on the central nervous system. CIBA FOUNDATION SYMPOSIUM 2007; 153:240-57; discussion 257-60. [PMID: 1963399 DOI: 10.1002/9780470513989.ch14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Steroids have fast and probably partly GABA-mediated central anaesthetic effects for which a strict structure-function correlation is required. They also affect short- and long-term activity in the CNS in other ways. One of these is long-term potentiation (the persistent facilitation of synaptic transmission), which occurs particularly in the hippocampus after repetitive stimulation of a fibre pathway. Two clearly distinguished components of the evoked response can be studied in the hippocampus: the excitatory postsynaptic potential (EPSP) which denotes the graded depolarization of the somadendritic region of the neuron and the population spike (PS), a manifestation of the all-or-none discharge of the cell action potential. Corticosterone had a significant depressant effect on the EPSP component of the evoked response immediately and 15 min after injection. Thereafter EPSP amplitudes were within normal values. Corticosterone significantly decreased the PS immediately after the train, the component remaining low 30 min after the train. 5 alpha-Dihydrocorticosterone (a ring A-reduced metabolite of corticosterone) significantly reduced the PS component of the response at all times after injection. 18-Hydroxydeoxycorticosterone and deoxycorticosterone significantly decreased both EPSP and PS components of the evoked response from the time of infusion. Contrary to expectation, tetrahydrodeoxycorticosterone was ineffective in decreasing, and if anything, enhanced the development of long-term potentiation. 18-Hydroxydeoxycorticosterone 21-acetate behaved like vehicle, except for the first 30 min after injection, when the EPSP was decreased. Different steroids can selectively affect different parts of a neuron and appear to show a different structure-function correlation for long-term potentiation from that required for anaesthesia.
Collapse
Affiliation(s)
- B Dubrovsky
- Laboratory of Neurophysiology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
18
|
Bäckström T, Gee KW, Lan N, Sörensen M, Wahlström G. Steroids in relation to epilepsy and anaesthesia. CIBA FOUNDATION SYMPOSIUM 2007; 153:225-30; discussion 230-9. [PMID: 2292214 DOI: 10.1002/9780470513989.ch13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increasing numbers of reports indicate direct effects of ovarian steroids on the central nervous system. Effects of progesterone and its metabolites on brain excitability in humans and in experimental animals have been studied. Anti-epileptic effects have been shown in cats and in women with partial epilepsy and well-defined epileptic foci. The reduced progesterone metabolite 5 alpha-pregnan-3 alpha-ol-20-one and its 5 beta analogue also decreased the epileptic activity resulting from a penicillin-induced cortical focus in cats. 5 alpha-Pregnan-3 alpha-ol-20-one protected mice against metrazol-, bicuculline- and picrotoxin-induced seizures but not against electroshock-and strychnine-induced seizures. Progesterone, 5 alpha-pregnan-3 alpha-ol-20-one and 5 beta-pregnan-3 alpha-ol-20-one also induce anaesthesia in humans and animals; in a rat model of anaesthesia 5 alpha-pregnan-3 alpha-ol-20-one was eight times more potent than methohexitone (the most potent anaesthetic barbiturate). Anaesthesia with loss of the eyelash reflex was observed in humans 75-90 seconds after the intravenous injection of 5 beta-pregnan-3 alpha-ol-20-one in lipid emulsion. The in vivo production and brain distribution of centrally active steroids has also been studied in relation to the phases of the ovarian and menstrual cycle. A subset of women with epilepsy show changes in seizure frequency in relation to hormonal variations during the menstrual cycle. In the luteal phase when progesterone levels are high the number of generalized seizures is low. It is possible that progesterone and its metabolites play a role in epileptic seizures and also in the premenstrual syndrome.
Collapse
Affiliation(s)
- T Bäckström
- Department of Gynecology, University of Umeå, Sweden
| | | | | | | | | |
Collapse
|
19
|
Morrow AL, Porcu P, Boyd KN, Grant KA. Hypothalamic-pituitary-adrenal axis modulation of GABAergic neuroactive steroids influences ethanol sensitivity and drinking behavior. DIALOGUES IN CLINICAL NEUROSCIENCE 2007. [PMID: 17290803 PMCID: PMC3181829 DOI: 10.31887/dcns.2006.8.4/amorrow] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the hypothalamic-pituitary-adrenal (HPA) axis leads to elevations in gamma-aminobutyric acid (GABA)-ergic neuroactive steroids that enhance GABA neurotransmission and restore homeostasis following stress. This regulation of the HPA axis maintains healthy brain function and protects against neuropsychiatric disease. Ethanol sensitivity is influenced by elevations in neuroactive steroids that enhance the GABAergic effects of ethanol, and may prevent excessive drinking in rodents and humans. Low ethanol sensitivity is associated with greater alcohol consumption and increased risk of alcoholism. Indeed, ethanol-dependent rats show blunted neurosteroid responses to ethanol administration that may contribute to ethanol tolerance and the propensity to drink greater amounts of ethanol. The review presents evidence to support the hypothesis that neurosteroids contribute to ethanol actions and prevent excessive drinking, while the lack of neurosteroid responses to ethanol may underlie innate or chronic tolerance and increased risk of excessive drinking. Neurosteroids may have therapeutic use in alcohol withdrawal or for relapse prevention.
Collapse
Affiliation(s)
- A Leslie Morrow
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7178, USA.
| | | | | | | |
Collapse
|
20
|
Geerling JC, Loewy AD. Aldosterone-sensitive neurons in the nucleus of the solitary tract: bidirectional connections with the central nucleus of the amygdala. J Comp Neurol 2006; 497:646-57. [PMID: 16739197 PMCID: PMC2748794 DOI: 10.1002/cne.21019] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The HSD2 (11-beta-hydroxysteroid dehydrogenase type 2-expressing) neurons in the nucleus of the solitary tract (NTS) of the rat are aldosterone-sensitive and have been implicated in sodium appetite. The central nucleus of the amygdala (CeA) has been shown to modulate salt intake in response to aldosterone, so we investigated the connections between these two sites. A prior retrograde tracing study revealed only a minor projection from the HSD2 neurons directly to the CeA, but these experiments suggested that a more substantial projection may be relayed through the parabrachial nucleus. Small injections of cholera toxin beta subunit (CTb) into the external lateral parabrachial subnucleus (PBel) produced both retrograde cell body labeling in the HSD2 neurons and anterograde axonal labeling in the lateral subdivision of the CeA. Also, injections of either CTb or Phaseolus vulgaris leucoagglutinin into the medial subdivision of the CeA labeled a descending projection from the amygdala to the medial NTS. Axons from the medial CeA formed numerous varicosities and terminals enveloping the HSD2 neurons. Complementary CTb injections, centered in the HSD2 subregion of the NTS, retrogradely labeled neurons in the medial CeA. These bidirectional projections could form a functional circuit between the HSD2 neurons and the CeA. The HSD2 neurons may represent one of the functional inputs to the lateral CeA, and their activity may be modulated by a return projection from the medial CeA. This circuit could provide a neuroanatomical basis for the modulation of salt intake by the CeA.
Collapse
Affiliation(s)
- Joel C Geerling
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
21
|
Geerling JC, Loewy AD. Aldosterone-sensitive neurons in the nucleus of the solitary tract: Efferent projections. J Comp Neurol 2006; 497:223-50. [PMID: 16705681 DOI: 10.1002/cne.20993] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nucleus of the solitary tract (NTS) contains a subpopulation of neurons that express the enzyme 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2), which makes them uniquely sensitive to aldosterone. These neurons may drive sodium appetite, which is enhanced by aldosterone. Anterograde and retrograde neural tracing techniques were used to reveal the efferent projections of the HSD2 neurons in the rat. First, the anterograde tracer Phaseolus vulgaris leucoagglutinin was used to label axonal projections from the medial NTS. Then, NTS-innervated brain regions were injected with a retrograde tracer, cholera toxin beta subunit, to determine which sites are innervated by the HSD2 neurons. The HSD2 neurons project mainly to the ventrolateral bed nucleus of the stria terminalis (BSTvl), the pre-locus coeruleus (pre-LC), and the inner division of the external lateral parabrachial nucleus (PBel). They also send minor axonal projections to the midbrain ventral tegmental area, lateral and paraventricular hypothalamic nuclei, central nucleus of the amygdala, and periaqueductal gray matter. The HSD2 neurons do not innervate the ventrolateral medulla, a key brainstem autonomic site. Additionally, our tracing experiments confirmed that the BSTvl receives direct axonal projections from the neighboring A2 noradrenergic neurons in the NTS, and from the same pontine sites that receive major inputs from the HSD2 neurons (PBel and pre-LC). The efferent projections of the HSD2 neurons may provide new insights into the brain circuitry responsible for sodium appetite.
Collapse
Affiliation(s)
- Joel C Geerling
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
22
|
Khisti RT, Boyd KN, Kumar S, Morrow AL. Systemic ethanol administration elevates deoxycorticosterone levels and chronic ethanol exposure attenuates this response. Brain Res 2005; 1049:104-11. [PMID: 15936001 DOI: 10.1016/j.brainres.2005.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2005] [Revised: 05/03/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
Systemic ethanol administration is known to elevate levels of the GABAergic neuroactive steroid 3alpha,21-dihydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THDOC). 3alpha,5alpha-THDOC is synthesized from deoxycorticosterone (DOC) by metabolism in adrenals and brain. The present study investigated DOC levels in plasma and brain following ethanol administration to naïve and ethanol-exposed rats. Rats were administered ethanol (2 g/kg, i.p.) or saline and DOC levels were measured in plasma and brain regions by radioimmunoassay. Chronic ethanol-exposed rats were administered an ethanol challenge (2 g/kg, i.p.) following 15 days of ethanol liquid diet consumption. Ethanol administration markedly increased DOC levels in plasma, cerebral cortex, hippocampus, hypothalamus, cerebellum, and olfactory tubercle of naïve rats. Ethanol challenge produced an attenuated elevation of DOC in rat plasma and brain following chronic ethanol consumption for 2 weeks. These findings suggest that acute ethanol increases DOC levels in ethanol naïve rats and chronic ethanol consumption induces tolerance to ethanol-induced increases in DOC levels.
Collapse
Affiliation(s)
- Rahul T Khisti
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA
| | | | | | | |
Collapse
|
23
|
Dubrovsky BO. Steroids, neuroactive steroids and neurosteroids in psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:169-92. [PMID: 15694225 DOI: 10.1016/j.pnpbp.2004.11.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2004] [Indexed: 10/26/2022]
Abstract
The term "neurosteroid" (NS) was introduced by Baulieu in 1981 to name a steroid hormone, dehydroepiandrosterone sulfate (DHEAS), that was found at high levels in the brain long after gonadectomy and adrenalectomy, and shown later to be synthetized by the brain. Later, androstenedione, pregnenolone and their sulfates and lipid derivatives as well as tetrahydrometabolites of progesterone (P) and deoxycorticosterone (DOC) were identified as neurosteroids. The term "neuroactive steroid" (NAS) refers to steroids which, independent of their origin, are capable of modifying neural activities. NASs bind and modulate different types of membrane receptors. The GABA and sigma receptor complexes have been the most extensively studied, while glycine-activated chloride channels, nicotinic acetylcholine receptors, voltage-activated calcium channels, although less explored, are also modulated by NASs. Within the glutamate receptor family, N-methyl-d-aspartate (NMDA) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and kainate receptors have also been demonstrated to be a target for steroid modulation. Besides their membrane effects, once inside the neuron oxidation of Ring A reduced pregnanes, THP and THDOC, bind to the progesterone intracellular receptor and regulate gene expression through this path. The involvement of NASs on depression syndromes, anxiety disorders, stress responses to different stress stimuli, memory processes and related phenomena such as long-term potentiation are reviewed and critically evaluated. The importance of context for the interpretation of behavioral effects of hormones as well as for hormonal levels in body fluids is emphasized. Some suggestions for further research are given.
Collapse
Affiliation(s)
- Bernardo O Dubrovsky
- McGill University, 3445 Drummond Street, #701, Montreal, Quebec, H3G 1X9, Canada.
| |
Collapse
|
24
|
Corticosteroids and the blood–brain barrier. HANDBOOK OF STRESS AND THE BRAIN - PART 1: THE NEUROBIOLOGY OF STRESS 2005. [DOI: 10.1016/s0921-0709(05)80019-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Dubrovsky B. Potential use of neurosteroids and neuroactive steroids as modulators of symptoms of depression, anxiety, and psychotic disorders. Drug Dev Res 2005. [DOI: 10.1002/ddr.20033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Dubrovsky B, Tatarinov-Levin A, Harris J. Effects of the active neurosteroid allotetrahydrodeoxycorticosterone on long-term potentiation in the rat hippocampus: implications for depression. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:1029-34. [PMID: 15380864 DOI: 10.1016/j.pnpbp.2004.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We studied the effects of the active neurosteroid (ANS) allotetrahydrodeoxy corticosterone (ATHDOC) on long-term potentiation (LTP) in the dentate gyrus (DG) of intact, urethane anesthetized rats. Intravenous injection of the hormone at two doses, 0.1 and 0.5 mg/kg, produced a significant decrease in both components of the response: excitatory postsynaptic potentials (EPSP) and population spikes (PS). The effects were similar for the two doses. The results are discussed in terms of the potential mechanism by which ATHDOC modulates neural processes associated with symptoms present in depression syndromes.
Collapse
Affiliation(s)
- Bernardo Dubrovsky
- McGill University Health Center, 3445 Drummond Street, #701, Montreal, Quebec, H3G 1X9, Canada.
| | | | | |
Collapse
|
27
|
Wang M, Bäckström T, Sundström I, Wahlström G, Olsson T, Zhu D, Johansson IM, Björn I, Bixo M. Neuroactive steroids and central nervous system disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 46:421-59. [PMID: 11599309 DOI: 10.1016/s0074-7742(01)46071-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Steroid hormones are vital for the cell life and affect a number of neuroendocrine and behavioral functions. In contrast to their endocrine actions, certain steroids have been shown to rapidly alter brain excitability and to produce behavioral effects within seconds to minutes. In this article we direct attention to this issue of neuroactive steroids by outlining several aspects of current interest in the field of steroid research. Recent advances in the neurobiology of neuroactive are described along with the impact of advances on drug design for central nervous system (CNS) disorders provoked by neuroactive steriods. The theme was selected in association with the clinical aspects and therapeutical potentials of the neuroactive steroids in CNS disorders. A wide range of topics relating to the neuroactive steroids are outlined, including steroid concentrations in the brain, premenstrual syndrome, estrogen and Alzheimer's disease, side effects of oral contraceptives, mental disorder in menopause, hormone replacement therapy, Catamenial epilepsy, and neuractive steroids in epilepsy treatment.
Collapse
Affiliation(s)
- M Wang
- Department of Obstetrics and Gynecology, Department of Medicine, Department of Pharmacology, University of Umeå, S-901 87 Umeå, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pietranera L, Saravia FE, McEwen BS, Lucas LL, Johnson AK, De Nicola AF. Changes in Fos expression in various brain regions during deoxycorticosterone acetate treatment: relation to salt appetite, vasopressin mRNA and the mineralocorticoid receptor. Neuroendocrinology 2001; 74:396-406. [PMID: 11752896 DOI: 10.1159/000054706] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Salt appetite, a conditioning factor for hypertension and cardiovascular diseases, is produced when high doses of mineralocorticoids are given to experimental animals. A commonly used procedure to identify neuronal activation is to determine the number of Fos-immunoreactive cells. In rats with established salt appetite after 8 days of deoxycorticosterone acetate (DOCA) treatment, Fos-positive cells were studied in seven brain areas. Significant increases in Fos activity were recorded in the paraventricular (PVN) and supraoptic (SON) nuclei, median preoptic nucleus (MnPO), organum vasculosum of the lamina terminalis (OVLT), preoptic area (POA), bed nucleus of the stria terminalis (BNST) and amygdala (AMYG). In most of these areas, increased Fos expression was also observed early (2 h) after a single DOCA injection, well before salt appetite develops. Using a mineralocorticoid receptor (MR) antibody, we studied whether Fos-active regions also expressed MR. MR-positive cells were found in the OVLT, MnPO, AMYG and BNST, but not in the POA, PVN and SON. In the PVN and SON, nevertheless, prolonged or single DOCA treatment increased expression of mRNA for arginine vasopressin (AVP). The present demonstration of Fos activation, in conjunction with differential expression of MR and stimulation of AVP mRNA, suggests that a neuroanatomical pathway comprising the AMYG, osmosensitive brain regions and magnocellular nuclei becomes activated during DOCA effects on salt appetite. It is recognized, however, that DOCA effects may also depend on mechanisms and brain structures other than those considered in the present investigation. Since some Fos-positive regions were devoid of MR, a comprehensive view of DOCA-induced salt appetite should consider nongenomic pathways of steroid action, including the role of reduced DOC metabolites binding to GABAergic membrane receptors.
Collapse
Affiliation(s)
- L Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
29
|
Weisinger RS, Burns P, Colvill LM, Davern P, Giles ME, Oldfield BJ, McKinley MJ. Fos immunoreactivity in the lamina terminalis of adrenalectomized rats and effects of angiotension II type 1 receptor blockade or deoxycorticosterone. Neuroscience 2000; 98:167-80. [PMID: 10858623 DOI: 10.1016/s0306-4522(00)00088-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Neural activity, as measured immunohistochemically by the presence of Fos protein, was determined in the lamina terminalis, a thin strip of tissue forming the anterior wall of the third brain ventricle, after adrenalectomy. Several weeks after surgery, the adrenalectomized rats were maintained with access to water and a low sodium diet for five days. In addition, hypertonic (0.5M) NaCl solution was available for the entire five-day period (sodium available) or only during the first four days (sodium unavailable). The number of neurons expressing Fos, determined at the end of the fifth day, was increased in the adrenalectomized rats with or without NaCl solution to drink. Fos activity in the median preoptic nucleus was increased only in adrenalectomized rats without access to NaCl solution. Treatment of adrenalectomized rats with the sodium-retaining mineralocorticoid hormone, deoxycorticosterone, at the end of the fourth day, decreased Fos expression in the subfornical organ and the organum vasculosum of the lamina terminalis when NaCl solution was available but not when the NaCl solution was unavailable. In the adrenalectomized rats with NaCl solution available, mineralocorticoid treatment decreased both urinary sodium excretion and daily sodium intake. Brain nuclei in the lamina terminalis also became activated in intact rats made sodium deplete by treatment with the diuretic, furosemide. Relative to sodium-deplete intact rats, however, sodium-deplete adrenalectomized rats had a greater number of neurons expressing Fos in the organum vasculosum. Treatment of sodium-deplete rats, adrenalectomized or intact, with the angiotensin II-type 1 receptor antagonist, ZD7155, decreased sodium intake and Fos expression in the subfornical organ but not in the organum vasculosum of the lamina terminalis or median preoptic nucleus. In conclusion, the results demonstrated that activation of the brain nuclei located in the lamina terminalis of adrenalectomized rats was primarily related to sodium deficit and not to the absence of the mineralocorticoid hormones, although the adrenal hormones may have a role in limiting the activation of organum vasculosum of the lamina terminalis during sodium depletion. Furthermore, the results obtained with the administration of the angiotensin receptor antagonist are consistent with the proposal that sodium appetite of the sodium-deplete rat, adrenalectomized or intact, is mediated by circulating angiotensin II acting in the subfornical organ.
Collapse
Affiliation(s)
- R S Weisinger
- Howard Florey Institute of Experimental Physiology and Medicine, Victoria, 3052, Parkville, Australia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Seippel L, Eriksson O, Grankvist K, von Shoultz B, Bäckström T. Physical symptoms in premenstrual syndrome are related to plasma progesterone and desoxycorticosterone. Gynecol Endocrinol 2000; 14:173-81. [PMID: 10923278 DOI: 10.3109/09513590009167679] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Somatic symptoms in the premenstrual syndrome (PMS) may have an etiology separate from that of the mental symptoms. A disturbance in mineralocorticoid action has been discussed, as mineralocorticoids regulate water balance. Desoxycorticosterone (DOC) is interesting, as it has mineralocorticoid effects and is a precursor to the neurosteroid 5 alpha-pregnan-3 alpha,21-diol-20-one (THDOC). THDOC is a steroid with direct benzodiazepine-like effects on the GABA-A receptor in the brain that is metabolized from DOC within the brain and in the periphery. Ten women with PMS having swelling as a major symptom and eight controls were recruited. They marked, on a validated visual-analog scale, three physical symptoms every evening during one menstrual cycle in conjunction with giving blood samples for progesterone and DOC measurements. DOC showed menstrual cycle-linked variation correlating with progesterone. There was no difference in plasma DOC concentrations between patients and controls. The symptoms reached a maximum 1-3 days before the onset of menstruation, with a delay of 3-6 days after the hormone peak. DOC was less strongly correlated with the symptoms than progesterone. These results do not support the hypothesis that DOC is involved in the etiology of physical symptoms in PMS or that physical and mental symptoms have separate etiologies.
Collapse
Affiliation(s)
- L Seippel
- Department of Obstetrics and Gynecology, University of Umeå, Sweden
| | | | | | | | | |
Collapse
|
31
|
Kaminska M, Harris J, Gijsbers K, Dubrovsky B. Dehydroepiandrosterone sulfate (DHEAS) counteracts decremental effects of corticosterone on dentate gyrus LTP. Implications for depression. Brain Res Bull 2000; 52:229-34. [PMID: 10822166 DOI: 10.1016/s0361-9230(00)00251-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is well-established that levels of corticosterone sufficient to occupy Type II glucocorticoid receptors produce a decrement in long-term potentiation (LTP) in the dentate gyrus of the hippocampus in rats. In the present series of experiments we investigate the interaction of corticosterone and the neurosteroid dehydroepiandrosterone sulfate (DHEAS) on LTP in the rat dentate gyrus. In confirmation of previous studies, we found that corticosterone (2 mg/kg) had decremental effects on LTP. However, simultaneous injection of corticosterone and DHEAS (30 mg/kg) elicited excitatory post-synaptic potentials and population spikes that were not significantly different from those observed in control animals. The results are discussed in terms of the interaction of the two hormones, the agonist effects of DHEAS on sigma receptors, and their relation with the antidepressant effects of DHEA.
Collapse
Affiliation(s)
- M Kaminska
- Neurophysiological Laboratory, School of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
32
|
Dubrovsky B. The specificity of stress responses to different nocuous stimuli: neurosteroids and depression. Brain Res Bull 2000; 51:443-55. [PMID: 10758333 DOI: 10.1016/s0361-9230(99)00269-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The role that adrenal cortex and neurosteroid hormones may have in the etiology and/or maintenance of depressive diseases is discussed. Selye's concept of stress as the summation of unspecific body responses of the autonomic central nervous system (CNS) and hypothalamic pituitary adrenal axis (HPAA) as the main characteristic of it is contrasted with Mason's view of stress responses as being specific for different stimuli, i.e., the neuroendocrine system responds with the production of a hormonal profile individualized and characteristic for the various stimuli applied. The data reviewed provides support for Mason's interpretation of stress as fundamentally a behavioral response. In turn, the high relevance of emotional factors in the determination of stress responses led to a reconsideration of cognitive-affective interactions in nervous systems. Recent results revealed that improvement in depression treated with antidepressants (ADs) is associated with an increase in the neurosteroid 3alpha 5alpha tetrahydroprogesterone, both in the blood and cerebrospinal fluid of recovered patients. The increase occurs with both selective serotonin reuptake inhibitors and tricyclic ADs. An evaluation of the possible and putative roles for neurosteroids in the CNS is presented and suggestions for enhancing the type of supporting data from the laboratory diagnosis of depressions are advanced.
Collapse
Affiliation(s)
- B Dubrovsky
- McGill University Medical School, Montreal, Quebec, Canada.
| |
Collapse
|
33
|
Morrow AL, Janis GC, VanDoren MJ, Matthews DB, Samson HH, Janak PH, Grant KA. Neurosteroids mediate pharmacological effects of ethanol: a new mechanism of ethanol action? Alcohol Clin Exp Res 1999; 23:1933-40. [PMID: 10630613 DOI: 10.1111/j.1530-0277.1999.tb04094.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A L Morrow
- Department of Psychiatry and Pharmacology, University of North Carolina, Chapel Hill, 27599-7178, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Dubrovsky B. Natural steroids counteracting some actions of putative depressogenic steroids on the central nervous system: potential therapeutic benefits. Med Hypotheses 1997; 49:51-5. [PMID: 9247908 DOI: 10.1016/s0306-9877(97)90252-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Psychological similarities in the symptomatology of Cushing's and depressive diseases led to repeated attempts of treatment of the affective disease by suppression of adrenocortical secretion. While successful in many patients, all drugs employed-metyrapone, ketoconazole and aminoglutethimide-carry the danger of inducing adrenal insufficiency. In addition, their undesirable side effects were also a main reason for treatment suspension. In our 1990 proposal for the treatment of depression through control of adrenal steroid levels, we set as one of the goals the identification of steroids which can antagonize each other on their effects on the central nervous system. Specifically, we looked first at steroids that could counter each other's effects on long-term potentiation, a putative memory mechanism in the central nervous system. One reason for this was the consensus that memory mechanisms are affected in both Cushing's and depressive patients. Another was the fact that cortisol-type hormones which underlie, at least in part, the depressogenic actions of adrenal steroids also have inhibitory effects on LTP. We conjectured, then, that a steroid with opposite effects, one that could enhance long-term potentiation and, further, that could counter the depressant effects of corticosterone on long-term potentiation, could be of use in the treatment of depression. Dehydroepiandrosterone sulfate increases long-term potentiation in a dose-related manner, and preliminary data suggest that it also counteracts the depressant effects of corticosterone on long-term potentiation when injected simultaneously on experimental animals. Potentially at least, rather than resort to total suppression of adrenocortical activity, it may be possible to treat depression just by counteracting some of the effects of cortisol-like hormone actions in the central nervous system. Further, both in clinical trials as well as in experimental animals, dehydroepiandro-sterone sulfate has been shown to enhance performance in memory-requiring tasks.
Collapse
Affiliation(s)
- B Dubrovsky
- Allan Memorial Institute, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Stuerenburg HJ, Fries U, Iglauer F, Kunze K. Effect of age on synthesis of the GABAergic steroids 5-alpha-pregnane-3,20-dione and 5-alpha-pregnane-3-alpha-ol-20-one in rat cortex in vitro. J Neural Transm (Vienna) 1997; 104:249-57. [PMID: 9203086 DOI: 10.1007/bf01273185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Progesterone 5-alpha-reductase activity and 3-alpha-hydroxysteroid dehydrogenase activity were determined in the cortex of male and female rats in vitro. Age effects were investigated. The age of the male rats was 3-23 months, and that of the female rats 4-23 months. On addition, we investigated the enzyme 3 beta-hydroxysteroid oxidoreductase, 5-ene-isomerase in rat cortex in order to estimate the local synthesis of progesterone from pregnenolone. We found age-related increases in progesterone 5-alpha-reductase activity in the female rats (r = 0.64, p < 0.01, n = 6) and in the male rats (r = 0.5, p < 0.05, n = 18). 3-alpha-HSDH activity remained constant with age in female and male rats. The ratio of 3-alpha-hydroxysteroid dehydrogenase activity to 5-alpha-reductase activity tended to decrease with age (not significantly) in both male rats (r = -0.45, p = 0.06, n = 19) and the female rats (r = -0.36, p = 0.17, n = 16). We could not detect significant metabolism of pregnenolone to progesterone in rat cortex in vitro. The sensitivity of the assays of 3 beta-hydroxysteroid oxidoreductase, 5-ene-isomerase was calculated from the mean of the blank values + 3SD; the sensitivity of the assay was calculated as 0.103 fmol/mg protein/min. No significant metabolism of pregnenolone could be detected in cortex pooled from several male rats. The mean metabolism of progesterone was 1,200 times higher than the detection threshold of the assay for 3 beta-hydroxysteroid oxidoreductase, 5-ene-isomerase. We conclude that modifications of the inhibitory effects of the GABAergic steroids 5-alpha-pregnane-3,20-dione and 5-alpha-pregnane-3-alpha-ol-20-one via altered progesterone metabolism in rat cortex are possible with aging. A connection with the age-related increase in incidence of epileptic attacks, and with age-related changes in the effects of anticonvulsant and GABAA-active drugs, appears possible.
Collapse
Affiliation(s)
- H J Stuerenburg
- Department of Neurology, University Hospital Hamburg-Eppendorf, Federal Republic of Germany
| | | | | | | |
Collapse
|
36
|
Martini L, Celotti F, Melcangi RC. Testosterone and progesterone metabolism in the central nervous system: cellular localization and mechanism of control of the enzymes involved. Cell Mol Neurobiol 1996; 16:271-82. [PMID: 8818396 DOI: 10.1007/bf02088095] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This paper summarizes the most recent data obtained in the authors' laboratory on the metabolism of testosterone and progesterone in neurons and in the glia. 1. The activities of 5 alpha-reductase (the enzyme that converts testosterone into dihydrotestosterone; DHT) and of 3 alpha-hydroxy steroid dehydrogenase (the enzyme that converts DHT into 5 alpha-androstane-3 alpha, 17 beta-diol; 3 alpha-diol) were first evaluated in primary cultures of neurons, oligodendrocytes, and type-1 and type-2 astrocytes, obtained from the fetal or neonatal rat brain. The formation of DHT and 3 alpha-diol was evaluated incubating the different cultures with labeled testosterone or labeled DHT as substrates. The results obtained indicate that the formation of DHT takes place preferentially in neurons; however, also type-2 astrocytes and oligodendrocytes possess considerable 5 alpha-reductase activity. A completely different localization was observed for 3 alpha-hydroxysteroid dehydrogenase; the formation of 3 alpha-diol appears to be prevalently, if not exclusively, present in type-1 astrocytes; 3 alpha-diol is formed in very low yields by neurons, type-2 astrocytes, and oligodendrocytes. Moreover, the results indicate that, in type 1 astrocytes, both 5 alpha-reductase and 3 alpha-HSD are stimulated by coculture with neurons and by the addition of neuron-conditioned medium, suggesting that secretory products released by neurons might intervene in the control of glial cell function. 2. Subsequently it was shown that, similarly to what happens when testosterone is used as the substrate, 5 alpha-reductase, which metabolizes progesterone into 5 alpha-pregnane-3,20-dione, (DHP), shows a significantly higher activity in neurons than in glial cells; however, also type-1 and type-2 astrocytes as well as oligodendrocytes possess some ability to 5 alpha-reduce progesterone. On the contrary, 3 alpha-hydroxysteroid dehydrogenase, the enzyme which converts DHP into 5 alpha-pregnane-3 alpha-ol-20-one (THP), appears to be present mainly in type-1 astrocytes; much lower levels of this enzyme are present in neurons and in type-2 astrocytes. At variance with the previous results obtained using androgens as precursors, oligodendrocytes show considerable 3 alpha-hydroxysteroid dehydrogenase activity, even if this is statistically lowe than that present in type-1 astrocytes. The existence of isoenzymatic forms of the enzymes involved in androgen and progesterone metabolism is discussed.
Collapse
Affiliation(s)
- L Martini
- Istituto di Endocrinologia, Università degli Studi di Milano, Italy
| | | | | |
Collapse
|
37
|
Majewska MD. Neuronal actions of dehydroepiandrosterone. Possible roles in brain development, aging, memory, and affect. Ann N Y Acad Sci 1995; 774:111-20. [PMID: 8597451 DOI: 10.1111/j.1749-6632.1995.tb17375.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- M D Majewska
- Medications Development Division, National Institute on Drug Abuse, Rockville, Maryland 20857, USA
| |
Collapse
|
38
|
Affiliation(s)
- A L Morrow
- Department of Psychiatry University of North Carolina School of Medicine, Chapel Hill 27599-7178, USA
| | | | | | | |
Collapse
|
39
|
Khanna M, Qin KN, Cheng KC. Distribution of 3 alpha-hydroxysteroid dehydrogenase in rat brain and molecular cloning of multiple cDNAs encoding structurally related proteins in humans. J Steroid Biochem Mol Biol 1995; 53:41-6. [PMID: 7626489 DOI: 10.1016/0960-0760(95)00019-v] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
3 alpha-Hydroxysteroid dehydrogenase in the brain is responsible for production of neuroactive tetrahydrosteroids that interact with the major inhibitory gamma-aminobutyric acid receptor complexes. Distribution of 3 alpha-hydroxysteroid dehydrogenase in different regions of the brain in rats was evaluated by activity assay and by Western immunoblotting using a monoclonal antibody against liver 3 alpha-hydroxysteroid dehydrogenase as the probe. The olfactory bulb was found to contain the highest level of 3 alpha-hydroxysteroid dehydrogenase activity, while moderate levels of the enzyme activity were found in other regions such as cerebellum, cerebral cortex, hypothalamus and pituitary. Some activity was found in the rest of the brain such as amygdala, brain stem, caudate putamen, cingulate cortex, hippocampus, midbrain, and thalamus. The protein levels of 3 alpha-hydroxysteroid dehydrogenase in different regions of the brain as detected by Western immunoblotting are comparable to those of the enzyme activity. We used the rat cDNA as the probe to screen a human liver lambda gt11 cDNA library. A total of four different cDNAs were identified and sequenced. One of the cDNAs is identical to that of the human chlordecone reductase cDNA except that our clone contains a much longer 5'-coding sequence than previously reported. The other three cDNAs display high degrees of sequence homology to those of both rat 3 alpha-hydroxysteroid dehydrogenase and human chlordecone reductase. We are currently investigating the functional relationship between the enzymes encoded by these human cDNAs and 3 alpha-hydroxysteroid dehydrogenase.
Collapse
Affiliation(s)
- M Khanna
- Department of Pediatrics, Cornell University Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
40
|
Morrow AL. Regulation of GABAA receptor function and gene expression in the central nervous system. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1995; 38:1-41. [PMID: 8537199 DOI: 10.1016/s0074-7742(08)60523-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A L Morrow
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill 27599, USA
| |
Collapse
|
41
|
Cheng KC, Lee J, Khanna M, Qin KN. Distribution and ontogeny of 3 alpha-hydroxysteroid dehydrogenase in the rat brain. J Steroid Biochem Mol Biol 1994; 50:85-9. [PMID: 8049137 DOI: 10.1016/0960-0760(94)90175-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
3 alpha-Hydroxysteroid dehydrogenase in the brain is responsible for production of neuroactive tetrahydrosteroids that interact with the major inhibitory gamma-aminobutyric acid receptor complexes. Distribution of 3 alpha-hydroxysteroid dehydrogenase in different regions of the brain in rats was evaluated by activity assay and by Western immunoblotting using a monoclonal antibody against liver 3 alpha-hydroxysteroid dehydrogenase as the probe. The olfactory bulb was found to contain the highest level of 3 alpha-hydroxysteroid dehydrogenase activity, while moderate levels of the enzyme activity were found in other regions such as cerebellum, cerebral cortex, hypothalamus and pituitary. Some activities were found in the rest of the brain such as amygdala, brain stem, caudate putamen, cingulate cortex, hippocampus, midbrain, and thalamus. The protein levels of 3 alpha-hydroxysteroid dehydrogenase in different regions of the brain as detected by Western immunoblotting are comparable to those of the enzyme activity. No sexual dimorphism was found in either the concentration levels or the activities of the brain 3 alpha-hydroxysteroid dehydrogenase. At the time of birth, the rat brain already expresses a significant level of 3 alpha-hydroxysteroid dehydrogenase; the levels of brain 3 alpha-hydroxysteroid dehydrogenase activity in rats continue to rise during the first week after their birth, and reach a plateau thereafter.
Collapse
Affiliation(s)
- K C Cheng
- Department of Pediatrics, Cornell University Medical College, New York, NY 10021
| | | | | | | |
Collapse
|
42
|
Abstract
Evidence is presented that the most widely used and effective drugs used in the treatment of anxiety and insomnia act by indirectly activating GABA-A receptors in limbic regions of the brain. Since the discovery of the benzodiazepines, different classes of benzodiazepine receptor ligands (such as the cyclopyrroliones and imidazopyridines) have been developed which alleviate anxiety and insomnia by activating different sites on the benzodiazepine-GABA receptor complex to those activated by the 'classical' benzodiazepines as exemplified by temazepam and diazepam. There is evidence that natural ligands also exist in the mammalian brain which can modulate the benzodiazepine-GABA receptor complex. This raises the possibility that insomnia and anxiety states may arise as a consequence of a deficit in the availability of endogenous ligands that act as agonists at these sites.
Collapse
Affiliation(s)
- B E Leonard
- Pharmacology Department, University College, Galway, Ireland
| |
Collapse
|
43
|
Martini L, Melcangi RC, Maggi R. Androgen and progesterone metabolism in the central and peripheral nervous system. J Steroid Biochem Mol Biol 1993; 47:195-205. [PMID: 8274436 DOI: 10.1016/0960-0760(93)90075-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This paper summarizes the most recent data obtained in the authors' laboratory on the metabolism of testosterone and progesterone in neurons, in the glia, and in neuroblastoma cells. The activities of the 5 alpha-reductase (the enzyme that converts testosterone into dihydrotestosterone, DHT), and of the 3 alpha-hydroxysteroid dehydrogenase (the enzyme that converts DHT into 5 alpha-androstane-3 alpha, 17 beta-diol, 3 alpha-diol) have been first evaluated in primary cultures of neurons, oligodendrocytes and type-1 and -2 astrocytes, obtained from the fetal or neonatal rat brain. All the cultures were used on the fifth day. The formation of DHT of 3 alpha-diol was evaluated incubating the different cultures with labeled testosterone or DHT as substrates. The results obtained indicate that the formation of DHT takes place preferentially in neurons; however, type-2 astrocytes and oligodendrocytes also possess considerable 5 alpha-reductase activity, while type-1 astrocytes show a much lower enzymatic concentration. A completely different localization was observed for 3 alpha-hydroxysteroid dehydrogenase; the formation of 3 alpha-diol appears to be prevalently, if not exclusively, present in type-1 astrocytes; 3 alpha-diol is formed in very low yields by neurons, type-2 astrocytes and oligodendrocytes. The compartmentalization of two strictly correlated enzymes (5 alpha-reductase and 3 alpha-hydroxysteroid dehydrogenase) in separate central nervous system (CNS) cell populations suggests the simultaneous participation of neurons and glial cells in the 5 alpha-reductive metabolism of testosterone. Subsequently it has been shown that, similarly to what happens when testosterone is used as the substrate, the 5 alpha-reductase which metabolizes progesterone into 5 alpha-pregnane-3,20-dione (DHP) shows a significantly higher activity in neurons than in glial cells; however, type-1 and -2 astrocytes as well as oligodendrocytes also possess some ability to 5 alpha-reduce progesterone. On the other hand, 3 alpha-hydroxysteroid dehydrogenase, the enzyme which converts DHP into 5 alpha-pregnane-3 alpha-ol-20-one, appears to be present mainly in type-1 astrocytes; much lower levels of this enzyme are present in neurons and in type-2 astrocytes. At variance with the previous results obtained using androgens as precursors, oligodendrocytes show considerable 3 alpha-hydroxysteroid dehydrogenase activity, even if this is statistically lower than that present in type-1 astrocytes. The existence of isoforms of the enzyme involved in androgen and progesterone metabolism is discussed.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L Martini
- Istituto di Endocrinologia, Università degli Studi di Milano, Italy
| | | | | |
Collapse
|
44
|
De Nicola AF, Seltzer A, Tsutsumi K, Saavedra JM. Effects of deoxycorticosterone acetate (DOCA) and aldosterone on Sar1-angiotensin II binding and angiotensin-converting enzyme binding sites in brain. Cell Mol Neurobiol 1993; 13:529-39. [PMID: 8111824 DOI: 10.1007/bf00711461] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. It is known that regulation of salt appetite is a complex behavior controlled in the brain by interaction of mineralocorticoids (MC) and angiotensin II (ANGII). To investigate the effects of MC on ANGII receptors and ANGII synthesis, we have studied two models of salt appetite control. 2. In the first model, doses of DOCA sufficient to induce salt appetite of intact rats were given. In the second one, we studied the effects of aldosterone (ALDO) in doses sufficient to suppress salt appetite developed by prior adrenalectomy (ADX). 3. Binding to ANGII receptors was determined in brain sections incubated with 3 nM [125I]Sar1 ANGII, exposed to [3H]Hyperfilm with an optical density of autoradiograms measured by computerized densitometry. Sar1-ANGII binding was increased by DOCA treatment in the median preoptic nucleus (MnPO) and subfornical organ (SFO) but not in the paraventricular nucleus (PVN) in comparison to vehicle-treated rats. ALDO treatment was without effect on the MnPO but increased ANGII binding in the SFO and PVN. Neither hormone affected binding in the median eminence or anterior pituitary (AP). 4. In contrast to effects on Sar1-ANGII binding in selected areas, [125I]351A binding to angiotensin-converting enzyme (ACE) was unchanged by DOCA or ALDO administration in the SFO, caudate putamen, AP, or posterior pituitary. 5. These findings suggest that MC modulation of the renin-angiotensin system is exerted at the central, and not at the pituitary level. ANGII receptors were modulated in a dose- and region-specific manner: while DOCA may promote their actions upon the MnPO and SFO, ALDO actions may occur at the PVN and SFO. This mechanism may not require increased generation of ANGII in the brain or pituitary.
Collapse
Affiliation(s)
- A F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
45
|
Dubrovsky B, Gijsbers K, Filipini D, Birmingham MK. Effects of adrenocortical steroids on long-term potentiation in the limbic system: basic mechanisms and behavioral consequences. Cell Mol Neurobiol 1993; 13:399-414. [PMID: 8252610 DOI: 10.1007/bf00711580] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hippocampal structures are a major target for adrenal steroid hormones, and hence these neural regions are some of the most likely mediators of the effects of adrenocortical steroids on behavior. Memory disturbance, in particular biasing toward negative contents, are part of the symptomatology presented by depressive patients. In turn, a sizeable subset of depression also presents with hypercortisolemia. Adrenocortical hormones are also known to affect memory processes. Hippocampal formation is essential for declarative memory. We thought it appropriate then to study the effects of adrenal steroids on long-term potentiation, a putative memory mechanism in the hippocampus. Two clearly distinguished components of the evoked response to perforant path stimulation can be studied in the hippocampus: the excitatory postsynaptic potential (EPSP) which denotes the graded depolarization of the somatodendritic region of the neuron and the population spike (PS), a manifestation of the all-or-none-discharge of the cell action potential. Corticosterone had a significant depressant effect on the EPSP component of the evoked response immediately and 15 min after injection. Thereafter EPSP amplitudes were within normal values. Corticosterone significantly decreased the PS immediately after the train, the component remaining low 30 min after the train. 5 alpha-Dihydrocorticosterone (a ring A-reduced metabolite of corticosterone) significantly reduced the PS component of the response at all times after injection. 18-Hydroxydeoxycorticosterone and deoxycorticosterone significantly decreased both EPSP and PS components of the evoked response from the time of infusion. Contrary to expectation, tetrahydrodeoxycorticosterone was ineffective in decreasing and if anything, enhanced the development of long-term potentiation. 18-Hydroxydeoxycorticosterone 21-acetate behaved like vehicle, except for the first 30 min after injection when the EPSP was decreased. Allotetrahydroprogesterone decreased all EPSP's values and had no effect in the PS development in comparison with vehicle. The suggestion is made that the study of steroidal effects on hippocampal LTP can serve as a preclinical model of some aspects of depression in a specific subset of the disease.
Collapse
Affiliation(s)
- B Dubrovsky
- Department of Physiology, McGill University Medical School, Montreal, Canada
| | | | | | | |
Collapse
|
46
|
Majewska MD. Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol 1992; 38:379-95. [PMID: 1349441 DOI: 10.1016/0301-0082(92)90025-a] [Citation(s) in RCA: 827] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The abundant CNS cholesterol and its sulfate derivative serve as precursors of different neurosteroids, which bidirectionally modulate neuronal excitability, by potentiating or inhibiting function of the GABAA receptors. The regulation of GABAA receptors in the CNS by the steroids of central or peripheral origin may constitute a vital means of brain-body communication, essential for integrated whole organism responses to external stimuli or internal signals. Modulation of the brain GABA receptors by neurosteroids may form the basis of a myriad of psychophysiological phenomena, such as memory, stress, anxiety, sleep, depression, seizures and others. Therefore, the aberrant synthesis of centrally-active steroids may contribute to defects in neurotransmission, resulting in a variety of neural and affective disorders. The biosynthesis of neurosteroids may also be altered by diet and certain psychotropic drugs, thereby affecting excitation of neurons. Hereditary differences in the level of synthesis and catabolism of different neurosteroids may underlie individual variations in CNS excitability, contributing to differences in personality traits, including the inherited susceptibility to drug addition.
Collapse
Affiliation(s)
- M D Majewska
- Laboratory of Neuropharmacology, NIDA, Baltimore, MD
| |
Collapse
|
47
|
Owens MJ, Ritchie JC, Nemeroff CB. 5 alpha-pregnane-3 alpha, 21-diol-20-one (THDOC) attenuates mild stress-induced increases in plasma corticosterone via a non-glucocorticoid mechanism: comparison with alprazolam. Brain Res 1992; 573:353-5. [PMID: 1504771 DOI: 10.1016/0006-8993(92)90788-b] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
5 alpha-Pregnane-3 alpha,21-diol-20-one (THDOC; 5 mg/kg) and the triazolobenzodiazepine alprazolam (1 mg/kg) attenuated mild stress-induced increases in plasma corticosterone concentrations via GABAergic mechanisms. Unlike alprazolam, THDOC failed to decrease corticotropin-releasing factor (CRF) concentrations in the locus ceruleus. While THDOC may plausibly act via endogenous GABAergic mechanisms to reduce stress-induced endocrine and behavioral responses that are likely mediated in part by CRF neurons, these preliminary findings suggest that, at the dose and time point studied, THDOC does not identically mimic the actions of alprazolam, another drug which potentiates GABAergic activity.
Collapse
Affiliation(s)
- M J Owens
- Department of Psychiatry, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
48
|
Dasilva JN, Crouzel C, Stulzaft O, Khalili-Varasteh M, Hantraye P. Synthesis, tissue distribution in rats and PET studies in baboon brain of no-carrier-added [18F]RU 52461: in vivo evaluation as a brain glucocorticoid receptor radioligand. INTERNATIONAL JOURNAL OF RADIATION APPLICATIONS AND INSTRUMENTATION. PART B, NUCLEAR MEDICINE AND BIOLOGY 1992; 19:167-73. [PMID: 1601670 DOI: 10.1016/0883-2897(92)90004-i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
11,17 beta-Dihydroxy-6-methyl-17 alpha-(3-[18F]fluoro-prop-1- ynyl)androsta-1,4,6-trien-3-one [( 18F]RU 52461), an 18F-analog of RU 28362, was synthesized by bromide displacement with [18F]fluoride in 12-30% overall radiochemical yield (decay-corrected) within 140 min from end of bombardment (EOB). The specific activity was 900-1500 mCi/mumol (33.3-55.5 GBq/mumol) at the end of synthesis (EOS). Biodistribution studies indicated high adrenal and pituitary retention, and uniformly low uptake of [18F]RU 52461 in all other brain regions of the rat. Except for the pituitary, no specific receptor-mediated uptake of [18F]RU 52461 could be demonstrated using saturating doses of unlabeled RU 52461 in rat brain. While no change was observed throughout the brain areas in adrenalectomized rats and in animals coinjected with dexamethasone, when compared to controls. PET studies revealed extremely low levels of radioactivity in baboon brain. Therefore, [18F]RU 52461 does not appear to cross the blood-brain barrier, suggesting that this radiopharmaceutical is not suitable to visualize the brain glucocorticoid binding sites by PET.
Collapse
Affiliation(s)
- J N Dasilva
- Service Hospitalier Frédéric Joliot, DRIPP, DSV, CEA, Orsay, France
| | | | | | | | | |
Collapse
|
49
|
Abstract
The paper summarizes the most recent views on androgen metabolism in the brain. In particular it will be shown that: (1) the enzyme 5 alpha-reductase is particularly concentrated in the white matter; (2) 5 alpha-reductase is also present in the myelin; 5 alpha-reductase is present in higher concentrations in neurons (isolated or cultured) that in glial cells (astrocytes and oligodendrocytes); (4) only neurons possess the capability of aromatizing androgens to estrogens; and (5) a possible role of steroid metabolism in the control of the process of myelinogenesis is suggested.
Collapse
Affiliation(s)
- L Martini
- Istituto di Endocrinologia, Università degli Studi di Milano, Italy
| | | |
Collapse
|
50
|
Abstract
Patients suffering from Cushing's disorders (syndrome and disease) are significantly affected by psychological disturbances that overlap with depressive disorders. In turn, a subset of patients with affective disorders present with hypercortisolemia, and non-suppression in the Dexamethasone Suppression Test (DST). We have shown that long-term potentiation (LTP), a putative memory mechanism, is significantly affected by steroids when tested on the hippocampus, a crucial structure for memory processes. We propose that an imbalance of adrenal steroids and their metabolites, interacting at the level of the hippocampus, play a fundamental role in the psychophysiopathology of Cushing's and depressive disorders. By biasing memory mechanisms, the imbalance of these hormones sets both distorted mood, and hence memory contents, and distorted cognition based on recollection and present experiences.
Collapse
Affiliation(s)
- B Dubrovsky
- Neurophysiology Laboratories, Allan Memorial Institute, Royal Victoria Hospital, Montreal, Canada
| |
Collapse
|