1
|
Ben-Moshe Livne Z, Alon S, Vallone D, Bayleyen Y, Tovin A, Shainer I, Nisembaum LG, Aviram I, Smadja-Storz S, Fuentes M, Falcón J, Eisenberg E, Klein DC, Burgess HA, Foulkes NS, Gothilf Y. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior. PLoS Genet 2016; 12:e1006445. [PMID: 27870848 PMCID: PMC5147766 DOI: 10.1371/journal.pgen.1006445] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/24/2016] [Indexed: 01/10/2023] Open
Abstract
The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior.
Collapse
Affiliation(s)
- Zohar Ben-Moshe Livne
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Shahar Alon
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Daniela Vallone
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Yared Bayleyen
- Unit on Behavioral Neurogenetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adi Tovin
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Inbal Shainer
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Laura G. Nisembaum
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
| | - Idit Aviram
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sima Smadja-Storz
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Michael Fuentes
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
| | - Jack Falcón
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
| | - Eli Eisenberg
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel
| | - David C. Klein
- Section on Neuroendocrinology and Office of the Scientific Directory, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Harold A. Burgess
- Unit on Behavioral Neurogenetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicholas S. Foulkes
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
2
|
Hasegawa M, Cahill GM. High Potassium Treatment Resets the Circadian Oscillator in Xenopus Retinal Photoreceptors. J Biol Rhythms 2016; 19:208-15. [PMID: 15155007 DOI: 10.1177/0748730404264774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In vertebrate retina, light hyperpolarizes the photoreceptor membrane, and this is an essential cellular signal for vision. Cellular signals responsible for photic entrainment of some circadian oscillators appear to be distinct from those for vision, but it is not known whether changes in photoreceptor membrane potential play roles in photic entrainment of the photoreceptor circadian oscillator. The authors show that a depolarizing exposure to high potassium resets the circadian oscillator in cultured Xenopus retinal photoreceptor layers. A 4-h pulse of high [K+] (34 mM higher than in normal culture medium) caused phase shifts of the melatonin rhythm. This treatment caused phase delays during the early subjective day and phase advances during the late subjective day. In addition to the phase-shifting effect, high potassium pulses stimulated melatonin release acutely at all times. High [K+] therefore mimicked dark in its effects on oscillator phase and melatonin synthesis. These results suggest that membrane potential may play a role in photic entrainment of the photoreceptor circadian oscillator and in regulation of melatonin release.
Collapse
Affiliation(s)
- Minoru Hasegawa
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA.
| | | |
Collapse
|
3
|
Torii M, Kojima D, Nishimura A, Itoh H, Fukada Y. Light-dependent activation of G proteins by two isoforms of chicken melanopsins. Photochem Photobiol Sci 2016; 14:1991-7. [PMID: 26411960 DOI: 10.1039/c5pp00153f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the chicken pineal gland, light stimuli trigger signaling pathways mediated by two different subtypes, Gt and G11. These G proteins may be activated by any of the three major pineal opsins, pinopsin, OPN4-1 and OPN4-2, but biochemical evidence for the coupling has been missing except for functional coupling between pinopsin and Gt. Here we investigated the relative expression levels and the functional difference among the three pineal opsins. In the chicken pineal gland, the pinopsin mRNA level was significantly more abundant than the others, of which the OPN4-2 mRNA level was higher than that of OPN4-1. In G protein activation assays, Gt was strongly activated by pinopsin in a light-dependent manner, being consistent with previous studies, and weakly activated by OPN4-2. Unexpectedly, illuminated OPN4-2 more efficiently activated G protein(s) that was endogenously expressed in HEK293T cells in culture. On the other hand, Gq, the closest analogue of G11, was activated only by OPN4-1 although the activity was relatively weak under these conditions. These results suggest that OPN4-1 and OPN4-2 couple with Gq and Gt, respectively. Two melanopsins, OPN4-1 and OPN4-2, appear to have acquired mutually different functions through the evolution.
Collapse
Affiliation(s)
- Masaki Torii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Daisuke Kojima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Akiyuki Nishimura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hiroshi Itoh
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Cassone VM. Avian circadian organization: a chorus of clocks. Front Neuroendocrinol 2014; 35:76-88. [PMID: 24157655 PMCID: PMC3946898 DOI: 10.1016/j.yfrne.2013.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/18/2013] [Accepted: 10/09/2013] [Indexed: 12/24/2022]
Abstract
In birds, biological clock function pervades all aspects of biology, controlling daily changes in sleep: wake, visual function, song, migratory patterns and orientation, as well as seasonal patterns of reproduction, song and migration. The molecular bases for circadian clocks are highly conserved, and it is likely the avian molecular mechanisms are similar to those expressed in mammals, including humans. The central pacemakers in the avian pineal gland, retinae and SCN dynamically interact to maintain stable phase relationships and then influence downstream rhythms through entrainment of peripheral oscillators in the brain controlling behavior and peripheral tissues. Birds represent an excellent model for the role played by biological clocks in human neurobiology; unlike most rodent models, they are diurnal, they exhibit cognitively complex social interactions, and their circadian clocks are more sensitive to the hormone melatonin than are those of nocturnal rodents.
Collapse
Affiliation(s)
- Vincent M Cassone
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States.
| |
Collapse
|
5
|
Valdez DJ, Nieto PS, Díaz NM, Garbarino-Pico E, Guido ME. Differential regulation of feeding rhythms through a multiple-photoreceptor system in an avian model of blindness. FASEB J 2013; 27:2702-12. [PMID: 23585397 DOI: 10.1096/fj.12-222885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
All organisms have evolved photodetection systems to synchronize their physiology and behavior with the external light-dark (LD) cycles. In nonmammalian vertebrates, the retina, the pineal organ, and the deep brain can be photoreceptive. Inner retinal photoreceptors transmit photic information to the brain and regulate diverse nonvisual tasks. We previously reported that even after preventing extraretinal photoreception, blind GUCY1* chickens lacking functional visual photoreceptors could perceive light that modulates physiology and behavior. Here we investigated the contribution of different photoreceptive system components (retinal/pineal and deep brain photoreceptors) to the photic entrainment of feeding rhythms. Wild-type (WT) and GUCY1* birds with head occlusion to avoid extraocular light detection synchronized their feeding rhythms to a LD cycle with light >12 lux, whereas at lower intensities blind birds free-ran with a period of >24 h. When released to constant light, both WT and blind chickens became arrhythmic; however, after head occlusion, GUCY1* birds free-ran with a 24.5-h period. In enucleated birds, brain illumination synchronized feeding rhythms, but in pinealectomized birds only responses to high-intensity light (≥800 lux) were observed, revealing functional deep brain photoreceptors. In chickens, a multiple photoreceptive system, including retinal and extraretinal photoreceptors, differentially contributes to the synchronization of circadian feeding behavior.
Collapse
Affiliation(s)
- Diego J Valdez
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
6
|
Shin HS, Kim NN, Choi YJ, Lee J, Kil GS, Choi CY. Differential expression of rhodopsin and Exo-rhodopsin genes in the retina and pineal gland of olive flounder (Paralichthys olivaceus). JOURNAL OF APPLIED ANIMAL RESEARCH 2012. [DOI: 10.1080/09712119.2012.662894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Klein DC, Bailey MJ, Carter DA, Kim JS, Shi Q, Ho AK, Chik CL, Gaildrat P, Morin F, Ganguly S, Rath MF, Møller M, Sugden D, Rangel ZG, Munson PJ, Weller JL, Coon SL. Pineal function: impact of microarray analysis. Mol Cell Endocrinol 2010; 314:170-83. [PMID: 19622385 PMCID: PMC3138125 DOI: 10.1016/j.mce.2009.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/14/2009] [Indexed: 02/06/2023]
Abstract
Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-h schedule. This effort has highlighted surprising similarity to the retina and has provided reason to explore new avenues of study including intracellular signaling, signal transduction, transcriptional cascades, thyroid/retinoic acid hormone signaling, metal biology, RNA splicing, and the role the pineal gland plays in the immune/inflammation response. The new foundation that microarray analysis has provided will broadly support future research on pineal function.
Collapse
Affiliation(s)
- David C Klein
- Section on Neuroendocrinology, Program on Developmental Endocrinology and Genetics, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Circadian genomics of the chick pineal gland in vitro. BMC Genomics 2008; 9:206. [PMID: 18454867 PMCID: PMC2405806 DOI: 10.1186/1471-2164-9-206] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 05/03/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chick pinealocytes exhibit all the characteristics of a complete circadian system, comprising photoreceptive inputs, molecular clockworks and an easily measured rhythmic output, melatonin biosynthesis. These properties make the in vitro pineal a particularly useful model for exploring circadian control of gene transcription in a pacemaker tissue, as well as regulation of the transcriptome by primary inputs to the clock (both photic and noradrenergic). RESULTS We used microarray analysis to investigate the expression of approximately 8000 genes within cultured pinealocytes subjected to both LD and DD. We report that a reduced subset of genes was rhythmically expressed in vitro compared to those previously published in vivo, and that gene expression rhythms were lower in amplitude, although the functional distribution of the rhythmic transcriptome was largely similar. We also investigated the effects of 6-hour pulses of light or of norepinephrine on gene expression in free-running cultures during both subjective day and night. As expected, both light and norepinephrine inhibited melatonin production; however, the two treatments differentially enhanced or suppressed specific sets of genes in a fashion that was dependent upon time of day. CONCLUSION Our combined approach of utilizing a temporal, photic and pharmacological microarray experiment allowed us to identify novel genes linking clock input to clock function within the pineal. We identified approximately 30 rhythmic, light-responsive, NE-insensitive genes with no previously known clock function, which may play a role in circadian regulation of the pineal. These are candidates for future functional genomics experiments to elucidate their potential role in circadian physiology. Further, we hypothesize that the pineal circadian transcriptome is reduced but functionally conserved in vitro, and supports an endogenous role for the pineal in regulating local rhythms in metabolism, immune function, and other conserved pathways.
Collapse
|
9
|
Herichová I, Monosíková J, Zeman M. Ontogeny of melatonin, Per2 and E4bp4 light responsiveness in the chicken embryonic pineal gland. Comp Biochem Physiol A Mol Integr Physiol 2007; 149:44-50. [PMID: 17996471 DOI: 10.1016/j.cbpa.2007.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 10/02/2007] [Accepted: 10/02/2007] [Indexed: 10/22/2022]
Abstract
The chicken pineal gland possesses the capacity to generate circadian oscillations, is able to synchronize to external light:dark cycles and can generate an hormonal output--melatonin. We examined the light responses of the chicken pineal gland and its effects on melatonin and Per2, Bmal1 and E4bp4 expression in 19-day old embryos and hatchlings during the dark phase, subjective light phase and in constant darkness. Expression of Per2 and E4bp4 were rhythmic under light:dark conditions, but the rhythms of E4bp4 and Bmal1 mRNA did not persist in constant darkness in 19-day old embryos. Per2 mRNA expression persisted in constant darkness, but with a reduced amplitude. Per2 expression was inducible by light only during the subjective day. Melatonin release was inhibited by light only at end of the dark phase and during the subjective light phase in embryos. Our data demonstrate that the embryonic avian pineal pacemaker is light sensitive and can generate rhythmic output, however the effects of light were diminished in chick embryos in compared to hatchlings.
Collapse
Affiliation(s)
- I Herichová
- Department of Animal Physiology and Ethology, Comenius University Bratislava, Mlynská Dolina B2, 84215 Bratislava, Slovakia
| | | | | |
Collapse
|
10
|
Kubo Y, Akiyama M, Fukada Y, Okano T. Molecular cloning, mRNA expression, and immunocytochemical localization of a putative blue-light photoreceptor CRY4 in the chicken pineal gland. J Neurochem 2006; 97:1155-65. [PMID: 16686694 DOI: 10.1111/j.1471-4159.2006.03826.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In non-mammalian vertebrates, the pineal gland contains an endogenous circadian oscillator and serves as a photosensitive neuroendocrinal organ. To better understand the pineal phototransduction mechanism, we focused on the chicken putative blue-light photoreceptive molecule, Cryptochrome4 (cCRY4). Here we report the molecular cloning of pineal cCry4 cDNA, the in vivo expression of cCry4 mRNA, and the detection of cCRY4 protein. cCry4 is transcribed in a wide variety of chick tissues out of which the pineal gland and retina contain high levels of cCry4 mRNA. In the pineal gland, under 12 h light : 12 h dark cycles, the levels of both cCry4 mRNA and cCRY4 protein showed diurnal changes, and in cultured chick pineal cells, the cCry4 mRNA level was not only up-regulated by light but also controlled by circadian signals. Immunoblot analysis with a cCRY4-specific antibody detected cCRY4 in a soluble fraction of the pineal lysate. Immunocytochemistry revealed that cCRY4 was expressed in many parenchymal cells and a limited number of stromal cells. These cCRY4 features strikingly contrast with those of the chick pineal photoreceptor pinopsin, suggesting a possible temporal and/or spatial duplicity of the pineal photoreceptive system, the opsin- and CRY-based mechanisms.
Collapse
Affiliation(s)
- Yoko Kubo
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
11
|
Iuvone PM, Tosini G, Pozdeyev N, Haque R, Klein DC, Chaurasia SS. Circadian clocks, clock networks, arylalkylamine N-acetyltransferase, and melatonin in the retina. Prog Retin Eye Res 2005; 24:433-56. [PMID: 15845344 DOI: 10.1016/j.preteyeres.2005.01.003] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circadian clocks are self-sustaining genetically based molecular machines that impose approximately 24h rhythmicity on physiology and behavior that synchronize these functions with the solar day-night cycle. Circadian clocks in the vertebrate retina optimize retinal function by driving rhythms in gene expression, photoreceptor outer segment membrane turnover, and visual sensitivity. This review focuses on recent progress in understanding how clocks and light control arylalkylamine N-acetyltransferase (AANAT), which is thought to drive the daily rhythm in melatonin production in those retinas that synthesize the neurohormone; AANAT is also thought to detoxify arylalkylamines through N-acetylation. The review will cover evidence that cAMP is a major output of the circadian clock in photoreceptor cells; and recent advances indicating that clocks and clock networks occur in multiple cell types of the retina.
Collapse
Affiliation(s)
- P Michael Iuvone
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, rm. 5107, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Holthues H, Engel L, Spessert R, Vollrath L. Circadian gene expression patterns of melanopsin and pinopsin in the chick pineal gland. Biochem Biophys Res Commun 2005; 326:160-5. [PMID: 15567166 DOI: 10.1016/j.bbrc.2004.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Indexed: 11/20/2022]
Abstract
The directly light-sensitive chick pineal gland contains at least two photopigments. Pinopsin seems to mediate the acute inhibitory effect of light on melatonin synthesis, whereas melanopsin may act by phase-shifting the intrapineal circadian clock. In the present study we have investigated, by means of quantitative RT-PCR, the daily rhythm of photopigment gene expression as monitored by mRNA levels. Under a 12-h light/12-h dark cycle, the mRNA levels of both pigments were 5-fold higher in the transitional phase from light to dark than at night, both in vivo and in vitro. Under constant darkness in vivo and in vitro, the peak of pinopsin mRNA levels was attenuated, whereas that of melanopsin was not. Thus, whereas the daily rhythm of pinopsin gene expression is dually regulated by light plus the intrapineal circadian oscillator, that of melanopsin appears to depend solely on the oscillator.
Collapse
Affiliation(s)
- Heike Holthues
- Department of Anatomy, Johannes Gutenberg University, 55099 Mainz, Germany.
| | | | | | | |
Collapse
|
13
|
Chaurasia SS, Rollag MD, Jiang G, Hayes WP, Haque R, Natesan A, Zatz M, Tosini G, Liu C, Korf HW, Iuvone PM, Provencio I. Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J Neurochem 2005; 92:158-70. [PMID: 15606905 DOI: 10.1111/j.1471-4159.2004.02874.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The avian retina and pineal gland contain autonomous circadian oscillators and photo-entrainment pathways, but the photopigment(s) that mediate entrainment have not been definitively identified. Melanopsin (Opn4) is a novel opsin involved in entrainment of circadian rhythms in mammals. Here, we report the cDNA cloning of chicken melanopsin and show its expression in retina, brain and pineal gland. Like the melanopsins identified in amphibians and mammals, chicken melanopsin is more similar to the invertebrate retinaldehyde-based photopigments than the retinaldehyde-based photopigments typically found in vertebrates. In retina, melanopsin mRNA is expressed in cells of all retinal layers. In pineal gland, expression was strong throughout the parenchyma of the gland. In brain, expression was observed in a few discrete nuclei, including the lateral septal area and medial preoptic nucleus. The retina and pineal gland showed distinct diurnal expression patterns. In pineal gland, melanopsin mRNA levels were highest at night at Zeitgeber time (ZT) 16. In contrast, transcript levels in the whole retina reached their highest levels in the early morning (ZT 0-4). Further analysis of melanopsin mRNA expression in retinal layers isolated by laser capture microdissection revealed different patterns in different layers. There was diurnal expression in all retinal layers except the ganglion cell layer, where heavy expression was localized to a small number of cells. Expression of melanopsin mRNA peaked during the daytime in the retinal pigment epithelium and inner nuclear layer but, like in the pineal, at night in the photoreceptors. Localization and regulation of melanopsin mRNA in the retina and pineal gland is consistent with the hypothesis that this novel photopigment plays a role in photic regulation of circadian function in these tissues.
Collapse
Affiliation(s)
- S S Chaurasia
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Earnest DJ, Cassone VM. Cell Culture Models for Oscillator and Pacemaker Function: Recipes for Dishes with Circadian Clocks? Methods Enzymol 2005; 393:558-78. [PMID: 15817312 DOI: 10.1016/s0076-6879(05)93029-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Primary cell cultures of avian pinealocytes and the mammalian suprachiasmatic nucleus (SCN), immortalized cell lines derived from the SCN (SCN2.2), and fibroblasts derived from mice and rats have been employed as in vitro models to study the cellular and molecular mechanisms underlying circadian biological clocks. This article compares and contrasts these model systems and describes methods for avian pinealocyte cultures, immortalized SCN2.2 cells, and mouse fibroblast culture. Each of these culture models has advantages and disadvantages. Avian pinealocytes are photoreceptive, contain a circadian pacemaker, and produce rhythms of an easily assayed endocrine output-melatonin. However, the molecular mechanisms underlying pinealocyte function are not understood. SCN2.2 cells express metabolic and molecular rhythms and can impose rhythmicity on cocultured cells as well as rat behavior when transplanted into the brain. Yet, the entrainment pathways are not experimentally established in these cells. Fibroblast cultures are simple to produce and express molecular clock gene rhythms, but they express neither physiological rhythmicity nor pacemaker properties. The relative merits of these culture systems, as well as their impact on understanding circadian organization in vivo, are also considered.
Collapse
Affiliation(s)
- David J Earnest
- Department of Human Anatomy and Medical Neurobiology, Center for Research on Biological Clocks, Texas A&M University Health Sciences Center, College Station, Texas 77843, USA
| | | |
Collapse
|
15
|
Holthues H, Vollrath L. The phototransduction cascade in the isolated chick pineal gland revisited. Brain Res 2004; 999:175-80. [PMID: 14759496 DOI: 10.1016/j.brainres.2003.11.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2003] [Indexed: 10/26/2022]
Abstract
It is well established that the isolated chick pineal gland is directly light sensitive and that melatonin synthesis of the gland can be inhibited by exposing the gland to light during scotophase. Since not all the steps of the phototransduction cascade have been clarified to the same extent as in the retina, we have treated isolated chick pineal glands with 90 min of light during scotophase and with drugs that affect key-components of vertebrate phototransduction, i.e., cyclic guanosine monophosphate (cGMP) phosphodiesterase 6 (PDE6), cGMP levels and cGMP-gated calcium channels. The endpoint measured was the activity of the rate-limiting enzyme of melatonin synthesis, arylalkylamine N-acetyltransferase (AA-NAT), which is inhibited by light. The effects on AA-NAT activity of light were negated by addition of dipyridamol and zaprinast, either of which inhibits the light-induced activation of PDE6. The effect of light was also counteracted by the nitric oxide donor sodium nitroprusside and C-type natriuretic peptide, both of which increase cGMP levels, and by the calcium channel agonist Bay K 8644, which prevents the cGMP-decrease-induced closure of cGMP-gated calcium channels. Inhibition of nitric oxide synthase (NOS) by N(G)-nitro-l-arginine did not influence the inhibitory effect of light, suggesting that the NOS pathway does not play a role. Since the light effect on AA-NAT activity involves both cGMP and cyclic adenosine monophosphate (cAMP) hydrolysis, we have also studied whether the cGMP-inhibited cAMP phosphodiesterase 3 (PDE3) is involved. As the specific PDE3 inhibitor cilostamide is without effect, we assume that the light-induced decrease of cAMP levels does not involve PDE3. These results taken together strongly suggest that the investigated steps of the phototransduction cascade in the isolated chick pineal gland are basically similar to those in the retina.
Collapse
Affiliation(s)
- Heike Holthues
- Department of Anatomy, Johannes Gutenberg University Mainz, Becherweg 13, D-55099, Mainz, Germany
| | | |
Collapse
|
16
|
Ivanova TN, Iuvone PM. Circadian rhythm and photic control of cAMP level in chick retinal cell cultures: a mechanism for coupling the circadian oscillator to the melatonin-synthesizing enzyme, arylalkylamine N-acetyltransferase, in photoreceptor cells. Brain Res 2004; 991:96-103. [PMID: 14575881 DOI: 10.1016/j.brainres.2003.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Arylalkylamine N-acetyltransferase (AANAT) is the penultimate and key regulatory enzyme in the melatonin biosynthetic pathway. In chicken retina in vivo, AANAT is expressed in a circadian fashion, primarily in photoreceptor cells. AANAT activity is high at night in darkness, low during the daytime, and suppressed by light exposure at night. In the present study, we investigated the circadian and photic regulation of adenosine 3',5'-monophosphate (cAMP) in cultured retinal cells entrained to a daily light-dark (LD) cycle, as well as the role of Ca(2+) and cAMP in the regulation of AANAT activity. Similar to AANAT activity, cAMP levels fluctuate in a daily fashion, with high levels at night in darkness and low levels during the day in light. This daily fluctuation continued with reduced amplitude in constant (24 h/day) darkness (DD). These changes in cAMP appear to be causally related to control of AANAT activity. Adenylyl cyclase and protein kinase A inhibitors suppress the nocturnal increase of AANAT in DD, while 8Br-cAMP augments it. The nocturnal increase of AANAT activity also involves Ca(2+) influx, as it is inhibited by nitrendipine, an inhibitor of L-type voltage-gated channels, and augmented by Bay K 8644, a Ca(2+) channel agonist. The effect of Bay K 8644 was antagonized by the adenylyl cyclase inhibitor MDL 12330A, suggesting a link between Ca(2+) influx, cAMP formation, and AANAT activity in retinal cells. Light exposure at night, which rapidly suppresses AANAT activity, also suppressed cAMP levels. The effect of light on AANAT activity was reversed by Bay K 8644, 8Br-cAMP, and the proteasome inhibitor lactacystin. These results indicate a dynamic interplay of circadian oscillators and light in the regulation of cAMP levels and AANAT activity in photoreceptor cells.
Collapse
Affiliation(s)
- Tamara N Ivanova
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
17
|
Iigo M, Fujimoto Y, Gunji-Suzuki M, Yokosuka M, Hara M, Ohtani-Kaneko R, Tabata M, Aida K, Hirata K. Circadian rhythm of melatonin release from the photoreceptive pineal organ of a teleost, ayu (Plecoglossus altivelis) in flow-thorough culture. J Neuroendocrinol 2004; 16:45-51. [PMID: 14962075 DOI: 10.1111/j.1365-2826.2004.01132.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the present study, we tested whether the pineal organ of ayu (Plecoglossus altivelis), an osmerid teleost close relative of salmonids, harbours a circadian oscillator regulating rhythmic melatonin release using flow-through culture. The pineal organ maintained under light/dark cycles released melatonin in a rhythmic fashion with high levels during the dark phase. A circadian rhythm of melatonin release persisted in constant darkness for at least four cycles. Characteristics of the circadian rhythm (free-running period, phase and amplitude) exhibited small variations among cultures when the data was normalized, indicating that this system is sufficient for the analysis of the circadian rhythm both at qualitative and quantitative levels. Six-hour extension of the light phase from the normal onset time of the dark phase or exposure to constant light for 36 or 48 h before transfer to constant darkness significantly inhibited melatonin release. Phase shifts in the circadian rhythm of melatonin release were also observed. Thus, the ayu pineal organ contains all the three essential components of the circadian system (a circadian clock, the photoreceptor responsible for photic entrainment of the clock, and melatonin generating system as an output pathway). This system should provide a useful model for analysing the physiological and molecular basis of the vertebrate circadian system. In addition, further comparative studies using salmonids and related species including ayu will provide some insight into the evolution of the roles of the pineal organ in the vertebrate circadian system.
Collapse
Affiliation(s)
- M Iigo
- Department of Anatomy, St. Marianna University School of Medicine, Miyamae, Kawasaki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The chick pineal organ is recognized to contain an endogenous circadian oscillator as well as having direct photic input pathways and the capability of synthesizing melatonin. Despite its interesting circadian cell biology, far less is known about the chick pineal as compared to mammalian pineal glands. The goals of our research were to identify and characterize novel components of the circadian system in this photoneuroendocrine organ. Using a subtractive screening strategy of a nocturnal chick pineal cDNA library, we identified numerous genes whose expression in the chick pineal has never been reported. Among these, we focused our attention on a homologue to the regulatory subunit of the mammalian serine/threonine protein phosphatase (STPP) 2A. The expression of this gene in the chick pineal is highly circadian both in vivo and in vitro. Analysis of the PP2A enzyme in this tissue revealed that it is predominantly cytosolic in localization, sensitive to classical PP2A inhibitors, and far more active during the subjective night. Interestingly, the acute pharmacological inhibition of PP2A leads to elevated phosphoCREB levels and concomitant melatonin secretion, indicating that this enzyme participates at some level in the control of nocturnal pineal melatonin synthesis. In a second aspect of our research, we examined the mechanisms underlying the circadian rhythmicity of cyclic GMP in the chick pineal. This signaling molecule is poorly understood, despite its well-known, high-amplitude circadian rhythms and the presence of many cGMP-dependent targets in this tissue. Our work has shown that although both soluble (sGC) and membrane-bound (mGC) forms of guanylyl cyclase are present, the primary contributor to the circadian rhythms of cGMP is the mGC-B enzyme, which is activated only by the natriuretic peptide CNP. As pharmacological blockade of mGC-B (but not sGC) suppresses nocturnal cGMP levels, we conclude that CNP-dependent mechanisms are involved. Hence, the circadian clock in the chick pineal appears to drive either CNP secretion or mGC-B expression (or synthetic efficiency) in order to elevate nocturnal cGMP. Conversely, light may inhibit cGMP by uncoupling this drive. These data provide new strategies for understanding both photic input pathways (presumed to depend on cGMP) and cGMP-dependent cellular function in the chick pineal organ.
Collapse
Affiliation(s)
- James Olcese
- Institute for Hormone and Fertility Research, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
19
|
Abstract
Light is a major environmental signal for entrainment of the circadian clock, but little is known about the intracellular phototransduction pathway triggered by light activation of the photoreceptive molecule(s) responsible for the phase shift of the clock in vertebrates. The chicken pineal gland and retina contain the autonomous circadian oscillators together with the photic entrainment pathway, and hence they represent useful experimental models for the clock system. Here we show the expression of G11alpha, an alpha subunit of heterotrimeric G-protein, in both tissues by cDNA cloning, Northern blot, and Western blot analyses. G11alpha immunoreactivity was colocalized with pinopsin in the chicken pineal cells and also with rhodopsin in the outer segments of retinal photoreceptor cells, suggesting functional coupling of G11alpha with opsins in the clock-containing photosensitive tissues. The physical interaction was examined by coimmunoprecipitation experiments, the results of which provided evidence for light- and GTP-dependent coupling between rhodopsin and G11alpha. To examine whether activation of endogenous G11 leads to a phase shift of the oscillator, Gq/11-coupled m1-type muscarinic acetylcholine receptor (mAChR) was ectopically expressed in the cultured pineal cells. Subsequent treatment of the cells with carbamylcholine (CCh), an agonist of mAChR, induced phase-dependent phase shifts of the melatonin rhythm in a manner very similar to the effect of light. In contrast, CCh treatment induced no measurable effect on the rhythm of nontransfected (control) cells or cells expressing G(i/o)-coupled m2-type mAChR, indicating selectivity of the G-protein activation. Together, our results demonstrate the existence of a G11-mediated opsin-signaling pathway contributing to the photic entrainment of the circadian clock.
Collapse
|
20
|
Rensing L, Ruoff P. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol Int 2002; 19:807-64. [PMID: 12405549 DOI: 10.1081/cbi-120014569] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Effects of temperature and temperature changes on circadian clocks in cyanobacteria, unicellular algae, and plants, as well as fungi, arthropods, and vertebrates are reviewed. Periodic temperature with periods around 24 h even in the low range of 1-2 degrees C (strong Zeitgeber effect) can entrain all ectothermic (poikilothermic) organisms. This is also reflected by the phase shifts-recorded by phase response curves (PRCs)-that are elicited by step- or pulsewise changes in the temperature. The amount of phase shift (weak or strong type of PRC) depends on the amplitude of the temperature change and on its duration when applied as a pulse. Form and position of the PRC to temperature pulses are similar to those of the PRC to light pulses. A combined high/low temperature and light/dark cycle leads to a stabile phase and maximal amplitude of the circadian rhythm-when applied in phase (i.e., warm/light and cold/dark). When the two Zeitgeber cycles are phase-shifted against each other the phase of the circadian rhythm is determined by either Zeitgeber or by both, depending on the relative strength (amplitude) of both Zeitgeber signals and the sensitivity of the species/individual toward them. A phase jump of the circadian rhythm has been observed in several organisms at a certain phase relationship of the two Zeitgeber cycles. Ectothermic organisms show inter- and intraspecies plus seasonal variations in the temperature limits for the expression of the clock, either of the basic molecular mechanism, and/or the dependent variables. A step-down from higher temperatures or a step-up from lower temperatures to moderate temperatures often results in initiation of oscillations from phase positions that are about 180 degrees different. This may be explained by holding the clock at different phase positions (maximum or minimum of a clock component) or by significantly different levels of clock components at the higher or lower temperatures. Different permissive temperatures result in different circadian amplitudes, that usually show a species-specific optimum. In endothermic (homeothermic) organisms periodic temperature changes of about 24 h often cause entrainment, although with considerable individual differences, only if they are of rather high amplitudes (weak Zeitgeber effects). The same applies to the phase-shifting effects of temperature pulses. Isolated bird pineals and rat suprachiasmatic nuclei tissues on the other hand, respond to medium high temperature pulses and reveal PRCs similar to that of light signals. Therefore, one may speculate that the self-selected circadian rhythm of body temperature in reptiles or the endogenously controlled body temperature in homeotherms (some of which show temperature differences of more than 2 degrees C) may, in itself, serve as an internal entraining system. The so-called heterothermic mammals (undergoing low body temperature states in a daily or seasonal pattern) may be more sensitive to temperature changes. Effects of temperature elevation on the molecular clock mechanisms have been shown in Neurospora (induction of the frequency (FRQ) protein) and in Drosophila (degradation of the period (PER) and timeless (TIM) protein) and can explain observed phase shifts of rhythms in conidiation and locomotor activity, respectively. Temperature changes probably act directly on all processes of the clock mechanism some being more sensitive than the others. Temperature changes affect membrane properties, ion homeostasis, calcium influx, and other signal cascades (cAMP, cGMP, and the protein kinases A and C) (indirect effects) and may thus influence, in particular, protein phosphorylation processes of the clock mechanism. The temperature effects resemble to some degree those induced by light or by light-transducing neurons and their transmitters. In ectothermic vertebrates temperature changes significantly affect the melatonin rhythm, which in turn exerts entraining (phase shifting) functions.
Collapse
Affiliation(s)
- Ludger Rensing
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, Germany.
| | | |
Collapse
|
21
|
Nakahara K, Abe Y, Murakami T, Shiota K, Murakami N. Pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in melatonin release via the specific receptor PACAP-r1, but not in the circadian oscillator, in chick pineal cells. Brain Res 2002; 939:19-25. [PMID: 12020847 DOI: 10.1016/s0006-8993(02)02538-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates melatonin release from pineal cells and modulates glutamatergic regulation of the suprachiasmatic circadian clock in rodents. We investigated whether PACAP is involved in melatonin release and the circadian oscillation system in chick pineal cells, and if so, whether its effects are mediated by the PACAP-specific receptor (PACAP-r1) or the vasoactive intestinal polypeptide (VIP) receptor. Chick pineal cells were maintained for 4 days under a 12-h light/dark cycle, and thereafter in constant darkness. In the dose-range 10(-10) to 10(-6) M, PACAP increased melatonin release dose-dependently during the 12-h light period on day 3 of culture, and the degree of stimulation was greater than that produced by VIP. VIP receptor antagonists only slightly inhibited PACAP-stimulated melatonin release. Simultaneous addition of VIP and PACAP produced almost additive melatonin release. Under constant dark conditions, 6-h pulses of PACAP started at zeitgeber times (ZT) 15, 21, 3 and 9 h in separate groups of pineal cells did not cause any phase shift in their melatonin rhythm. In addition, PACAP did not affect the light-induced phase advance (ZT 15 h) and delay (ZT 9 h) in melatonin rhythms. The expression of mRNA for the PACAP-r1 (including its splicing variant with a hop cassette) was observed in chick pineal cells. These results suggest that PACAP participates in melatonin release, but not in the circadian oscillator system, via the specific receptor PACAP-r1 in chick pineal cells.
Collapse
Affiliation(s)
- Keiko Nakahara
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2155, Japan
| | | | | | | | | |
Collapse
|
22
|
Semple-Rowland SL, Tepedino M, Coleman JE. Pinopsin mRNA levels are significantly elevated in the pineal glands of chickens carrying a null mutation in guanylate cyclase-1. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 97:51-8. [PMID: 11744162 DOI: 10.1016/s0169-328x(01)00297-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to determine if the absence of guanylate cyclase-1 (RetGC1, GC1), a key visual phototransduction cascade enzyme that is expressed in both retinal photoreceptors and pinealocytes, disrupts light regulation of pinopsin mRNA levels in the chicken pineal gland. In this series of experiments, we compared levels of pinopsin and tryptophan 5-hydroxylase mRNA in the pineal glands of GUCY1*B (*B) and normal chickens housed under either cyclic light or constant dark conditions. The *B chicken carries a null mutation in the gene encoding guanylate cyclase-1 that results in blindness in these animals at hatching. The results of our experiments show (1) that the amount of pinopsin mRNA in *B pineal is significantly higher than the amount in normal pineal in both light and dark conditions, (2) that light induces an increase in pinopsin mRNA levels in *B pineal, (3) that the relative magnitude of the light-induced increase in pinopsin mRNA in *B pineal is not significantly different from that observed in normal pineal, and (4) that the changes in the regulation of pinopsin mRNA levels in *B pineal gland are not accompanied by changes in the circadian expression of tryptophan 5-hydroxylase mRNA. These results show that the absence of guanylate cyclase-1 expression in the *B pineal gland leads to a significant increase in basal levels of pinopsin mRNA in this gland but does not alter the magnitude of the increase in pinopsin mRNA levels that is observed as a result of light stimulation.
Collapse
Affiliation(s)
- S L Semple-Rowland
- University of Florida McKnight Brain Institute, Department of Neuroscience, 100 S. Newell Drive, Bldg. 59, Rm L1-100, Gainesville, FL 32610-0255, USA.
| | | | | |
Collapse
|
23
|
Fu Z, Kato H, Kotera N, Noguchi T, Sugahara K, Kubo T. Regulation of hydroxyindole-O-methyltransferase gene expression in Japanese quail (Coturnix coturnix japonica). Biosci Biotechnol Biochem 2001; 65:2504-11. [PMID: 11791725 DOI: 10.1271/bbb.65.2504] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hydroxyindole-O-methyltrasferase (HIOMT) plays an important role as the final enzyme in the synthesis of melatonin. In this study, the expression of the HIOMT gene in Japanese quail was investigated with respect to tissue distribution and the effects of light and vitamin A deficiency. HIOMT mRNA in the pineal gland and eye had a clear daily rhythm with peak values in daytime. The testis also contained a detectable amount of HIOMT mRNA, which did not display a rhythmic change over a 24-h period. When birds were rendered vitamin A deficient through feeding with a vitamin A-free diet, the daily rhythm of the HIOMT gene almost disappeared in both the pineal gland and eye due to increases in the nighttime values. Our previous observations and these results suggest that vitamin A and a photo-signal are required to maintain the rhythmic expression of the HIOMT gene as well as the arylalkylamine N-acetyltransferase gene.
Collapse
Affiliation(s)
- Z Fu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Okano T, Fukada Y. Photoreception and circadian clock system of the chicken pineal gland. Microsc Res Tech 2001; 53:72-80. [PMID: 11279672 DOI: 10.1002/jemt.1070] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chicken pinealocytes contain three major components of the circadian clock system: 1) a self-sustained oscillator, 2) a photic-input pathway to the oscillator, and 3) an overt output represented by the rhythmic production of melatonin. Even under cultured conditions of isolated pineal gland or dissociated pinealocytes, the input-oscillator-output functions are well maintained. Because of these experimental advantages, chicken pineal gland has been one of the best models for the study of the circadian clock system. Since the finding of a pineal-specific photoreceptive molecule, pinopsin, we have characterized the endogenous phototransduction pathway in the pinealocytes. On the other hand, despite the long history of chick pineal research, the molecular mechanism underlying the pineal clock oscillation has been largely unknown. Our recent characterization of the chick pineal clock genes strongly suggests that they constitute a transcription/translation-based autoregulatory feedback loop, which is very similar to that generating circadian rhythmicity in mammalian SCN.
Collapse
Affiliation(s)
- T Okano
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
25
|
Kasahara T, Okano T, Yoshikawa T, Yamazaki K, Fukada Y. Rod-type transducin alpha-subunit mediates a phototransduction pathway in the chicken pineal gland. J Neurochem 2000; 75:217-24. [PMID: 10854264 DOI: 10.1046/j.1471-4159.2000.0750217.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chicken pineal gland is a photosensitive neuroendocrine organ producing melatonin in circadian clock-regulated and light-sensitive manners. To understand the relationship between the photoreceptive molecule pinopsin and the light-dependent melatonin suppression that is sensitive to pertussis toxin treatment, we have searched for pertussis toxin-sensitive G protein alpha-subunits expressed in the chicken pineal gland. Here we report the cDNA cloning of the pineal transducin alpha-subunit (Gtalpha), which is highly homologous to human retinal rod cell-specific Gt(1)alpha. Concurrent cDNA cloning of chicken retinal Gt(1)alpha and Gt(2)alpha (rod and cone cell-specific alpha-subunits of transducin, respectively) revealed that the chicken pineal Gtalpha is identical to the retinal Gt(1)alpha. Double-immunostaining analysis of the chicken pineal sections localized Gt(1)alpha-immunoreactivity in the rudimentary outer segments of both follicular and parafollicular pinealocytes that were immunopositive to anti-pinopsin antibody. To examine whether pineal Gt(1)alpha is involved in the pineal phototransduction pathway, trypsin protection assay was applied for detecting the conversion of GDP-bound Gt(1)alpha into the guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-bound form in the pineal membrane homogenate. It was clearly demonstrated that the pineal Gt(1)alpha is activated in a light-dependent manner in the presence of GTPgammaS. These data together suggest strongly that pineal Gt(1)alpha mediates the phototransduction pathway triggered by pinopsin in the chicken pinealocytes.
Collapse
Affiliation(s)
- T Kasahara
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Mano H, Kojima D, Fukada Y. Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 73:110-8. [PMID: 10581404 DOI: 10.1016/s0169-328x(99)00242-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The zebrafish, a useful animal model for genetic studies, has a photosensitive pineal gland, which has an endogenous circadian pacemaker entrained to environmental light-dark cycles [G.M. Cahill, Brain Res. 708 (1996) 177-181]. Although pinopsin has been found in the pineal glands of birds and reptiles, the molecular identity responsible for fish pineal photosensitivity remains unclear. This study reports identification of a novel opsin gene expressed in the zebrafish pineal gland. The deduced amino acid sequence is similar to, but not identical (74% identity) with that of canonical rhodopsin in the zebrafish retina. This novel rhodopsin is expressed in the majority of pineal cells but not in retinal cells, and hence named exo-rhodopsin after extra-ocular rhodopsin. This study first shows that two different rhodopsin genes are expressed in an individual animal each within a unique location. A phylogenetic analysis indicated that the exo-rhodopsin gene was produced by a duplication of the rhodopsin gene at an early stage in the ray-finned fish lineage. As expected, the exo-rhodopsin gene was found in the medakafish and European eel genomes, suggesting strongly that exo-rhodopsin is a pineal opsin common to teleosts. Identification of exo-rhodopsin in the zebrafish provides an opportunity for studying the role of pineal photoreceptive molecules by using genetic approaches.
Collapse
Affiliation(s)
- H Mano
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
27
|
Fu Z, Kato H, Kotera N, Sugahara K, Kubo T. Regulation of the expression of serotonin N-acetyltransferase gene in Japanese quail (Coturnix japonica): II. Effect of vitamin A deficiency. J Pineal Res 1999; 27:34-41. [PMID: 10451022 DOI: 10.1111/j.1600-079x.1999.tb00594.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Levels of serotonin N-acetyltransferase [arylalkylamine N-acetyltransferase (AANAT); EC2.3.1.87] mRNA, AANAT activity, and melatonin display a rhythmic pattern in both the pineal gland and the retina. It has been shown that vitamin A is required to maintain the rhythm of melatonin synthesis in the pineal gland of Japanese quail. To understand the mechanism underlying the direct relationship among these factors, we developed an assay system sensitive enough to determine AANAT mRNA, AANAT activity, and melatonin content from a single pineal gland of Japanese quail. Positive direct relationships were found among these three parameters. We next deprived Japanese quail of vitamin A by feeding them a vitamin A-free diet supplemented with retinoic acid, and examined the effects of vitamin A deficiency on the expression of AANAT mRNA in the pineal gland and the retina. Vitamin A deficiency reduced both the expression of AANAT mRNA and melatonin content in the pineal gland. Retinal AANAT mRNA rhythm disappeared in vitamin A-deficient quails. Moreover, the responsiveness of the pineal gland and the retina to light was reduced by vitamin A deficiency when compared with the control group.
Collapse
Affiliation(s)
- Z Fu
- Faculty of Agriculture, Utsunomiya University, Mine-machi, Japan
| | | | | | | | | |
Collapse
|
28
|
Hasegawa M, Cahill GM. A role for cyclic AMP in entrainment of the circadian oscillator in Xenopus retinal photoreceptors by dopamine but not by light. J Neurochem 1999; 72:1812-20. [PMID: 10217257 DOI: 10.1046/j.1471-4159.1999.0721812.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The circadian oscillator in Xenopus retinal photoreceptor layers can be reset in similar ways by light and agonists of D2-like dopamine receptors. Treatments that increase cyclic AMP levels act on this oscillator in an opposite fashion, mimicking darkness in the induction of phase shifts. Light and dopamine have each been reported to inhibit adenylate cyclase in photoreceptors. Together, these data suggest that the transduction pathways for entrainment by dopamine and/or light include suppression of cyclic AMP or a cyclic AMP-sensitive step. In these studies, we examined this hypothesis by measuring the effects of treatment with a cyclic AMP analogue on the phase shifts induced in photoreceptor melatonin rhythms by light or a D2 receptor agonist (quinpirole). When photoreceptor layers were treated simultaneously with 8-(4-chlorophenylthio)cyclic AMP (8-CPT-cAMP) and quinpirole at any of three different phases of the circadian cycle, the resulting phase shifts of the melatonin rhythm were always the same as those caused by 8-CPT-cAMP alone. This indicates that there is a cyclic AMP-sensitive step in the dopamine entrainment pathway. In contrast, light pulses did reset the oscillator in the presence of elevated cyclic AMP. This suggests a separate cyclic AMP-insensitive transduction pathway for entrainment by light. Quinpirole reduced basal levels of cyclic AMP in photoreceptors, but light did not. These data suggest that cyclic AMP plays a role in the entrainment pathway activated by dopamine but not in the entrainment pathway activated by light.
Collapse
Affiliation(s)
- M Hasegawa
- Department of Biology and Biochemistry, University of Houston, Texas 77204-5513, USA
| | | |
Collapse
|
29
|
Max M, Surya A, Takahashi JS, Margolskee RF, Knox BE. Light-dependent activation of rod transducin by pineal opsin. J Biol Chem 1998; 273:26820-6. [PMID: 9756926 DOI: 10.1074/jbc.273.41.26820] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pineal gland expresses a unique member of the opsin family (P-opsin; Max, M., McKinnon, P. J., Seidenman, K. J., Barrett, R. K., Applebury, M. L., Takahashi, J. S., and Margolskee, R. F. (1995) Science 267, 1502-1506) that may play a role in circadian entrainment and photo-regulation of melatonin synthesis. To study the function of this protein, an epitope-tagged P-opsin was stably expressed in an embryonic chicken pineal cell line. When incubated with 11-cis-retinal, a light-sensitive pigment was formed with a lambdamax at 462 +/- 2 nm. P-opsin bleached slowly in the dark (t1/2 = 2 h) in the presence of 50 mM hydroxylamine. Purified P-opsin in dodecyl maltoside activated rod transducin in a light-dependent manner, catalyzing the exchange of more than 300 mol of GTPgammaS (guanosine 5'-O-(3-thiotriphosphate))/mol of P-opsin. The initial rate for activation (75 mol of GTPgammaS bound/mol of P-opsin/min at 7 microM) increased with increasing concentrations of transducin. The addition of egg phosphatidylcholine to P-opsin had little effect on the activation kinetics; however, the intrinsic rate of decay in the absence of transducin was accelerated. These results demonstrate that P-opsin is an efficient catalyst for activation of rod transducin and suggest that the pineal gland may contain a rodlike phototransduction cascade.
Collapse
Affiliation(s)
- M Max
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | |
Collapse
|
30
|
Fu Z, Kato H, Sugahara K, Kubo T. Vitamin A deficiency reduces the responsiveness of pineal gland to light in Japanese quail (Coturnix japonica). Comp Biochem Physiol A Mol Integr Physiol 1998; 119:593-8. [PMID: 11249007 DOI: 10.1016/s1095-6433(97)00471-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Synthesis of melatonin in pineal gland is under the control of light environment. The recent finding of the presence of rhodopsin-like photopigment (pinopsin) and retinal in the avian pinealocytes has led to a hypothesis that vitamin A is involved in photoresponses of the pineal gland. We have thus analyzed the effect of vitamin A deficiency on the regulatory system of melatonin synthesis in the pineal gland of Japanese quail. Depletion of vitamin A from Japanese quails was attained by feeding them with a vitamin A-free diet supplemented with retinoic acid. In the vitamin A-deficient birds, diurnal rhythm in melatonin production persisted such that the phase of the wave was similar to that seen in the control birds. However, the amplitude of the nighttime surge of pineal melatonin was damped by vitamin A deficiency. When the control birds were briefly exposed to light at night, pineal melatonin dropped to the daytime level. In contrast, only slight decrease was observed in the vitamin A-deficient quails. The light responsiveness was restored after feeding the vitamin A-deficient quails with the control diet for 1 week. These results indicate that vitamin A plays essential roles in maintaining sufficient responsiveness of the avian pineal gland to photic input.
Collapse
Affiliation(s)
- Z Fu
- Faculty of Agriculture, Utsunomiya University, Japan
| | | | | | | |
Collapse
|
31
|
Abstract
The chicken pineal gland has an endogenous circadian oscillator that controls the diurnal oscillation of N-acetyltransferase activity responsible for melatonin rhythm. It has been speculated that the chicken pineal cell contains a photoreceptive molecule that receives the environmental light signal and transmits the signal to the oscillator for resetting the phase. In spite of several lines of evidence suggesting the similarity between retinal and pineal photon-signal transducing proteins, the identity of the photoreceptive molecule had been an open question. In 1994, we isolated a pineal cDNA encoding a novel photoreceptive molecule and named it "pinopsin." The protein expressed in 293EBNA cells bound 11-cis-retinal to form a blue-sensitive pigment with an absorption maximum at about 470 nm. A putative G-protein interaction site of pinopsin shared a relatively high similarity in amino acid sequence to that of rhodopsin, implying that pinopsin functionally couples with transducin or transducin-like G-protein(s) in the pineal cells. We have cloned a cDNA for chicken pineal transducin alpha-subunit, and the deduced amino acid sequence contained a potential site to be ADP-ribosylated by pertussis toxin (PTX). Therefore, the transducin-mediated pathway could be blocked by PTX, though previous studies showed that treatment of the cultured chicken pineal cells with PTX had no effect on the light-induced phase-shift of the oscillator. Accordingly, it is unlikely that transducin mediates the light-input pathway to the oscillator, which may involve PTX-insensitive G-protein(s) or some unidentified component(s). The G-protein coupled receptor-mediated signaling processes regulating melatonin synthesis are discussed.
Collapse
Affiliation(s)
- T Okano
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Japan
| | | |
Collapse
|
32
|
Okano T, Yamazaki K, Kasahara T, Fukada Y. Molecular cloning of heterotrimeric G-protein alpha-subunits in chicken pineal gland. J Mol Evol 1997; 44 Suppl 1:S91-7. [PMID: 9071017 DOI: 10.1007/pl00000057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The avian pinealocytes have an intrinsic circadian clock function that controls rhythmic synthesis of melatonin, and an environmental light signal can reset the phase of the clock. In addition to the photoendocrine function, the melatonin synthesis of the pinealocytes is regulated by neural signals from sympathetic nerves. Thus the avian pinealocytes show diagnostic characters which seem to represent an evolutionary transition from photosensory cells of lower vertebrates to the neuroendocrinal cells of mammals. To understand the evolutionary background of the regulatory mechanism for the melatonin synthesis in this organ, we screened the chicken pineal cDNA library to find alpha-subunits of heterotrimeric G-proteins involved in the photic and neural regulations. In addition to the transducin-like alpha-subunit (Gt alpha) supposed to mediate the photic pathway, we isolated cDNA clones encoding Gi2 alpha, Gi3 alpha, and Go1 alpha and its splicing variant Go2 alpha. The deduced amino acid sequence of each G alpha had a potential site for pertussis toxin-catalyzed ADP-ribosylation. As it is known that adrenergic receptor-mediated inhibition of melatonin synthesis is blocked by pertussis toxin, the G-proteins identified in the present study are likely to contribute to this neuroendocrine function of the chicken pineal cells.
Collapse
Affiliation(s)
- T Okano
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
33
|
Green CB, Besharse JC, Zatz M. Tryptophan hydroxylase mRNA levels are regulated by the circadian clock, temperature, and cAMP in chick pineal cells. Brain Res 1996; 738:1-7. [PMID: 8949920 DOI: 10.1016/0006-8993(96)00743-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chick pineal cells contain a circadian oscillator that derives rhythmic synthesis and secretion of melatonin even in dispersed cell culture. Here, we demonstrate that the mRNA encoding tryptophan hydroxylase (TPH), the first enzyme in the melatonin synthetic pathway, is expressed rhythmically under the control of the circadian clock. TPH message levels doubled between early day and early night, under both cyclic lightning and constant lightning conditions. The amplitude of the TPH mRNA rhythm was increased to 4-fold by culturing the cells at 43.3 degrees C for 48 h instead of 36.7 degrees C. Addition of forskolin to the cultures in early day produced a modest increase (50%) in TPH message levels but had no effect at other times. Because TPH mRNA are regulated by the endogenous pineal circadian clock, this provides a valuable system in which the molecular mechanism of clock control of gene expression.
Collapse
Affiliation(s)
- C B Green
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City 66160-7400, USA.
| | | | | |
Collapse
|
34
|
D'Souza T, Dryer SE. A cationic channel regulated by a vertebrate intrinsic circadian oscillator. Nature 1996; 382:165-7. [PMID: 8700206 DOI: 10.1038/382165a0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Secretory cells of the chicken pineal gland exhibit light-sensitive circadian rhythms in melatonin release that persist in vitro. Melatonin secretion is positively regulated by cyclic AMP and intracellular Ca2+ (refs 8, 10-15). Cyclic AMP analogues are more effective at stimulating melatonin secretion during the circadian night owing in part to increased Ca2+ influx at those times. However, this cannot be attributed to increased activity of L-type Ca2+ channels. Here we describe an unusual 40-pS cationic channel (ILOT) in cultured chicken pineal cells that is permeable to Ca2+ and active in the night but not during the day. ILOT is not voltage- or stretch-activated, it has a characteristically long open time, and its gating persists in excised inside-out patches in the absence of Ca2+ or cyclic nucleotides. Daily rhythms in ILOT gating are also observed in previously entrained chicken pineal cells free-running under constant dark conditions. Nighttime ILOT activity is not suppressed by brief light pulses.
Collapse
Affiliation(s)
- T D'Souza
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee 3206-4075, USA
| | | |
Collapse
|
35
|
Effects of phosphodiesterase inhibitors and forskolin on cyclic GMP-activated channels in intact isolated cells of the chick pineal gland. Neurochem Int 1995. [DOI: 10.1016/0197-0186(95)80011-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Max M, McKinnon PJ, Seidenman KJ, Barrett RK, Applebury ML, Takahashi JS, Margolskee RF. Pineal opsin: a nonvisual opsin expressed in chick pineal. Science 1995; 267:1502-6. [PMID: 7878470 DOI: 10.1126/science.7878470] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pineal opsin (P-opsin), an opsin from chick that is highly expressed in pineal but is not detectable in retina, was cloned by the polymerase chain reaction. It is likely that the P-opsin lineage diverged from the retinal opsins early in opsin evolution. The amino acid sequence of P-opsin is 42 to 46 percent identical to that of the retinal opsins. P-opsin is a seven-membrane spanning, G protein-linked receptor with a Schiff-base lysine in the seventh membrane span and a Schiff-base counterion in the third membrane span. The primary sequence of P-opsin suggests that it will be maximally sensitive to approximately 500-nanometer light and produce a slow and prolonged phototransduction response consistent with the nonvisual function of pineal photoreception.
Collapse
Affiliation(s)
- M Max
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
In avian pinealocytes, an environmental light signal resets the phase of the endogenous circadian pacemaker that controls the rhythmic production of melatonin. Investigation of the pineal phototransduction pathway should therefore reveal the molecular mechanism of the biological clock. The presence of rhodopsin-like photoreceptive pigment, transducin-like immunoreaction, and cyclic GMP-dependent cation-channel activity in the avian pinealocytes suggests that there is a similarity between retinal rod cells and pinealocytes in the phototransduction pathway. We have now cloned chicken pineal cDNA encoding the photoreceptive molecule, which is 43-48% identical in amino-acid sequence to vertebrate retinal opsins. Pineal opsin, produced by transfection of complementary DNA into cultured cells, was reconstituted with 11-cis-retinal, resulting in formation of a blue-sensitive pigment (lambda max approximately 470 nm). In the light of this functional evidence and because the gene is specifically expressed only in the pineal gland, we conclude that it is a pineal photosensor and name it pinopsin.
Collapse
Affiliation(s)
- T Okano
- Department of Pure and Applied Sciences, College of Arts and Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
38
|
Pochet R, Van Rampelbergh J, Bastianelli E, Van Eldik LJ. Calmodulin, calbindin-D28K and calretinin in rat and chicken pineal glands: immunocytochemical and immunoblotting analysis. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1223:318-24. [PMID: 7918665 DOI: 10.1016/0167-4889(94)90090-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In pineal gland, melatonin is synthesized in pinealocytes. Pharmacological studies using calmodulin antagonists suggested that melatonin synthesis was regulated through calmodulin. However, immunohistochemical studies showed that calmodulin could only be detected in pineal glial cells, and not in pinealocytes. To further investigate this discrepancy, we have tried to detect calmodulin not seen by immunohistochemical methods. We have used rat and chicken pineal homogenate supernatants and Triton X-100-treated pellets denatured by sodium dodecyl sulfate, subjected to electrophoresis and immunoblotting using anti-calmodulin antibodies. Two different IgG (#465 and #860) purified from anti-calmodulin sera were used. In rat pineal homogenate supernatants, calmodulin could be detected by immunoblotting using both antibodies. Some calmodulin could also be detected in the Triton-treated pellet fractions, but no additional cross-reacting bands were detected. However, in both chicken pineal homogenate supernatants and Triton-extracted pellets, in addition to a calmodulin immunoreactive band, two other proteins with approximate molecular masses (M(r)) of 56 kDa and 60 kDa were detected using anti-calmodulin #465. For comparison, similar immunoblot experiments were performed for detection of calbindin-D28K and calretinin, two other calcium binding proteins expressed in different pineal cell populations. Interestingly, Triton extraction of chicken pineal pellets revealed additional bands cross-reacting with each antibody. Anti-calbindin-D28K cross-reacted strongly with a M(r) = 68 kDa protein and weakly with a M(r) = 56 kDa protein. Anti-calretinin cross-reacted strongly with a M(r) = 93 kDa protein and weakly with a M(r) = 56 kDa protein.
Collapse
Affiliation(s)
- R Pochet
- Laboratoire d'Histologie, Faculté de Médecine, Université Libre de Bruxelles, Belgium
| | | | | | | |
Collapse
|
39
|
D'Souza T, Dryer SE. Intracellular free Ca2+ in dissociated cells of the chick pineal gland: regulation by membrane depolarization, second messengers and neuromodulators, and evidence for release of intracellular Ca2+ stores. Brain Res 1994; 656:85-94. [PMID: 7804849 DOI: 10.1016/0006-8993(94)91369-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The regulation of intracellular free Ca2+ concentration was examined in single dissociated chick pineal cells using the fura-2 technique. Approximately 10% of cells examined exhibited spontaneous Ca2+ oscillations while the rest were quiescent. Application of salines containing 80 mM KCl evoked large increases in intracellular free Ca2+ that were dependent upon external Ca2+ ions. These responses were inhibited by 10 microM nifedipine indicating involvement of L-type Ca2+ channels. Application of the tumor promoter thapsigargin (2 microM) evoked increases in intracellular free Ca2+. These responses could be observed in the absence of external Ca2+ indicating mobilization of internal stores. In the absence of external Ca2+, the responses to thapsigargin gradually decayed due to depletion of internal Ca2+ pools. A subsequent exposure to saline containing 5.8 mM CaCl2 caused a rapid increase in intracellular Ca2+ that was consistently larger than the peak response to thapsigargin. Application of 100 nM vasoactive intestinal peptide (VIP), a neurohormone that stimulates melatonin secretion from pineal cells, induced a sustained increase in intracellular free Ca2+ in a subpopulation of cells. In a small number of cells, VIP evoked Ca2+ oscillations. Approximately half of the cells examined showed no response to VIP. Application of 200 microM norepinephrine, which inhibits melatonin secretion from the chick pineal, had no effect on intracellular free Ca2+ in any quiescent or spontaneously oscillating cells. Application of 5 mM 8-Br-cAMP evoked sustained increases in intracellular Ca2+. Similar effects were obtained with the phosphodiesterase inhibitors papaverine (50 microM) or isobutylmethylxanthine (100 microM). Application of 200 nM forskolin, an activator of adenylate cyclase, evoked increases in intracellular free Ca2+ that could be detected in the presence of 10 microM nifedipine. The responses to forskolin gradually decayed in Ca(2+)-free external salines due to depletion of intracellular Ca2+ stores. Subsequent exposure to external Ca2+ caused a rapidly developing increase in intracellular Ca2+ that was larger than the peak response to forskolin. These results indicate that the regulation of intracellular free Ca2+ in chick pineal cells is complex. These cells exhibit Ca2+ oscillations and can mobilize both external and internal Ca2+ pools. Agents that increase intracellular cAMP cause mobilization of internal Ca2+ stores, possibly secondary to effects on other second messenger systems. Chick pineal cells, like many other cell types, possess mechanisms to allow for refilling of depleted internal Ca2+ stores. These results suggest new mechanisms for the regulation of melatonin synthesis and secretion and possible sites of action for the intrinsic circadian oscillator.
Collapse
Affiliation(s)
- T D'Souza
- Program in Neuroscience, Florida State University, Tallahassee 32306-4075
| | | |
Collapse
|
40
|
Zawilska JB. Clonidine in vivo mimics the acute suppressive but not the phase-shifting effects of light on circadian rhythm of serotonin N-acetyltransferase activity in chick pineal gland. J Pineal Res 1994; 17:63-8. [PMID: 7869229 DOI: 10.1111/j.1600-079x.1994.tb00115.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Comparative in vivo studies on effects of pulses of light and clonidine, a selective agonist of alpha 2-adrenergic receptors, on the circadian rhythm of serotonin N-acetyltransferase (NAT) activity in chick pineal gland were performed. Six-hour pulses of white light caused an acute suppression of the nocturnal NAT activity and phase-dependent phase shifts of the circadian rhythm of the enzyme activity relative to controls. Systemic administration of clonidine acutely suppressed NAT activity of chick pineal gland, but did not affect the phase of subsequent cycles in constant darkness. These results give further support to the concept based on in vitro studies that alpha 2-adrenergic receptors are involved in regulation of melatonin biosynthesis in chick pineal gland by a mechanism distal to the pacemaker that generates the circadian melatonin rhythm.
Collapse
Affiliation(s)
- J B Zawilska
- Department of Biogenic Amines, Polish Academy of Sciences, Lódź
| |
Collapse
|
41
|
Korf HW. The pineal organ as a component of the biological clock. Phylogenetic and ontogenetic considerations. Ann N Y Acad Sci 1994; 719:13-42. [PMID: 8010588 DOI: 10.1111/j.1749-6632.1994.tb56818.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In conclusion, several trends are observed in regard to the phylogenetic development of the pineal organ, which are relevant for our understanding of the evolution of biological clock mechanisms. 1. The pineal organ of all vertebrates investigated thus far is capable of producing and releasing melatonin. Melatonin is rhythmically produced and released during darkness and, thus, represents an important neuroendocrine information on the ambient photoperiod. 2. The rhythmic production of melatonin is under control of endogenous oscillators and photoreceptor cells. In several nonmammalian species, these endogenous oscillators and photoreceptors are located within the pineal organ itself. In some avian species, the inherent rhythmicity of the pineal organ appears to be influenced by pacemakers located in other parts of the central nervous system. Their information may be transmitted to the pineal organ via the sympathetic innervation. This innervation develops progressively in the course of phylogeny. In mammals certain pinealocytes express proteins which are specific of retinal and pineal photoreceptors, but these proteins are obviously not involved in photoreception and phototransduction. The mammalian pineal organ lacks not only functioning photoreceptors, but also endogenous oscillators. The photoreceptor cells involved in regulation of the melatonin biosynthesis are located in the retina; the major endogenous oscillator is the suprachiasmatic nucleus (SCN) of the hypothalamus. Information from the retina and the SCN is transmitted to the mammalian pineal organ via a complex neuronal chain, whose last member is the sympathetic innervation originating from the superior cervical ganglion. This innervation is mandatory to maintain the rhythm of the melatonin biosynthesis in the mammalian pineal organ. Interestingly, the effects of noradrenaline, the major neurotransmitter in the sympathetic nerve fibers, displays opposite effects on the melatonin biosynthesis in birds and mammals: it stimulates the melatonin biosynthesis in the mammalian pineal organ, but inhibits the melatonin formation in the chicken. This conversion occurs at the level of the adrenoreceptors. 3. The intrapineal nerve cells giving rise to pinealofugal neuronal projections are reduced in the course of phylogeny. Nevertheless, direct neuronlike connections appear to exist between the pineal organ and the central nervous system of mammals. These projections originate from a population of pinealocytes. Whether such projections are involved in biological clock mechanisms remains an issue not yet resolved. The ontogenetic data reviewed support the notion that, in lower vertebrates, melatonin biosynthesis is primarily controlled by intrapineal photoreceptors, whereas, in mammals, it depends on retinal photoreceptors and the sympathetic innervation of the pineal.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H W Korf
- Center of Morphology, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| |
Collapse
|
42
|
Zatz M. Photoendocrine transduction in cultured chick pineal cells: IV. What do vitamin A depletion and retinaldehyde addition do to the effects of light on the melatonin rhythm? J Neurochem 1994; 62:2001-11. [PMID: 8158147 DOI: 10.1046/j.1471-4159.1994.62052001.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Light has at least two distinguishable effects on the circadian rhythm of melatonin output displayed by dispersed chick pineal cells in static culture: acute suppression of melatonin output and entrainment (phase shifts) of the underlying pacemaker. Previous results indicated that these two effects of light are mediated by different mechanistic pathways. The pathways for the acute and phase-shifting effects of light either branch from the same, single photopigment or differ from the outset, starting from separate photopigments. If a single rhodopsin-like photopigment mediates both effects of light, then vitamin A depletion and retinoid addition should affect both responses in parallel, although not proportionately. We therefore compared the effects of vitamin A depletion and retinoid addition on the acute and phase-shifting effects of light under several experimental conditions. When chick pineal cells were depleted of vitamin A, acute responses to light were markedly reduced. Addition of 11-cis-retinaldehyde specifically restored (and enhanced) the acute response. When allowed to free run in constant red light, depleted cells displayed a rhythm of melatonin output with the same period as that of control cells. In contrast to the acute effects, phase shifts in response to 2- or 4-h light pulses did not differ between depleted and control cells. Addition of retinaldehyde to depleted cells did not, by itself, reduce melatonin output or induce phase shifts. Retinaldehyde did increase the acute response to 4-h light pulses but not the ensuing phase shifts. Responses increased with duration of the light pulse: Both the acute effect and the phase shifts induced by 4-h light pulses were considerably larger than those induced by 2-h (or 1-h) light pulses. Addition of retinaldehyde to depleted cells increased the acute effect of 2-h (or 1-h) light pulses to at least that seen with 4-h light pulses but did not increase the size of the ensuing phase shifts. These results strongly confirm previous dissociations of the mechanistic pathways mediating the acute and phase-shifting effects of light on chick pineal cells. They also support a role for rhodopsin-like photopigment in the acute, but not phase-shifting, response. They favor, but do not prove, the conclusion that separate photopigments mediate the acute and entraining effects of light.
Collapse
Affiliation(s)
- M Zatz
- Section on Biochemical Pharmacology, National Institute of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|
43
|
Laakso ML, Hätönen T, Stenberg D, Alila A, Smith S. One-hour exposure to moderate illuminance (500 lux) shifts the human melatonin rhythm. J Pineal Res 1993; 15:21-6. [PMID: 8229642 DOI: 10.1111/j.1600-079x.1993.tb00505.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Salivary melatonin levels were measured in 12 healthy volunteers in order to determine whether a moderate light intensity, which suppresses the nocturnal rise of melatonin, was able to shift the melatonin rhythm. The samples were collected at 1-hr intervals under lighting of < 100 lux (experiment 1) or < 10 lux (experiment 2). The control melatonin profiles were determined during the first night. In the second night the subjects were exposed to light of 500 lux for 60 min during the rising phase of melatonin synthesis. The third series of samples was collected during the third night. The mean decrease of melatonin levels by the exposure to light was 56% of the prelight concentrations. The melatonin onset times were delayed significantly (about 30 min) the night after the exposure to light. The melatonin offset times tended to be delayed in experiment 2. The shifts of the melatonin offset correlated positively with the amount of the melatonin suppression. The results suggest that a relatively small and short lasting light-induced interruption of melatonin synthesis may affect the melatonin rhythm in humans.
Collapse
Affiliation(s)
- M L Laakso
- Department of Physiology, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
44
|
Rollag MD. Pertussis toxin sensitive photoaggregation of pigment in isolated Xenopus tail-fin melanophores. Photochem Photobiol 1993; 57:862-6. [PMID: 8393196 DOI: 10.1111/j.1751-1097.1993.tb09225.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Direct illumination of Xenopus laevis tail-fin melanophores results in rapid, reversible translocation of intracellular pigment granules to a perinuclear location, an effect distinct from and opposite to the photodispersion of pigment found in melanophores isolated from Xenopus embryos. In this report we show that both pertussis toxin and dibutyryl-adenosine-3',5'-monophosphate block the ability of light to cause photoaggregation of pigment in cultured tail-fin melanophores, whereas dibutyryl-guanosine-3',5'-monophosphate is without effect.
Collapse
Affiliation(s)
- M D Rollag
- Department of Anatomy, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| |
Collapse
|
45
|
Dryer SE, Henderson D. Cyclic GMP-activated channels of the chick pineal gland: effects of divalent cations, pH, and cyclic AMP. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1993; 172:271-9. [PMID: 7685388 DOI: 10.1007/bf00216609] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chick pineal cells maintained in dissociated cell culture express an intrinsic photosensitive circadian oscillator, but the mechanisms of phototransduction in avian pinealocytes are not fully understood. In this study, we have used inside-out patches to examine the characteristics of cyclic GMP-activated channels of chick pinealocytes in more detail, concentrating on the effects of factors known to modulate the secretion of melatonin and/or the function of circadian pacemakers. In most patches, the predominant conductance state was 19 pS in symmetrical 145 mM NaCl. But in some patches, a second cyclic GMP-activated channel with a unitary conductance of 29 pS was also present. The current flowing through cyclic GMP-activated channels was not affected by application of salines containing 1 microM Ca2+ to the cytoplasmic face of the patch membrane. By contrast, application of 1 mM Ca2+ caused a partial reduction in cyclic GMP-activated current at all membrane potentials. Application of 1-5 mM Mg2+ ions caused a virtually complete blockade of current at positive membrane potentials, but caused only a small decrease in current at negative membrane potentials. No obvious differences in the gating of cyclic GMP-activated channels were observed in pH 8.2, 7.4 or 6.2 salines. Application of salines containing 100 microM, 500 microM, or 1 mM cyclic AMP did not cause activation of the channels, but 5 mM cyclic AMP evoked a low level of channel activity. Application of 5 mM but not 100 microM cyclic AMP decreased the probability of channel activation caused by 20-100 microM cyclic GMP and also increased the percentage of openings to an 11 pS subconductance state. Thus, cyclic AMP acts as a weak partial agonist. Nevertheless, the gating of these channels does not seem to be controlled directly by physiologically relevant changes in intracellular Ca2+, pH, or cyclic AMP.
Collapse
Affiliation(s)
- S E Dryer
- Department of Biological Science, Florida State University, Tallahassee 32306
| | | |
Collapse
|
46
|
Zatz M. Does the circadian pacemaker act through cyclic AMP to drive the melatonin rhythm in chick pineal cells? J Biol Rhythms 1992; 7:301-11. [PMID: 1337482 DOI: 10.1177/074873049200700404] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cyclic AMP is a key regulator of melatonin production in the chick pineal gland. Agents that raise cyclic AMP levels (such as forskolin), or cyclic AMP analogues (such as 8-bromocyclic AMP), increase melatonin synthesis and release, whereas agents that lower cyclic AMP levels (including light) decrease melatonin synthesis and release. A circadian oscillator in these cells also raises and lowers melatonin output. We have been investigating the relationships between cyclic AMP and the circadian pacemaker in the regulation of melatonin production. In the chick pineal (unlike certain neuronal systems), the weight of the evidence indicates that cyclic AMP is not on an entrainment pathway to the circadian pacemaker. Instead, cyclic AMP appears to act downstream from the pacemaker. The pacemaker might itself act directly through cyclic AMP, regulating melatonin content by raising and lowering cyclic AMP levels. If this were the case, and if the effects of cyclic AMP levels on melatonin output are saturable (as they must be), then, in the face of such saturating levels of cyclic AMP, the pacemaker should no longer raise or lower melatonin output. To test this prediction, maximally effective concentrations of forskolin and 8-bromocyclic AMP were determined. Both agents markedly increased melatonin output. After 36 hr, cells were refractory to additional stimulation of melatonin output by addition of both agents together, or by higher concentrations of forskolin (although cyclic AMP levels could still be raised further). Nonetheless, the circadian pacemaker continued to raise and lower melatonin output: The rhythm persisted in the face of saturating levels of cyclic AMP. It is therefore suggested that the circadian pacemaker in chick pineal cells acts with, not through, cyclic AMP to regulate melatonin synthesis. Cyclic AMP and the pacemaker act synergistically to regulate serotonin N-acetyltransferase activity and the melatonin rhythm, with cyclic AMP mediating acute effects and amplitude regulation.
Collapse
Affiliation(s)
- M Zatz
- Section on Biochemical Pharmacology, National Institute of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|
47
|
Zatz M. Agents that affect calcium influx can change cyclic nucleotide levels in cultured chick pineal cells. Brain Res 1992; 583:304-7. [PMID: 1380398 DOI: 10.1016/s0006-8993(10)80039-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous experiments examined interactions among the effects of cyclic AMP and calcium-related agents on melatonin output by cultured chick pineal cells, and suggested that changes in calcium influx might act through cyclic AMP. Here, effects of calcium-related agents and manipulations on cyclic AMP (and cyclic GMP) levels are demonstrated directly. These effects support a role for cyclic AMP (but not cyclic GMP) in the effects of changes in calcium influx on melatonin production by these cells.
Collapse
Affiliation(s)
- M Zatz
- Section on Biochemical Pharmacology, National Institute of Mental Health, Bethesda, MD 20892
| |
Collapse
|
48
|
Abstract
The binding sites for 2-[125I]iodomelatonin in chicken spleens were characterized. The binding was rapid, stable, saturable, reversible, and of high affinity. Both melatonin and 6-chloromelatonin strongly inhibited the binding. The dissociation constant (Kd) obtained from the Scatchard analysis was 31.4 +/- 5.19 pmol/l (3-weeks old, n = 4), which was in good agreement with the Kd (50.6 pmol/l) calculated from the kinetic study. The maximum number of binding sites (Bmax) was 1.09 +/- 0.11 fmol/mg protein (3-weeks old, n = 4). Twelve 11-week-old chicks were killed in two groups at mid-light or mid-dark. Saturation studies indicated no significant difference (P greater than 0.05) in the Kd between mid-light (42.1 +/- 3.9 pmol/l) and mid-dark (31.6 +/- 4.9 pmol/l). The maximum number of binding sites (Bmax) at mid-light and mid-dark were 1.52 +/- 0.16 and 1.35 +/- 0.08 fmol/mg protein, respectively, with no significant variation (P greater than 0.05) recorded. However, when the whole spleen was taken into consideration, the Bmax per spleen protein of the mid-light samples (253 +/- 36 fmol/spleen protein) was significantly greater than that (129 +/- 16 fmol/spleen protein) of the mid-dark samples (P less than 0.05). This indicated that in our study a diurnal rhythm of the total number of 2-[125I]iodomelatonin binding sites might exist in the chicken spleen.
Collapse
Affiliation(s)
- C S Pang
- Clarke Institute of Psychiatry, Toronto, Ontario, Canada
| | | |
Collapse
|
49
|
Dryer SE, Henderson D. A cyclic GMP-activated channel in dissociated cells of the chick pineal gland. Nature 1991; 353:756-8. [PMID: 1719422 DOI: 10.1038/353756a0] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phototransduction in the vertebrate retina is dependent in part on a cyclic GMP-activated ionic channel in the plasma membrane of rods and cones. But other vertebrate cells are also photosensitive. Cells of the chick pineal gland have a photosensitive circadian rhythm in melatonin secretion that persists in dissociated cell culture. Exposure to light causes inhibition of melatonin secretion, and entrainment of the intrinsic circadian oscillator. Chick pinealocytes express several 'retinal' proteins, including arrestin, transducin and a protein similar to the visual pigment rhodopsin. Pinealocytes of lower vertebrates display hyperpolarizing responses to brief pulses of light. Thus it is possible that some of the mechanisms of phototransduction are similar in retinal and pineal photoreceptors. We report here the first recordings of cyclic GMP-activated channels in an extraretinal photoreceptor. Application of GMP, but not cyclic AMP, to excised inside-out patches caused activation of a 15-25 pS cationic channel. These channels may be essential for phototransduction in the chick pineal gland.
Collapse
Affiliation(s)
- S E Dryer
- Department of Biological Science, Florida State University, Tallahassee
| | | |
Collapse
|
50
|
Zatz M. Light and norepinephrine similarly prevent damping of the melatonin rhythm in cultured chick pineal cells: regulation of coupling between the pacemaker and overt rhythms? J Biol Rhythms 1991; 6:137-47. [PMID: 1773087 DOI: 10.1177/074873049100600204] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The circadian rhythm of melatonin output displayed by chick pineal cells in static culture damps rapidly in constant red light (RR). This can be seen in the first cycle following a switch from a cycle of 12 hr white light (L) and 12 hr red light (R) to RR. Melatonin output is higher during the "day" in R than it is in L, but higher that next night (in R) after daytime L than after daytime R. This effect might be due entirely to the entraining effect of L. Alternatively, the higher nocturnal output after daytime L could be related to the acute suppression caused by L; it might be a "rebound" phenomenon. These alternative hypotheses differ in their predictions for the effects of norepinephrine (NE) and pertussis toxin (PT). Previous results dissociated the acute and entraining effects of L: PT blocks the acute effect but not the entraining effect of L. NE mimics the acute effect of L (and is blocked by PT), but not the entraining effect. If L prevents damping entirely by entrainment, then NE should not mimic and PT should not block this same-cycle effect of daytime L on nocturnal melatonin output. However, the present research found that NE did mimic and PT did block this effect, indicating that the ability of L to prevent damping is mediated by a same-cycle "rebound" following L's acute inhibition of melatonin production. Furthermore, NE enhanced the "rebound" effect of daytime L, and cycles substituting NE for L were effective in driving the melatonin rhythm. Lowering extracellular potassium did not induce a "rebound," and adding exogenous melatonin did not prevent one. The difference between nocturnal melatonin synthesis after daytime R and that after daytime L or NE implies regulation of coupling between the output of the circadian pacemaker and melatonin production. These results also suggest a role for NE in regulating and maintaining the expression of the melatonin rhythm.
Collapse
Affiliation(s)
- M Zatz
- Section on Biochemical Pharmacology, National Institute of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|