1
|
Gies U, Bilzer T, Stitz L, Staiger JF. Disturbance of the cortical cholinergic innervation in Borna disease prior to encephalitis. Brain Pathol 2006; 8:39-48. [PMID: 9458165 PMCID: PMC8098315 DOI: 10.1111/j.1750-3639.1998.tb00133.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rats experimentally infected with the highly neurotropic Borna disease virus (BDV) display a wide variety of dysfunction such as learning deficiencies and behavioral abnormalities. Prior to the onset of encephalitis alterations of one of the major cortical neurotransmitters, acetylcholine, were monitored immunohistochemically by light and electron microscopy of its synthesizing enzyme choline acetyltransferase (ChAT). We found a progressing decrease in the number of ChAT-positive fibers, starting with discrete changes at day 6 post infection (p.i.) and ending with a nearly complete loss of cholinergic fibers, especially in the hippocampus and neocortex, suggesting a massive disturbance of the cholinergic innervation by day 15 p.i.. The fiber pathways (e.g., fimbria-fornix) connecting the basal forebrain with these target areas in the cortex displayed axon spheroids which are often linked to axonal transport dysfunction. No evidence for significant cellular destruction was seen in the brain, including the cells of origin of these axons in the basal forebrain. We conclude that the motor, mood, learning and memory disabilities in BDV-infected rats are likely to result, in part, from cortical cholinergic denervation. The present study gives new insights into the pathogenesis of neurological disease caused by a noncytopathogenic virus.
Collapse
Affiliation(s)
- U Gies
- Institut für Neuropathologie, Heinrich-Heine-Universität Düsseldorf, FRG
| | | | | | | |
Collapse
|
2
|
|
3
|
Abstract
This article focuses on human Borna disease virus (BDV) infections, most notably on the development of valid diagnostic systems, which have arisen as a major research issue in the past decade. The significance of a novel modular triple enzyme-linked immunosorbent assay that is capable of specifically measuring anti-BDV antibodies as well as major structural proteins N (p40) and P (p24) in the blood, either as free antigens in the plasma or as antibody-bound circulating immune complexes (CICs), is explained. The impact of CICs and plasma antigen, which indicate periods of antigenemia in the course of BDV infection, along with other infection markers that are still in use is discussed. The review further provides new insight into possible links of BDV to human diseases, summarizing cross-sectional and longitudinal data which correlate acute depression with the presence and amount of antigen and CICs. Moreover, BDV prevalence in healthy people is reevaluated, suggesting that this was previously underestimated. Antiviral efficacy of amantadine, in vivo and in vitro, is outlined as well, with emphasis on wild-type (human and equine) versus laboratory strains. Finally, the pros and cons of the association of BDV with human disease, as detailed in the literature, are critically discussed and related to our data and concepts. This article supports existing correlative evidence for a pathogenic role of BDV infection in particular human mental disorders, in analogy to what has been proven for a variety of animal species.
Collapse
Affiliation(s)
- Liv Bode
- Project Bornavirus Infections, Robert Koch Institute, 13353 Berlin, Germany
| | | |
Collapse
|
4
|
Solbrig MV, Koob GF. Neuropharmacological sequelae of persistent CNS viral infections: lessons from Borna disease virus. Pharmacol Biochem Behav 2003; 74:777-87. [PMID: 12667891 DOI: 10.1016/s0091-3057(03)00019-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Borna Disease Virus (BDV) is a neurotropic RNA virus that is worldwide in distribution, causing movement and behavior disorders in a wide range of animal species. BDV has also been reported to be associated with neuropsychiatric diseases of humans by serologic study and by recovery of nucleic acid or virus from blood or brain. Natural infections of horses and sheep produce encephalitis with erratic excited behaviors, hyperkinetic movement or gait abnormalities; naturally infected cats have ataxic "staggering disease." Experimentally infected primates develop hyperactivity, aggression, disinhibition, then apathy; prosimians (lower primates) have hyperactivity, circadian disruption, abnormal social and dominance behaviors, and postural disorders. However, the neuropharmacological determinants of BD phenotypes in laboratory and natural hosts are incompletely understood. Here we review how experimentally infected rodents have provided models for examining behavioral, pharmacologic, and biochemical responses to viral challenge, and how rodents experimentally infected as neonates or as adolescents are providing models for examining age-specific neuropharmacological adaptations to viral injury.
Collapse
Affiliation(s)
- Marylou V Solbrig
- Department of Neurology and Pharmacology, University of California at Irvine, 3107 Gillespie Neuroscience Research Building, Irvine, CA 92697-4292, USA.
| | | |
Collapse
|
5
|
Oldstone MBA. Biology and pathogenesis of lymphocytic choriomeningitis virus infection. Curr Top Microbiol Immunol 2002; 263:83-117. [PMID: 11987822 DOI: 10.1007/978-3-642-56055-2_6] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- M B A Oldstone
- Division of Virology, Department of Neuropharmacology, Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Hornig M, Briese T, Lipkin WI. Bornavirus tropism and targeted pathogenesis: virus-host interactions in a neurodevelopmental model. Adv Virus Res 2002; 56:557-82. [PMID: 11450312 DOI: 10.1016/s0065-3527(01)56038-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Animal models provide unique opportunities to explore interactions between host and environment. Two models have been established based on Bornavirus infection that provide new insights into mechanisms by which neurotropic agents and/or immune factors may impact developing or mature CNS circuitry to effect complex disturbances in movement and behavior. Distinct losses in DA pathways in the adult infection model, and the associated dramatic movement disorder that accompanies it, make it an intriguing model for tardive dyskinesia and dystonic syndromes. The neuropathologic, physiologic, and neurobehavioral features of BDV infection of neonates indicate that it not only provides a useful model for exploring the mechanisms by which viral and immune factors may damage developing neurocircuitry, but also has significant links to the range of biologic, neurostructural, locomotor, cognitive, and social deficits observed in serious neuropsychiatric illnesses such as autism.
Collapse
Affiliation(s)
- M Hornig
- Emerging Diseases Laboratory, Gillespie Neuroscience Research Facility, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
7
|
Hornig M, Lipkin WI. Infectious and immune factors in the pathogenesis of neurodevelopmental disorders: epidemiology, hypotheses, and animal models. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 7:200-10. [PMID: 11553936 DOI: 10.1002/mrdd.1028] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Both genetic and environmental factors contribute to the pathogenesis of a wide variety of neurodevelopmental disorders, including autism, mental retardation, and schizophrenia. Some heritable disorders approach 100% penetrance; nonetheless, even in these disorders, subtle aspects of clinical disease expression may be influenced by the environment. In other disorders with genetic influences, exogenous factors, and the timepoint(s) during nervous system development at which they are introduced, modulate expression of disease. Elucidation of the mechanisms guiding this intricate interplay between host response genes, environmental agents, and the neurodevelopmental context within which these interactions occur, is necessary to understand the continuum of clinical outcomes. This chapter will review the evidence that infectious and immune factors may contribute to the pathogenesis of neurodevelopmental disorders, describe an animal model of neurodevelopmental disorders based upon viral infection, identify processes by which neural circuitry may be compromised, and outline areas for future research.
Collapse
Affiliation(s)
- M Hornig
- Emerging Diseases Laboratory, Gillespie Neuroscience Research Facility, University of California, Irvine, California 92697-4292, USA.
| | | |
Collapse
|
8
|
Johnston C, Jiang W, Chu T, Levine B. Identification of genes involved in the host response to neurovirulent alphavirus infection. J Virol 2001; 75:10431-45. [PMID: 11581411 PMCID: PMC114617 DOI: 10.1128/jvi.75.21.10431-10445.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single-amino-acid mutations in Sindbis virus proteins can convert clinically silent encephalitis into uniformly lethal disease. However, little is known about the host gene response during avirulent and virulent central nervous system (CNS) infections. To identify candidate host genes that modulate alphavirus neurovirulence, we utilized GeneChip Expression analysis to compare CNS gene expression in mice infected with two strains of Sindbis virus that differ by one amino acid in the E2 envelope glycoprotein. Infection with Sindbis virus, dsTE12H (E2-55 HIS), resulted in 100% mortality in 10-day-old mice, whereas no disease was observed in mice infected with dsTE12Q (E2-55 GLN). dsTE12H, compared with dsTE12Q, replicated to higher titers in mouse brain and induced more CNS apoptosis. Infection with the neurovirulent dsTE12H strain was associated with both a greater number of host genes with increased expression and greater changes in levels of host gene expression than was infection with the nonvirulent dsTE12Q strain. In particular, dsTE12H infection resulted in greater increases in the levels of mRNAs encoding chemokines, proteins involved in antigen presentation and protein degradation, complement proteins, interferon-regulated proteins, and mitochondrial proteins. At least some of these increases may be beneficial for the host, as evidenced by the demonstration that enforced expression of the antiapoptotic mitochondrial protein peripheral benzodiazepine receptor (PBR) protects neonatal mice against lethal Sindbis virus infection. Thus, our findings identify specific host genes that may play a role in the host protective or pathologic response to neurovirulent Sindbis virus infection.
Collapse
Affiliation(s)
- C Johnston
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
9
|
Gosztonyi G, Ludwig H. Interactions of viral proteins with neurotransmitter receptors may protect or destroy neurons. Curr Top Microbiol Immunol 2001; 253:121-44. [PMID: 11417131 DOI: 10.1007/978-3-662-10356-2_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- G Gosztonyi
- Abteilung für Neuropathologie, Freie Universität Berlin, Universitätsklinikum Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany.
| | | |
Collapse
|
10
|
Hornig M, Solbrig M, Horscroft N, Weissenböck H, Lipkin WI. Borna disease virus infection of adult and neonatal rats: models for neuropsychiatric disease. Curr Top Microbiol Immunol 2001; 253:157-77. [PMID: 11417134 DOI: 10.1007/978-3-662-10356-2_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Animal models provide unique opportunities to explore interactions between host and environment. Two models have been established based on Borna disease virus infection that provide new insights into mechanisms by which neurotropic agents and/or immune factors may impact developing or mature CNS circuitry to effect complex disturbances in movement and behavior. Note in press: Since this chapter was submitted, several manuscripts have been published that extend findings reported here and support the relevance of BDV infections of neonatal Lewis rats as models for investigating mechanisms of neurodevelopmental damage in autism. Behavioral abnormalities, including disturbed play behavior and chronic emotional overactivity, have been described by Pletnikov et al. (1999); inhibition of responses to novel stimuli were described by Hornig et al. (1999); loss of Purkinje cells following neonatal BDV infection has been demonstrated by Eisenman et al. (1999), Hornig et al. (1999), and Weissenböck et al. (2000); and alterations in cytokine gene expression have been reported by Hornig et al. (1999), Plata-Salaman et al. (1999) and Sauder et al. (1999).
Collapse
Affiliation(s)
- M Hornig
- Laboratory for the Study of Emerging Diseases, 3101 Gillespie Neuroscience Research Facility, University of California, Irvine, CA 92697-4292, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
The biology of Borna disease virus (BDV) strongly supports the likelihood of human infection with BDV or a variant of BDV. Thus far, the evidence supporting BDV infection in humans has initiated much controversy among basic and clinical scientists; only time and additional research will support or refute the hypothesis of human BDV infection. Until an assay of acceptable specificity and sensitivity has been developed, validated, and used to document human BDV infection, scientists cannot reasonably begin to associate BDV infection with specific disease syndromes. Clinical studies seeking causal associations between BDV infection and specific diseases must ensure the proper identification of the BDV infection status of patients and control subjects by using a validated, highly sensitive, and highly specific assay (or series of assays). For clinical studies, a highly sensitive "screening" test followed by a highly specific confirmatory test will be of significant benefit. Although it is possible to formulate hypotheses about the clinical outcomes of human BDV infection based on animal model work, to date no human disease has been causally linked to human BDV infection. Scientists all over the world are actively pursuing these issues, and with continuing advances in clinical and basic BDV research, the answers cannot be far away.
Collapse
Affiliation(s)
- K M Carbone
- FDA/CBER, HFM 460, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Abstract
Borna disease virus (BDV) is unique amongst animal RNA viruses in its molecular biology and capacity to cause persistent, noncytolytic CNS-infection in a wide variety of host species. Unlike other non-segmented negative-strand RNA animal viruses, BDV replicates in the nucleus of the host cell where splicing is employed for expression of a very compact genome. Epidemiological studies indicate a broad host range and geographical distribution, and some investigators have proposed that human infection may result in neuropsychiatric disorders. Experimental Borna disease in neonatal and adult rats provides an intriguing model for immune-mediated disturbances of brain development and function.
Collapse
Affiliation(s)
- Ingo Jordan
- Emerging Diseases Laboratory, Departments of Neurology, Microbiology and Molecular Genetics, University of California – Irvine, Irvine, California, USA
| | - W. Ian Lipkin
- Emerging Diseases Laboratory, Departments of Neurology, Microbiology and Molecular Genetics, University of California – Irvine, Irvine, California, USA
| |
Collapse
|
13
|
Billaud JN, Ly C, Phillips TR, de la Torre JC. Borna disease virus persistence causes inhibition of glutamate uptake by feline primary cortical astrocytes. J Virol 2000; 74:10438-46. [PMID: 11044088 PMCID: PMC110918 DOI: 10.1128/jvi.74.22.10438-10446.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2000] [Accepted: 08/23/2000] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV), a nonsegmented, negative-stranded (NNS) RNA virus, causes central nervous system (CNS) disease in a broad range of vertebrate species, including felines. Both viral and host factors contribute to very diverse clinical and pathological manifestations associated with BDV infection. BDV persistence in the CNS can cause neurobehavioral and neurodevelopmental abnormalities in the absence of encephalitis. These BDV-induced CNS disturbances are associated with altered cytokine and neurotrophin expression, as well as cell damage that is very restricted to specific brain regions and neuronal subpopulations. BDV also targets astrocytes, resulting in the development of prominent astrocytosis. Astrocytes play essential roles in maintaining CNS homeostasis, and disruption of their normal activities can contribute to altered brain function. Therefore, we have examined the effect of BDV infection on the astrocyte's physiology. We present here evidence that BDV can establish a nonlytic chronic infection in primary cortical feline astrocytes that is associated with a severe impairment in the astrocytes' ability to uptake glutamate. In contrast, the astrocytes' ability to uptake glucose, as well as their protein synthesis, viability, and rate of proliferation, was not affected by BDV infection. These findings suggest that, in vivo, BDV could also affect an important astrocyte function required to prevent neuronal excitotoxicity. This, in turn, might contribute to the neuropathogenesis of BDV.
Collapse
Affiliation(s)
- J N Billaud
- Vaccine Research Institute of San Diego, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
14
|
Dietrich DE, Bode L, Spannhuth CW, Lau T, Huber TJ, Brodhun B, Ludwig H, Emrich HM. Amantadine in depressive patients with Borna disease virus (BDV) infection: an open trial. Bipolar Disord 2000; 2:65-70. [PMID: 11254023 DOI: 10.1034/j.1399-5618.2000.020110.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Originally introduced into pharmacotherapy as an antiviral compound, amantadine was shown to also have multiple pharmacological eftfects on the central nervous system. In addition. only a few studies reported on certain antidepressive properties of amantadine. This effect was highlighted by the discovery of its antiviral effect on Borna disease virus (BDV), which is hypothesized to be an etiopathogenetic factor to subtypes of affective disorders. Therefore, the therapeutical use of amantadine in BDV-infected depressive patients was investigated. METHODS In this open trial, amantadine was added to antidepressive and or mood-stabilizing compounds treating BDV-infected depressed patients (n = 25) with bipolar or major depressive disorders. Amantadine was given twice a day (100-300 mg/day) for a mean of 11 weeks. Antidepressive treatment response was measured on the Hamilton rating scale for depression (HAM-D) and/or with an operationalized diagnostic criteria system (OPCRIT: version 3.31). Virological response was measured by expression of BDV infection parameters in blood samples. RESULTS The overall response rate of the amantadine augmentation in the BDV-infected patients with regard to depressive symptoms was 68% after a mean of 2.9 weeks of treatment. Bipolar I patients improved faster and did not show any following hypomania. In addition, the decrease of depression tended to correspond with the decrease in viral activity. CONCLUSION Amantadine appears to show a remarkable antidepressive efficacy in BDV-infected depressive patients. The antidepressive effect in this open trial appeared to be comparable to standard antidepressives, possibly being a result of its antiviral effect against BDV as a potentially relevant etiopathogenetic factor in these disorders.
Collapse
Affiliation(s)
- D E Dietrich
- Department of Clinical Psychiatry and Psychotherapy, Medical School Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pletnikov MV, Rubin SA, Schwartz GJ, Carbone KM, Moran TH. Effects of neonatal rat Borna disease virus (BDV) infection on the postnatal development of the brain monoaminergic systems. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 119:179-85. [PMID: 10675767 DOI: 10.1016/s0165-3806(99)00168-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effects of neonatal Borna disease virus infection (BDV) on the postnatal development of brain monoaminergic systems in rats were studied. Tissue content of norepinephrine (NE), dopamine (DA) and its metabolite, 3,4-dihydroxyphenol acetic acid (DOPAC), and serotonin (5-HT) and its metabolite, 5-hydroxyindole-3-acetic acid (5-HIAA) were assayed by means of HPLC-EC in frontal cortex, cerebellum, hippocampus, hypothalamus and striatum of neonatally BDV-infected and sham-inoculated male Lewis rats of 8, 14, 21, 60 and 90 days of age. Both NE and 5-HT concentrations were significantly affected by neonatal BDV infection. The cortical and cerebellar levels of NE and 5-HT were significantly greater in BDV-infected rats than control animals at postnatal days (PND) 60 and 90. Tissue content of NE in hippocampus was unaffected. In hippocampus, neonatally BDV-infected rats had lower 5-HT levels at PND 8 and significantly elevated levels at PND 21 and onwards. Neither striatal levels of 5-HT nor hypothalamic levels of 5-HT and NE were affected by neonatal BDV infection, suggesting that the monoamine systems in the prenatally maturing brain regions are less sensitive to effects of neonatal viral infection. 5-HIAA/5-HT ratio was not altered in BDV-infected rats indicating no changes in the 5-HT turnover in the brain regions damaged by the virus. Neither DA nor DOPAC/DA ratio was affected by neonatal BDV infection in any of the brain regions examined. The present data demonstrate significant and specific alterations in monoaminergic systems in neonatally BDV-infected rats. This pattern of changes is consistent with the previously reported behavioral abnormalities resulting from neonatal BDV infection.
Collapse
Affiliation(s)
- M V Pletnikov
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Ross 618, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
16
|
Röhrenbeck AM, Bette M, Hooper DC, Nyberg F, Eiden LE, Dietzschold B, Weihe E. Upregulation of COX-2 and CGRP expression in resident cells of the Borna disease virus-infected brain is dependent upon inflammation. Neurobiol Dis 1999; 6:15-34. [PMID: 10078970 DOI: 10.1006/nbdi.1998.0225] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infection of immunocompetent adult rats with Borna disease virus (BDV) causes severe encephalitis and neural dysfunction. The expression of COX-2 and CGRP, genes previously shown to be implicated in CNS disease and peripheral inflammation, was dramatically upregulated in the cortical neurons of acutely BDV-infected rats. Neuronal COX-2 and CGRP upregulation was predominantly seen in brain areas where ED1-positive macrophages/microglia accumulated. In addition, COX-2 expression was strongly induced in brain endothelial cells and the number of COX-2 immunoreactive microglial cells was increased. In contrast, despite increased expression of viral antigens, neither COX-2 nor CGRP expression was altered in the CNS of BDV-infected rats treated with dexamethasone, or tolerant to BDV. Thus, increased CGRP and COX-2 expression in the BDV-infected brain is the result of the inflammatory response and likely to be involved in the pathogenesis of virus-induced encephalitis.
Collapse
Affiliation(s)
- A M Röhrenbeck
- Institute of Anatomy and Cell Biology, Philipps University Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Dürrwald R, Ludwig H. Borna disease virus (BDV), a (zoonotic?) worldwide pathogen. A review of the history of the disease and the virus infection with comprehensive bibliography. ZENTRALBLATT FUR VETERINARMEDIZIN. REIHE B. JOURNAL OF VETERINARY MEDICINE. SERIES B 1997; 44:147-84. [PMID: 9197210 DOI: 10.1111/j.1439-0450.1997.tb00962.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A comprehensive history of Borna disease virus (BDV) and this infection, including the complete bibliography, is presented. Over the last 200 years, descriptions of this 'head disease' of horses ('Kopfkrankheit der Pferde') have been given. Considerable losses in the horse population (< 0.8%) led to intensive clinical and (neuro-)pathological investigations of this meningitis cerebrospinalis which occurs with faint behavioural changes, occasionally followed by severe neurological symptomatology and death. The broad experimental host range reflects infections in nature which include horses, sheep, cattle, cats, dogs, rodents, ostriches, and some zoo animals. BDV infections are associated with phylogentically old brain areas, and the retina. Occasionally, expression in the autonomic nervous system occurs, besides its neurotropism BDV can spread to peripheral organs, especially to epithelial tissues and peripheral blood mononuclear cells. Infections of humans that can be monitored by antibodies, antigens or nucleic acids in blood samples are prominent features of future interest. BDV, the prototype of the family Bornaviridae is an enveloped spherical virus carrying an 8.9 kb single-stranded, non-segmented RNA with negative polarity which replicates in the nucleus. These features together with its considerable genetic stability make this non-cytopathogenic virus an evolutionary 'old pathogen' in nature.
Collapse
Affiliation(s)
- R Dürrwald
- Institut für Virologie, Freie Universität Berlin, Germany
| | | |
Collapse
|
18
|
Gonzalez-Dunia D, Sauder C, de la Torre JC. Borna disease virus and the brain. Brain Res Bull 1997; 44:647-64. [PMID: 9421127 PMCID: PMC7126547 DOI: 10.1016/s0361-9230(97)00276-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/1997] [Revised: 06/30/1997] [Accepted: 07/07/1997] [Indexed: 02/05/2023]
Abstract
Viruses with the ability to establish persistent infection in the central nervous system (CNS) can induce progressive neurologic disorders associated with diverse pathological manifestations. Clinical, epidemiological, and virological evidence supports the hypothesis that viruses contribute to human mental diseases whose etiology remains elusive. Therefore, the investigation of the mechanisms whereby viruses persist in the CNS and disturb normal brain function represents an area of research relevant to clinical and basic neurosciences. Borna disease virus (BDV) causes CNS disease in several vertebrate species characterized by behavioral abnormalities. Based on its unique features, BDV represents the prototype of a new virus family. BDV provides an important model for the investigation of the mechanisms and consequences of viral persistence in the CNS. The BDV paradigm is amenable to study virus-cell interactions in the CNS that can lead to neurodevelopmental abnormalities, immune-mediated damage, as well as alterations in cell differentiated functions that affect brain homeostasis. Moreover, seroepidemiological data and recent molecular studies indicate that BDV is associated with certain neuropsychiatric diseases. The potential role of BDV and of other yet to be uncovered BDV-related viruses in human mental health provides additional impetus for the investigation of this novel neurotropic infectious agent.
Collapse
Affiliation(s)
- D Gonzalez-Dunia
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
19
|
Bechter K, Hodgkiss A. Research strategies in 'slow' infections in psychiatry. HISTORY OF PSYCHIATRY 1995; 6:503-511. [PMID: 11609007 DOI: 10.1177/0957154x9500602407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The research processes in the elucidation of the causes of general paresis, the first slow infection in psychiatry, and of Kuru, the first slow virus infection in man, were considered. The errors and difficulties encountered may contribute to the formulation of research strategies for contemporary work on possible persistent infections with unknown viruses as a cause of psychiatric disorders. Clinical obsservation, bold hypotheses and methodological advances appear more valuable than diagnostic categorization in etiological research into psychiatric disorders. The low heuristic value of diagnosis is due to the lack of specificity of psychiatric symptoms and syndromes, especially in low grade organic disturbances.
Collapse
Affiliation(s)
- K Bechter
- University of Ulm, Department of Psychiatry II and Department of Psychiatry of the Bezirkskrankenhaus, Günzburg, Germany
| | | |
Collapse
|
20
|
Dietzschold B. The role of nitric oxide in the pathogenesis of virus-induced encephalopathies. Curr Top Microbiol Immunol 1995; 196:51-6. [PMID: 7543399 DOI: 10.1007/978-3-642-79130-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- B Dietzschold
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
21
|
Bode L. Human infections with Borna disease virus and potential pathogenic implications. Curr Top Microbiol Immunol 1995; 190:103-30. [PMID: 7789147 DOI: 10.1007/978-3-642-78618-1_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- L Bode
- Department of Virology, Robert Koch-Institut, Berlin, Germany
| |
Collapse
|
22
|
|
23
|
Fu ZF, Weihe E, Zheng YM, Schäfer MK, Sheng H, Corisdeo S, Rauscher FJ, Koprowski H, Dietzschold B. Differential effects of rabies and borna disease viruses on immediate-early- and late-response gene expression in brain tissues. J Virol 1993; 67:6674-81. [PMID: 8411369 PMCID: PMC238106 DOI: 10.1128/jvi.67.11.6674-6681.1993] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In situ hybridization and Northern blot analysis were used to examine expression of the immediate-early-response genes (IEGs) egr-1, junB, and c-fos, and the late response gene encoding enkephalin in the brains of rats infected intranasally with Borna disease virus (BDV) or rabies virus. In both Borna disease and rabies virus infections, a dramatic and specific induction of IEGs was detected in particular regions of the hippocampus and the cortex. Increased IEG mRNA expression overlapped with the characteristic expression patterns of BDV RNA and rabies virus RNA, although relative expression levels of viral RNA and IEG mRNA differed, particularly in the hippocampal formation. Furthermore, the temporal relationship between viral RNA synthesis and activation of IEG mRNA expression in BDV infection differed markedly from that in rabies virus infection, suggesting that IEG expression is upregulated by different mechanisms. Expression of proenkephalin (pENK) mRNA was also significantly increased in BDV infection, whereas in rabies virus infection, pENK mRNA levels and also the levels of glyceraldehyde-3-phosphate dehydrogenase mRNA were reduced at terminal stages of the disease, probably reflecting a generalized suppression of cellular protein synthesis due to massive production of rabies virus mRNA. The correlation between activated IEG mRNA expression and the strong increase in viral RNA raises the possibility that IEG products induce some phenotypic changes in neurons that render them more susceptible to viral replication.
Collapse
Affiliation(s)
- Z F Fu
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-6799
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lipkin WI, Briese T, de la Torre JC. Borna disease virus: molecular analysis of a neurotropic infectious agent. Microb Pathog 1992; 13:167-70. [PMID: 1291839 DOI: 10.1016/0882-4010(92)90017-i] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- W I Lipkin
- Department of Neurology, University of California, Irvine 92717
| | | | | |
Collapse
|
25
|
Bechter K, Schüttler R, Herzog S. Case of neurological and behavioral abnormalities: due to Borna disease virus encephalitis? Psychiatry Res 1992; 42:193-6. [PMID: 1631254 DOI: 10.1016/0165-1781(92)90083-f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Gourmelon P, Briet D, Clarençon D, Court L, Tsiang H. Sleep alterations in experimental street rabies virus infection occur in the absence of major EEG abnormalities. Brain Res 1991; 554:159-65. [PMID: 1933298 DOI: 10.1016/0006-8993(91)90184-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Brain electrical activity and sleep organization were investigated in chronically implanted mice during street rabies virus infection. Continuous EEG recordings showed no gross electrical abnormalities until a few hours before the fatal issue. In contrast, alterations of sleep stages were observed at an early stage during the course of rabies virus infection, at a time when clinical signs were absent. Quantification by spectral analysis showed that the main feature was the early decrease of REM-sleep stages and the increase of the duration of waking stages. Neuromuscular disorders which could occur early were also observed during the disease. Comparison of these data with those obtained from fixed rabies virus infection shows that in the latter the EEG recordings demonstrated early alterations and a progressive deterioration with disappearance of both sleep and waking stages, which were replaced by a pathological sleep stage. In order to evaluate the potential role of the host-specific immune response in promoting brain electrophysiological alterations, EEG recordings and spectral analysis were also performed in cyclophosphamide-treated mice. Street rabies virus-infected and immunosuppressed mice showed identical physiopathological changes as those observed in immunocompetent mice. The implication of these viral-induced electrophysiological alterations in the context of the pathogenic mechanisms of rabies virus is discussed.
Collapse
|
27
|
Abstract
Borna disease (BD) is a neurologic syndrome characterized by profound disturbances in behavior and the accumulation of specific antigens in limbic system neurons. The potency of brain homogenates from animals with BD to cause disease in normal animals is reduced by exposure to detergents. We have recently described isolation and characterization of clones derived from the BD agent. Here we present evidence that suggests that the BD agent is a negative-sense, single-strand RNA virus. The 8.5-kb genome of this virus appears to be associated with nuclei and encodes two major RNA transcripts of 2.1 and 0.8 kb.
Collapse
Affiliation(s)
- J C de la Torre
- Department of Neuropharmacology, Research Institute of Scripps Clinic, La Jolla, California 92037
| | | | | |
Collapse
|
28
|
Lipkin WI, Travis GH, Carbone KM, Wilson MC. Isolation and characterization of Borna disease agent cDNA clones. Proc Natl Acad Sci U S A 1990; 87:4184-8. [PMID: 1693432 PMCID: PMC54072 DOI: 10.1073/pnas.87.11.4184] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Borna disease (BD) is a neurologic syndrome characterized by behavioral disturbances and the accumulation of specific proteins in limbic system neurons. A viral etiology has been proposed because BD can be induced in birds, rodents, and primates by inoculation with filtered brain homogenates from animals with BD. We report here the isolation and preliminary characterization of cDNA clones from a rat with BD. These clones hybridized to specific transcripts in BD rat brain and arrested in vitro translation of BD proteins. In situ hybridization experiments using RNA probes prepared from these clones showed an abundance of these transcripts in limbic system neurons. Northern (RNA) hybridizations using these RNA probes indicated that the BD agent is probably a virus with major transcripts of 8.5, 2.1, and 0.8 kilobases.
Collapse
Affiliation(s)
- W I Lipkin
- Department of Neuropharmacology, Research Institute of Scripps Clinic, La Jolla, CA 92037
| | | | | | | |
Collapse
|