1
|
Jun S, Park H, Kim M, Kang S, Kim T, Kim D, Yamamoto Y, Tanaka-Yamamoto K. Increased understanding of complex neuronal circuits in the cerebellar cortex. Front Cell Neurosci 2024; 18:1487362. [PMID: 39497921 PMCID: PMC11532081 DOI: 10.3389/fncel.2024.1487362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 11/07/2024] Open
Abstract
The prevailing belief has been that the fundamental structures of cerebellar neuronal circuits, consisting of a few major neuron types, are simple and well understood. Given that the cerebellum has long been known to be crucial for motor behaviors, these simple yet organized circuit structures seemed beneficial for theoretical studies proposing neural mechanisms underlying cerebellar motor functions and learning. On the other hand, experimental studies using advanced techniques have revealed numerous structural properties that were not traditionally defined. These include subdivided neuronal types and their circuit structures, feedback pathways from output Purkinje cells, and the multidimensional organization of neuronal interactions. With the recent recognition of the cerebellar involvement in non-motor functions, it is possible that these newly identified structural properties, which are potentially capable of generating greater complexity than previously recognized, are associated with increased information capacity. This, in turn, could contribute to the wide range of cerebellar functions. However, it remains largely unknown how such structural properties contribute to cerebellar neural computations through the regulation of neuronal activity or synaptic transmissions. To promote further research into cerebellar circuit structures and their functional significance, we aim to summarize the newly identified structural properties of the cerebellar cortex and discuss future research directions concerning cerebellar circuit structures and their potential functions.
Collapse
Affiliation(s)
- Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Muwoong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Taehyeong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul, Republic of Korea
| | - Daun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Life Science, Korea University, Seoul, Republic of Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
2
|
Schmahmann JD. Emotional disorders and the cerebellum: Neurobiological substrates, neuropsychiatry, and therapeutic implications. HANDBOOK OF CLINICAL NEUROLOGY 2021; 183:109-154. [PMID: 34389114 DOI: 10.1016/b978-0-12-822290-4.00016-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The notion that the cerebellum is devoted exclusively to motor control has been replaced by a more sophisticated understanding of its role in neurological function, one that includes cognition and emotion. Early clinical reports, as well as physiological and behavioral studies in animal models, raised the possibility of a nonmotor role for the cerebellum. Anatomical studies demonstrate cerebellar connectivity with the distributed neural circuits linked with autonomic, sensorimotor, vestibular, associative, and limbic/paralimbic brain areas. Identification of the cerebellar cognitive affective syndrome in adults and children underscored the clinical relevance of the role of the cerebellum in cognition and emotion. It opened new avenues of investigation into higher-order deficits that accompany the ataxias and other cerebellar diseases, as well as the contribution of cerebellar dysfunction to neuropsychiatric and neurocognitive disorders. Brain imaging studies have demonstrated the complexity of cerebellar functional topography, revealing a double representation of the sensorimotor cerebellum in the anterior lobe and lobule VIII and a triple cognitive representation in the cerebellar posterior lobe, as well as representation in the cerebellum of the intrinsic connectivity networks identified in the cerebral hemispheres. This paradigm shift in thinking about the cerebellum has been advanced by the theories of dysmetria of thought and the universal cerebellar transform, harmonizing the dual anatomic realities of homogeneously repeating cerebellar cortical microcircuitry set against the heterogeneous and topographically arranged cerebellar connections with extracerebellar structures. This new appreciation of cerebellar incorporation into circuits that subserve cognition and emotion mandates a deeper understanding of the cerebellum by practitioners in behavioral neurology and neuropsychiatry because it impacts the understanding and diagnosis of disorders of emotion and intellect and has potential for novel cerebellar-based approaches to therapy.
Collapse
Affiliation(s)
- Jeremy D Schmahmann
- Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
3
|
Miyazaki T, Yamasaki M, Tanaka KF, Watanabe M. Compartmentalized Input-Output Organization of Lugaro Cells in the Cerebellar Cortex. Neuroscience 2020; 462:89-105. [PMID: 32470477 DOI: 10.1016/j.neuroscience.2020.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/15/2022]
Abstract
Purkinje cells (PCs) are principal cerebellar neurons, and several classes of interneurons modulate their activity. Lugaro cells (LCs) are one such inhibitory interneuron with distinctive cytology and location, but still most enigmatic among cerebellar neurons. Here we serendipitously produced a novel transgenic mouse line, where a half of Yellow Cameleon (YC)(+) cells in the cerebellar cortex were judged to be LCs, and YC(+) LCs were estimated to constitute one-third of the total LC populations. Neurochemically, two-thirds of YC(+) LCs were dually GABAergic/glycinergic, with the rest being GABAergic. Beneath the PC layer, they extended a sheet of somatodendritic meshwork interconnected with neighboring LCs by adherens junctions, and received various inputs from climbing fibers, mossy fibers, granule cell axons, recurrent PC axons, Golgi cell axons, LC axons, and serotonergic fibers. Intriguingly, somatodendritic elements of individual LCs preferentially extended within a given cerebellar compartment defined by aldolase C expression. In turn, YC(+) LCs projected a dense lattice of ascending and transverse axons to the molecular layer, and innervated molecular layer interneurons (basket and stellate cells) and Golgi cells, but not PCs. Of note, ascending axons profusely innervated individual targets within a cerebellar compartment, while transverse axons ran across several compartments and innervated targets sparsely. This unique circuit configuration highlights that LCs integrate various excitatory, inhibitory, and modulatory inputs coming to the belonging cerebellar compartment and that, as an interneuron-selective interneuron, LCs can effectively disinhibit cerebellar cortical activities in a compartment-dependent manner through inhibition of inhibitory interneurons selectively targeting PCs and granule cells.
Collapse
Affiliation(s)
- Taisuke Miyazaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan; Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo 060-8638, Japan.
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| |
Collapse
|
4
|
Lin YC, Hsu CCH, Wang PN, Lin CP, Chang LH. The Relationship Between Zebrin Expression and Cerebellar Functions: Insights From Neuroimaging Studies. Front Neurol 2020; 11:315. [PMID: 32390933 PMCID: PMC7189018 DOI: 10.3389/fneur.2020.00315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/31/2020] [Indexed: 12/26/2022] Open
Abstract
The cerebellum has long been known to play an important role in motor and balance control, and accumulating evidence has revealed that it is also involved in multiple cognitive functions. However, the evidence from neuroimaging studies and clinical observations is not well-integrated at the anatomical or molecular level. The goal of this review is to summarize and link different aspects of the cerebellum, including molecular patterning, functional topography images, and clinical cerebellar disorders. More specifically, we explored the potential relationships between the cerebrocerebellar connections and the expression of particular molecules and, in particular, zebrin stripe (a Purkinje cell-specific antibody molecular marker, which is a glycolytic enzyme expressed in cerebellar Purkinje cells). We hypothesized that the zebrin patterns contribute to cerebellar functional maps—especially when cerebrocerebellar circuit changes exist in cerebellar-related diseases. The zebrin stripe receives input from climbing fibers and project to different parts of the cerebral cortex through its cerebrocerebellar connection. Since zebrin-positive cerebellar Purkinje cells are resistant to excitotoxicity and cell injury while zebrin-negative zones are more prone to damage, we suggest that motor control dysfunction symptoms such as ataxia and dysmetria present earlier and are easier to observe than non-ataxia symptoms due to zebrin-negative cell damage by cerebrocerebellar connections. In summary, we emphasize that the molecular zebrin patterns provide the basis for a new viewpoint from which to investigate cerebellar functions and clinico-neuroanatomic correlations.
Collapse
Affiliation(s)
- Yi-Cheng Lin
- Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Neuroscience, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Chin Heather Hsu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Li-Hung Chang
- Institute of Neuroscience, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan.,Education Center for Humanities and Social Sciences, School of Humanities and Social Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
5
|
Kuo SH, Louis ED, Faust PL, Handforth A, Chang SY, Avlar B, Lang EJ, Pan MK, Miterko LN, Brown AM, Sillitoe RV, Anderson CJ, Pulst SM, Gallagher MJ, Lyman KA, Chetkovich DM, Clark LN, Tio M, Tan EK, Elble RJ. Current Opinions and Consensus for Studying Tremor in Animal Models. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1036-1063. [PMID: 31124049 PMCID: PMC6872927 DOI: 10.1007/s12311-019-01037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 800 Howard Avenue, Ste Lower Level, New Haven, CT, 06519, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Billur Avlar
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Ming-Kai Pan
- Department of Medical Research and Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Kyle A Lyman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
6
|
Abstract
Cerebellar neuroscience has undergone a paradigm shift. The theories of the universal cerebellar transform and dysmetria of thought and the principles of organization of cerebral cortical connections, together with neuroanatomical, brain imaging, and clinical observations, have recontextualized the cerebellum as a critical node in the distributed neural circuits subserving behavior. The framework for cerebellar cognition stems from the identification of three cognitive representations in the posterior lobe, which are interconnected with cerebral association areas and distinct from the primary and secondary cerebellar sensorimotor representations linked with the spinal cord and cerebral motor areas. Lesions of the anterior lobe primary sensorimotor representations produce dysmetria of movement, the cerebellar motor syndrome. Lesions of the posterior lobe cognitive-emotional cerebellum produce dysmetria of thought and emotion, the cerebellar cognitive affective/Schmahmann syndrome. The notion that the cerebellum modulates thought and emotion in the same way that it modulates motor control advances the understanding of the mechanisms of cognition and opens new therapeutic opportunities in behavioral neurology and neuropsychiatry.
Collapse
Affiliation(s)
- Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, and Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA;
| | - Xavier Guell
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, and Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA; .,Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Catherine J Stoodley
- Department of Psychology and Center for Behavioral Neuroscience, American University, Washington, DC 20016, USA
| | - Mark A Halko
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
7
|
Yang Z, Chen N, Ge R, Qian H, Wang JH. Functional compatibility between Purkinje cell axon branches and their target neurons in the cerebellum. Oncotarget 2017; 8:72424-72437. [PMID: 29069799 PMCID: PMC5641142 DOI: 10.18632/oncotarget.19770] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/28/2017] [Indexed: 01/10/2023] Open
Abstract
A neuron sprouts an axon, and its branches to innervate many target neurons that are divergent in their functions. In order to efficiently regulate the diversified cells, the axon branches should differentiate functionally to be compatible with their target neurons, i.e., a function compatibility between presynaptic and postsynaptic partners. We have examined this hypothesis by using electrophysiological method in the cerebellum, in which the main axon of Purkinje cell projected to deep nucleus cells and the recurrent axons innervated the adjacent Purkinje cells. The fidelity of spike propagation is superior in the recurrent branches than the main axon. The capabilities of encoding spikes and processing GABAergic inputs are advanced in Purkinje cells versus deep nucleus cells. The functional differences among Purkinje's axonal branches and their postsynaptic neurons are preset by the variable dynamics of their voltage-gated sodium channels. In addition, activity strengths between presynaptic and postsynaptic partners are proportionally correlated, i.e., active axonal branches innervate active target neurons, or vice versa. The physiological impact of the functional compatibility is to make the neurons in their circuits to be activated appropriately. In conclusion, each cerebellar Purkinje cell sprouts the differentiated axon branches to be compatible with the diversified target cells in their functions, in order to construct the homeostatic and efficient units for their coordinated activity in neural circuits.
Collapse
Affiliation(s)
- Zhilai Yang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Na Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongjing Ge
- Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| | - Hao Qian
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.,Qingdao University, School of Pharmacy, Shandong 266021, China.,Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
8
|
Purkinje Cell Collaterals Enable Output Signals from the Cerebellar Cortex to Feed Back to Purkinje Cells and Interneurons. Neuron 2016; 91:312-9. [PMID: 27346533 DOI: 10.1016/j.neuron.2016.05.037] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/30/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Purkinje cells (PCs) provide the sole output from the cerebellar cortex. Although PCs are well characterized on many levels, surprisingly little is known about their axon collaterals and their target neurons within the cerebellar cortex. It has been proposed that PC collaterals transiently control circuit assembly in early development, but it is thought that PC-to-PC connections are subsequently pruned. Here, we find that all PCs have collaterals in young, juvenile, and adult mice. Collaterals are restricted to the parasagittal plane, and most synapses are located in close proximity to PCs. Using optogenetics and electrophysiology, we find that in juveniles and adults, PCs make synapses onto other PCs, molecular layer interneurons, and Lugaro cells, but not onto Golgi cells. These findings establish that PC output can feed back and regulate numerous circuit elements within the cerebellar cortex and is well suited to contribute to processing in parasagittal zones.
Collapse
|
9
|
Abstract
ABSTRACT:Most descriptions treat the cerebellum as a uniform structure, and the possibility of important regional heterogeneities in either chemistry or physiology is rarely considered. However, it is now clear that such an assumption is inappropriate. Instead, there is substantial evidence that the cerebellum is composed of hundreds of distinct modules, each with a precise pattern of inputs and outputs, and expressing a range of molecular signatures. By screening a monoclonal antibody library against cerebellar polypeptides we have identified antigens – zebrins – that reveal some of the cerebellum’s covert heterogeneity. This article reviews some of these findings, relates them to the patterns of afferent connectivity, and considers some possible mechanisms through which the modular organization may arise.
Collapse
|
10
|
Knabe W, Washausen S. Early development of the nervous system of the eutherian <i>Tupaia belangeri</i>. Primate Biol 2015. [DOI: 10.5194/pb-2-25-2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract. The longstanding debate on the taxonomic status of Tupaia belangeri (Tupaiidae, Scandentia, Mammalia) has persisted in times of molecular biology and genetics. But way beyond that Tupaia belangeri has turned out to be a valuable and widely accepted animal model for studies in neurobiology, stress research, and virology, among other topics. It is thus a privilege to have the opportunity to provide an overview on selected aspects of neural development and neuroanatomy in Tupaia belangeri on the occasion of this special issue dedicated to Hans-Jürg Kuhn. Firstly, emphasis will be given to the optic system. We report rather "unconventional" findings on the morphogenesis of photoreceptor cells, and on the presence of capillary-contacting neurons in the tree shrew retina. Thereafter, network formation among directionally selective retinal neurons and optic chiasm development are discussed. We then address the main and accessory olfactory systems, the terminal nerve, the pituitary gland, and the cerebellum of Tupaia belangeri. Finally, we demonstrate how innovative 3-D reconstruction techniques helped to decipher and interpret so-far-undescribed, strictly spatiotemporally regulated waves of apoptosis and proliferation which pass through the early developing forebrain and eyes, midbrain and hindbrain, and through the panplacodal primordium which gives rise to all ectodermal placodes. Based on examples, this paper additionally wants to show how findings gained from the reported projects have influenced current neuroembryological and, at least partly, medical research.
Collapse
|
11
|
Lennon W, Hecht-Nielsen R, Yamazaki T. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing. Front Comput Neurosci 2014; 8:157. [PMID: 25520646 PMCID: PMC4249458 DOI: 10.3389/fncom.2014.00157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/14/2014] [Indexed: 11/24/2022] Open
Abstract
While the anatomy of the cerebellar microcircuit is well-studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs) form with the molecular layer interneurons (MLIs)—the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1) spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2) adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.
Collapse
Affiliation(s)
- William Lennon
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Robert Hecht-Nielsen
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Tadashi Yamazaki
- Graduate School of Informatics and Engineering, The University of Electro-Communications Chofu, Japan
| |
Collapse
|
12
|
Babij R, Lee M, Cortés E, Vonsattel JPG, Faust PL, Louis ED. Purkinje cell axonal anatomy: quantifying morphometric changes in essential tremor versus control brains. ACTA ACUST UNITED AC 2013; 136:3051-61. [PMID: 24030953 DOI: 10.1093/brain/awt238] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Growing clinical, neuro-imaging and post-mortem data have implicated the cerebellum as playing an important role in the pathogenesis of essential tremor. Aside from a modest reduction of Purkinje cells in some post-mortem studies, Purkinje cell axonal swellings (torpedoes) are present to a greater degree in essential tremor cases than controls. Yet a detailed study of more subtle morphometric changes in the Purkinje cell axonal compartment has not been undertaken. We performed a detailed morphological analysis of the Purkinje cell axonal compartment in 49 essential tremor and 39 control brains, using calbindin D28k immunohistochemistry on 100-µm cerebellar cortical vibratome tissue sections. Changes in axonal shape [thickened axonal profiles (P = 0.006), torpedoes (P = 0.038)] and changes in axonal connectivity [axonal recurrent collaterals (P < 0.001), axonal branching (P < 0.001), terminal axonal sprouting (P < 0.001)] were all present to an increased degree in essential tremor cases versus controls. The changes in shape and connectivity were significantly correlated [e.g. correlation between thickened axonal profiles and recurrent collaterals (r = 0.405, P < 0.001)] and were correlated with tremor duration among essential tremor cases with age of onset >40 years. In essential tremor cases, thickened axonal profiles, axonal recurrent collaterals and branched axons were 3- to 5-fold more frequently seen on the axons of Purkinje cells with torpedoes versus Purkinje cells without torpedoes. We document a range of changes in the Purkinje cell axonal compartment in essential tremor. Several of these are likely to be compensatory changes in response to Purkinje cell injury, thus illustrating an important feature of Purkinje cells, which is that they are relatively resistant to damage and capable of mobilizing a broad range of axonal responses to injury. The extent to which this plasticity of the Purkinje cell axon is partially neuroprotective or ultimately ineffective at slowing further cellular changes and cell death deserves further study in essential tremor.
Collapse
Affiliation(s)
- Rachel Babij
- 1 GH Sergievsky Centre, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
13
|
Mordel J, Karnas D, Pévet P, Isope P, Challet E, Meissl H. The output signal of Purkinje cells of the cerebellum and circadian rhythmicity. PLoS One 2013; 8:e58457. [PMID: 23505510 PMCID: PMC3591352 DOI: 10.1371/journal.pone.0058457] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/04/2013] [Indexed: 02/07/2023] Open
Abstract
Measurement of clock gene expression has recently provided evidence that the cerebellum, like the master clock in the SCN, contains a circadian oscillator. The cerebellar oscillator is involved in anticipation of mealtime and possibly resides in Purkinje cells. However, the rhythmic gene expression is likely transduced into a circadian cerebellar output signal to exert an effective control of neuronal brain circuits that are responsible for feeding behavior. Using electrophysiological recordings from acute and organotypic cerebellar slices, we tested the hypothesis whether Purkinje cells transmit a circadian modulated signal to their targets in the brain. Extracellular recordings from brain slices revealed the typical discharge pattern previously described in vivo in single cell recordings showing basically a tonic or a trimodal-like firing pattern. However, in acute sagittal cerebellar slices the average spike rate of randomly selected Purkinje cells did not exhibit significant circadian variations, irrespective of their specific firing pattern. Also, frequency and amplitude of spontaneous inhibitory postsynaptic currents and the amplitude of GABA- and glutamate-evoked currents did not vary with circadian time. Long-term recordings using multielectrode arrays (MEA) allowed to monitor neuronal activity at multiple sites in organotypic cerebellar slices for several days to weeks. With this recording technique we observed oscillations of the firing rate of cerebellar neurons, presumably of Purkinje cells, with a period of about 24 hours which were stable for periods up to three days. The daily renewal of culture medium could induce circadian oscillations of the firing rate of Purkinje cells, a feature that is compatible with the behavior of slave oscillators. However, from the present results it appears that the circadian expression of cerebellar clock genes exerts only a weak influence on the electrical output of cerebellar neurons.
Collapse
Affiliation(s)
- Jérôme Mordel
- Neuroanatomical Department, Max Planck Institute for Brain Research, Frankfurt/M, Germany
- CNRS UPR3212, Institute for Cellular and Integrative Neuroscience, Strasbourg, France
| | - Diana Karnas
- Neuroanatomical Department, Max Planck Institute for Brain Research, Frankfurt/M, Germany
- CNRS UPR3212, Institute for Cellular and Integrative Neuroscience, Strasbourg, France
| | - Paul Pévet
- CNRS UPR3212, Institute for Cellular and Integrative Neuroscience, Strasbourg, France
| | - Philippe Isope
- CNRS UPR3212, Institute for Cellular and Integrative Neuroscience, Strasbourg, France
| | - Etienne Challet
- CNRS UPR3212, Institute for Cellular and Integrative Neuroscience, Strasbourg, France
| | - Hilmar Meissl
- Neuroanatomical Department, Max Planck Institute for Brain Research, Frankfurt/M, Germany
- * E-mail:
| |
Collapse
|
14
|
Watt AJ, Cuntz H, Mori M, Nusser Z, Sjöström PJ, Häusser M. Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity. Nat Neurosci 2009; 12:463-73. [PMID: 19287389 PMCID: PMC2912499 DOI: 10.1038/nn.2285] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 01/27/2009] [Indexed: 11/28/2022]
Abstract
Correlated network activity is important in the development of many neural circuits. Purkinje cells are among the first neurons to populate the cerebellar cortex, where they sprout exuberant axon collaterals. We used multiple patch-clamp recordings targeted with two-photon microscopy to characterize monosynaptic connections between the Purkinje cells of juvenile mice. We found that Purkinje cell axon collaterals projected asymmetrically in the sagittal plane, directed away from the lobule apex. On the basis of our anatomical and physiological characterization of this connection, we constructed a network model that robustly generated waves of activity that traveled along chains of connected Purkinje cells. Consistent with the model, we observed traveling waves of activity in Purkinje cells in sagittal slices from young mice that require GABA(A) receptor-mediated transmission and intact Purkinje cell axon collaterals. These traveling waves are absent in adult mice, suggesting they have a developmental role in wiring the cerebellar cortical microcircuit.
Collapse
Affiliation(s)
- Alanna J Watt
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Sugihara I, Fujita H, Na J, Quy PN, Li BY, Ikeda D. Projection of reconstructed single Purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum. J Comp Neurol 2009; 512:282-304. [PMID: 19003905 DOI: 10.1002/cne.21889] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although the overall topography of the cerebellar corticonuclear projection formed by Purkinje cell (PC) axons has been described, only a few studies have dealt with the organization of this projection at the level of individual PC axons. Thus, we reconstructed 65 single PC axons that were labeled with biotinylated dextran amine in the rat. We then analyzed the relationship between the projections of these PCs and the compartmentalization of the cerebellar cortex and nuclei based on the topography of olivocerebellar projection and aldolase C expression in PCs. After giving rise to short local recurrent collaterals near the soma, a PC axon formed a terminal arbor in a specific small area in the cerebellar nuclei (CN). The terminal arbors of vermal PCs were spread more widely than those of hemispheric PCs and sometimes extended to extracerebellar targets. PCs located in any of the aldolase C-positive (Groups I and II) and -negative (Groups III and IV) stripes consistently projected to the caudoventral and rostrodorsal parts of the CN, respectively, precisely in accordance with the compartmentalization of the cortex and nuclei. Mediolateral segregation and rostrocaudal convergence were seen between projections of separate PCs in a single aldolase C compartment. The results revealed a tight link between the projection patterns of individual PC axons, the topography of the olivocerebellar pathway, and the aldolase C expression pattern. Their overall correspondence seems to reflect a basic aspect of cerebellar organization, although some area-dependent variation in the relationship of these three entities was also present.
Collapse
Affiliation(s)
- Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
de Solages C, Szapiro G, Brunel N, Hakim V, Isope P, Buisseret P, Rousseau C, Barbour B, Léna C. High-frequency organization and synchrony of activity in the purkinje cell layer of the cerebellum. Neuron 2008; 58:775-88. [PMID: 18549788 DOI: 10.1016/j.neuron.2008.05.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 12/21/2007] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
Abstract
The cerebellum controls complex, coordinated, and rapid movements, a function requiring precise timing abilities. However, the network mechanisms that underlie the temporal organization of activity in the cerebellum are largely unexplored, because in vivo recordings have usually targeted single units. Here, we use tetrode and multisite recordings to demonstrate that Purkinje cell activity is synchronized by a high-frequency (approximately 200 Hz) population oscillation. We combine pharmacological experiments and modeling to show how the recurrent inhibitory connections between Purkinje cells are sufficient to generate these oscillations. A key feature of these oscillations is a fixed population frequency that is independent of the firing rates of the individual cells. Convergence in the deep cerebellar nuclei of Purkinje cell activity, synchronized by these oscillations, likely organizes temporally the cerebellar output.
Collapse
Affiliation(s)
- Camille de Solages
- Laboratoire de Neurobiologie, UMR 8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kalinichenko SG, Pushchin II. Calcium-binding proteins in the cerebellar cortex of the bottlenose dolphin and harbour porpoise. J Chem Neuroanat 2008; 35:364-70. [PMID: 18455363 DOI: 10.1016/j.jchemneu.2008.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/25/2008] [Accepted: 03/09/2008] [Indexed: 10/22/2022]
Abstract
Studying the distribution of Ca2+-binding proteins allows one to discover specific neuron chemotypes involved in the regulation of the activity of various neural elements. While extensive data exist on Ca2+-binding proteins in the nervous system, in particular, in the cerebellar cortex of terrestrial mammals, the localization of these proteins in the cerebellar cortex of marine mammals has not been studied. We studied the localization of calretinin, calbindin, and parvalbumin immunoreactivity in the cerebellar cortex of the bottlenose dolphin Tursiops truncates and harbour porpoise Phocoena phocoena. In both species, most Purkinje cells were calbindin-immunoreactive, while calretinin and parvalbumin were expressed in a small portion of Purkinje cells. In addition, calretinin-immunoreactive unipolar brush and granule cells and calbindin- and parvalbumin-immunoreactive basket, stellate, and Golgi cells were observed. Calretinin-immunoreactive corticopetal (mossy and climbing) fibers were found. Based on the length of the primary dendrite, short-, middle-, and long-dendrite unipolar brush cells could be distinguished. The validity of this classification was supported using cluster analysis suggesting the presence of several natural types of these cells. The distribution of Ca2+-binding proteins in the cerebellar cortex of the cetaceans studied was generally similar to that reported for terrestrial mammals, suggesting that this trait is evolutionarily conservative in mammals.
Collapse
Affiliation(s)
- Sergei G Kalinichenko
- Laboratory of Cell Physiology, Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia
| | | |
Collapse
|
18
|
Reversal of the expression pattern of Aldolase C mRNA in Purkinje cells and Ube 1x mRNA in Golgi cells by a dopamine D1 receptor agonist injections in the methamphetamine sensitized-rat cerebellum. J Neural Transm (Vienna) 2008; 115:959-71. [PMID: 18299792 DOI: 10.1007/s00702-008-0032-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 02/01/2008] [Indexed: 12/24/2022]
Abstract
The cerebellum has a parasagittal modular structure, in which Zebrin (Aldolase) positive and negative bands expressed in Purkinje cell layers alternate, and is involved in amphetamine psychosis. Administration of SKF38393, a D1 receptor agonist, reversed the behavioral sensitization of methamphetamine. In the vermis, there were the binding sites of SKF38393. In methamphetamine-sensitized rats the expression of the Aldolase mRNA positive bands move laterally in the rat vermis. We provide here the evidence that the D1 agonist injections also reversed the expression pattern of both the Aldolase mRNA in Purkinje cells and Ube (ubiquitin activating enzyme) 1x mRNA in Golgi interneurons of the sensitized rats. Thus the reverse changes in gene expression pattern in the vermis may be involved in the mechanisms of the behavioral plasticity and suggests the new treatment of drug abuse.
Collapse
|
19
|
Engrailed2 and Cerebellar Development in the Pathogenesis of Autism Spectrum Disorders. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2008. [DOI: 10.1007/978-1-60327-489-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Kurnellas MP, Lee AK, Li H, Deng L, Ehrlich DJ, Elkabes S. Molecular alterations in the cerebellum of the plasma membrane calcium ATPase 2 (PMCA2)-null mouse indicate abnormalities in Purkinje neurons. Mol Cell Neurosci 2006; 34:178-88. [PMID: 17150372 PMCID: PMC2561181 DOI: 10.1016/j.mcn.2006.10.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 10/17/2006] [Accepted: 10/19/2006] [Indexed: 12/25/2022] Open
Abstract
PMCA2, a major calcium pump, is expressed at particularly high levels in Purkinje neurons. Accordingly, PMCA2-null mice exhibit ataxia suggesting cerebellar pathology. It is not yet known how changes in PMCA2 expression or activity affect molecular pathways in Purkinje neurons. We now report that the levels of metabotropic glutamate receptor 1 (mGluR1), which plays essential roles in motor coordination, synaptic plasticity, and associative learning, are reduced in the cerebellum of PMCA2-null mice as compared to wild type littermates. The levels of inositol 1,4,5-triphosphate receptor type 1 (IP3R1), an effector downstream to mGluR1, which mediates intracellular calcium signaling, and the expression of Homer 1b/c and Homer 3, scaffold proteins that couple mGluR1 to IP3R1, are also reduced in somata and dendrites of some Purkinje cell subpopulations. In contrast, no alterations occur in the levels of mGluR1 and its downstream effectors in the hippocampus, indicating that the changes are region specific. The reduction in cerebellar mGluR1, IP3R1 and Homer 3 levels are neither due to a generic decrease in Purkinje proteins nor extensive dendritic loss as immunoreactivity to total and non-phosphorylated neurofilament H (NFH) is increased in Purkinje dendrites and microtubule associated protein 2 (MAP2) staining reveals a dense dendritic network in the molecular layer of the PMCA2-null mouse cerebellum. PMCA2 coimmunoprecipitates with mGluR1, Homer 3 and IP3R1, suggesting that the calcium pump is a constituent of the mGluR1 signaling complex. Our results suggest that the decrease in the expression of mGluR1 and its downstream effectors and perturbations in the mGluR1 signaling complex in the absence of PMCA2 may cumulatively result in aberrant metabotropic glutamate receptor signaling in Purkinje neurons leading to cerebellar deficits in the PMCA2-null mouse.
Collapse
Affiliation(s)
- Michael P. Kurnellas
- Department of Neurology and Neuroscience, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ
- Neurology Service, Veterans Affairs, East Orange, NJ
| | - Amanda K. Lee
- Department of Neurology and Neuroscience, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ
- Neurology Service, Veterans Affairs, East Orange, NJ
| | - Hong Li
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ
| | - Longwen Deng
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ
| | - Debra J. Ehrlich
- Department of Neurology and Neuroscience, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ
- Neurology Service, Veterans Affairs, East Orange, NJ
| | - Stella Elkabes
- Department of Neurology and Neuroscience, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ
- Neurology Service, Veterans Affairs, East Orange, NJ
| |
Collapse
|
21
|
Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol 2006; 78:272-303. [PMID: 16759785 DOI: 10.1016/j.pneurobio.2006.02.006] [Citation(s) in RCA: 556] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 02/21/2006] [Indexed: 11/17/2022]
Abstract
Shortly after John Eccles completed his studies of synaptic inhibition in the spinal cord, for which he was awarded the 1963 Nobel Prize in physiology/medicine, he opened another chapter of neuroscience with his work on the cerebellum. From 1963 to 1967, Eccles and his colleagues in Canberra successfully dissected the complex neuronal circuitry in the cerebellar cortex. In the 1967 monograph, "The Cerebellum as a Neuronal Machine", he, in collaboration with Masao Ito and Janos Szentágothai, presented blue-print-like wiring diagrams of the cerebellar neuronal circuitry. These stimulated worldwide discussions and experimentation on the potential operational mechanisms of the circuitry and spurred theoreticians to develop relevant network models of the machinelike function of the cerebellum. In following decades, the neuronal machine concept of the cerebellum was strengthened by additional knowledge of the modular organization of its structure and memory mechanism, the latter in the form of synaptic plasticity, in particular, long-term depression. Moreover, several types of motor control were established as model systems representing learning mechanisms of the cerebellum. More recently, both the quantitative preciseness of cerebellar analyses and overall knowledge about the cerebellum have advanced considerably at the cellular and molecular levels of analysis. Cerebellar circuitry now includes Lugaro cells and unipolar brush cells as additional unique elements. Other new revelations include the operation of the complex glomerulus structure, intricate signal transduction for synaptic plasticity, silent synapses, irregularity of spike discharges, temporal fidelity of synaptic activation, rhythm generators, a Golgi cell clock circuit, and sensory or motor representation by mossy fibers and climbing fibers. Furthermore, it has become evident that the cerebellum has cognitive functions, and probably also emotion, as well as better-known motor and autonomic functions. Further cerebellar research is required for full understanding of the cerebellum as a broad learning machine for neural control of these functions.
Collapse
Affiliation(s)
- Masao Ito
- RIKEN Brain Science Institute, Wako, Saitama, Japan.
| |
Collapse
|
22
|
Maex R, De Schutter E. Oscillations in the cerebellar cortex: a prediction of their frequency bands. PROGRESS IN BRAIN RESEARCH 2005; 148:181-8. [PMID: 15661190 DOI: 10.1016/s0079-6123(04)48015-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Local recurrent connections endow the cerebellar cortex with an intrinsic dynamics. We performed computer simulations to predict the frequency bands of the oscillations that will most likely emerge. Feedback inhibition from the Golgi to the granule cells induced 10-50 Hz oscillations, the period at resonance being approximately equal to four times the maximum conduction delay generated along the parallel-fiber connections from granule to Golgi cells. In the molecular layer, the interneurons tended to induce fast oscillations (100-250 Hz), having a period equal to about four times the delay over their reciprocal synaptic connections. Finally, although the presence of lateral inhibition among the Purkinje cells has not been firmly established, reciprocal Purkinje-cell synapses are predicted to transform the cerebellar cortex into a potential temporal integrator.
Collapse
Affiliation(s)
- Reinoud Maex
- Laboratory of Theoretical Neurobiology, Born-Bunge Foundation, University of Antwerp, B-2610 Antwerp, Belgium
| | | |
Collapse
|
23
|
Hunt D, Coffin RS, Prinjha RK, Campbell G, Anderson PN. Nogo-A expression in the intact and injured nervous system. Mol Cell Neurosci 2004; 24:1083-102. [PMID: 14697671 DOI: 10.1016/j.mcn.2003.09.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The expression of Nogo-A mRNA and protein in the nervous system of adult rats and cultured neurons was studied by in situ hybridisation and immunohistochemistry. Nogo-A mRNA was expressed by many cells in unoperated animals, including spinal motor, DRG, and sympathetic neurons, retinal ganglion cells, and neocortical, hippocampal, and Purkinje neurons. Nogo-A protein was strongly expressed by presumptive oligodendrocytes, but not by NG2+glia and was abundant in motor, DRG, and sympathetic neurons, retinal ganglion cells, and many Purkinje cells, but was difficult to detect in dentate gyrus neurons and some neocortical neurons. Cultured fetal mouse neocortical neurons and adult rat DRG neurons strongly expressed Nogo-A in their perikarya, growth cones, and axonal varicosities. All axons in the intact sciatic nerve contained Nogo-A and many but not all regenerating axons were strongly Nogo-A immunopositive after sciatic nerve transection. Ectopic muscle fibres that developed among the regenerating axons were also Nogo-A immunopositive. Following injury to the spinal cord, Nogo-A mRNA was upregulated around the lesion and Nogo-A protein was strongly expressed in injured dorsal column fibres and their sprouts which entered the lesion site. Following optic nerve crush, Nogo-A accumulated in the proximal and distal stumps bordering the lesions.
Collapse
Affiliation(s)
- David Hunt
- Department of Immunology and Molecular Pathology, Windeyer Institute, University College London, Cleveland Street, London W1T 4JF, UK.
| | | | | | | | | |
Collapse
|
24
|
Hamamura M, Watanabe S, Fukumaki Y. Selective changes in the shapes of parasagittal bands of Aldoc (Zebrin) mRNA in the rat vermis of the cerebellum after repeated methamphetamine injections. CEREBELLUM (LONDON, ENGLAND) 2004; 3:236-47. [PMID: 15686102 DOI: 10.1080/14734220410019066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the cerebellum the mossy and climbing projections, which excite Purkinje cells, display a parasagittal and striped organization. These projections also excite Zebrin (aldolase C: Aldoc) parasagittally. To evaluate the possibility that external stimuli can change the organization of the bands of Aldoc mRNA, we compared the effects of repeated methamphetamine administration on the Aldoc mRNA stripes in the four transverse (anterior, central, posterior and nodular) regions of the vermis with the effects on the glutamate transporter EAAT4 (SCL1A 6) mRNA stripes. In the posterior region the injections four times daily increased the fragmentation of the Aldoc mRNA stripes. The presence of a large amount of fragmentation (forty/cerebellum slice), was accompanied with large lateral dislocations of the Aldoc mRNA stripes. In the central and nodular regions, where the size of the stripe areas decreased significantly the stripes were dislocated laterally. The dislocations of the Aldoc mRNA bands did not occur after a single methamphetamine injection and thus repeated injections were necessary to change the distributions of the lateral bands. In contrast, the distributions of the SCL1A 6 mRNA stripes did not change, even though there was mild fragmentation (six/slice) of the SLC1A 6 mRNA stripes in the anterior region and decreases in the numbers (twelve/slice) in the nodular region. We concluded that excess dopamine selectively changes the location of the Aldoc mRNA compartments in the vermis while the SLC1A 6 mRNA stripes could be changed by other inputs and thus the specific transmitter system might change the specific compartment of the cerebellum.
Collapse
Affiliation(s)
- Mitsuko Hamamura
- Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| | | | | |
Collapse
|
25
|
Cell-autonomous mechanisms and myelin-associated factors contribute to the development of Purkinje axon intracortical plexus in the rat cerebellum. J Neurosci 2003. [PMID: 12805301 DOI: 10.1523/jneurosci.23-11-04613.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The highly specific connection patterns of the mature CNS are shaped through finely regulated processes of axon growth and retraction. To investigate the relative contribution of cell-autonomous mechanisms and extrinsic cues in these events, we examined the development of Purkinje axon intracortical plexus in the rat cerebellum. During the first postnatal week, several new processes sprout from focal swellings along the initial portion of the Purkinje neurite and spread in the granular layer. Intense structural plasticity occurs during the following week, with pruning of collateral branches and remodeling of terminal arbors. The mature distribution of the Purkinje infraganglionic plexus, confined within the most superficial portion of the granular layer, is attained at approximately postnatal day 15. A similar neuritic branching pattern is also developed by Purkinje cells grown in cultures of dissociated cerebellar cells or transplanted to extracerebellar CNS regions, suggesting that cell-autonomous mechanisms contribute to determining the Purkinje axon phenotype. The structural remodeling of Purkinje intracortical plexus is concomitant with the development of cerebellar myelin. To ask whether myelin-associated factors contribute to the morphological maturation of Purkinje neurites, we prevented normal myelinogenesis by killing oligodendrocyte precursors with 5'-azacytidine or by applying neutralizing antibodies against the myelin-associated neurite growth inhibitor Nogo-A. In both conditions, Purkinje axons retained exuberant branches, and the terminal plexus spanned the entire extent of the granular layer. Thus, the formation of Purkinje axon collaterals is, in part, controlled by intrinsic determinants, but their growth and distribution are regulated by environmental signals, among which are myelin-derived cues.
Collapse
|
26
|
Jörntell H, Ekerot CF. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 2002; 34:797-806. [PMID: 12062025 DOI: 10.1016/s0896-6273(02)00713-4] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The highly specific relationships between parallel fiber (PF) and climbing fiber (CF) receptive fields in Purkinje cells and interneurons suggest that normal PF receptive fields are established by CF-specific plasticity. To test this idea, we used PF stimulation that was either paired or unpaired with CF activity. Conspicuously, unpaired PF stimulation that induced long-lasting, very large increases in the receptive field sizes of Purkinje cells induced long-lasting decreases in receptive field sizes of their afferent interneurons. In contrast, PF stimulation paired with CF activity that induced long-lasting decreases in the receptive fields of Purkinje cells induced long-lasting, large increases in the receptive fields of interneurons. These properties, and the fact the mossy fiber receptive fields were unchanged, suggest that the receptive field changes were due to bidirectional PF synaptic plasticity in Purkinje cells and interneurons.
Collapse
Affiliation(s)
- Henrik Jörntell
- Department of Physiological Sciences, Section for Neurophysiology, Lund University, The Biomedical Center F10, Tornavägen 10, SE-221 84, Sweden.
| | | |
Collapse
|
27
|
Okhotin VE, Kalinichenko SG. Localization of NO synthase in Lugaro cells and the mechanisms of NO-ergic interaction between inhibitory interneurons in the rabbit cerebellum. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2000; 30:525-33. [PMID: 11037143 DOI: 10.1007/bf02462610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- V E Okhotin
- Laboratory for Neurogenetics and Developmental Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
28
|
Abstract
Xenobiotic-induced neuroanatomic alterations are always regarded as adverse and are commonly used to define reference doses to manage neurotoxic risk. Thus, the neuropathologist plays an essential role in evaluating potential neurotoxicants. The pathologist must be able to recognize the morphologic differences that exist among species, strains, and ages or between genders (comparative neuroanatomy) and to grasp the impact of structural damage on neural function (correlative neuroanatomy). Brain anatomy and function may be used to group the mammals used in neurotoxicity bioassays into 3 classes: rodent, carnivore, and primate. Neural function may or may not be affected by the structural divergence. Rodents are preferred for neurotoxicity assays because their reduced body size allows optimal perfusion at little cost and their smaller brain size permits screening of multiple regions using few sections. However, care must be exercised when interpreting rodent neuropathology data because the rodent paleocortex does not recapitulate the sophisticated neocortical circuitry and functions of carnivores and primates. Knowledge of the neuroanatomic variations that exist among test species assists the neuropathologist in defining the relevance of structural alterations, the potential clinical sequelae of such findings, and the possible significance of similar changes in humans.
Collapse
Affiliation(s)
- B Bolon
- Amgen, Inc, Thousand Oaks, California 91320, USA.
| |
Collapse
|
29
|
Margeta-Mitrovic M, Mitrovic I, Riley RC, Jan LY, Basbaum AI. Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. J Comp Neurol 1999; 405:299-321. [PMID: 10076927 DOI: 10.1002/(sici)1096-9861(19990315)405:3<299::aid-cne2>3.0.co;2-6] [Citation(s) in RCA: 274] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The recent cloning of two gamma-aminobutyric acid(B) (GABA(B)) receptor isoforms (GABA(B)R1a/b), which are probably splice variants of the same gene transcript, allowed us to develop an antiserum that recognized the receptors in fixed tissue and to map their distribution in the rat central nervous system (CNS). We also investigated whether GABA(B)R1 colocalizes with glutamic acid decarboxylase (GAD), a marker of GABAergic cell bodies and terminals. Although GABA(B)R1-like immunoreactivity (GABA(B)R1-LI) was distributed throughout the CNS, several distinct distribution patterns emerged: (1) all monoaminergic brainstem cell groups appeared to contain very high levels of GABA(B)R1, (2) a very high intensity of GABA(B)R1-LI was observed in the majority of the cholinergic regions in the CNS, with exception of motoneurons of the third through sixth cranial nerve nuclei, and (3) a low density of the receptor was observed in most of the nuclei that contain cell bodies of GABAergic projection neurons. The highest GABA(B)R1 labeling was observed in the thalamus, interpeduncular nucleus and medial habenula. Cell bodies were labeled throughout the neuroaxis. We also observed dense neuropil labeling in many regions, suggesting that this receptor is localized in dendrites and/or axon terminals. However, in immunofluorescent double-labeling experiments for GABA(B)R1 and GAD, we never observed GABA(B)R1-LI in GAD-positive axon terminals; this result suggests that the GABA(B)R1 may not function as an autoreceptor. Double labeling was observed in the cell bodies of Purkinje neurons and in some interneurons. In general, the immunohistochemical localization of the GABA(B)R1 correlates well with physiologic and autoradiographic data on the distribution of GABA(B) receptors, but some critical differences were noted. Thus, it is likely that additional GABA(B) receptor subtypes remain to be identified.
Collapse
Affiliation(s)
- M Margeta-Mitrovic
- Department of Physiology, Howard Hughes Medical Institute, University of California San Francisco, 94143, USA
| | | | | | | | | |
Collapse
|
30
|
Arnold DB, Heintz N. A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells. Proc Natl Acad Sci U S A 1997; 94:8842-7. [PMID: 9238065 PMCID: PMC23159 DOI: 10.1073/pnas.94.16.8842] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Calbindin D28 encodes a calcium binding protein that is expressed in the cerebellum exclusively in Purkinje cells. We have used biolistic transfection of organotypic slices of P12 cerebellum to identify a 40-bp element from the calbindin promoter that is necessary and sufficient for Purkinje cell specific expression in this transient in situ assay. This element (PCE1) is also present in the calmodulin II promoter, which regulates expression of a second Purkinje cell Ca2+ binding protein. Expression of high levels of exogenous calbindin or calretinin decreased transcription mediated by PCE1 in Purkinje cells 2.5- to 3-fold, whereas the presence of 1 microM ionomycin in the extracellular medium increased expression. These results demonstrate that PCE1 is a component of a cell-specific and Ca2+-sensitive transcriptional regulatory mechanism that may play a key role in setting the Ca2+ buffering capacity of Purkinje cells.
Collapse
Affiliation(s)
- D B Arnold
- The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
31
|
Sanlioglu-Crisman S, Oberdick J. Functional cloning of candidate genes that regulate Purkinje cell-specific gene expression. PROGRESS IN BRAIN RESEARCH 1997; 114:3-19. [PMID: 9193135 DOI: 10.1016/s0079-6123(08)63355-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Abstract
The concept of developmental compartments originated in studies of Drosophila embryogenesis. This review examines the hypothesis that the modular structure of the vertebrate cerebellum is strongly analogous to this earlier scheme. The pattern of cerebellar development, the adult circuitry, a variety of molecular markers expressed in specific subdivisions, and the phenotypes of several neurological mutations all provide abundant evidence that the vertebrate cerebellum is organized into modules. We present the case that, as a group, these markers reveal distinct boundaries that partition the cerebellum into true developmental compartments. Although this reductionist viewpoint advances our understanding of cerebellar organization, the relationship between these compartments and the functional behavior of the cerebellum remains a mystery.
Collapse
Affiliation(s)
- K Herrup
- Department of Neurology, Case Western Reserve School of Medicine, Cleveland, Ohio 44120, USA
| | | |
Collapse
|
33
|
|
34
|
Ji Z, Hawkes R. Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections. Neuroscience 1994; 61:935-54. [PMID: 7530818 DOI: 10.1016/0306-4522(94)90414-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The cerebellar cortex is histologically uniform by conventional staining techniques, but contains an elaborate topography. In particular, on the efferent side the cerebellar cortex can be subdivided into multiple parasagittal compartments based upon the selective expression by Purkinje cell subsets of various molecules, for example the polypeptide antigens zebrin I and II, and on the afferent side many mossy fibers terminate as parasagittal bands of terminals. The relationships between mossy fiber terminal fields and Purkinje cell compartments are important for a full understanding of cerebellar structure and function. In this study the locations of spino- and cuneocerebellar mossy fiber terminal fields in lobules II and III of the rat cerebellum are compared to the compartmentation of the Purkinje cells as revealed by using zebrin II immunocytochemistry. Wheat germ agglutinin-horseradish peroxidase was injected at three different levels in the spinal cord and in the external cuneate nucleus, and the terminal field distributions in lobules II and III of the cerebellar cortex were compared with the Purkinje cell compartmentation. In the anterior lobe, zebrin II immunocytochemistry reveals three prominent, narrow immunoreactive bands of Purkinje cells, P1+ at the midline and P2+ laterally at each side. These are separated and flanked by wide zebrin- compartments (P1- and P2-). There are also less strongly stained P3+ and P4+ bands more laterally. The spinocerebellar terminals in the granular layer are distributed as parasagittally oriented bands. Projections from the lumbar region of the spinal cord terminate in five bands, one at the midline (L1), a second with its medial border midway across P1- and its lateral border at the P2+/P2- interface (L2), and a third extending laterally from midway across P2-. The lateral edge of L3 may align with the P3+/P3- border. The terminal fields labeled by a tracer injection into the thoracic region give a very similar distribution (T1, T2 and T3). The only systematic difference is in T2, which statistical analysis suggests may be broader than L2. In contrast, anterograde tracer injections into the cervical region label synaptic glomeruli scattered throughout the lobule with much weaker or no evidence of banding. The terminal fields of the cuneocerebellar projection have a complementary distribution to those of thoracic and lumbar spinocerebellar terminals. There are two lateral bands, Cu2 and Cu3. Cu2 lies within the Purkinje cell P1-compartment, abutting L1/T1 medially and L2/T2 laterally. Cu3 lies between L2 and L3 within the P2- Purkinje cell compartment. The medial edge of Cu3 is tightly aligned with the P2+/P2- border.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Z Ji
- Department of Anatomy, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
35
|
Bernard C, Axelrad H. Effects of recurrent collateral inhibition on Purkinje cell activity in the immature rat cerebellar cortex--an in vivo electrophysiological study. Brain Res 1993; 626:234-58. [PMID: 8281434 DOI: 10.1016/0006-8993(93)90584-a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We present here a study on the effects of inhibitory recurrent collaterals of Purkinje cell (PC) axons on the activity of the immature rat cerebellar cortex. Simultaneous extracellular recordings of pairs of PCs were performed in rat pups aged 5-8 days postnatal. Bicuculline was applied to the surface of the cortex in order to functionally antagonize PC recurrent collaterals. At this early developmental stage these are the only inhibitory links in the network. Dye marks from the microelectrode tips and 3D serial-section reconstruction of the structure allowed the exact determination of the distance separating recorded cells and of their respective orientation in the cortex. Standard statistical tests and an informational entropy index were used to calculate levels of cooperativity. By comparing PC activity under control conditions and after bicuculline superfusion it is shown that recurrent collateral inhibition has a structurating effect on the PC activity and that it increases the informational content of the network. Inhibition decreases the activity of the cells by 35% and drastically changes the interspike interval histograms. This leads to a more constrained state of the system. Three types of coupling via recurrent collaterals are present: symmetrical, asymmetrical or non existent. The exact type of coupling follows a simple vicinity rule and strongly influences the cooperativity level between the recorded cells. This cooperativity was also found to be spatially compartmentalized. Several pairs were driven by common inputs via climbing fibers or parallel fibers. Using the predictive value of a theoretical model of this immature structure we propose a complementary explanation of the role of the recurrent collaterals at this stage of development: that of a spatial and temporal filter, specific to each different microzone.
Collapse
Affiliation(s)
- C Bernard
- Department of Physiology and Pharmacology, Southampton University, UK
| | | |
Collapse
|
36
|
Bernard C, Axelrad H, Giraud BG. Effects of collateral inhibition in a model of the immature rat cerebellar cortex: multineuron correlations. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 1993; 1:100-22. [PMID: 8513240 DOI: 10.1016/0926-6410(93)90016-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A model of the immature rat cerebellar cortex is used to simulate the effect of the inhibitory recurrent collateral axons of the Purkinje cells on the spike trains in the network. Inhibition induces an important overall change in the statistical characteristics of individual spike trains. It is also instrumental in producing a strong cooperativity between the different neurons. Moreover, a functional spatial anisotropy appears. A specific entropy index is used to analyze levels of information transfer between clustered and faraway neurons in the network. The formatting effect of recurrent collateral inhibition on spike trains and on network functional dynamics is studied by means of a model of the newborn rat cerebellar cortex. This immature structure has simpler morphological characteristics and fewer physiological parameters than the adult one. It is thus a good candidate for the comparison between experimental and theoretical data. The model network is made of 256 formal neurons (FN), arranged in a square lattice. Each neuron is coupled to its eight nearest neighbors by inhibitory links. All the parameters of the different elements of the model--in particular integration of inhibitory and excitatory inputs--are given anatomical and physiological values derived from biological data. Activities of single FNs and correlations between spatially distant ones are analyzed with classical statistical techniques as well as with a specific informational entropy method we introduce. Simulation results indicate that inhibition is instrumental in: (1) the transformation of the spike train characteristics. This includes a lengthening of the mean interspike interval as well as an overall change in the statistical distribution of intervals, with an emergence of long-lasting ones; (2) the functional structuration of the network. Inhibitory connections between nearest neighbors induce a strong cooperativity between FNs. Furthermore a clear spatial anisotropy occurs in the functioning of the network, with inhibitory effects extending beyond local connectivity in preferential directions. We propose an interpretation of this functional structuration in terms of the various routes followed by the inhibition, including relay effects. The parameters of the model (levels of activities, inhibition rules and connectivities) were varied in order to test the robustness of the above results. Finally, the results are compared with those obtained in an experimental situation.
Collapse
Affiliation(s)
- C Bernard
- Laboratoire de Neurophysiologie, Faculté de Médecine Pitié-Salpêtriére, Paris, France
| | | | | |
Collapse
|
37
|
Lolova I, Davidoff M. Age-related changes in cholinergic and noradrenergic transmission in the rat cerebellum. A histochemical and immunocytochemical study. Ann Anat 1992; 174:453-60. [PMID: 1449223 DOI: 10.1016/s0940-9602(11)80273-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The histochemical and immunocytochemical distribution of some cholinergic and noradrenergic markers was compared in the cerebellum of young adult (3-month old) and aged (24-month old) Wistar rats. A decrease in the density and staining of acetyl cholinesterase (AChE) positive fibers, puncta and Golgi cells was found in both the cerebellar cortex and nuclei of aged rats. The age-related changes in choline acetyltransferase immunoreactivity were less pronounced than the changes in AChE activity. A reduction in the density of catecholamine fluorescent fibers and puncta was observed in the cerebellar cortex during aging. In aged rats the increase in monoamine oxidase (MAO)-A activity was more pronounced than the increase in MAO-B activity.
Collapse
Affiliation(s)
- I Lolova
- Institute of Physiology Bulgarian Academy of Sciences, Sofia
| | | |
Collapse
|
38
|
Affiliation(s)
- R Hawkes
- Department of Anatomy, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
39
|
Brochu G, Maler L, Hawkes R. Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 1990; 291:538-52. [PMID: 2329190 DOI: 10.1002/cne.902910405] [Citation(s) in RCA: 384] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Monoclonal antibody mab-zebrin II was generated against a crude homogenate of cerebellum and electrosensory lateral line lobe from the weakly electric fish Apteronotus leptorhynchus. On Western blots of fish cerebellar proteins, mab-zebrin II recognizes a single polypeptide antigen of apparent molecular weight 36 kD. Immunocytochemistry of apteronotid brains reveals that zebrin II immunoreactivity is confined exclusively to Purkinje cells in the corpus cerebelli, lateral valvula cerebelli, and the eminentia granularis anterior. Other Purkinje cells, in the medial valvula cerebelli and eminentia granularis posterior, are not zebrin II immunoreactive. Immunoreactive Purkinje cells are stained completely, including dendrites, axons, and somata. The antigen seems to be absent only from the nucleus. A similar distribution is seen in catfish, goldfish, and a mormyrid fish. Zebrin II immunoreactivity is also found in the rat cerebellum. Western blotting of rat cerebellar proteins reveals a single immunoreactive polypeptide, with apparent molecular weight 36 kD, as in the fish. Also as in the fish, staining in the adult rat cerebellum is confined to a subset of Purkinje cells. Peroxidase reaction product is deposited throughout the immunoreactive Purkinje cells with the exception of the nucleus. No other cells in the cerebellum express zebrin II. At higher antibody concentrations, a weak glial cross reactivity is seen in most other brain regions: we believe that this is probably nonspecific. Zebrin II+ Purkinje cells are clustered together to form roughly parasagittal bands interposed by similar nonimmunoreactive clusters. In all there are 7 zebrin II+ and 7 zebrin II- compartments in each hemicerebellum. One immunoreactive band is adjacent to the midline; two others are disposed laterally to each side in the vermis; there is a paravermal band; and finally three more bands are identified in each hemisphere. Both in number and position, these compartments correspond precisely to the bands revealed by using another antibody, mabQ113 (anti-zebrin I). In both fish and rat the compartmentation revealed by zebrin II immunocytochemistry is related to the organization of cerebellar afferent and efferent projections and may provide clues as to the fundamental architecture of the vertebrate cerebellum.
Collapse
Affiliation(s)
- G Brochu
- Department of Biochemistry, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | |
Collapse
|