1
|
Berg MJ, Veeranna, Rosa CM, Kumar A, Mohan PS, Stavrides P, Marchionini DM, Yang DS, Nixon RA. Pathobiology of the autophagy-lysosomal pathway in the Huntington's disease brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596470. [PMID: 38854113 PMCID: PMC11160756 DOI: 10.1101/2024.05.29.596470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Accumulated levels of mutant huntingtin protein (mHTT) and its fragments are considered contributors to the pathogenesis of Huntington's disease (HD). Although lowering mHTT by stimulating autophagy has been considered a possible therapeutic strategy, the role and competence of autophagy-lysosomal pathway (ALP) during HD progression in the human disease remains largely unknown. Here, we used multiplex confocal and ultrastructural immunocytochemical analyses of ALP functional markers in relation to mHTT aggresome pathology in striatum and the less affected cortex of HD brains staged from HD2 to HD4 by Vonsattel neuropathological criteria compared to controls. Immunolabeling revealed the localization of HTT/mHTT in ALP vesicular compartments labeled by autophagy-related adaptor proteins p62/SQSTM1 and ubiquitin, and cathepsin D (CTSD) as well as HTT-positive inclusions. Although comparatively normal at HD2, neurons at later HD stages exhibited progressive enlargement and clustering of CTSD-immunoreactive autolysosomes/lysosomes and, ultrastructurally, autophagic vacuole/lipofuscin granules accumulated progressively, more prominently in striatum than cortex. These changes were accompanied by rises in levels of HTT/mHTT and p62/SQSTM1, particularly their fragments, in striatum but not in the cortex, and by increases of LAMP1 and LAMP2 RNA and LAMP1 protein. Importantly, no blockage in autophagosome formation and autophagosome-lysosome fusion was detected, thus pinpointing autophagy substrate clearance deficits as a basis for autophagic flux declines. The findings collectively suggest that upregulated lysosomal biogenesis and preserved proteolysis maintain autophagic clearance in early-stage HD, but failure at advanced stages contributes to progressive HTT build-up and potential neurotoxicity. These findings support the prospect that ALP stimulation applied at early disease stages, when clearance machinery is fully competent, may have therapeutic benefits in HD patients.
Collapse
|
2
|
Stavrides P, Goulbourne CN, Peddy J, Huo C, Rao M, Khetarpal V, Marchionini DM, Nixon RA, Yang DS. mTOR inhibition in Q175 Huntington's disease model mice facilitates neuronal autophagy and mutant huntingtin clearance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596471. [PMID: 38854023 PMCID: PMC11160779 DOI: 10.1101/2024.05.29.596471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Huntington's disease (HD) is caused by expansion of the polyglutamine stretch in huntingtin protein (HTT) resulting in hallmark aggresomes/inclusion bodies (IBs) composed of mutant huntingtin protein (mHTT) and its fragments. Stimulating autophagy to enhance mHTT clearance is considered a potential therapeutic strategy for HD. Our recent evaluation of the autophagic-lysosomal pathway (ALP) in human HD brain reveals upregulated lysosomal biogenesis and relatively normal autophagy flux in early Vonsattel grade brains, but impaired autolysosome clearance in late grade brains, suggesting that autophagy stimulation could have therapeutic benefits as an earlier clinical intervention. Here, we tested this hypothesis by crossing the Q175 HD knock-in model with our autophagy reporter mouse TRGL ( T hy-1- R FP- G FP- L C3) to investigate in vivo neuronal ALP dynamics. In the Q175 and/or TRGL/Q175 mice, mHTT was detected in autophagic vacuoles and also exhibited high level colocalization with autophagy receptors p62/SQSTM1 and ubiquitin in the IBs. Compared to the robust lysosomal pathology in late-stage human HD striatum, ALP alterations in Q175 models are also late-onset but milder that included a lowered phospho-p70S6K level, lysosome depletion and autolysosome elevation including more poorly acidified autolysosomes and larger-sized lipofuscin granules, reflecting impaired autophagic flux. Administration of a mTOR inhibitor to 6-mo-old TRGL/Q175 normalized lysosome number, ameliorated aggresome pathology while reducing mHTT-, p62- and ubiquitin-immunoreactivities, suggesting beneficial potential of autophagy modulation at early stages of disease progression.
Collapse
|
3
|
Yuyama K, Sun H, Fujii R, Hemmi I, Ueda K, Igeta Y. Extracellular vesicle proteome unveils cathepsin B connection to Alzheimer's disease pathogenesis. Brain 2024; 147:627-636. [PMID: 38071653 PMCID: PMC10834236 DOI: 10.1093/brain/awad361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 02/03/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles that are released extracellularly and considered to be implicated in the pathogenesis of neurodegenerative diseases including Alzheimer's disease. Here, CSF EVs of 16 ATN-classified cases were subjected to quantitative proteome analysis. In these CSF EVs, levels of 11 proteins were significantly altered during the ATN stage transitions (P < 0.05 and fold-change > 2.0). These proteins were thought to be associated with Alzheimer's disease pathogenesis and represent candidate biomarkers for pathogenic stage classification. Enzyme-linked immunosorbent assay analysis of CSF and plasma EVs revealed altered levels of cathepsin B (CatB) during the ATN transition (seven ATN groups in validation set, n = 136). The CSF and plasma EV CatB levels showed a negative correlation with CSF amyloid-β42 concentrations. This proteomic landscape of CSF EVs in ATN classifications can depict the molecular framework of Alzheimer's disease progression, and CatB may be considered a promising candidate biomarker and therapeutic target in Alzheimer's disease amyloid pathology.
Collapse
Affiliation(s)
- Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hui Sun
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Risa Fujii
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 035-8550, Japan
| | - Isao Hemmi
- Department of Nursing, Japanese Red Cross College of Nursing, Tokyo 150-0012, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 035-8550, Japan
| | - Yukifusa Igeta
- Department of Dementia, Dementia Center, Toranomon Hospital, Tokyo 105-8470, Japan
- Division of Dementia Research, Okinaka Memorial Institute for Medical Research, Tokyo 105-8470, Japan
| |
Collapse
|
4
|
Rose SE, Williams CA, Hailey DW, Mishra S, Kirkland A, Keene CD, Garden GA, Jayadev S, Young JE. Advancements in high-resolution 3D microscopy analysis of endosomal morphology in postmortem Alzheimer's disease brains. Front Neurosci 2024; 17:1321680. [PMID: 38292900 PMCID: PMC10824887 DOI: 10.3389/fnins.2023.1321680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Abnormal endo-lysosomal morphology is an early cytopathological feature of Alzheimer's disease (AD) and genome-wide association studies (GWAS) have implicated genes involved in the endo-lysosomal network (ELN) as conferring increased risk for developing sporadic, late-onset AD (LOAD). Characterization of ELN pathology and the underlying pathophysiology is a promising area of translational AD research and drug development. However, rigorous study of ELN vesicles in AD and aged control brains poses a unique constellation of methodological challenges due in part to the small size of these structures and subsequent requirements for high-resolution imaging. Here we provide a detailed protocol for high-resolution 3D morphological quantification of neuronal endosomes in postmortem AD brain tissue, using immunofluorescent staining, confocal imaging with image deconvolution, and Imaris software analysis pipelines. To demonstrate these methods, we present neuronal endosome morphology data from 23 sporadic LOAD donors and one aged non-AD control donor. The techniques described here were developed across a range of AD neuropathology to best optimize these methods for future studies with large cohorts. Application of these methods in research cohorts will help advance understanding of ELN dysfunction and cytopathology in sporadic AD.
Collapse
Affiliation(s)
- Shannon E. Rose
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA,United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - C. Andrew Williams
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA,United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Dale W. Hailey
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA,United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Amanda Kirkland
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA,United States
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA,United States
| | - Gwenn A. Garden
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Suman Jayadev
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
- Department of Neurology, University of Washington, Seattle, WA, United States
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA,United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Yoon M, Phan V, Podvin S, Mosier C, O’Donoghue AJ, Hook V. Distinct Cleavage Properties of Cathepsin B Compared to Cysteine Cathepsins Enable the Design and Validation of a Specific Substrate for Cathepsin B over a Broad pH Range. Biochemistry 2023; 62:2289-2300. [PMID: 37459182 PMCID: PMC10399199 DOI: 10.1021/acs.biochem.3c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/11/2023] [Indexed: 08/02/2023]
Abstract
The biological and pathological functions of cathepsin B occur in acidic lysosomes and at the neutral pH of cytosol, nuclei, and extracellular locations. Importantly, cathepsin B displays different substrate cleavage properties at acidic pH compared to neutral pH conditions. It is, therefore, desirable to develop specific substrates for cathepsin B that measure its activity over broad pH ranges. Current substrates used to monitor cathepsin B activity consist of Z-Phe-Arg-AMC and Z-Arg-Arg-AMC, but they lack specificity since they are cleaved by other cysteine cathepsins. Furthermore, Z-Arg-Arg-AMC monitors cathepsin B activity at neutral pH and displays minimal activity at acidic pH. Therefore, the purpose of this study was to design and validate specific fluorogenic peptide substrates that can monitor cathepsin B activity over a broad pH range from acidic to neutral pH conditions. In-depth cleavage properties of cathepsin B were compared to those of the cysteine cathepsins K, L, S, V, and X via multiplex substrate profiling by mass spectrometry at pH 4.6 and pH 7.2. Analysis of the cleavage preferences predicted the tripeptide Z-Nle-Lys-Arg-AMC as a preferred substrate for cathepsin B. Significantly, Z-Nle-Lys-Arg-AMC displayed the advantageous properties of measuring high cathepsin B specific activity over acidic to neutral pHs and was specifically cleaved by cathepsin B over the other cysteine cathepsins. Z-Nle-Lys-Arg-AMC specifically monitored cathepsin B activity in neuronal and glial cells which were consistent with relative abundances of cathepsin B protein. These findings validate Z-Nle-Lys-Arg-AMC as a novel substrate that specifically monitors cathepsin B activity over a broad pH range.
Collapse
Affiliation(s)
- Michael
C. Yoon
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, La Jolla, San Diego, California 92093, United States
| | - Von Phan
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, La Jolla, San Diego, California 92093, United States
| | - Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, La Jolla, San Diego, California 92093, United States
- Department
of Neurosciences and Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, California 92093, United States
| |
Collapse
|
6
|
Drummond E, Kavanagh T, Pires G, Marta-Ariza M, Kanshin E, Nayak S, Faustin A, Berdah V, Ueberheide B, Wisniewski T. The amyloid plaque proteome in early onset Alzheimer's disease and Down syndrome. Acta Neuropathol Commun 2022; 10:53. [PMID: 35418158 PMCID: PMC9008934 DOI: 10.1186/s40478-022-01356-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid plaques contain many proteins in addition to beta amyloid (Aβ). Previous studies examining plaque-associated proteins have shown these additional proteins are important; they provide insight into the factors that drive amyloid plaque development and are potential biomarkers or therapeutic targets for Alzheimer's disease (AD). The aim of this study was to comprehensively identify proteins that are enriched in amyloid plaques using unbiased proteomics in two subtypes of early onset AD: sporadic early onset AD (EOAD) and Down Syndrome (DS) with AD. We focused our study on early onset AD as the drivers of the more aggressive pathology development in these cases is unknown and it is unclear whether amyloid-plaque enriched proteins differ between subtypes of early onset AD. Amyloid plaques and neighbouring non-plaque tissue were microdissected from human brain sections using laser capture microdissection and label-free LC-MS was used to quantify the proteins present. 48 proteins were consistently enriched in amyloid plaques in EOAD and DS. Many of these proteins were more significantly enriched in amyloid plaques than Aβ. The most enriched proteins in amyloid plaques in both EOAD and DS were: COL25A1, SMOC1, MDK, NTN1, OLFML3 and HTRA1. Endosomal/lysosomal proteins were particularly highly enriched in amyloid plaques. Fluorescent immunohistochemistry was used to validate the enrichment of four proteins in amyloid plaques (moesin, ezrin, ARL8B and SMOC1) and to compare the amount of total Aβ, Aβ40, Aβ42, phosphorylated Aβ, pyroglutamate Aβ species and oligomeric species in EOAD and DS. These studies showed that phosphorylated Aβ, pyroglutamate Aβ species and SMOC1 were significantly higher in DS plaques, while oligomers were significantly higher in EOAD. Overall, we observed that amyloid plaques in EOAD and DS largely contained the same proteins, however the amount of enrichment of some proteins was different in EOAD and DS. Our study highlights the significant enrichment of many proteins in amyloid plaques, many of which may be potential therapeutic targets and/or biomarkers for AD.
Collapse
Affiliation(s)
- Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA.
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Geoffrey Pires
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Mitchell Marta-Ariza
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Shruti Nayak
- Merck & Co., Inc, Computational & Structural Chemistry, Kenilworth, NJ, USA
| | - Arline Faustin
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Valentin Berdah
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA.
- Departments of Pathology and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Lie PPY, Yang DS, Stavrides P, Goulbourne CN, Zheng P, Mohan PS, Cataldo AM, Nixon RA. Post-Golgi carriers, not lysosomes, confer lysosomal properties to pre-degradative organelles in normal and dystrophic axons. Cell Rep 2021; 35:109034. [PMID: 33910020 DOI: 10.1016/j.celrep.2021.109034] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 01/07/2023] Open
Abstract
Lysosomal trafficking and maturation in neurons remain poorly understood and are unstudied in vivo despite high disease relevance. We generated neuron-specific transgenic mice to track vesicular CTSD acquisition, acidification, and traffic within the autophagic-lysosomal pathway in vivo, revealing that mature lysosomes are restricted from axons. Moreover, TGN-derived transport carriers (TCs), not lysosomes, supply lysosomal components to axonal organelles. Ultrastructurally distinctive TCs containing TGN and lysosomal markers enter axons, engaging autophagic vacuoles and late endosomes. This process is markedly upregulated in dystrophic axons of Alzheimer models. In cultured neurons, most axonal LAMP1 vesicles are weakly acidic TCs that shuttle lysosomal components bidirectionally, conferring limited degradative capability to retrograde organelles before they mature fully to lysosomes within perikarya. The minor LAMP1 subpopulation attaining robust acidification are retrograde Rab7+ endosomes/amphisomes, not lysosomes. Restricted lysosome entry into axons explains the unique lysosome distribution in neurons and their vulnerability toward neuritic dystrophy in disease.
Collapse
Affiliation(s)
- Pearl P Y Lie
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Dun-Sheng Yang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Philip Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Ping Zheng
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Panaiyur S Mohan
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anne M Cataldo
- McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Cell Biology, New York University Langone Medical Center, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
8
|
Oberstein TJ, Utz J, Spitzer P, Klafki HW, Wiltfang J, Lewczuk P, Kornhuber J, Maler JM. The Role of Cathepsin B in the Degradation of Aβ and in the Production of Aβ Peptides Starting With Ala2 in Cultured Astrocytes. Front Mol Neurosci 2021; 13:615740. [PMID: 33510618 PMCID: PMC7836726 DOI: 10.3389/fnmol.2020.615740] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Astrocytes may not only be involved in the clearance of Amyloid beta peptides (Aβ) in Alzheimer's disease (AD), but appear to produce N-terminally truncated Aβ (Aβn−x) independently of BACE1, which generates the N-Terminus of Aβ starting with Asp1 (Aβ1−x). A candidate protease for the generation of Aβn−x is cathepsin B (CatB), especially since CatB has also been reported to degrade Aβ, which could explain the opposite roles of astrocytes in AD. In this study, we investigated the influence of CatB inhibitors and the deletion of the gene encoding CatB (CTSB) using CRISPR/Cas9 technology on Aβ2−x and Aβ1−x levels in cell culture supernatants by one- and two-dimensional Urea-SDS-PAGE followed by immunoblot. While the cell-permeant inhibitors E64d and CA-074 Me did not significantly affect the Aβ1−x levels in supernatants of cultured chicken and human astrocytes, they did reduce the Aβ2−x levels. In the glioma-derived cell line H4, the Aβ2−x levels were likewise decreased in supernatants by treatment with the more specific, but cell-impermeant CatB-inhibitor CA-074, by CA-074 Me treatment, and by CTSB gene deletion. Additionally, a more than 2-fold increase in secreted Aβ1−x was observed under the latter two conditions. The CA-074 Me-mediated increase of Aβ1−x, but not the decrease of Aβ2−x, was influenced by concomitant treatment with the vacuolar H+-ATPase inhibitor Bafilomycin A1. This indicated that non-lysosomal CatB mediated the production of Aβ2−x in astrocytes, while the degradation of Aβ1−x seemed to be dependent on lysosomal CatB in H4 cells, but not in primary astrocytes. These findings highlight the importance of considering organelle targeting in drug development to promote Aβ degradation.
Collapse
Affiliation(s)
- Timo Jan Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Janine Utz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hans Wolfgang Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Göttingen, Germany.,German Center for Neurodegenerative Diseases, Göttingen, Germany.,Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.,Department of Neurodegeneration Diagnostics and Department of Biochemical Diagnostics, University Hospital of Bialystok, Bialystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
9
|
Yuksel M, Tacal O. Trafficking and proteolytic processing of amyloid precursor protein and secretases in Alzheimer's disease development: An up-to-date review. Eur J Pharmacol 2019; 856:172415. [PMID: 31132354 DOI: 10.1016/j.ejphar.2019.172415] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/26/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD), which is predicted to affect 1 in 85 persons worldwide by 2050, results in progressive loss of neuronal functions, leading to impairments in memory and cognitive abilities. As being one of the major neuropathological hallmarks of AD, senile plaques mainly consist of amyloid-β (Aβ) peptides, which are derived from amyloid precursor protein (APP) via the sequential cleavage by β- and γ-secretases. Although the overproduction and accumulation of Aβ peptides are at the center of AD research, the new discoveries point out to the complexity of the disease development. In this respect, it is crucial to understand the processing and the trafficking of APP, the enzymes involved in its processing, the cleavage products and their therapeutic potentials. This review summarizes the salient features of APP processing focusing on APP, the canonical secretases as well as the novel secretases and the cleavage products with an update of the recent developments. We also discussed the intracellular trafficking of APP and secretases in addition to their potential in AD therapy.
Collapse
Affiliation(s)
- Melike Yuksel
- Department of Biochemistry, School of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| | - Ozden Tacal
- Department of Biochemistry, School of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
10
|
Lal C, Hardiman G, Kumbhare S, Strange C. Proteomic biomarkers of cognitive impairment in obstructive sleep apnea syndrome. Sleep Breath 2018; 23:251-257. [PMID: 29968150 DOI: 10.1007/s11325-018-1693-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/03/2018] [Accepted: 06/21/2018] [Indexed: 01/29/2023]
Abstract
PURPOSE There are currently no biomarkers that are associated with cognitive impairment (CI) in patients with obstructive sleep apnea syndrome (OSAS). This pilot study performed an exploratory plasma proteomic analysis to discover potential biomarkers and explore proteomic pathways that differentiate OSAS subjects with and without CI. METHODS Participants were selected from a cohort of women within 5 years of menopause not on hormone replacement therapy between the ages of 45-60 years. The Berlin questionnaire was used to select OSAS participants who then completed the MCFSI (Mail-In Cognitive Function Screening Instrument) to measure cognition. Six subjects with the highest MCFSI scores (≥ 5 denoting CI) were compared to six with normal scores. Proteomic analysis was done by Myriad RBM using a targeted ELISA for 254 serum proteins. Pathway analysis of differentially expressed proteins was performed using STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) software. RESULTS Distinct proteomic signatures were seen in OSAS subjects with CI as compared to those without CI. Proteins including insulin, prostasin, angiopoietin-1, plasminogen activator inhibitor 1, and interleukin-1 beta were overexpressed in OSAS subjects with CI. Proteins underexpressed in CI participants included cathepsin B, ceruloplasmin, and adiponectin. Pathway analysis revealed prominence of insulin-regulated vascular disease biomarkers. CONCLUSIONS Proteomic biomarkers in participants with cognitive impairment suggest roles for insulin, and vascular signaling pathways, some of which are similar to findings in Alzheimer's disease. A better understanding of the pathogenic mechanisms of CI in OSAS will help focus clinical trials needed in this patient population.
Collapse
Affiliation(s)
- Chitra Lal
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, CSB Suite 816, MSC 630, Charleston, SC, 29425, USA.
| | - Gary Hardiman
- MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Suchit Kumbhare
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, CSB Suite 816, MSC 630, Charleston, SC, 29425, USA.,Medical University of South Carolina, Charleston, SC, USA
| | - Charlie Strange
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, CSB Suite 816, MSC 630, Charleston, SC, 29425, USA
| |
Collapse
|
11
|
Otero MG, Bessone IF, Hallberg AE, Cromberg LE, De Rossi MC, Saez TM, Levi V, Almenar-Queralt A, Falzone TL. Proteasome stress leads to APP axonal transport defects by promoting its amyloidogenic processing in lysosomes. J Cell Sci 2018; 131:jcs.214536. [DOI: 10.1242/jcs.214536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/25/2018] [Indexed: 01/25/2023] Open
Abstract
Alzheimer Disease (AD) pathology includes the accumulation of poly-ubiquitinated proteins and failures in proteasome-dependent degradation. Whereas the distribution of proteasomes and its role in synaptic function have been studied, whether proteasome activity regulates the axonal transport and metabolism of the amyloid precursor protein (APP), remains elusive. Using live imaging in primary hippocampal neurons, we showed that proteasome inhibition rapidly and severely impairs the axonal transport of APP. Fluorescent cross-correlation analyses and membrane internalization blockage showed that plasma membrane APP do not contribute to transport defects. Moreover, by western blots and double-color APP imaging we demonstrated that proteasome inhibition precludes APP axonal transport by enhancing its endo-lysosomal delivery where β-cleavage is induced. Together, we found that proteasomes controls the distal transport of APP and can re-distribute Golgi-derived vesicles to the endo-lysosomal pathway. This crosstalk between proteasomes and lysosomes regulates APP intracellular dynamics, and defects in proteasome activity can be considered a contributing factor that lead to abnormal APP metabolism in AD.
Collapse
Affiliation(s)
- María Gabriela Otero
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - Ivan Fernandez Bessone
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - Alan Earle Hallberg
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - Lucas Eneas Cromberg
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - María Cecilia De Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica-IQUIBICEN UBA-CONICET, CP1428EGA, Argentina
| | - Trinidad M. Saez
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
- Instituto de Biología y Medicina Experimental, IBYME (CONICET). Vuelta de obligado 2490, Buenos Aires, CP 1428, Argentina
| | - Valeria Levi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica-IQUIBICEN UBA-CONICET, CP1428EGA, Argentina
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Tomás Luis Falzone
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
- Instituto de Biología y Medicina Experimental, IBYME (CONICET). Vuelta de obligado 2490, Buenos Aires, CP 1428, Argentina
| |
Collapse
|
12
|
Embury CM, Dyavarshetty B, Lu Y, Wiederin JL, Ciborowski P, Gendelman HE, Kiyota T. Cathepsin B Improves ß-Amyloidosis and Learning and Memory in Models of Alzheimer's Disease. J Neuroimmune Pharmacol 2017; 12:340-352. [PMID: 27966067 PMCID: PMC5405105 DOI: 10.1007/s11481-016-9721-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
Amyloid-ß (Aß) precursor protein (APP) metabolism engages neuronal endolysosomal pathways for Aß processing and secretion. In Alzheimer's disease (AD), dysregulation of APP leads to excess Aß and neuronal dysfunction; suggesting that neuronal APP/Aß trafficking can be targeted for therapeutic gain. Cathepsin B (CatB) is a lysosomal cysteine protease that can lower Aß levels. However, whether CatB-modulation of Aß improves learning and memory function deficits in AD is not known. To this end, progenitor neurons were infected with recombinant adenovirus expressing CatB and recovered cell lysates subjected to proteomic analyses. The results demonstrated Lamp1 deregulation and linkages between CatB and the neuronal phagosome network. Hippocampal injections of adeno-associated virus expressing CatB reduced Aß levels, increased Lamp1 and improved learning and memory. The findings were associated with the emergence of c-fos + cells. The results support the idea that CatB can speed Aß metabolism through lysosomal pathways and as such reduce AD-associated memory deficits.
Collapse
Affiliation(s)
- Christine M Embury
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhagyalaxmi Dyavarshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jayme L Wiederin
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Tomomi Kiyota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
13
|
Cheng S, Wani WY, Hottman DA, Jeong A, Cao D, LeBlanc KJ, Saftig P, Zhang J, Li L. Haplodeficiency of Cathepsin D does not affect cerebral amyloidosis and autophagy in APP/PS1 transgenic mice. J Neurochem 2017; 142:297-304. [PMID: 28429406 DOI: 10.1111/jnc.14048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/06/2017] [Accepted: 04/07/2017] [Indexed: 01/05/2023]
Abstract
Autophagy and lysosomal function are important for protein homeostasis and their dysfunction have been associated with Alzheimer's disease (AD). Increased immunoreactivities of an important lysosomal protease, cathepsin D (Cat D), are evident in amyloid plaques and neurons in patients with AD. This study tests the hypothesis that deleting one allele of the cathepsin D gene (Ctsd) impacts cerebral β-amyloidosis in amyloid-β precursor protein (APP)sw/PS1dE9 (APP/PS1) double transgenic mice. Despite a significant 38% decrease in Cat D level in APP/PS1/Ctsd+/- compared with APP/PS1/Ctsd+/+ mice, no changes in steady state levels and deposition of Aβ were found in the brain. There were also no differences in APP processing, the levels of two other Aβ-degrading proteases, the levels of autophagy related protein, such as LAMP2, P62, LC3-I, LC3-II, and Beclin-1, or the markers of neuroinflammation, observed between the APP/PS1/Ctsd+/+ and APP/PS1/Ctsd+/- mice. Our findings demonstrate that in wild-type mice, Cat D protein levels are either in excess or redundant with other factors in the brain, and at least one allele of Ctsd is dispensable for cerebral β-amyloidosis and autophagy in APP/PS1 transgenic mice.
Collapse
Affiliation(s)
- Shaowu Cheng
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Disease, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Willayat Y Wani
- Department of Pathology, Center for Free Radical Research and Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David A Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dongfeng Cao
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kyle J LeBlanc
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul Saftig
- Biochemisches Institut, CAU Kiel, Kiel, Germany
| | - Jianhua Zhang
- Department of Pathology, Center for Free Radical Research and Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol 2017; 133:665-704. [PMID: 28386764 PMCID: PMC5390006 DOI: 10.1007/s00401-017-1707-9] [Citation(s) in RCA: 593] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 01/18/2023]
Abstract
Tau is well established as a microtubule-associated protein in neurons. However, under pathological conditions, aberrant assembly of tau into insoluble aggregates is accompanied by synaptic dysfunction and neural cell death in a range of neurodegenerative disorders, collectively referred to as tauopathies. Recent advances in our understanding of the multiple functions and different locations of tau inside and outside neurons have revealed novel insights into its importance in a diverse range of molecular pathways including cell signalling, synaptic plasticity, and regulation of genomic stability. The present review describes the physiological and pathophysiological properties of tau and how these relate to its distribution and functions in neurons. We highlight the post-translational modifications of tau, which are pivotal in defining and modulating tau localisation and its roles in health and disease. We include discussion of other pathologically relevant changes in tau, including mutation and aggregation, and how these aspects impinge on the propensity of tau to propagate, and potentially drive neuronal loss, in diseased brain. Finally, we describe the cascade of pathological events that may be driven by tau dysfunction, including impaired axonal transport, alterations in synapse and mitochondrial function, activation of the unfolded protein response and defective protein degradation. It is important to fully understand the range of neuronal functions attributed to tau, since this will provide vital information on its involvement in the development and pathogenesis of disease. Such knowledge will enable determination of which critical molecular pathways should be targeted by potential therapeutic agents developed for the treatment of tauopathies.
Collapse
Affiliation(s)
- Tong Guo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK
| | - Diane P Hanger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK.
| |
Collapse
|
15
|
Miyagishi H, Kosuge Y, Takano A, Endo M, Nango H, Yamagata-Murayama S, Hirose D, Kano R, Tanaka Y, Ishige K, Ito Y. Increased Expression of 15-Hydroxyprostaglandin Dehydrogenase in Spinal Astrocytes During Disease Progression in a Model of Amyotrophic Lateral Sclerosis. Cell Mol Neurobiol 2017; 37:445-452. [PMID: 27140190 DOI: 10.1007/s10571-016-0377-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/22/2016] [Indexed: 11/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset, progressive, and fatal neurodegenerative disease caused by selective loss of motor neurons. Both ALS model mice and patients with sporadic ALS have increased levels of prostaglandin E2 (PGE2). Furthermore, the protein levels of microsomal PGE synthase-1 and cyclooxygenase-2, which catalyze PGE2 biosynthesis, are significantly increased in the spinal cord of ALS model mice. However, it is unclear whether PGE2 metabolism in the spinal cord is altered. In the present study, we investigated the protein level of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a key enzyme in prostaglandin metabolism, in ALS model mice at three different disease stages. Western blotting revealed that the 15-PGDH level was significantly increased in the lumbar spinal cord at the symptomatic stage and end stage. Immunohistochemical staining demonstrated that 15-PGDH immunoreactivity was localized in glial fibrillary acidic protein (GFAP)-positive astrocytes at the end stage. In contrast, 15-PGDH immunoreactivity was not identified in NeuN-positive large cells showing the typical morphology of motor neurons in the anterior horn. Unlike 15-PGDH, the level of PGE2 in the spinal cord was increased only at the end stage. These results suggest that the significant increase of PGE2 at the end stage of ALS in this mouse model is attributable to an imbalance of the synthetic pathway and 15-PGDH-dependent scavenging system for PGE2, and that this drives the pathogenetic mechanism responsible for transition from the symptomatic stage.
Collapse
Affiliation(s)
- Hiroko Miyagishi
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Yasuhiro Kosuge
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan.
| | - Ayumi Takano
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Manami Endo
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Hiroshi Nango
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | | | - Dai Hirose
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Rui Kano
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-8510, Japan
| | - Yoko Tanaka
- School of Dentistry of Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo, Chiba, 271-8587, Japan
| | - Kumiko Ishige
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Yoshihisa Ito
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| |
Collapse
|
16
|
Aufschnaiter A, Kohler V, Büttner S. Taking out the garbage: cathepsin D and calcineurin in neurodegeneration. Neural Regen Res 2017; 12:1776-1779. [PMID: 29239314 PMCID: PMC5745822 DOI: 10.4103/1673-5374.219031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cellular homeostasis requires a tightly controlled balance between protein synthesis, folding and degradation. Especially long-lived, post-mitotic cells such as neurons depend on an efficient proteostasis system to maintain cellular health over decades. Thus, a functional decline of processes contributing to protein degradation such as autophagy and general lysosomal proteolytic capacity is connected to several age-associated neurodegenerative disorders, including Parkinson's, Alzheimer's and Huntington's diseases. These so called proteinopathies are characterized by the accumulation and misfolding of distinct proteins, subsequently driving cellular demise. We recently linked efficient lysosomal protein breakdown via the protease cathepsin D to the Ca2+/calmodulin-dependent phosphatase calcineurin. In a yeast model for Parkinson's disease, functional calcineurin was required for proper trafficking of cathepsin D to the lysosome and for recycling of its endosomal sorting receptor to allow further rounds of shuttling. Here, we discuss these findings in relation to present knowledge about the involvement of cathepsin D in proteinopathies in general and a possible connection between this protease, calcineurin signalling and endosomal sorting in particular. As dysregulation of Ca2+ homeostasis as well as lysosomal impairment is connected to a plethora of neurodegenerative disorders, this novel interplay might very well impact pathologies beyond Parkinson's disease.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91 Stockholm, Sweden
| |
Collapse
|
17
|
Mathews PM, Levy E. Cystatin C in aging and in Alzheimer's disease. Ageing Res Rev 2016; 32:38-50. [PMID: 27333827 DOI: 10.1016/j.arr.2016.06.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Abstract
Under normal conditions, the function of catalytically active proteases is regulated, in part, by their endogenous inhibitors, and any change in the synthesis and/or function of a protease or its endogenous inhibitors may result in inappropriate protease activity. Altered proteolysis as a result of an imbalance between active proteases and their endogenous inhibitors can occur during normal aging, and such changes have also been associated with multiple neuronal diseases, including Amyotrophic Lateral Sclerosis (ALS), rare heritable neurodegenerative disorders, ischemia, some forms of epilepsy, and Alzheimer's disease (AD). One of the most extensively studied endogenous inhibitor is the cysteine-protease inhibitor cystatin C (CysC). Changes in the expression and secretion of CysC in the brain have been described in various neurological disorders and in animal models of neurodegeneration, underscoring a role for CysC in these conditions. In the brain, multiple in vitro and in vivo findings have demonstrated that CysC plays protective roles via pathways that depend upon the inhibition of endosomal-lysosomal pathway cysteine proteases, such as cathepsin B (Cat B), via the induction of cellular autophagy, via the induction of cell proliferation, or via the inhibition of amyloid-β (Aβ) aggregation. We review the data demonstrating the protective roles of CysC under conditions of neuronal challenge and the protective pathways induced by CysC under various conditions. Beyond highlighting the essential role that balanced proteolytic activity plays in supporting normal brain aging, these findings suggest that CysC is a therapeutic candidate that can potentially prevent brain damage and neurodegeneration.
Collapse
Affiliation(s)
- Paul M Mathews
- Departments of Psychiatry, New York University School of Medicine, USA; Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Efrat Levy
- Departments of Psychiatry, New York University School of Medicine, USA; Biochemistry and Molecular Pharmacology, New York University School of Medicine, USA; Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA.
| |
Collapse
|
18
|
Bordi M, Berg MJ, Mohan PS, Peterhoff CM, Alldred MJ, Che S, Ginsberg SD, Nixon RA. Autophagy flux in CA1 neurons of Alzheimer hippocampus: Increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy 2016; 12:2467-2483. [PMID: 27813694 PMCID: PMC5173282 DOI: 10.1080/15548627.2016.1239003] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Defective autophagy contributes to Alzheimer disease (AD) pathogenesis although evidence is conflicting on whether multiple stages are impaired. Here, for the first time, we have comprehensively evaluated the entire autophagic process specifically in CA1 pyramidal neurons of hippocampus from early and late-stage AD subjects and nondemented controls. CA1 neurons aspirated by laser capture microdissection were analyzed using a custom-designed microarray comprising 578 neuropathology- and neuroscience-associated genes. Striking upregulation of autophagy-related genes, exceeding that of other gene ontology groups, reflected increases in autophagosome formation and lysosomal biogenesis beginning at early AD stages. Upregulated autophagosome formation was further indicated by elevated gene and protein expression levels for autophagosome components and increased LC3-positive puncta. Increased lysosomal biogenesis was evidenced by activation of MiTF/TFE family transcriptional regulators, particularly TFE3 (transcription factor binding to IGHM enhancer 3) and by elevated expression of their target genes and encoded proteins. Notably, TFEB (transcription factor EB) activation was associated more strongly with glia than neurons. These findings establish that autophagic sequestration is both competent and upregulated in AD. Autophagosome-lysosome fusion is not evidently altered. Despite this early disease response, however, autophagy flux is progressively impeded due to deficient substrate clearance, as reflected by autolysosomal accumulation of LC3-II and SQSTM1/p62 and expansion of autolysosomal size and total area. We propose that sustained induction of autophagy in the face of progressively declining lysosomal clearance of substrates explains the uncommonly robust autophagic pathology and neuritic dystrophy implicated in AD pathogenesis.
Collapse
Affiliation(s)
- Matteo Bordi
- a Center for Dementia Research, Nathan Kline Institute , Orangeburg , NY , USA.,b Department of Psychiatry , New York University Langone Medical Center , New York , NY , USA
| | - Martin J Berg
- a Center for Dementia Research, Nathan Kline Institute , Orangeburg , NY , USA
| | - Panaiyur S Mohan
- a Center for Dementia Research, Nathan Kline Institute , Orangeburg , NY , USA.,b Department of Psychiatry , New York University Langone Medical Center , New York , NY , USA
| | | | - Melissa J Alldred
- a Center for Dementia Research, Nathan Kline Institute , Orangeburg , NY , USA.,b Department of Psychiatry , New York University Langone Medical Center , New York , NY , USA
| | - Shaoli Che
- a Center for Dementia Research, Nathan Kline Institute , Orangeburg , NY , USA.,b Department of Psychiatry , New York University Langone Medical Center , New York , NY , USA
| | - Stephen D Ginsberg
- a Center for Dementia Research, Nathan Kline Institute , Orangeburg , NY , USA.,b Department of Psychiatry , New York University Langone Medical Center , New York , NY , USA.,d Department of Neuroscience and Physiology , New York University Langone Medical Center , New York , NY , USA
| | - Ralph A Nixon
- a Center for Dementia Research, Nathan Kline Institute , Orangeburg , NY , USA.,b Department of Psychiatry , New York University Langone Medical Center , New York , NY , USA.,c Department of Cell Biology , New York University Langone Medical Center , New York , NY , USA
| |
Collapse
|
19
|
Seipold L, Damme M, Prox J, Rabe B, Kasparek P, Sedlacek R, Altmeppen H, Willem M, Boland B, Glatzel M, Saftig P. Tetraspanin 3: A central endocytic membrane component regulating the expression of ADAM10, presenilin and the amyloid precursor protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:217-230. [PMID: 27818272 DOI: 10.1016/j.bbamcr.2016.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022]
Abstract
Despite existing knowledge about the role of the A Disintegrin and Metalloproteinase 10 (ADAM10) as the α-secretase involved in the non-amyloidogenic processing of the amyloid precursor protein (APP) and Notch signalling we have only limited information about its regulation. In this study, we have identified ADAM10 interactors using a split ubiquitin yeast two hybrid approach. Tetraspanin 3 (Tspan3), which is highly expressed in the murine brain and elevated in brains of Alzheimer´s disease (AD) patients, was identified and confirmed to bind ADAM10 by co-immunoprecipitation experiments in mammalian cells in complex with APP and the γ-secretase protease presenilin. Tspan3 expression increased the cell surface levels of its interacting partners and was mainly localized in early and late endosomes. In contrast to the previously described ADAM10-binding tetraspanins, Tspan3 did not affect the endoplasmic reticulum to plasma membrane transport of ADAM10. Heterologous Tspan3 expression significantly increased the appearance of carboxy-terminal cleavage products of ADAM10 and APP, whereas N-cadherin ectodomain shedding appeared unaffected. Inhibiting the endocytosis of Tspan3 by mutating a critical cytoplasmic tyrosine-based internalization motif led to increased surface expression of APP and ADAM10. After its downregulation in neuroblastoma cells and in brains of Tspan3-deficient mice, ADAM10 and APP levels appeared unaltered possibly due to a compensatory increase in the expression of Tspans 5 and 7, respectively. In conclusion, our data suggest that Tspan3 acts in concert with other tetraspanins as a stabilizing factor of active ADAM10, APP and the γ-secretase complex at the plasma membrane and within the endocytic pathway.
Collapse
Affiliation(s)
- Lisa Seipold
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Markus Damme
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Johannes Prox
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Björn Rabe
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Petr Kasparek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the CAS, v. v. i., Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the CAS, v. v. i., Vestec, Czech Republic
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Willem
- Biomedical Center, Ludwig-Maximilians-University, 81337 Munich, Germany
| | - Barry Boland
- Department of Pharmacology and Therapeutics, School of Medicine, University College Cork, Cork, Ireland
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| |
Collapse
|
20
|
Dynein Dysfunction Reproduces Age-Dependent Retromer Deficiency: Concomitant Disruption of Retrograde Trafficking Is Required for Alteration in β-Amyloid Precursor Protein Metabolism. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1952-1966. [PMID: 27179390 DOI: 10.1016/j.ajpath.2016.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 11/21/2022]
Abstract
It is widely accepted that β-amyloid (Aβ) protein plays a pivotal role in Alzheimer disease pathogenesis, and accumulating evidence suggests that endocytic dysfunction is involved in Aβ pathology. Retromer, a conserved multisubunit complex, mediates the retrograde transport of numerous kinds of cargo from endosomes to the trans-Golgi network. Several studies have found that retromer deficiency enhances Aβ pathology both in vitro and in vivo. Cytoplasmic dynein, a microtubule-based motor protein, mediates minus-end-directed vesicle transport via interactions with dynactin, another microtubule-associated protein that also interacts with retromer. Aging attenuates the dynein-dynactin interaction, and dynein dysfunction reproduces age-dependent endocytic disturbance, resulting in the intracellular accumulation of beta-amyloid precursor protein (APP) and its β-cleavage products, including Aβ. Here, we report that aging itself affects retromer trafficking in cynomolgus monkey brains. In addition, dynein dysfunction reproduces this type of age-dependent retromer deficiency (ie, the endosomal accumulation of retromer-related proteins and APP. Moreover, we found that knockdown of Rab7, Rab9, or Rab11 did not alter endogenous APP metabolism, such as that observed in aged monkey brains and in dynein-depleted cells. These findings suggest that dynein dysfunction can cause retromer deficiency and that concomitant disruption of retrograde trafficking may be the key factor underlying age-dependent Aβ pathology.
Collapse
|
21
|
Coutinho MF, Alves S. From rare to common and back again: 60years of lysosomal dysfunction. Mol Genet Metab 2016; 117:53-65. [PMID: 26422115 DOI: 10.1016/j.ymgme.2015.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 01/12/2023]
Abstract
Sixty years after its discovery, the lysosome is no longer considered as cell's waste bin but as an organelle playing a central role in cell metabolism. Besides its well known association with lysosomal storage disorders (mostly rare and life-threatening diseases), recent data have shown that the lysosome is also a player in some of the most common conditions of our time; and, perhaps even most important, it is not only a target for orphan drugs (rare disease therapeutic approaches) but also a putative target to treat patients suffering from common complex diseases worldwide. Here we review the striking associations linking rare lysosomal storage disorders such as the well-known Gaucher disease, or even the recently discovered, extremely rare Neuronal Ceroid Lipofuscinosis-11 and some of the most frequent, multifaceted and complex disorders of modern society such as cancer, Parkinson's disease and frontotemporal lobar degeneration.
Collapse
Affiliation(s)
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, INSA, Portugal
| |
Collapse
|
22
|
Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B 2015; 5:506-19. [PMID: 26713267 PMCID: PMC4675809 DOI: 10.1016/j.apsb.2015.08.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 01/17/2023] Open
Abstract
Cysteine proteases continue to provide validated targets for treatment of human diseases. In neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor designs over other families of proteases, such as aspartate and serine; however, a) inhibitor strategies often use covalent enzyme modification, and b) obtaining selectivity within families of cysteine proteases and their isozymes is problematic. This review provides a general update on strategies for cysteine protease inhibitor design and a focus on cathepsin B and calpain 1 as drug targets for neurodegenerative disorders; the latter focus providing an interesting query for the contemporary assumptions that irreversible, covalent protein modification and low selectivity are anathema to therapeutic safety and efficacy.
Collapse
Key Words
- AD, Alzheimer׳s disease
- ALS, amyotrophic lateral sclerosis
- APP, amyloid precursor protein
- APP/PS1, Aβ overexpressing mice APP (K670N/M671L) and PS1 (M146L) mutants
- Ala, alanine
- Alzheimer׳s disease
- AppLon, London familial amyloid precursor protein mutation, APP (V717I)
- AppSwe, Swedish amyloid precursor protein mutation, APP (K670N/M671L)
- Arg, arginine
- Aβ, amyloid β
- Aβ1-42, amyloid β, 42 amino acid protein
- BACE-1, β-amyloid cleaving enzyme
- BBB, blood–brain barrier
- CANP, calcium-activated neutral protease
- CNS, central nervous system
- CREB, cyclic adenosine monophosphate response element binding protein
- CaMKII, Ca2+/calmodulin-dependent protein kinases II
- Calpain
- Cathepsin
- Cdk5/p35, activator of cyclin-dependent kinase 5
- Cysteine protease
- DTT, dithioerythritol
- EGFR, epidermal growth factor receptor
- ERK1/2, extracellular signal-regulated kinase 1/2
- Enzyme inhibitors
- GSH, glutathione
- Gln, glutamine
- Glu, glutamic acid
- Gly, glutamine
- Hsp70.1, heat shock protein 70.1
- Ile, isoleucine
- KO, knockout
- Leu, leucine
- Lys, lysine
- MAP-2, microtubule-associated protein 2
- MMP-9, matrix metalloproteinase 9
- Met, methionine
- NFT, neurofibrilliary tangles
- Neurodegeneration
- Nle, norleucine
- PD, Parkinson׳s disease
- PK, pharmacokinetic
- PKC, protein kinase C
- PTP1B, protein-tyrosine phosphatase 1B
- Phe, phenylalanine
- Pro, proline
- SP, senile plaques
- TBI, traumatic brain injury
- TNF, tumor necrosis factor
- Thr, threonine
- Tyr, tyrosine
- Val, valine
- WRX, Trp-Arg containing epoxysuccinate cysteine protease inhibitor
- WT, wildtype
- isoAsp, isoaspartate
- pGlu, pyroglutamate
- pyroGluAβ, pyroglutamate-amyloid β
Collapse
|
23
|
Hippocampal endosomal, lysosomal, and autophagic dysregulation in mild cognitive impairment: correlation with aβ and tau pathology. J Neuropathol Exp Neurol 2015; 74:345-58. [PMID: 25756588 DOI: 10.1097/nen.0000000000000179] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Endosomal-lysosomal and autophagic dysregulation occurs in the hippocampus in prodromal Alzheimer disease (AD), but its relationship with β-amyloid (Aβ) and tau pathology remains unclear. To investigate this issue, we performed immunoblot analysis of hippocampal homogenates from cases with an antemortem clinical diagnosis of no cognitive impairment, mild cognitive impairment (MCI), and AD. Western blot analysis revealed significant increases in the acid hydrolase cathepsin D and early endosome marker rabaptin5 in the MCI group compared with AD, whereas levels of phosphorylated mammalian target of rapamycin proteins (pmTOR), total mammalian target of rapamycin (mTOR), p62, traf6, and LilrB2 were comparable across clinical groups. Hippocampal Aβ1-40 and Aβ1-42 concentrations and AT8-immunopositive neurofibrillary tangle density were not significantly different across the clinical groups. Greater cathepsin D expression was associated with global cognitive score and episodic memory score but not with mini mental state examination or advanced neuropathology criteria. These results indicate that alterations in hippocampal endosomal-lysosomal proteins in MCI are independent of tau or Aβ pathology.
Collapse
|
24
|
Joshi G, Gan KA, Johnson DA, Johnson JA. Increased Alzheimer's disease-like pathology in the APP/ PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging 2014; 36:664-79. [PMID: 25316599 DOI: 10.1016/j.neurobiolaging.2014.09.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/01/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
Abstract
The presence of senile plaques is one of the major pathologic hallmarks of the brain with Alzheimer's disease (AD). The plaques predominantly contain insoluble amyloid β-peptide, a cleavage product of the larger amyloid precursor protein (APP). Two enzymes, named β and γ secretase, generate the neurotoxic amyloid-β peptide from APP. Mature APP is also turned over endogenously by autophagy, more specifically by the endosomal-lysosomal pathway. A defective lysosomal system is known to be pathogenic in AD. Modulation of NF-E2 related factor 2 (Nrf2) has been shown in several neurodegenerative disorders, and Nrf2 has become a potential therapeutic target for various neurodegenerative disorders, including AD, Parkinson's disease, and amyotrophic lateral sclerosis. In the current study, we explored the effect of genetic ablation of Nrf2 on APP/Aβ processing and/or aggregation as well as changes in autophagic dysfunction in APP/PS1 mice. There was a significant increase in inflammatory response in APP/PS1 mice lacking Nrf2. This was accompanied by increased intracellular levels of APP, Aβ (1-42), and Aβ (1-40), without a change total full-length APP. There was a shift of APP and Aβ into the insoluble fraction, as well as increased poly-ubiquitin conjugated proteins in mice lacking Nrf2. APP/PS1-mediated autophagic dysfunction is also enhanced in Nrf2-deficient mice. Finally, neurons in the APP/PS1/Nrf2-/- mice had increased accumulation of multivesicular bodies, endosomes, and lysosomes. These outcomes provide a better understanding of the role of Nrf2 in modulating autophagy in an AD mouse model and may help design better Nrf2 targeted therapeutics that could be efficacious in the treatment of AD.
Collapse
Affiliation(s)
- Gururaj Joshi
- School of Pharmacy, University of Wisconsin-Madison, WI, USA
| | - Kok Ann Gan
- School of Pharmacy, University of Wisconsin-Madison, WI, USA
| | - Delinda A Johnson
- School of Pharmacy, University of Wisconsin-Madison, WI, USA; Center of Neuroscience, University of Wisconsin-Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, WI, USA
| | - Jeffrey A Johnson
- School of Pharmacy, University of Wisconsin-Madison, WI, USA; Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI, USA; Center of Neuroscience, University of Wisconsin-Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, WI, USA.
| |
Collapse
|
25
|
Affiliation(s)
- John P. Blass
- Burke Medical Research Institute, Cornell University Medical College, White Plains, New York, U.S.A
| |
Collapse
|
26
|
Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci 2013; 124:307-21. [DOI: 10.3109/00207454.2013.833510] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Basurto-Islas G, Grundke-Iqbal I, Tung YC, Liu F, Iqbal K. Activation of asparaginyl endopeptidase leads to Tau hyperphosphorylation in Alzheimer disease. J Biol Chem 2013; 288:17495-507. [PMID: 23640887 DOI: 10.1074/jbc.m112.446070] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurofibrillary pathology of abnormally hyperphosphorylated Tau is a key lesion of Alzheimer disease and other tauopathies, and its density in the brain directly correlates with dementia. The phosphorylation of Tau is regulated by protein phosphatase 2A, which in turn is regulated by inhibitor 2, I2(PP2A). In acidic conditions such as generated by brain ischemia and hypoxia, especially in association with hyperglycemia as in diabetes, I2(PP2A) is cleaved by asparaginyl endopeptidase at Asn-175 into the N-terminal fragment (I2NTF) and the C-terminal fragment (I2CTF). Both I2NTF and I2CTF are known to bind to the catalytic subunit of protein phosphatase 2A and inhibit its activity. Here we show that the level of activated asparaginyl endopeptidase is significantly increased, and this enzyme and I2(PP2A) translocate, respectively, from neuronal lysosomes and nucleus to the cytoplasm where they interact and are associated with hyperphosphorylated Tau in Alzheimer disease brain. Asparaginyl endopeptidase from Alzheimer disease brain could cleave GST-I2(PP2A), except when I2(PP2A) was mutated at the cleavage site Asn-175 to Gln. Finally, an induction of acidosis by treatment with kainic acid or pH 6.0 medium activated asparaginyl endopeptidase and consequently produced the cleavage of I2(PP2A), inhibition of protein phosphatase 2A, and hyperphosphorylation of Tau, and the knockdown of asparaginyl endopeptidase with siRNA abolished this pathway in SH-SY5Y cells. These findings suggest the involvement of brain acidosis in the etiopathogenesis of Alzheimer disease, and asparaginyl endopeptidase-I2(PP2A)-protein phosphatase 2A-Tau hyperphosphorylation pathway as a therapeutic target.
Collapse
Affiliation(s)
- Gustavo Basurto-Islas
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314-6399, USA
| | | | | | | | | |
Collapse
|
28
|
Impairment of proteostasis network in Down syndrome prior to the development of Alzheimer's disease neuropathology: redox proteomics analysis of human brain. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1249-59. [PMID: 23603808 DOI: 10.1016/j.bbadis.2013.04.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/18/2013] [Accepted: 04/10/2013] [Indexed: 01/06/2023]
Abstract
DS is the most frequent genetic cause of intellectual disability characterized by the anomalous presence of three copies of chromosome 21. One of the peculiar features of DS is the onset of Alzheimer's disease neuropathology after the age of 40years characterized by deposition of senile plaques and neurofibrillary tangles. Growing studies demonstrated that increased oxidative damage, accumulation of unfolded/damaged protein aggregates and dysfunction of intracellular degradative system are key players in neurodegenerative processes. In this study, redox proteomics approach was used to analyze the frontal cortex from DS subjects under the age of 40 compared with age-matched controls, and proteins found to be increasingly carbonylated were identified. Interestingly, our results showed that oxidative damage targets specifically different components of the intracellular quality control system such as GRP78, UCH-L1, V0-ATPase, cathepsin D and GFAP that couples with decreased activity of the proteasome and autophagosome formation observed. We also reported a slight but consistent increase of Aβ 1-42 SDS- and PBS-soluble form and tau phosphorylation in DS versus CTR. We suggest that disturbance in the proteostasis network could contribute to the accumulation of protein aggregates, such as amyloid deposits and NFTs, which occur very early in DS. It is likely that a sub-optimal functioning of degradative systems occur in DS neurons, which in turn provide the basis for further accumulation of toxic protein aggregates. The results of this study suggest that oxidation of protein members of the proteostatis network is an early event in DS and might contribute to neurodegenerative phenomena.
Collapse
|
29
|
Yamashima T. Reconsider Alzheimer's disease by the 'calpain-cathepsin hypothesis'--a perspective review. Prog Neurobiol 2013; 105:1-23. [PMID: 23499711 DOI: 10.1016/j.pneurobio.2013.02.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 02/28/2013] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is characterized by slowly progressive neuronal death, but its molecular cascade remains elusive for over 100 years. Since accumulation of autophagic vacuoles (also called granulo-vacuolar degenerations) represents one of the pathologic hallmarks of degenerating neurons in AD, a causative connection between autophagy failure and neuronal death should be present. The aim of this perspective review is at considering such underlying mechanism of AD that age-dependent oxidative stresses may affect the autophagic-lysosomal system via carbonylation and cleavage of heat-shock protein 70.1 (Hsp70.1). AD brains exhibit gradual but continual ischemic insults that cause perturbed Ca(2+) homeostasis, calpain activation, amyloid β deposition, and oxidative stresses. Membrane lipids such as linoleic and arachidonic acids are vulnerable to the cumulative oxidative stresses, generating a toxic peroxidation product 'hydroxynonenal' that can carbonylate Hsp70.1. Recent data advocate for dual roles of Hsp70.1 as a molecular chaperone for damaged proteins and a guardian of lysosomal integrity. Accordingly, impairments of lysosomal autophagy and stabilization may be driven by the calpain-mediated cleavage of carbonylated Hsp70.1, and this causes lysosomal permeabilization and/or rupture with the resultant release of the cell degradation enzyme, cathepsins (calpain-cathepsin hypothesis). Here, the author discusses three topics; (1) how age-related decrease in lysosomal and autophagic activities has a causal connection to programmed neuronal necrosis in sporadic AD, (2) how genetic factors such as apolipoprotein E and presenilin 1 can facilitate lysosomal destabilization in the sequential molecular events, and (3) whether a single cascade can simultaneously account for implications of all players previously reported. In conclusion, Alzheimer neuronal death conceivably occurs by the similar 'calpain-hydroxynonenal-Hsp70.1-cathepsin cascade' with ischemic neuronal death. Blockade of calpain and/or extra-lysosomal cathepsins as well as scavenging of hydroxynonenal would become effective AD therapeutic approaches.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
30
|
Cluzeau CVM, Watkins-Chow DE, Fu R, Borate B, Yanjanin N, Dail MK, Davidson CD, Walkley SU, Ory DS, Wassif CA, Pavan WJ, Porter FD. Microarray expression analysis and identification of serum biomarkers for Niemann-Pick disease, type C1. Hum Mol Genet 2012; 21:3632-46. [PMID: 22619379 DOI: 10.1093/hmg/dds193] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Niemann-Pick disease type C (NPC) is a lysosomal storage disorder characterized by liver disease and progressive neurodegeneration. Deficiency of either NPC1 or NPC2 leads to the accumulation of cholesterol and glycosphingolipids in late endosomes and early lysosomes. In order to identify pathological mechanisms underlying NPC and uncover potential biomarkers, we characterized liver gene expression changes in an Npc1 mouse model at six ages spanning the pathological progression of the disease. We identified altered gene expression at all ages, including changes in asymptomatic, 1-week-old mice. Biological pathways showing early altered gene expression included: lipid metabolism, cytochrome P450 enzymes involved in arachidonic acid and drug metabolism, inflammation and immune responses, mitogen-activated protein kinase and G-protein signaling, cell cycle regulation, cell adhesion and cytoskeleton remodeling. In contrast, apoptosis and oxidative stress appeared to be late pathological processes. To identify potential biomarkers that could facilitate monitoring of disease progression, we focused on a subset of 103 differentially expressed genes that encode secreted proteins. Further analysis identified two secreted proteins with increased serum levels in NPC1 patients: galectin-3 (LGALS3), a pro-inflammatory molecule, and cathepsin D (CTSD), a lysosomal aspartic protease. Elevated serum levels of both proteins correlated with neurological disease severity and appeared to be specific for NPC1. Expression of Lgals3 and Ctsd was normalized following treatment with 2-hydroxypropyl-β-cyclodextrin, a therapy that reduces pathological findings and significantly increases Npc1(-/-) survival. Both LGALS3 and CTSD have the potential to aid in diagnosis and serve as biomarkers to monitor efficacy in therapeutic trials.
Collapse
Affiliation(s)
- Celine V M Cluzeau
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Endolysosome involvement in LDL cholesterol-induced Alzheimer's disease-like pathology in primary cultured neurons. Life Sci 2012; 91:1159-68. [PMID: 22580286 DOI: 10.1016/j.lfs.2012.04.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 12/26/2022]
Abstract
AIMS Elevated levels of circulating cholesterol are extrinsic factors contributing to the pathogenesis of sporadic Alzheimer's disease (AD). We showed previously that rabbits fed a cholesterol-enriched diet exhibited blood-brain barrier (BBB) dysfunction, increased accumulation of apolipoprotein B (ApoB) in brain neurons, and endolysosomes in brain had disturbed structures and functions. These effects were linked to increased amyloid beta (Aβ) production, increased tau-pathology, and disrupted synaptic integrity. Because pathological changes to endolysosomes represent a very early event in sporadic AD, we determined here the extent to which ApoB-containing LDL cholesterol altered the structure and function of endolysosomes and contributed to the development of AD-like pathology in primary cultured neurons. MAIN METHODS Cholesterol distribution and endolysosome morphology were determined histologically. Endolysosome pH was measured ratio-metrically with LysoSensor dye. Endolysosome enzyme activity was measured for acid phosphatase, cathepsins B and D, and beta-site APP cleaving enzyme 1 (BACE-1). AD-like pathologies, including increased production of Aβ, increased tau-pathology, and disrupted synaptic integrity were determined using ELISA, immunoblotting, and immunostaining techniques. KEY FINDINGS Treatment of neurons with ApoB-containing LDL cholesterol increased endolysosome accumulation of cholesterol, enlarged endolysosomes, and elevated endolysosome pH. In addition, ApoB-containing LDL cholesterol increased endolysosome accumulation of BACE-1, enhanced BACE-1 activity, increased Aβ levels, increased levels of phosphorylated tau, and decreased levels of synaptophysin. SIGNIFICANCE Our findings suggest strongly that alterations in the structure and function of endolysosomes play a key role in the exhibition of pathological features of AD that result from neuronal exposure to ApoB-containing LDL cholesterol.
Collapse
|
32
|
Chen X, Wagener JF, Morgan DH, Hui L, Ghribi O, Geiger JD. Endolysosome mechanisms associated with Alzheimer's disease-like pathology in rabbits ingesting cholesterol-enriched diet. J Alzheimers Dis 2011; 22:1289-303. [PMID: 20930277 DOI: 10.3233/jad-2010-101323] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is characterized clinically by progressive disturbances in memory, judgment, reasoning, and olfaction, and pathologically by loss of synaptic integrity, extracellular accumulations of amyloid-β (Aβ) containing plaques, and intraneuronal tangles composed of hyperphosphorylated tau. Endolysosome dysfunction is one of the earliest pathological features of AD and cholesterol, a known risk factor for sporadic AD, is up-taken into neurons via receptor-mediated endocytosis. Accordingly, we determined the extent to which endolysosome dysfunction is associated with pathological features observed in rabbits fed cholesterol-enriched diet; a well-characterized model of sporadic AD. Olfactory bulbs were taken from rabbits fed for 12 weeks a diet enriched with 2% cholesterol and endolysosome morphology and function as well as AD-like pathology were investigated using enzyme activity measurements, immunoblotting and immunostaining techniques. In olfactory bulbs of rabbits fed cholesterol-enriched diet, we observed enlarged endolysosomes containing increased accumulations of ApoB containing cholesterol and increased accumulations of synaptophysin, Aβ, and phosphorylated tau. The cholesterol-enriched diet also significantly decreased specific enzyme activities of the endolysosome enzymes acid phosphatase and cathepsin D. Decreased synaptic area was present in olfactory bulbs of cholesterol-fed rabbits as indicated by significant decreases in protein expression levels of the synaptic area marker protein synaptophysin. Our results suggest strongly that elevated circulating cholesterol plays an important role in the pathogenesis of AD, and that alterations in endolysosome structure and function are associated with cholesterol diet-induced AD-like pathology.
Collapse
Affiliation(s)
- Xuesong Chen
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | | | |
Collapse
|
33
|
Gauthier S, Kaur G, Mi W, Tizon B, Levy E. Protective mechanisms by cystatin C in neurodegenerative diseases. Front Biosci (Schol Ed) 2011; 3:541-54. [PMID: 21196395 DOI: 10.2741/s170] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegeneration occurs in acute pathological conditions such as stroke, ischemia, and head trauma and in chronic disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. While the cause of neuronal death is different and not always known in these varied conditions, hindrance of cell death would be beneficial in the prevention of, slowing of, or halting disease progression. Enhanced cystatin C (CysC) expression in these conditions caused a debate as to whether CysC up-regulation facilitates neurodegeneration or it is an endogenous neuroprotective attempt to prevent the progression of the pathology. However, recent in vitro and in vivo data have demonstrated that CysC plays protective roles via pathways that are dependent on inhibition of cysteine proteases, such as cathepsin B, or by induction of autophagy, induction of proliferation, and inhibition of amyloid-beta aggregation. Here we review the data demonstrating the protective roles of CysC under conditions of neuronal challenge and the protective pathways induced under various conditions. These data suggest that CysC is a therapeutic candidate that can potentially prevent brain damage and neurodegeneration.
Collapse
|
34
|
Abstract
Tau aggregation is a hallmark of several neurodegenerative diseases, including AD (Alzheimer's disease), although the mechanism underlying tau aggregation remains unclear. Recent studies show that the proteolysis of tau plays an important role in both tau aggregation and neurodegeneration. On one hand, truncation of tau may generate amyloidogenic tau fragments that initiate the aggregation of tau, which in turn can cause toxicity. On the other hand, truncation of tau may result in tau fragments which induce neurodegeneration through unknown mechanisms, independently of tau aggregation. Blocking the truncation of tau thus may represent a promising therapeutic approach for AD or other tauopathies. In the present paper, we summarize our data on tau cleavage in a cell model of tauopathy and major results on tau cleavage reported in the literature.
Collapse
|
35
|
Vitner EB, Dekel H, Zigdon H, Shachar T, Farfel-Becker T, Eilam R, Karlsson S, Futerman AH. Altered expression and distribution of cathepsins in neuronopathic forms of Gaucher disease and in other sphingolipidoses. Hum Mol Genet 2010; 19:3583-90. [PMID: 20616152 DOI: 10.1093/hmg/ddq273] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The neuronopathic forms of the human inherited metabolic disorder, Gaucher disease (GD), are characterized by severe neuronal loss, astrogliosis and microglial proliferation, but the cellular and molecular pathways causing these changes are not known. Recently, a mouse model of neuronopathic GD was generated in which glucocerebrosidase deficiency is limited to neural and glial progenitor cells. We now show significant changes in the levels and in the distribution of cathepsins in the brain of this mouse model. Cathepsin mRNA expression was significantly elevated by up to approximately 10-fold, with the time-course of the increase correlating with the progression of disease severity. Cathepsin activity and protein levels were also elevated. Significant changes in cathepsin D distribution in the brain were detected, with cathepsin D elevated in areas where neuronal loss, astrogliosis and microgliosis were observed, such as in layer V of the cerebral cortex, the lateral globus pallidus and in various nuclei in the thalamus, brain regions known to be affected in the disease. Cathepsin D elevation was greatest in microglia and also noticeable in astrocytes. The distribution of cathepsin D was altered in neurons in a manner consistent with its release from the lysosome to the cytosol. Remarkably, ibubrofen treatment significantly reduced cathepsin D mRNA levels in the cortex of Gaucher mice. Finally, cathepsin levels were also altered in mouse models of a number of other sphingolipidoses. Our findings suggest the involvement of cathepsins in the neuropathology of neuronal forms of GD and of other lysosomal storage diseases, and are consistent with a crucial role for reactive microglia in neuronal degeneration in these diseases.
Collapse
Affiliation(s)
- Einat B Vitner
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Albayrak O, Tirniceriu A, Riemenschneider M, Kurz A, Scherag A, Egensperger R. The cathepsin D (224C/T) polymorphism confers an increased risk to develop Alzheimer's disease in men. J Gerontol A Biol Sci Med Sci 2010; 65:219-24. [PMID: 20083556 DOI: 10.1093/gerona/glp209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lysosomal protease cathepsin D is likely involved in beta-amyloidogenesis in Alzheimer's disease (AD). There is evidence for a single nucleotide polymorphism (rs17571) of the cathepsin D gene to be associated with increased AD risk. However, little is known about gender-specific differences. Therefore, we performed a genetic association study focusing on gender-specific differences in 434 participants (219 AD and 215 controls). Screening of the rs17571 shows a significantly higher proportion of T-allele carriers among male Alzheimer patients (28.5%) when compared with male controls (13.8%, p = .013, p(corr) = .039). The odds ratio was 2.48 (95% confidence interval: 1.14-5.58). There was no significant difference in the T-allele distribution in women. Including APOE4 status and age did not have an additional effect on the morbidity risk. Thus, our results support the idea that rs17571 confers an increased risk for AD in men but not in women. Further investigation should substantiate the role of gender for AD risk of rs17571.
Collapse
Affiliation(s)
- O Albayrak
- Department of Child and Adolescent Psychiatry, LVR Klinikum Essen, University of Duisburg-Essen, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Marked calpastatin (CAST) depletion in Alzheimer's disease accelerates cytoskeleton disruption and neurodegeneration: neuroprotection by CAST overexpression. J Neurosci 2009; 28:12241-54. [PMID: 19020018 DOI: 10.1523/jneurosci.4119-08.2008] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increased activity of calpains is implicated in synaptic dysfunction and neurodegeneration in Alzheimer's disease (AD). The molecular mechanisms responsible for increased calpain activity in AD are not known. Here, we demonstrate that disease progression is propelled by a marked depletion of the endogenous calpain inhibitor, calpastatin (CAST), from AD neurons, which is mediated by caspase-1, caspase-3, and calpains. Initial CAST depletion focally along dendrites coincides topographically with calpain II and ERK 1/2 activation, tau cleavage by caspase-3, and tau and neurofilament hyperphosphorylation. These same changes, together with cytoskeletal proteolysis and neuronal cell death, accompany CAST depletion after intrahippocampal kainic acid administration to mice, and are substantially reduced in mice overexpressing human CAST. Moreover, CAST reduction by shRNA in neuronal cells causes calpain-mediated death at levels of calcium-induced injury that are sublethal to cells normally expressing CAST. Our results strongly support a novel hypothesis that CAST depletion by multiple abnormally activated proteases accelerates calpain dysregulation in AD leading to cytoskeleton disruption and neurodegeneration. CAST mimetics may, therefore, be neuroprotective in AD.
Collapse
|
38
|
Pivtoraiko VN, Stone SL, Roth KA, Shacka JJ. Oxidative stress and autophagy in the regulation of lysosome-dependent neuron death. Antioxid Redox Signal 2009; 11:481-96. [PMID: 18764739 PMCID: PMC2933567 DOI: 10.1089/ars.2008.2263] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lysosomes critically regulate the pH-dependent catabolism of extracellular and intracellular macromolecules delivered from the endocytic/heterophagy and autophagy pathways, respectively. The importance of lysosomes to cell survival is underscored not only by their unique ability effectively to degrade metalloproteins and oxidatively damaged macromolecules, but also by the distinct potential for induction of both caspase-dependent and -independent cell death with a compromise in the integrity of lysosome function. Oxidative stress and free radical damage play a principal role in cell death induced by lysosome dysfunction and may be linked to several upstream and downstream stimuli, including alterations in the autophagy degradation pathway, inhibition of lysosome enzyme function, and lysosome membrane damage. Neurons are sensitive to lysosome dysfunction, and the contribution of oxidative stress and free radical damage to lysosome dysfunction may contribute to the etiology of neurodegenerative disease. This review provides a broad overview of lysosome function and explores the contribution of oxidative stress and autophagy to lysosome dysfunction-induced neuron death. Putative signaling pathways that either induce lysosome dysfunction or result from lysosome dysfunction or both, and the role of oxidative stress, free radical damage, and lysosome dysfunction in pediatric lysosomal storage disorders (neuronal ceroid lipofuscinoses or NCL/Batten disease) and in Alzheimer's disease are emphasized.
Collapse
Affiliation(s)
- Violetta N Pivtoraiko
- Department of Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
39
|
Yang DS, Lee JH, Nixon RA. Monitoring autophagy in Alzheimer's disease and related neurodegenerative diseases. Methods Enzymol 2009; 453:111-44. [PMID: 19216904 DOI: 10.1016/s0076-6879(08)04006-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This chapter describes detailed methods to monitor autophagy in neurodegenerative disorders, especially in Alzheimer's disease. Strategies to assess the competence of autophagy-related mechanisms in disease states ideally incorporate analyses of human disease and control tissues, which may include brain, fibroblasts, or other peripheral cells, in addition to animal and cell models of the neurodegenerative disease pathology and pathobiology. Cross-validation of pathophysiological mechanisms in the diseased tissues is always critical. Because of the cellular heterogeneity of the brain and the differential vulnerability of the neural cells in a given disease state, analyses focus on regional comparisons of affected and unaffected regions or cell populations within a particular brain region and include ultrastructural, immunological, and cell and molecular biological approaches.
Collapse
Affiliation(s)
- Dun-Sheng Yang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York, USA
| | | | | |
Collapse
|
40
|
Liu J, Hong Z, Ding J, Liu J, Zhang J, Chen S. Predominant release of lysosomal enzymes by newborn rat microglia after LPS treatment revealed by proteomic studies. J Proteome Res 2008; 7:2033-49. [PMID: 18380473 DOI: 10.1021/pr7007779] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Growing evidence suggest that microglia may play an important role in the pathogenesis of neurodegenerative disease including Parkinson's disease, Alzheimer's disease, and so forth. The activation of microglia may cause neuronal damage through the release of reactive oxygen species and proinflammatory cytokines. However, the early response of microglial cells remains unclear before cells can secrete the proinflammatory cytokines. Here, a time course analysis showed the earliest expression of inducible nitric oxide synthase and cyclooxygenase-2 at 3 and 24 h following lipopolysaccharide (LPS) treatment. To further define initial response proteins of microglia after LPS treatment, we utilized a novel mass spectrometry-based quantitative proteomic technique termed SILAC (for stable isotope labeling by amino acids in cell culture) to compare the protein profiles of the cell culture-conditioned media of 1 h LPS-treated microglia as compared with controls. The proteomic analysis identified 77 secreted proteins using SignalP; of these, 28 proteins were associated with lysosome of cells and 13 lysosome-related proteins displayed significant changes in the relative abundance after 1 h LPS treatment. Four proteins were further evaluated with Western blot, demonstrating good agreement with quantitative proteomic data. These results suggested that microglia first released some lysosomal enzymes which may be involved in neuronal damage process. Furthermore, ammonium chloride, which inhibits microglia lysosomal enzyme activity, could prevent microglia from causing neuronal injury. Hence, in addition to the numerous novel proteins that are potentially important in microglial activation-mediated neurodegeneration revealed by the search, the study has indicated that the early release of lysosomal enzymes in microglial cells would contribute to LPS-activated inflammatory response.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiatong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
41
|
Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C, DeTure M, Ko LW. Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci 2008; 27:1119-30. [DOI: 10.1111/j.1460-9568.2008.06084.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Abstract
Autophagy is the sole pathway for organelle turnover in cells and is a vital pathway for degrading normal and aggregated proteins, particularly under stress or injury conditions. Recent evidence has shown that the amyloid β peptide is generated from amyloid β precursor protein (APP) during autophagic turnover of APP-rich organelles supplied by both autophagy and endocytosis. Aβ generated during normal autophagy is subsequently degraded by lysosomes. Within neurons, autophagosomes and endosomes actively form in synapses and along neuritic processes but efficient clearance of these compartments requires their retrograde transport towards the neuronal cell body, where lysosomes are most concentrated. In Alzheimer disease, the maturation of autophagolysosomes and their retrograde transport are impeded, which leads to a massive accumulation of `autophagy intermediates' (autophagic vacuoles) within large swellings along dystrophic and degenerating neurites. The combination of increased autophagy induction and defective clearance of Aβ-generating autophagic vacuoles creates conditions favorable for Aβ accumulation in Alzheimer disease.
Collapse
Affiliation(s)
- Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, Departments of Psychiatry and Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
43
|
Fiala JC. Mechanisms of amyloid plaque pathogenesis. Acta Neuropathol 2007; 114:551-71. [PMID: 17805553 DOI: 10.1007/s00401-007-0284-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 08/12/2007] [Accepted: 08/13/2007] [Indexed: 12/25/2022]
Abstract
The first ultrastructural investigations of Alzheimer's disease noted the prominence of degenerating mitochondria in the dystrophic neurites of amyloid plaques, and speculated that this degeneration might be a major contributor to plaque pathogenesis. However, the fate of these organelles has received scant consideration in the intervening decades. A number of hypotheses for the formation and progression of amyloid plaques have since been suggested, including glial secretion of amyloid, somal and synaptic secretion of amyloid-beta protein from neurons, and endosomal-lysosomal aggregation of amyloid-beta protein in the cell bodies of neurons, but none of these hypotheses fully account for the focal accumulation of amyloid in plaques. In addition to Alzheimer's disease, amyloid plaques occur in a variety of conditions, and these conditions are all accompanied by dystrophic neurites characteristic of disrupted axonal transport. The disruption of axonal transport results in the autophagocytosis of mitochondria without normal lysosomal degradation, and recent evidence from aging, traumatic injury, Alzheimer's disease and transgenic mice models of Alzheimer's disease, suggests that the degeneration of these autophagosomes may lead to amyloid production within dystrophic neurites. The theory of amyloid plaque pathogenesis has thus come full circle, back to the intuitions of the very first researchers in the field.
Collapse
Affiliation(s)
- John C Fiala
- Department of Health Sciences, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
44
|
Kanju PM, Parameshwaran K, Vaithianathan T, Sims CM, Huggins K, Bendiske J, Ryzhikov S, Bahr BA, Suppiramaniam V. Lysosomal dysfunction produces distinct alterations in synaptic alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid and N-methyl-D-aspartate receptor currents in hippocampus. J Neuropathol Exp Neurol 2007; 66:779-88. [PMID: 17805008 DOI: 10.1097/nen.0b013e3181461ae7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The early processes that lead to synaptic dysfunction during aging are not clearly understood. Dysregulation of alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors may cause age-related cognitive decline. Using hippocampal slice cultures exhibiting lysosomal dysfunction, an early marker of brain aging that is linked to protein accumulation, we identified alterations to AMPA and NMDA receptor-mediated synaptic currents. The miniature and spontaneous excitatory postsynaptic currents that were examined after 3, 6, and 9 days of lysosomal disruption showed progressive changes in amplitude, frequency, and rise and decay kinetics. To investigate whether modifications in specific channel properties of single synaptic receptors contributed to changes in the amplitude and time course of synaptic currents, we examined the single channel properties of synaptic AMPA and NMDA receptors. The channel open probability and the mean open times showed decreases in both receptor populations, whereas the closed times were increased without any change in the channel conductance. The Western blot analysis revealed a progressive decline in synaptic markers including glutamate receptor subunits. These results indicate that lysosomal dysfunction leads to progressive functional perturbation of AMPA and NMDA receptors in this slice model of protein accumulation, suggesting that age-related cognitive decline could result from altered glutamate receptor function before reductions in synaptic density.
Collapse
Affiliation(s)
- Patrick M Kanju
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA, Zhu X, Perry G. Autophagocytosis of Mitochondria Is Prominent in Alzheimer Disease. J Neuropathol Exp Neurol 2007; 66:525-32. [PMID: 17549012 DOI: 10.1097/01.jnen.0000240476.73532.b0] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mitochondrial abnormalities are prominent in Alzheimer disease. In this study, 2 mitochondrial markers, cytochrome oxidase-1 and lipoic acid, a sulfur-containing cofactor required for the activity of several mitochondrial enzyme complexes, were compared using light and electron microscopic analyses and immunoblot assays. Both lipoic acid and cytochrome oxidase-1 immunoreactivity are increased in the cytoplasm of pyramidal neurons in Alzheimer disease compared with control cases. Of significance, lipoic acid was found to be strongly associated with granular structures, and ultrastructure analysis showed localization to mitochondria, cytosol, and, importantly, in organelles identified as autophagic vacuoles and lipofuscin in Alzheimer disease but not control cases. Cytochrome oxidase-1 immunoreactivity was limited to mitochondria and cytosol in both Alzheimer and control cases. These data suggest that mitochondria are key targets of increased autophagic degradation in Alzheimer disease. Whether increased autophagocytosis is a consequence of an increased turnover of mitochondria or whether the mitochondria in Alzheimer disease are more susceptible to autophagy remains to be resolved.
Collapse
Affiliation(s)
- Paula I Moreira
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhou W, Scott SA, Shelton SB, Crutcher KA. Cathepsin D-mediated proteolysis of apolipoprotein E: possible role in Alzheimer's disease. Neuroscience 2006; 143:689-701. [PMID: 16997486 DOI: 10.1016/j.neuroscience.2006.08.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/12/2006] [Accepted: 08/09/2006] [Indexed: 10/24/2022]
Abstract
Proteolysis of apolipoprotein E (apoE) may be involved in the pathogenesis of Alzheimer's disease (AD). We previously identified aspartic protease(s) as possibly contributing to the proteolysis of apoE in human brain homogenates. The current study used biochemical and immunohistochemical methods to examine whether cathepsin D (catD) and cathepsin E (catE), candidate aspartic proteases, may be involved in apoE proteolysis. CatD was found to proteolyze both lipid-free recombinant full-length human apoE and lipidated human plasma full-length apoE (apoE4/dipalmitoylphosphatidylcholine-reconstituted discs). CatE was found to proteolyze lipid-free recombinant human apoE to a much greater extent than lipidated apoE. This proteolysis, as well as proteolysis of human apoE added to brain homogenates from apoE-deficient mice, was inhibited by pepstatin A (an aspartic protease inhibitor), but not by phenylmethanesulfonyl fluoride (a serine protease inhibitor). The major apoE fragment obtained with catD included the receptor-binding domain and had an apparent molecular weight similar to that found in human brain homogenates. There was little immunoreactivity for catE in AD brain tissue sections. In contrast, qualitative and quantitative analyses of immunostained sections of the frontal cortex revealed that catD and apoE are colocalized in a subset of predominantly dense-core neuritic plaques and in some neurofibrillary tangles. A positive correlation was observed between estimated duration of illness and the percentage of apoE-positive plaques that were also catD-positive. These results suggest that aspartic proteases, catD in particular, may be involved in proteolysis of apoE and perhaps contribute to the generation of apoE fragments previously implicated in AD pathology.
Collapse
Affiliation(s)
- W Zhou
- Department of Neurosurgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0515, USA
| | | | | | | |
Collapse
|
47
|
|
48
|
Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 2005; 64:113-22. [PMID: 15751225 DOI: 10.1093/jnen/64.2.113] [Citation(s) in RCA: 1124] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The accumulation of lysosomes and their hydrolases within neurons is a well-established neuropathologic feature of Alzheimer disease (AD). Here we show that lysosomal pathology in AD brain involves extensive alterations of macroautophagy, an inducible pathway for the turnover of intracellular constituents, including organelles. Using immunogold labeling with compartmental markers and electron microscopy on neocortical biopsies from AD brain, we unequivocally identified autophagosomes and other prelysosomal autophagic vacuoles (AVs), which were morphologically and biochemically similar to AVs highly purified from mouse liver. AVs were uncommon in brains devoid of AD pathology but were abundant in AD brains particularly, within neuritic processes, including synaptic terminals. In dystrophic neurites, autophagosomes, multivesicular bodies, multilamellar bodies, and cathepsin-containing autophagolysosomes were the predominant organelles and accumulated in large numbers. These compartments were distinguishable from lysosomes and lysosomal dense bodies, previously shown also to be abundant in dystrophic neurites. Autophagy was evident in the perikarya of affected neurons, particularly in those with neurofibrillary pathology where it was associated with a relative depletion of mitochondria and other organelles. These observations provide the first evidence that macroautophagy is extensively involved in the neurodegenerative/regenerative process in AD. The striking accumulations of immature AV forms in dystrophic neurites suggest that the transport of AVs and their maturation to lysosomes may be impaired, thereby impeding the suspected neuroprotective functions of autophagy.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, New York University School of Medicine, Orangeburg, New York 10962, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Li XQ, Chen D, Zhang ZX, Qu QM, Zhang JW. Association between cathepsin D polymorphism and Alzheimer's disease in a Chinese Han population. Dement Geriatr Cogn Disord 2005; 18:115-9. [PMID: 15211064 DOI: 10.1159/000079189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2003] [Indexed: 11/19/2022] Open
Abstract
Cathepsin D (CTSD) is an intracellular aspartyl protease, which is active in the endosomal/lysosomal system. CTSD may play a role in Alzheimer's disease (AD) through cleaving the amyloid precursor protein into beta-amyloid peptide and degrading tau protein into fragments. A functional polymorphism in exon 2 of the cathepsin D gene (C-->T, Ala224Val) has recently been reported to increase the risk for AD in some of the Caucasian populations, with a significant overrepresentation of the T allele, but these reports have not been universally duplicated. We performed an association study between CTSD polymorphism and AD in 156 sporadic AD patients and 183 controls of Chinese Han ethnicity. Our data revealed that the distribution of CTSD genotypes and alleles was similar in patients and controls. No direct association was found between CTSD polymorphism and AD risk. There might be a weak synergistic interaction between CTSD T and APOEepsilon4 allele in increasing the risk for developing AD.
Collapse
Affiliation(s)
- Xiao-Qing Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | | | | | | | | |
Collapse
|
50
|
Langui D, Girardot N, El Hachimi KH, Allinquant B, Blanchard V, Pradier L, Duyckaerts C. Subcellular topography of neuronal Abeta peptide in APPxPS1 transgenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1465-77. [PMID: 15509518 PMCID: PMC1618656 DOI: 10.1016/s0002-9440(10)63405-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In transgenic mice expressing human mutant beta-amyloid precursor protein (APP) and mutant presenilin-1 (PS1), Abeta antibodies labeled granules, about 1 microm in diameter, in the perikaryon of neurons clustered in the isocortex, hippocampus, amygdala, thalamus, and brainstem. The granules were present before the onset of Abeta deposits; their number increased up to 9 months and decreased in 15-month-old animals. They were immunostained by antibodies against Abeta 40, Abeta 42, and APP C-terminal region. In double immunofluorescence experiments, the intracellular Abeta co-localized with lysosome markers and less frequently with MG160, a Golgi marker. Abeta accumulation correlated with an increased volume of lysosomes and Golgi apparatus, while the volume of endoplasmic reticulum and early endosomes did not change. Some granules were immunolabeled with an antibody against flotillin-1, a raft marker. At electron microscopy, Abeta, APP-C terminal, cathepsin D, and flotillin-1 epitopes were found in the lumen of multivesicular bodies. This study shows that Abeta peptide and APP C-terminal region accumulate in multivesicular bodies containing lysosomal enzymes, while APP N-terminus is excluded from them. Multivesicular bodies could secondarily liberate their content in the extracellular space as suggested by the association of cathepsin D with Abeta peptide in the extracellular space.
Collapse
Affiliation(s)
- Dominique Langui
- Laboratoire de Neuropathologie Raymond Escourolle, Groupe hospitalier Pitié-Salpêtrière, 47, boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|