1
|
Roohbakhsh A, Shamsizadeh A, Arababadi MK, Ayoobi F, Fatemi I, Allahtavakoli M, Mohammad-Zadeh M. Tactile learning in rodents: Neurobiology and neuropharmacology. Life Sci 2016; 147:1-8. [DOI: 10.1016/j.lfs.2016.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 12/28/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022]
|
2
|
Liguz-Lecznar M, Zakrzewska R, Daniszewska K, Kossut M. Functional assessment of sensory functions after photothrombotic stroke in the barrel field of mice. Behav Brain Res 2013; 261:202-9. [PMID: 24388975 DOI: 10.1016/j.bbr.2013.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 10/25/2022]
Abstract
Motor, sensory and cognitive deficits are common impairments observed in human stroke as well as in animal stroke models. Using a battery of behavioural tests we assessed sensorimotor deficits after photothrombotic stroke localized within or beyond cortical representation of mouse sensory vibrissae. We found restricted, modality specific behavioural consequences in the acute post-stroke period. Among incorporated tests, adhesive removal test, novelty exploration test and sensory labyrinth task were sensitive to the somatosensory cortical deficits. Injured animals explored new objects significantly longer, they also needed distinctly more time to contact and to remove the adhesive tape placed on whiskers contralateral to the infarct. Moreover, we observed that after stroke animals were unable to solve the sensory labyrinth depending only upon tactile sensation from whiskers with injured cortical representation. Spontaneous recovery could be observed within the first post-stroke week for adhesive tape removal and within 14 days for labyrinth performance. However, for the novel object exploration we did not observed the recovery for the period of 18 days after stroke. Moreover, new object exploration test performance differed between the somatosensory and visual cortical impairments. We suggest that those three tests might be valuable in assessing the usefulness of therapies designed to support brain repair after experimental stroke.
Collapse
Affiliation(s)
- Monika Liguz-Lecznar
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Renata Zakrzewska
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Katarzyna Daniszewska
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Malgorzata Kossut
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland; Warsaw School of Social Science and Humanities, 19 Chodakowska St., 03-815 Warsaw, Poland
| |
Collapse
|
3
|
Learoyd AE, Lifshitz J. Comparison of rat sensory behavioral tasks to detect somatosensory morbidity after diffuse brain-injury. Behav Brain Res 2012; 226:197-204. [PMID: 21939691 PMCID: PMC3270820 DOI: 10.1016/j.bbr.2011.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/22/2011] [Accepted: 09/08/2011] [Indexed: 11/19/2022]
Abstract
Brain injury disrupts neuronal circuits, impacting neurological function. Selective and sensitive behavioral tests are required to explore neurological dysfunction, recovery and potential therapy. Previously we reported that the Whisker Nuisance Task (WNT), where whiskers are manually stimulated in an open field, shows sensory sensitivity in diffuse brain-injured rats. To further explore this somatosensory morbidity, we evaluated three additional whisker-dependent tasks: Gap Cross Test, a novel Angle Entrance Task and Whisker Guided Exploration Task. Brain-injured (n=11) and sham (n=8) rats were tested before midline fluid percussion brain injury (moderate: 2.0atm) and 1 and 4 weeks after injury. For the WNT, we confirmed that brain-injured rats develop significant sensory sensitivity to whisker stimulation over 28 days. In the Gap Cross Test, where rats cross progressively larger elevated gaps, we found that animals were inconsistent in crossable distance regardless of injury. In the Angle Entrance Task, where rats enter 30°, 40°, 50° or 80° corners, rats performed consistently regardless of injury. In the Whisker Guided Exploration Task, where rats voluntarily explore an oval circuit, we identified significant decreases in the number of rears and reversals and changes in the predominant location (injured rats spend more time in the inside of the turn compared to the outside) after injury and increased thigmotaxis after sham and brain-injury. Both the WNT and Whisker Guided Exploration Task show injury-induced somatosensory behavioral morbidity; however, the WNT remains more sensitive in detecting brain injury, possibly due to imposed whisker stimulation that elicits agitation similar to the human condition.
Collapse
Affiliation(s)
- Annastazia Ellouise Learoyd
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jonathan Lifshitz
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Physical Medicine & Rehabilitation, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
4
|
Abstract
Rich evidence indicates that monoamine oxidase (MAO) A, the major enzyme catalysing the degradation of monoamine neurotransmitters, plays a key role in emotional regulation. Although MAOA deficiency is associated with reactive aggression in humans and mice, the involvement of this enzyme in defensive behaviour remains controversial and poorly understood. To address this issue, we tested MAOA knockout (KO) mice in a spectrum of paradigms and settings associated with variable degrees of threat. The presentation of novel inanimate objects induced a significant reduction in exploratory approaches and increase in defensive behaviours, such as tail-rattling, biting and digging. These neophobic responses were context-dependent and particularly marked in the home cage. In the elevated plus- and T-mazes, MAOA KO mice and wild-type (WT) littermates displayed equivalent locomotor activity and time in closed and open arms; however, MAOA KO mice featured significant reductions in risk assessment, as well as unconditioned avoidance and escape. No differences between genotypes were observed in the defensive withdrawal and emergence test. Conversely, MAOA KO mice exhibited a dramatic reduction of defensive and fear-related behaviours in the presence of predator-related cues, such as predator urine or an anaesthetized rat, in comparison with those observed in their WT littermates. The behavioural abnormalities in MAOA KO mice were not paralleled by overt alterations in sensory and microvibrissal functions. Collectively, these results suggest that MAOA deficiency leads to a general inability to appropriately assess contextual risk and attune defensive and emotional responses to environmental cues.
Collapse
|
5
|
Bortolato M, Shih JC. Behavioral outcomes of monoamine oxidase deficiency: preclinical and clinical evidence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 100:13-42. [PMID: 21971001 DOI: 10.1016/b978-0-12-386467-3.00002-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Monoamine oxidase (MAO) isoenzymes A and B are mitochondrial-bound proteins, catalyzing the oxidative deamination of monoamine neurotransmitters as well as xenobiotic amines. Although they derive from a common ancestral progenitor gene, are located at X-chromosome and display 70% structural identity, their substrate preference, regional distribution, and physiological role are divergent. In fact, while MAO-A has high affinity for serotonin and norepinephrine, MAO-B primarily serves the catabolism of 2-phenylethylamine (PEA) and contributes to the degradation of other trace amines and dopamine. Convergent lines of preclinical and clinical evidence indicate that variations in MAO enzymatic activity--due to either genetic or environmental factors--can exert a profound influence on behavioral regulation and play a role in the pathophysiology of a large spectrum of mental and neurodegenerative disorders, ranging from antisocial personality disorder to Parkinson's disease. Over the past few years, numerous advances have been made in our understanding of the phenotypical variations associated with genetic polymorphisms and mutations of the genes encoding for both isoenzymes. In particular, novel findings on the phenotypes of MAO-deficient mice are highlighting novel potential implications of both isoenzymes in a broad spectrum of mental disorders, ranging from autism and anxiety to impulse-control disorders and ADHD. These studies will lay the foundation for future research on the neurobiological and neurochemical bases of these pathological conditions, as well as the role of gene × environment interactions in the vulnerability to several mental disorders.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
6
|
Jablonka J, Burnat K, Witte O, Kossut M. Remapping of the somatosensory cortex after a photothrombotic stroke: dynamics of the compensatory reorganization. Neuroscience 2010; 165:90-100. [DOI: 10.1016/j.neuroscience.2009.09.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/25/2009] [Accepted: 09/26/2009] [Indexed: 10/20/2022]
|
7
|
Prince DA, Parada I, Scalise K, Graber K, Jin X, Shen F. Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia 2009; 50 Suppl 2:30-40. [PMID: 19187292 DOI: 10.1111/j.1528-1167.2008.02008.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The sequelae of traumatic brain injury, including posttraumatic epilepsy, represent a major societal problem. Significant resources are required to develop a better understanding of the underlying pathophysiologic mechanisms as targets for potential prophylactic therapies. Posttraumatic epilepsy undoubtedly involves numerous pathogenic factors that develop more or less in parallel. We have highlighted two potential "prime movers": disinhibition and development of new functional excitatory connectivity, which occur in a number of animal models and some forms of epilepsy in humans. Previous experiments have shown that tetrodotoxin (TTX) applied to injured cortex during a critical period early after lesion placement can prevent epileptogenesis in the partial cortical ("undercut") model of posttraumatic epilepsy. Here we show that such treatment markedly attenuates histologic indices of axonal and terminal sprouting and presumably associated aberrant excitatory connectivity. A second finding in the undercut model is a decrease in spontaneous inhibitory events. Current experiments show that this is accompanied by regressive alterations in fast-spiking gamma-aminobutyric acid (GABA)ergic interneurons, including shrinkage of dendrites, marked decreases in axonal length, structural changes in inhibitory boutons, and loss of inhibitory synapses on pyramidal cells. Other data support the hypothesis that these anatomic abnormalities may result from loss of trophic support normally provided to interneurons by brain-derived neurotrophic factor (BDNF). Approaches that prevent these two pathophysiologic mechanisms may offer avenues for prophylaxis for posttraumatic epilepsy. However, major issues such as the role of these processes in functional recovery from injury and the timing of the critical period(s) for application of potential therapies in humans need to be resolved.
Collapse
Affiliation(s)
- David A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Modo M. Long-term survival and serial assessment of stroke damage and recovery - practical and methodological considerations. ACTA ACUST UNITED AC 2009; 2:52-68. [PMID: 22389748 DOI: 10.6030/1939-067x-2.2.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Impairments caused by stroke remain the main cause for adult disability. Despite a vigorous research effort, only 1 thrombolytic treatment has been approved in acute stroke (<3h). The limitations of preclinical studies and how these can be overcome have been the subject of various guidelines. However, often these guidelines focus on the acute stroke setting and omit long-term outcome measures, such as behaviour and neuroimaging. The considerations and practicalities of including the serial assessment of these approaches and their significance to establish therapeutic efficacy are discussed here.
Collapse
Affiliation(s)
- Michel Modo
- King's College London, Institute of Psychiatry, Department of Neuroscience, London, UK
| |
Collapse
|
9
|
Abstract
In the rat photochemical cortical lesion model described in this unit, an intravascular photochemical reaction induces endothelial damage resulting in platelet aggregation, thrombosis, thrombotic response (secretion of factors by the platelets) and permanent cerebral vascular occlusion. Because thrombosis is produced in pial vessels, the resulting cortical infarct is generally smaller and more reproducible than in the models involving occlusion of the middle cerebral artery. The surgical procedures involved are limited, making this model generally easier to perform and less invasive than most other models of permanent focal ischemia that involve mechanical occlusion of major cerebral arteries.
Collapse
|
10
|
Galvez R, Weible AP, Disterhoft JF. Cortical barrel lesions impair whisker-CS trace eyeblink conditioning. Learn Mem 2007; 14:94-100. [PMID: 17272654 PMCID: PMC1838550 DOI: 10.1101/lm.418407] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Whisker deflection is an effective conditioned stimulus (CS) for trace eyeblink conditioning that has been shown to induce a learning-specific expansion of whisker-related cortical barrels, suggesting that memory storage for an aspect of the trace association resides in barrel cortex. To examine the role of the barrel cortex in acquisition and retrieval of trace eyeblink associations, the barrel cortex was lesioned either prior to (acquisition group) or following (retention group) trace conditioning. The acquisition lesion group was unable to acquire the trace conditioned response, suggesting that the whisker barrel cortex is vital for learning trace eyeblink conditioning with whisker deflection as the CS. The retention lesion group exhibited a significant reduction in expression of the previously acquired conditioned response, suggesting that an aspect of the trace association may reside in barrel cortex. These results demonstrate that the barrel cortex is important for both acquisition and retention of whisker trace eyeblink conditioning. Furthermore, these results, along with prior anatomical whisker barrel analyses suggest that the barrel cortex is a site for long-term storage of whisker trace eyeblink associations.
Collapse
Affiliation(s)
- Roberto Galvez
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Corresponding author.E-mail ; fax (312) 503-5101
| | - Aldis P. Weible
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - John F. Disterhoft
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
11
|
Gies U, Bilzer T, Stitz L, Staiger JF. Disturbance of the cortical cholinergic innervation in Borna disease prior to encephalitis. Brain Pathol 2006; 8:39-48. [PMID: 9458165 PMCID: PMC8098315 DOI: 10.1111/j.1750-3639.1998.tb00133.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rats experimentally infected with the highly neurotropic Borna disease virus (BDV) display a wide variety of dysfunction such as learning deficiencies and behavioral abnormalities. Prior to the onset of encephalitis alterations of one of the major cortical neurotransmitters, acetylcholine, were monitored immunohistochemically by light and electron microscopy of its synthesizing enzyme choline acetyltransferase (ChAT). We found a progressing decrease in the number of ChAT-positive fibers, starting with discrete changes at day 6 post infection (p.i.) and ending with a nearly complete loss of cholinergic fibers, especially in the hippocampus and neocortex, suggesting a massive disturbance of the cholinergic innervation by day 15 p.i.. The fiber pathways (e.g., fimbria-fornix) connecting the basal forebrain with these target areas in the cortex displayed axon spheroids which are often linked to axonal transport dysfunction. No evidence for significant cellular destruction was seen in the brain, including the cells of origin of these axons in the basal forebrain. We conclude that the motor, mood, learning and memory disabilities in BDV-infected rats are likely to result, in part, from cortical cholinergic denervation. The present study gives new insights into the pathogenesis of neurological disease caused by a noncytopathogenic virus.
Collapse
Affiliation(s)
- U Gies
- Institut für Neuropathologie, Heinrich-Heine-Universität Düsseldorf, FRG
| | | | | | | |
Collapse
|
12
|
Grigoryan G, Hodges LH, Gray J. Effects of vibrissae removal on search accuracy in the water maze. ACTA ACUST UNITED AC 2005; 35:133-7. [PMID: 15779324 DOI: 10.1007/s11055-005-0052-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In two experiments, the vibrissae were clipped on either the left, the right, or both sides, and the rats were trained to find a submerged platform in the Morris water maze. In both experiments, animals without vibrissae on both sides or on the left consistently spent significantly more time in the "counter" area twice the platform diameter in size, surrounding the submerged platform, than intact controls. Counter preference was not as consistent across experiments in rats with right vibrissae removed. These results suggest that the vibrissae are required for proprioceptive location of the platform itself, but not for proximal search accuracy. Since ischemic damage to hippocampal CA1 pyramidal cells has also been reported to prolong counter search during training, the results support the suggestion that impaired hippocampal processing of proprioceptive information from the vibrissae may contribute to the increased latency to find the platform shown by ischemic rats.
Collapse
Affiliation(s)
- G Grigoryan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow.
| | | | | |
Collapse
|
13
|
Luhmann HJ, Huston JP, Hasenöhrl RU. Contralateral increase in thigmotactic scanning following unilateral barrel-cortex lesion in mice. Behav Brain Res 2005; 157:39-43. [PMID: 15617769 DOI: 10.1016/j.bbr.2004.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 06/08/2004] [Accepted: 06/08/2004] [Indexed: 11/24/2022]
Abstract
Adult C57BL/6 mice received uni- or bilateral cryogenic or sham-lesions over the barrel field and their exploratory behaviour was assessed in an open field between 1 and 7 days post-lesion. Bilateral cortical lesions produced a short-lasting increase in thigmotactic scanning with both sides of the face on the first day of testing. Mice with a unilateral barrel-cortex lesion showed more contralateral wall scanning with a recovery to behavioural symmetry after 5-7 days. Furthermore, the increase in contralateral thigmotaxis was most pronounced in animals with damage to the left barrel field, indicative of a lateralization of the lesion-induced behavioural changes. The cortical lesions did not influence locomotor activity and the rate of habituation to the open field (habituation 'learning'). Referring to recent electrophysiological findings, we hypothesize that the lesion established a lateralized source of increased neuronal excitability within the affected barrel-cortex, leading to more behaviour with its corresponding vibrissae. Alternatively, if the lesion results in contralateral 'neglect' in terms of input, the increased scanning with the affected vibrissae may reflect an attempt of the system to compensate for this with an increase in usage.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology and Pathophysiology, University of Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | | | | |
Collapse
|
14
|
Lesions of mature barrel field cortex interfere with sensory processing and plasticity in connected areas of the contralateral hemisphere. J Neurosci 2003. [PMID: 14614097 DOI: 10.1523/jneurosci.23-32-10378.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lesions of primary sensory cortex produce impairments in brain function as an outcome of the direct tissue damage. In addition, indirect lesion effects have been described that consist of functional deficits in areas sharing neural connections with the damaged area. The present study characterizes interhemispheric deficits produced as a result of unilateral lesions of the entire vibrissa representation of S-I barrel field cortex (BFC) in adult rats using single-neuron recording under urethane anesthesia. After unilateral lesions of adult BFC, responses of neurons in the contralateral homotopic BFC are severely depressed. Background (spontaneous) activity is reduced by approximately 80%, responses to test stimuli applied to the whiskers are reduced by approximately 50%, and onset of synaptic plasticity induced by trimming all but two whiskers ("whisker-pairing plasticity") is delayed over sevenfold compared with sham-lesion control animals. These deficits persist with only slight improvement for at least 4 months after lesion. Both fast-spiking and regular-spiking neuron responses are diminished contralateral to the lesion, as are cells above, below, and within the cortical barrels. Enriched environment experience increased the magnitude of responses and accelerated the rate of synaptic plasticity but did not restore response magnitude to control levels. Deficiencies in evoked responses and synaptic plasticity are primarily restricted to areas that share direct axonal connections with the lesioned cortex, because equivalently sized lesions of visual cortex produce minimal deficits in contralateral BFC function. These results indicate that interhemispheric deficits consist of remarkable and persistent decrements in sensory processing at the single-neuron level and support the idea that the deficits are somehow linked to the shared neural connections with the area of brain damage.
Collapse
|
15
|
Hoffman JR, Greenberg JH, Furuya D, Craik RL, Fanelli P, Breslow S, Sheehan S, Ketschek A, Damkaoutis C, Reivich M, Hand P. Rats recovering from unilateral barrel-cortex ischemia are capable of completing a whisker-dependent task using only their affected whiskers. Brain Res 2003; 965:91-9. [PMID: 12591124 DOI: 10.1016/s0006-8993(02)04141-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rats use their vibrissae for a variety of exploratory tasks including location of objects and discrimination of texture. This study examines recovery in vibrissal function following a unilateral ischemic injury to the somatosensory cortex. Vibrissal function was examined in adult food-restricted rats performing on a two-texture discrimination device. Animals were trained and tested until the criteria of >80% correct choices was demonstrated on three consecutive days. Ischemic rats were constrained to use the affected whiskers by clipping the ipsilateral vibrissae. One group was tested after ischemia, a second group was trained before ischemia and then tested, and a third group was pre-trained and received whisker stimulation and tested post-ischemia. Nai;ve animals recovering from ischemia took longer to reach criteria than intact or unilateral trimmed control animals. Pre-trained animals with compression ischemia receiving whisker stimulation with sucrose water completed the task to criteria in the fewest number of trials. The results indicate that recovery of vibrissal function occurs following a unilateral ischemic injury. Histological analysis in animals without whisker stimulation indicates that the number of normal appearing cortical barrels following ischemia was inversely correlated to the number of trials needed to complete the behavioral task. This suggests that the natural recovery of the ability to discriminate textures is related to the degree of damage to the barrel cortex. The relationship between cortical barrels and behavioral recovery did not hold for the ischemic animals receiving whisker stimulation. This latter group demonstrated recovery despite marked anatomical lesions suggesting that the intervention influenced reorganization.
Collapse
Affiliation(s)
- John R Hoffman
- Department of Biology, Arcadia University, 450 S. Easton Road, Glenside, PA 19038, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen P, Goldberg DE, Kolb B, Lanser M, Benowitz LI. Inosine induces axonal rewiring and improves behavioral outcome after stroke. Proc Natl Acad Sci U S A 2002; 99:9031-6. [PMID: 12084941 PMCID: PMC124418 DOI: 10.1073/pnas.132076299] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cerebral infarct (stroke) often causes devastating and irreversible losses of function, in part because of the brain's limited capacity for anatomical reorganization. The purine nucleoside inosine has previously been shown to induce neurons to express a set of growth-associated proteins and to extend axons in culture and in vivo. We show here that in adult rats with unilateral cortical infarcts, inosine stimulated neurons on the undamaged side of the brain to extend new projections to denervated areas of the midbrain and spinal cord. This growth was paralleled by improved performance on several behavioral measures.
Collapse
Affiliation(s)
- Peng Chen
- Department of Neurosurgery, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
17
|
Berbel P, Ausó E, García-Velasco JV, Molina ML, Camacho M. Role of thyroid hormones in the maturation and organisation of rat barrel cortex. Neuroscience 2002; 107:383-94. [PMID: 11718994 DOI: 10.1016/s0306-4522(01)00368-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of thyroid hormones on cortical development was analysed in rat somatosensory cortex. Maternal and foetal hypothyroidism was induced and maintained by methimazole treatment from embryonic day 13 onwards. 5-Bromo-2'-deoxyuridine (BrdU) labelling in hypothyroid rats showed that cell positioning during corticogenesis followed an inside-out pattern. The radial neurogenetic gradients were more diffuse at all ages with respect to normal rats due to the inappropriate location of many cells, including those of the subcortical white matter. Most (62%) of the cells in the subcortical white matter of hypothyroid rats were labelled at embryonic day 15. Nissl staining of the primary somatosensory cortex showed blurred cortical layer boundaries and an abnormal barrel cytoarchitecture. Cytochrome oxidase and peanut agglutinin staining showed that the tangential organisation of the posteromedial barrel subfield and its layer IV specificity was not lost in hypothyroid rats. However the temporal pattern of peanut agglutinin labelling was delayed 3-4 days with respect to normal rats. In hypothyroid rats, the total barrelfield tangential area was reduced by 27% with respect to normal. The total tangential barrel area, corresponding to peanut agglutinin-negative labelling, occupied 77% of the barrelfield area and only 66% in hypothyroid rats. This reduction was larger with cytochrome oxidase staining where the total barrel area occupied 69% of the barrelfield area in normal and 46% in hypothyroid rats. Our data stress the importance of maternal and foetal thyroid hormones during development, and demonstrate the irreversible effects that maternal and foetal hypothyroidism may have on the intrinsic organisation and maturation of the neocortex.
Collapse
Affiliation(s)
- P Berbel
- Instituto de Neurociencias y Departamento de Histología y Anatomía, Universidad Miguel Hernández-CSIC, Apartado de Correos 18, 03550, San Juan, Alicante, Spain.
| | | | | | | | | |
Collapse
|
18
|
Behavioral properties of the trigeminal somatosensory system in rats performing whisker-dependent tactile discriminations. J Neurosci 2001. [PMID: 11466447 DOI: 10.1523/jneurosci.21-15-05752.2001] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To address several fundamental questions regarding how multiwhisker tactile stimuli are integrated and processed by the trigeminal somatosensory system, a novel behavioral task was developed that required rats to discriminate the width of either a wide or narrow aperture using only their large mystacial vibrissae. Rats quickly acquired this task and could accurately discriminate between apertures of very similar width. Accurate discriminations required a large number of intact facial whiskers. Systematic removal of individual whiskers caused a decrease in performance that was directly proportional to the number of whiskers removed, indicating that tactile information from multiple whiskers is integrated as rats gauge aperture width. In different groups of rats, different sets of whiskers were removed in patterns that preferentially left whisker rows or whisker arcs intact. These different whisker removals caused similar decreases in performance, indicating that individual whiskers within the vibrissal array are functionally equivalent during performance of this task. Lesions of the barrel cortex abolished the ability of rats to discriminate, demonstrating that this region is critically involved in this tactile behavior. Interestingly, sectioning the facial nerve, which abolished whisker movements, did not affect the ability to perform accurate discriminations, indicating that active whisker movements are not necessary for accurate performance of the task. Collectively, these results indicate that the trigeminal somatosensory system forms internal representations of external stimuli (in this case, aperture width) by integrating tactile input from many functionally equivalent facial whiskers and that the vibrissal array can function as a fine-grained distance detector without active whisker movements.
Collapse
|
19
|
Panzeri S, Petersen RS, Schultz SR, Lebedev M, Diamond ME. The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron 2001; 29:769-77. [PMID: 11301035 DOI: 10.1016/s0896-6273(01)00251-3] [Citation(s) in RCA: 293] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the timing of single spikes is known to code for time-varying features of a sensory stimulus, it remains unclear whether time is also exploited in the neuronal coding of the spatial structure of the environment, where nontemporal stimulus features are fundamental. This report demonstrates that, in the whisker representation of rat cortex, precise spike timing of single neurons increases the information transmitted about stimulus location by 44%, compared to that transmitted only by the total number of spikes. Crucial to this code is the timing of the first spike after whisker movement. Complex, single neuron spike patterns play a smaller, synergistic role. Timing permits very few spikes to transmit high quantities of information about a behaviorally significant, spatial stimulus.
Collapse
Affiliation(s)
- S Panzeri
- Neural Systems Group, Department of Psychology, Ridley Building, University of Newcastle upon Tyne, NE1 7RU, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Staiger JF, Bisler S, Schleicher A, Gass P, Stehle JH, Zilles K. Exploration of a novel environment leads to the expression of inducible transcription factors in barrel-related columns. Neuroscience 2000; 99:7-16. [PMID: 10924947 DOI: 10.1016/s0306-4522(00)00166-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Tactile information acquired through the vibrissae is of high behavioral relevance for rodents. Numerous physiological studies have shown adaptive plasticity of cortical receptive field properties due to stimulation and/or manipulation of the whiskers. However, the cellular mechanisms leading to these plastic processes remain largely unknown. Although genomic responses are anticipated to take place in this sequel, virtually no data so far exist for freely behaving animals concerning this issue. Thus, adult rats were placed overnight in an enriched environment and most of them were also subjected to clipping of different sets of whiskers. This type of stimulation led to a specific and statistically significant increase in the expression of the protein products of the inducible transcription factors c-Fos, JunB, inducible cyclic-AMP early repressor and Krox-24 (also frequently named Zif268 or Egr-1), but not c-Jun. The response was found in columns of the barrel cortex corresponding to the stimulated vibrissae; it displayed a layer-specific pattern. However, no induction of transcription factors was observed in the subcortical relay stations of the whisker-to-barrel pathway, i.e. the trigeminal nuclei and the ventrobasal complex. These results strongly suggest that a coordinated transcriptional response is initiated in the barrel cortex as a consequence of processing of novel environmental stimuli.
Collapse
Affiliation(s)
- J F Staiger
- C. & O. Vogt-Institut für Hirnforschung, Heinrich-Heine-Universität, Universitätsstr. 1, D-40225, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Edeline JM. Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog Neurobiol 1999; 57:165-224. [PMID: 9987805 DOI: 10.1016/s0301-0082(98)00042-2] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The goal of this review is to give a detailed description of the main results obtained in the field of learning-induced plasticity. The review is focused on receptive field and map changes observed in the auditory, somatosensory and visual thalamo-cortical system as a result of an associative training performed in waking animals. Receptive field (RF) plasticity, 2DG and map changes obtained in the auditory and somatosensory system are reviewed. In the visual system, as there is no RF and map analysis during learning per se, the evidence presented are from increased neuronal responsiveness, and from the effects of perceptual learning in human and non human primates. Across sensory modalities, the re-tuning of neurons to a significant stimulus or map reorganizations in favour of the significant stimuli were observed at the thalamic and/or cortical level. The analysis of the literature in each sensory modality indicates that relationships between learning-induced sensory plasticity and behavioural performance can, or cannot, be found depending on the tasks that were used. The involvement (i) of Hebbian synaptic plasticity in the described neuronal changes and (ii) of neuromodulators as "gating" factors of the neuronal changes, is evaluated. The weakness of the Hebbian schema to explain learning-induced changes and the need to better define what the word "learning" means are stressed. It is suggested that future research should focus on the dynamic of information processing in sensory systems, and the concept of "effective connectivity" should be useful in that matter.
Collapse
Affiliation(s)
- J M Edeline
- NAMC, URA CNRS 1491, Université Paris-Sud, Orsay, France.
| |
Collapse
|
22
|
Stroemer RP, Kent TA, Hulsebosch CE. Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with D-amphetamine therapy after neocortical infarction in rats. Stroke 1998; 29:2381-93; discussion 2393-5. [PMID: 9804653 DOI: 10.1161/01.str.29.11.2381] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE D-Amphetamine administration increases behavioral recovery after various cortical lesions including cortical ablations, contusions, and focal ischemia in animals and after stroke in humans. The purpose of the present study was to test the enhanced behavioral recovery and increased expression of proteins involved in neurite growth and synaptogenesis in D-amphetamine-treated rats compared with vehicle-treated controls after a focal neocortical infarct. METHODS Unilateral neocortical ischemia was induced in male spontaneously hypertensive Wistar rats (n=8 per time point per group) by permanently occluding the distal middle cerebral artery and ipsilateral common carotid artery in 2 groups of rats: D-amphetamine treated (2 mg/kg IP injections) and vehicle treated (saline IP injections). To determine the spatial and temporal distribution of neurite growth and/or synaptogenesis, growth-associated protein (GAP-43), a protein expressed on axonal growth cones, and synaptophysin, a calcium-binding protein found on synaptic vesicles, were examined by immunohistochemical techniques, and both density and distribution of reaction product were measured. Since the resulting infarction included a portion of the forelimb neocortex, behavioral assessments of forelimb function using the foot-fault test of Hernandez and Schallert were performed on the same rats used for immunohistochemical studies during the period of drug action and 24 hours later. A Morris water maze and other indices of behavioral assays were also measured similarly. Recovery times were 3, 7, 14, 30, and 60 days postoperatively. RESULTS Both GAP-43 and synaptophysin proteins demonstrated statistically significant increases in density and distribution of immunoreaction product as determined by optical density measurements in the neocortex of the infarcted group treated with D-amphetamines compared with vehicle-treated infarcted controls. The GAP-43 was elevated to statistically significant levels in forelimb, hindlimb, and parietal neocortical regions ipsilateral to the infarction only at days 3, 7, and 14. By contrast, the synaptophysin demonstrated no statistically significant changes in expression at 3 or 7 days but demonstrated statistically significant increases at 14, 30, and 60 days in the forelimb, hindlimb, and parietal neocortical regions ipsilateral to the infarction as well as increased distribution in the contralateral parietal neocortex. Behavioral assessment of forelimb function indicated that improved recovery of forelimb placement on the side contralateral to the infarction was statistically significant in the D-amphetamine-treated group compared with the vehicle-treated group (P<0.025). Spatial memory, as measured with the Morris water maze, worsened in the vehicle-treated group compared with the D-amphetamine-treated group at 60 days (P<0.025). CONCLUSIONS These data support the occurrence of neurite growth followed by synaptogenesis in the neocortex in a pattern that corresponds both spatially and temporally with behavioral recovery that is accelerated by D-amphetamine treatment. While the specific mechanisms responsible for D-amphetamine-promoted expression of proteins involved in neurite growth and synaptogenesis and of enhanced behavioral recovery are not known, it is suggested that protein upregulation occurs as a result of functional activation of pathways able to remodel in response to active behavioral performance.
Collapse
Affiliation(s)
- R P Stroemer
- School of Biological Sciences, Division of Neuroscience, University of Manchester, Manchester, England
| | | | | |
Collapse
|
23
|
Affiliation(s)
- W D Dietrich
- Department of Neurology, University of Miami of School of Medicine, Florida 33101, USA
| |
Collapse
|
24
|
Cases O, Vitalis T, Seif I, De Maeyer E, Sotelo C, Gaspar P. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 1996; 16:297-307. [PMID: 8789945 DOI: 10.1016/s0896-6273(00)80048-3] [Citation(s) in RCA: 416] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In a transgenic mouse line (Tg8) deficient for the gene encoding monoamine oxidase A (MAOA), we show that the primary somatosensory cortex (S1) lacks the characteristic barrel-like clustering of layer IV neurons, whereas normal pattern formation exists in the thalamus and the trigeminal nuclei. No barrel-like patterns were visible with tenascin or serotonin immunostaining or with labeling of thalamocortical axons. An excess of brain serotonin during the critical period of barrel formation appears to have a causal role in these cortical abnormalities, since early administration of parachlorophenylalanine, an inhibitor of serotonin synthesis, in Tg8 pups restored the formation of barrels in S1, whereas inhibition of catecholamine synthesis did not. Transient inactivation of MAOA in normal newborns reproduced a barrelless phenotype in parts of S1.
Collapse
Affiliation(s)
- O Cases
- Centre National de la Recherche Scientifique, Institut Curie, Orsay France
| | | | | | | | | | | |
Collapse
|
25
|
Stroemer RP, Kent TA, Hulsebosch CE. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke 1995; 26:2135-44. [PMID: 7482662 DOI: 10.1161/01.str.26.11.2135] [Citation(s) in RCA: 344] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE Neuroanatomical plasticity is well described in lesions of the hippocampus but remains a subject of some controversy in the neocortex. The purpose of the present study was to measure the neocortical distribution and density of expression of proteins known to be involved in neurite growth or synaptogenesis and to correlate the neocortical expression with behavioral recovery after a focal neocortical infarction. Focal neocortical infarction creates a circumscribed lesion in the neocortex that provides a denervation stimulus for neurite growth and synaptogenesis. METHODS Unilateral neocortical ischemia was induced in male spontaneously hypertensive Wistar rats (n = 4 per time point) by permanent occlusion of the distal middle cerebral artery and ipsilateral common carotid artery. To determine the spatial and temporal distribution of neurite growth and/or synaptogenesis, GAP-43, a growth-associated protein expressed on axonal growth cones, and synaptophysin, a calcium-binding protein found on synaptic vesicles, were examined by immunohistochemical techniques. The reaction product was measured, and the distribution was recorded. Since the resulting infarction included a portion of the forelimb neocortex, behavioral assessments of forelimb function that used the foot-fault test of Hernandez and Schallert were performed on the same rats used for immunohistochemical studies. Recovery times were 3, 7, 14, 30, and 60 days after surgery. RESULTS Both GAP-43 and synaptophysin proteins demonstrated statistically significant increases in the density of immunoreaction product as determined by optical density measurements in the neocortex of infarcted rats compared with sham controls. The GAP-43 was elevated to statistically significant levels in forelimb, hindlimb, and parietal neocortical regions medial and lateral to the infarction only at days 3, 7, and 14. In contrast, synaptophysin demonstrated no statistically significant changes in expression at 3 or 7 days but demonstrated statistically significant increases at 14, 30, and 60 days in the forelimb, hindlimb, and parietal neocortical regions medial and lateral to the infarction as well as in the contralateral parietal neocortex. Behavioral assessment of forelimb function indicated impairment of forelimb placement on the side contralateral to the infarction that trended toward control values at 14 days and was not significantly different from controls by 30 days. CONCLUSIONS These data support the occurrence of neurite growth followed by synaptogenesis in the neocortex, ipsilateral and contralateral to neocortical ischemia, in a pattern that corresponds both spatially and temporally with behavioral recovery. Thus, neuroanatomical remodeling in the neocortex provides a mechanism for recovery of function.
Collapse
Affiliation(s)
- R P Stroemer
- School of Biological Sciences, Division of Neuroscience, University of Manchester, England
| | | | | |
Collapse
|
26
|
Pazos AJ, Orezzoli SL, McCabe PM, Dietrich WD, Green EJ. Recovery of vibrissae-dependent behavioral responses following barrelfield damage is not dependent upon the remaining somatosensory cortical tissue. Brain Res 1995; 689:224-32. [PMID: 7583325 DOI: 10.1016/0006-8993(95)00579-f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous work has demonstrated that damage to the primary somatosensory cortex produces substantial deficits in a vibrissal cue-dependent discrimination task which recover gradually over the course of post-injury testing. The present study was designed to evaluate the possible site(s) and mechanisms underlying behavioral recovery in this task. Wistar rats were trained under red light in a T-maze to produce ipsilateral turns depending upon the presence of a vibrissal cue. Animals were then subjected to photothrombotic infarctions of either the ipsilateral medial parietal cortex, the ipsilateral primary and secondary somatosensory cortex (SI/SII), the primary and secondary somatosensory cortices of both hemispheres (bilateral SI/SII) or sham surgical procedures. Behavioral testing resumed 24 hours following surgery, and continued for a total of 60 days. The performance of animals with infarcts restricted to the medial parietal cortex did not differ from that of sham-operated controls. Animals with either unilateral or bilateral SI/SII infarcts exhibited a significant decrease in percent correct responding as compared to shams and rats in the medial parietal group. These deficits recovered to pre-infarct levels over approximately 35-40 days. This rate of recovery was slower than the recovery exhibited by animals given medial parietal infarcts which spared the primary barrelfield cortex. The results of this study suggest that neither the contralateral somatosensory cortex nor the vibrissal representation within ipsilateral SII cortex play a critical role in the recovery process. The possibility that subcortical structures underlie the deficits observed following barrelfield cortical damage is discussed.
Collapse
Affiliation(s)
- A J Pazos
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
| | | | | | | | | |
Collapse
|
27
|
Dunn-Meynell AA, Levin BE. Lateralized effect of unilateral somatosensory cortex contusion on behavior and cortical reorganization. Brain Res 1995; 675:143-56. [PMID: 7796123 DOI: 10.1016/0006-8993(95)00050-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous studies have shown that rats recover function after unilateral somatosensory cortex lesions, possibly by transfer of information processing to other brain areas not normally involved in those functions. In the present study, adult rats underwent unilateral contusions of the somatosensory cortex with ablation of the barrel receptor field. Behavioral testing with modified beam-walking and sensory neglect tasks demonstrated persistent somatosensory deficits in rats with left contusions but no apparent deficits in right injured animals. After 2 months, the [14C]2-deoxyglucose (2-DG) method was used to show the metabolic activity produced by unilateral stimulation of the facial vibrissae. In left injured animals, cortical metabolic activity rostral and caudal to the injury site was depressed both under basal conditions and during right vibrissal stimulation. On the other hand, comparison of the pattern of [14C]2-DG uptake in the intact, right cortex revealed changes in the pattern of glucose utilization associated with left injury combined with right vibrissal stimulation. Pattern changes were quantified by measuring the area in which glucose utilization was within the highest 25% of this range (high activity area; HAA). Right vibrissal stimulation in left injured rats caused an expansion of this HAA in the intact occipital/temporal cortex. Also, in the intact somatosensory cortex of left injured rats, there was an enlarged HAA whether or not vibrissal stimulation was performed. Thus, a combination of depressed peri-injury metabolic activity and aberrant activity in remote brain areas occurs following unilateral somatosensory cortex injury. It remains to be shown whether these factors ameliorate or contribute to persistent behavioral deficits.
Collapse
Affiliation(s)
- A A Dunn-Meynell
- Neurology Service (127), Department of Veterans Affairs Medical Center, East Orange, NJ 07018-1095, USA
| | | |
Collapse
|
28
|
|
29
|
Markgraf CG, Green EJ, Hurwitz BE, Morikawa E, Dietrich WD, McCabe PM, Ginsberg MD, Schneiderman N. Sensorimotor and cognitive consequences of middle cerebral artery occlusion in rats. Brain Res 1992; 575:238-46. [PMID: 1571783 DOI: 10.1016/0006-8993(92)90085-n] [Citation(s) in RCA: 188] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rats were subjected to either right proximal middle cerebral artery (MCA) occlusion or sham operation, and examined for an extended period on a battery of tests designed to measure simple motor function, sensorimotor integration and cognitive function. Rats with MCA occlusion showed extensive neuronal loss in the dorsolateral striatum and variable neuron loss in the parietal, temporal and frontolateral neocortex. MCA occluded animals exhibited significant impairments in tests of postural reflex, visual and tactile forelimb placing, locomotor coordination, and a test of simultaneous bilateral tactile extinction. The reflex and sensorimotor function deficits recovered to pre-operative levels by Day 30 post-ischemia. Five weeks following surgery, rats were tested in 2 versions of the Morris water task. Rats with MCA occlusion demonstrated significant impairments in their ability to navigate to a hidden platform, but were not significantly impaired on the visible (cued) version of the task. This general pattern of transient sensorimotor and reflex deficits, but with more persistent cognitive impairments, is similar to that seen in humans following MCA infarcts.
Collapse
Affiliation(s)
- C G Markgraf
- Department of Psychology, University of Miami School of Medicine, FL 33136
| | | | | | | | | | | | | | | |
Collapse
|
30
|
De Ryck M, Van Reempts J, Duytschaever H, Van Deuren B, Clincke G. Neocortical localization of tactile/proprioceptive limb placing reactions in the rat. Brain Res 1992; 573:44-60. [PMID: 1576535 DOI: 10.1016/0006-8993(92)90112-m] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study was aimed at delineating the neocortical substrate of tactile/proprioceptive limb placing reactions in rats by means of behavioral tests that excluded the participation of facial stimuli in limb function. Using a photochemical technique, we made unilateral focal lesions in the frontal and parietal neocortex. Fore- and/or hindlimb placing deficits resulted from damage to a fronto-parietal region lying between the medial agranular cortex and the primary somatosensory (whisker barrel field) cortex. When the antero-posterior coordinate was varied from 4 mm anterior to 1 mm posterior to bregma, tactile/proprioceptive forelimb dysfunction was more pronounced after damage to the parietal forelimb area, but lesions confined to the frontal lateral agranular cortex also yielded clear-cut forelimb placing deficits. Damage to either area alone allowed for partial recovery of forelimb function. However, following combined, total destruction of both frontal and parietal forelimb areas, forelimb deficits did not recover. This resembled the irreversible hindlimb deficits after near-total destruction of the parietal hindlimb area. Damage to the medial agranular cortex left limb placing intact. Likewise, for as long as the medial edge of lesions to the whisker barrel field did not come closer than 3 mm to the midline, thus remaining outside the parietal hindlimb area, limb placing remained normal. This sharp medial and lateral delineation of the cortical substrate subserving tactile/proprioceptive limb placing coincides with the borders of a thick, dense subfield of large pyramidal neurons in the deeper parts of layer V. Limb placing remained intact when medial agranular cortex lesions damaged only 30% of that subfield, whereas 70% destruction of that layer following more laterally placed lesions in the parietal hindlimb area produced irreversible hindlimb dysfunction. The severity of hindlimb placing deficits was related to the amount of incursion by whisker barrel field lesions into the subfield of deep layer V large pyramidal neurons. Finally, very large lesions of the occipital cortex did not affect tactile/proprioceptive limb placing. We discuss the neocortical areal and laminar specificity of tactile/proprioceptive limb function in the context of recent neuroanatomical and electrophysiological findings, and their relevance to normal cortical function, recovery from neocortical stroke (including diaschisis), and age-related cortical dysfunction.
Collapse
Affiliation(s)
- M De Ryck
- Department of Neuropsychopharmacology, Janssen Research Foundation, Beerse, Belgium
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- J D Spikes
- Department of Biology, University of Utah, Salt Lake City 84112
| |
Collapse
|
32
|
Barnéoud P, Gyger M, Andrés F, van der Loos H. Vibrissa-related behavior in mice: transient effect of ablation of the barrel cortex. Behav Brain Res 1991; 44:87-99. [PMID: 1910574 DOI: 10.1016/s0166-4328(05)80242-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Knowing that the mystacial vibrissae are an important part of the tactile sensory apparatus of rodents, we investigated the role of the barrel cortex - the endstation of the pathway between whiskerpad and cerebral cortex - in mouse behavior. We tested 15 female adult mice 2 and 10 weeks after both unilateral ablation of the barrel cortex and removal of the vibrissae on the same side in order to assess acute as well as transient effects of the cortical lesion. Two kinds of behavioral tests were performed on animals permanently provided with opaque lenses: one involved a passive stimulation of the vibrissae; the other was the 'gap-crossing' test which required the animal's active use of the vibrissae. Lesioned subjects did not show a deficit during passive stimulation of the vibrissae. On the contrary, there was a deficit during the gap-crossing test 2 weeks after the ablation of the barrel cortex. The deficit partly disappeared when the subjects were tested 10 weeks later. The results show that in mice, the barrel cortex is involved in the performance of complex behavioral tasks. The recovery of function could be due to changes in strategies to solve the gap-crossing test and/or to physical changes in neuronal circuitry. In either case, the results are relevant for the interpretation of cortical transplantation models using the whisker-to-barrel pathway.
Collapse
Affiliation(s)
- P Barnéoud
- Institute of Anatomy, University of Lausanne, Switzerland
| | | | | | | |
Collapse
|
33
|
Hurwitz BE, Dietrich WD, McCabe PM, Alonso O, Watson BD, Ginsberg MD, Schneiderman N. Amphetamine promotes recovery from sensory-motor integration deficit after thrombotic infarction of the primary somatosensory rat cortex. Stroke 1991; 22:648-54. [PMID: 2028496 DOI: 10.1161/01.str.22.5.648] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present studies were undertaken to examine 1) whether d-amphetamine sulfate administered to rats well after thrombotic infarction of the vibrissal cortical barrel-field within the primary somatosensory cortex affected the rate and completeness of behavioral recovery and 2) whether a dose-response relation exists between d-amphetamine sulfate dose and recovery of function. In a learning task requiring sensory-motor integration, 41 rats were trained to perform a motor response in a T-maze consequent to the detection of a vibrissal deflection cue. Once training was complete, unilateral (n = 29) or sham (n = 12) infarction was produced by a noninvasive photochemical technique. After infarction, T-maze performance was assessed repeatedly in rats receiving 2 (n = 10) or 4 (n = 10) mg/kg d-amphetamine sulfate or saline (n = 9) 24 hours prior to testing on days 4, 6, 9, and 11. The sham-operated control rats received d-amphetamine sulfate (n = 7) or no injections (n = 5). All three infarcted groups displayed a reliable and sustained behavioral deficit in performance that was not present in the sham-operated control animals. Although the performance of each infarcted group improved over the testing sessions after the first injection, the amphetamine-treated groups improved at a faster rate than the saline-injected group. The results further demonstrated a dose-response effect, with the 4 mg/kg amphetamine group recovering to within preinfarction levels 6-8 days earlier than the 2 mg/kg amphetamine and saline-injected groups. Moreover, both amphetamine-treated groups recovered more completely than the saline-injected group. Quantification of the chronic infarct area revealed no differences among the amphetamine-treated and saline-injected groups. These data provide further evidence of the facilitatory effect of d-amphetamine sulfate on recovery from brain injury and extend this effect to the enhancement of recovery subsequent to thrombotic infarction of the primary somatosensory cortex.
Collapse
Affiliation(s)
- B E Hurwitz
- Department of Psychology, University of Miami, Coral Gables, FL 33124
| | | | | | | | | | | | | |
Collapse
|
34
|
Clissold DB, Jones BE, Pontecorvo MJ. Photochemically induced thrombosis of the precentral cortex impairs operant variable-interval spatial delayed alternation performance by rats. Brain Res Bull 1991; 26:647-51. [PMID: 1868364 DOI: 10.1016/0361-9230(91)90110-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A variable-interval spatial delayed alternation memory task was used to quantify the behavioral effects of photochemically induced thrombic infarction of the precentral (frontal) cortex. Upon achieving criterion on the behavioral task, rats received thrombicischemic lesions, predominantly limited to the medial precentral cortex, induced by injection of the fluorescein dye Rose Bengal and illumination of the skull above the target area. Beginning six days after surgery, rats were retested on the memory task. Compared to Sham-operated controls (n = 5), rats with precentral cortex lesions (n = 5) demonstrated a retention interval-dependent accuracy deficit (impaired at the longest retention interval only) and slower reaction time (increased response latency). These effects were significant only during the first week of postoperative testing. Rats with lesions also demonstrated a greater probability of a choice response throughout the three postoperative test weeks. The results suggest that photochemical thrombosis in the precentral cortex produces functional, behavioral consequences in rats which can be reliably and objectively measured.
Collapse
Affiliation(s)
- D B Clissold
- Nova Pharmaceutical Corporation, Baltimore, MD 21224-2788
| | | | | |
Collapse
|
35
|
|