1
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
2
|
Converging vulnerability factors for compulsive food and drug use. Neuropharmacology 2021; 196:108556. [PMID: 33862029 DOI: 10.1016/j.neuropharm.2021.108556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
Highly palatable foods and substance of abuse have intersecting neurobiological, metabolic and behavioral effects relevant for understanding vulnerability to conditions related to food (e.g., obesity, binge eating disorder) and drug (e.g., substance use disorder) misuse. Here, we review data from animal models, clinical populations and epidemiological evidence in behavioral, genetic, pathophysiologic and therapeutic domains. Results suggest that consumption of highly palatable food and drugs of abuse both impact and conversely are regulated by metabolic hormones and metabolic status. Palatable foods high in fat and/or sugar can elicit adaptation in brain reward and withdrawal circuitry akin to substances of abuse. Intake of or withdrawal from palatable food can impact behavioral sensitivity to drugs of abuse and vice versa. A robust literature suggests common substrates and roles for negative reinforcement, negative affect, negative urgency, and impulse control deficits, with both highly palatable foods and substances of abuse. Candidate genetic risk loci shared by obesity and alcohol use disorders have been identified in molecules classically associated with both metabolic and motivational functions. Finally, certain drugs may have overlapping therapeutic potential to treat obesity, diabetes, binge-related eating disorders and substance use disorders. Taken together, data are consistent with the hypotheses that compulsive food and substance use share overlapping, interacting substrates at neurobiological and metabolic levels and that motivated behavior associated with feeding or substance use might constitute vulnerability factors for one another. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
|
3
|
Patel M, Verrico CD, De La Garza R. Rivastigmine does not alter cocaine-induced subjective effects or self-administration. Pharmacol Biochem Behav 2019; 185:172758. [PMID: 31430484 DOI: 10.1016/j.pbb.2019.172758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/01/2019] [Accepted: 08/10/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Acetylcholinergic (ACh) neurons interface with the mesolimbic dopamine pathway implicated in addiction, and acetylcholinesterase inhibitors (AChEis) have been shown to reduce the immediate effects of cocaine and amount used. Our study is the first to examine if the safe and low-interaction AChEi rivastigmine (riv) alters the subjective effects produced by cocaine administration. METHODS Cocaine-dependent subjects were randomized to daily placebo, riv 3 mg, or riv 6 mg, administered inpatient for 10 days. On day 1 (pre-dose) and day 9, subjects received both IV cocaine 40 mg or placebo in a randomized order with subsequent serial assessments of visual analog scale (VAS) subjective effects and pharmacokinetic measurements. On day 10 all participants received one baseline dose of cocaine 20 mg with assessment of subjective effects, and were then able to purchase additional doses at 15 min intervals with study earnings. RESULTS 40 subjects were randomized to placebo (n = 16), riv 3 mg (n = 13), or riv 6 mg (n = 12). All subjects completed the study and there were no demographic differences between treatment groups. Pre- and post- treatment, there were no significant pharmacokinetic differences (blood levels of cocaine, BE, EME) following cocaine administration. In a two-way ANOVA, IV cocaine significantly increased positive VAS category ratings compared to placebo, but rivastigmine treatment at either dose had no significant effect on any VAS category ratings. Similarly, there was no significant rivastigmine effect on any category in the day 10 cocaine administration, and no effect on number of subsequent doses participants purchased. CONCLUSION Rivastigmine 3 or 6 mg had no significant effect on the subjective effects of cocaine after 9 days of treatment. This is an important finding as other drugs in the AChEi class (donepezil, Huperzine A) have produced significant results, but differ in their receptor specificity and PK parameters.
Collapse
Affiliation(s)
- M Patel
- Baylor College of Medicine, Menninger Department of Psychiatry, Houston, TX, United States of America
| | - C D Verrico
- Baylor College of Medicine, Menninger Department of Psychiatry, Houston, TX, United States of America
| | - R De La Garza
- Baylor College of Medicine, Menninger Department of Psychiatry, Houston, TX, United States of America.
| |
Collapse
|
4
|
Mu P, Huang YH. Cholinergic system in sleep regulation of emotion and motivation. Pharmacol Res 2019; 143:113-118. [PMID: 30894329 DOI: 10.1016/j.phrs.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 01/22/2023]
Abstract
Sleep profoundly regulates our emotional and motivational state of mind. Human brain imaging and animal model studies are providing initial insights on the underlying neural mechanisms. Here, we focus on the brain cholinergic system, including cholinergic neurons in the basal forebrain, ventral striatum, habenula, and brain stem. Although much is learned about cholinergic regulations of emotion and motivation, less is known on their interactions with sleep. Specifically, we present an anatomical framework that highlights cholinergic signaling in the integrated reward-arousal/sleep circuitry, and identify the knowledge gaps on the potential roles of cholinergic system in sleep-mediated regulation of emotion and motivation. Sleep impacts every aspect of brain functions. It not only restores cognitive control, but also retunes emotional and motivational regulation [1]. Sleep disturbance is a comorbidity and sometimes a predicting factor for various psychiatric diseases including major depressive disorder, anxiety, post-traumatic stress disorder, and drug addiction [2-9]. Although it is well recognized that sleep prominently shapes emotional and motivational regulation, the underlying neural mechanisms remain elusive. The brain cholinergic system is essential for a diverse variety of functions including cognition, learning and memory, sensory and motor processing, sleep and arousal, reward processing, and emotion regulation [10-14]. Although cholinergic functions in cognition, learning and memory, motor control, and sleep and arousal have been well established, its interaction with sleep in regulating emotion and motivation has not been extensively studied. Here we review current evidence on sleep-mediated regulation of emotion and motivation, and reveal knowledge gaps on potential contributions from the cholinergic system.
Collapse
Affiliation(s)
- Ping Mu
- College of Life Sciences, Ludong University, 186 Hongqi Middle Road, Yantai, Shandong, 264025, China.
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, 15219, PA, United States.
| |
Collapse
|
5
|
Intracerebral injection of R-(-)-Apomorphine into the nucleus accumbens decreased carbachol-induced 22-kHz ultrasonic vocalizations in rats. Behav Brain Res 2019; 364:264-273. [PMID: 30690109 DOI: 10.1016/j.bbr.2019.01.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 01/11/2023]
Abstract
Rats can produce ultrasonic vocalizations (USVs) in a variety of different contexts that signal their emotional state to conspecifics. Under distress, rats can emit 22-kHz USVs, while during positive pro-social interactions rats can emit frequency-modulated (FM) 50-kHz USVs. It has been previously reported that rats with increasing emission of FM 50-kHz USVs in anticipation of rewarding electrical stimulation or positive pro-social interaction decrease the number of emitted 22-kHz USVs. The purpose of the present investigation was to determine, in a pharmacological-behavioural experiment, if the positive emotional arousal of the rat indexed by the number of emitted FM 50-kHz USVs can decrease the magnitude of a subsequent negative emotional state indexed by the emission of 22-kHz USVs. To induce a positive emotional state, an intracerebral injection of a known D1/D2 agonist R-(-)-apomorphine (3.0 μg/0.3 μl) into the medial nucleus accumbens shell was used, while a negative emotional state was induced by intracerebral injection of carbachol (1.0 μg/0.3 μl), a known broad-spectrum muscarinic agonist, into the anterior hypothalamic-medial preoptic area. Our results demonstrated that initiation of a positive emotional state was able to significantly decrease the magnitude of subsequently expressed negative emotional state measured by the number of emitted 22-kHz USVs. The results suggest the neurobiological substrates that initiate positive emotional state indirectly antagonize the brain regions that initiate negative emotional states.
Collapse
|
6
|
Wiss DA, Avena N, Rada P. Sugar Addiction: From Evolution to Revolution. Front Psychiatry 2018; 9:545. [PMID: 30464748 PMCID: PMC6234835 DOI: 10.3389/fpsyt.2018.00545] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
The obesity epidemic has been widely publicized in the media worldwide. Investigators at all levels have been looking for factors that have contributed to the development of this epidemic. Two major theories have been proposed: (1) sedentary lifestyle and (2) variety and ease of inexpensive palatable foods. In the present review, we analyze how nutrients like sugar that are often used to make foods more appealing could also lead to habituation and even in some cases addiction thereby uniquely contributing to the obesity epidemic. We review the evolutionary aspects of feeding and how they have shaped the human brain to function in "survival mode" signaling to "eat as much as you can while you can." This leads to our present understanding of how the dopaminergic system is involved in reward and its functions in hedonistic rewards, like eating of highly palatable foods, and drug addiction. We also review how other neurotransmitters, like acetylcholine, interact in the satiation processes to counteract the dopamine system. Lastly, we analyze the important question of whether there is sufficient empirical evidence of sugar addiction, discussed within the broader context of food addiction.
Collapse
Affiliation(s)
- David A. Wiss
- Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicole Avena
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pedro Rada
- School of Medicine, University of Los Andes, Mérida, Venezuela
| |
Collapse
|
7
|
Kiguchi Y, Aono Y, Watanabe Y, Yamamoto-Nemoto S, Shimizu K, Shimizu T, Kosuge Y, Waddington JL, Ishige K, Ito Y, Saigusa T. In vivo neurochemical evidence that delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, inhibit acetylcholine efflux in the nucleus accumbens of freely moving rats. Eur J Pharmacol 2016; 789:402-410. [DOI: 10.1016/j.ejphar.2016.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/09/2016] [Accepted: 07/16/2016] [Indexed: 11/16/2022]
|
8
|
Neuronal Nicotinic Acetylcholine Receptor Modulators Reduce Sugar Intake. PLoS One 2016; 11:e0150270. [PMID: 27028298 PMCID: PMC4814119 DOI: 10.1371/journal.pone.0150270] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
Excess sugar consumption has been shown to contribute directly to weight gain, thus contributing to the growing worldwide obesity epidemic. Interestingly, increased sugar consumption has been shown to repeatedly elevate dopamine levels in the nucleus accumbens (NAc), in the mesolimbic reward pathway of the brain similar to many drugs of abuse. We report that varenicline, an FDA-approved nicotinic acetylcholine receptor (nAChR) partial agonist that modulates dopamine in the mesolimbic reward pathway of the brain, significantly reduces sucrose consumption, especially in a long-term consumption paradigm. Similar results were observed with other nAChR drugs, namely mecamylamine and cytisine. Furthermore, we show that long-term sucrose consumption increases α4β2 * and decreases α6β2* nAChRs in the nucleus accumbens, a key brain region associated with reward. Taken together, our results suggest that nAChR drugs such as varenicline may represent a novel treatment strategy for reducing sugar consumption.
Collapse
|
9
|
Food and addiction among the ageing population. Ageing Res Rev 2015; 20:79-85. [PMID: 25449527 DOI: 10.1016/j.arr.2014.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/25/2014] [Accepted: 10/06/2014] [Indexed: 12/25/2022]
Abstract
Obesity among the elderly is a growing public health concern. Among the various factors that may contribute to the current rates of obesity is the rewarding aspect of highly palatable foods and beverages, which may lead to overconsumption and excess caloric intake. The present review describes recent research supporting the hypothesis that, for some individuals, the consumption these highly palatable foods and beverages may lead to the development of addictive-like behaviors. In particular, the authors consider the relevance of this hypothesis to the ageing population.
Collapse
|
10
|
Grenald SA, Largent-Milnes TM, Vanderah TW. Animal models for opioid addiction drug discovery. Expert Opin Drug Discov 2014; 9:1345-54. [PMID: 25307021 DOI: 10.1517/17460441.2014.966076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Since ancient times, the opium poppy has been used in a variety of settings, including pain management. Natural and synthetic derivatives of opium are commonly used in medicine today and include drugs, such as morphine, codeine, hydromorphone and oxycodone. Although excellent at inhibiting pain, these narcotics often produce a state of euphoria leading to misuse and abuse by the general population, particularly in young adults. The misuse of prescription opiates has continually increased over the past 10 years despite associated negative outcomes, resulting in opiate psychological dependence, withdrawal and relapse. AREAS COVERED This paper briefly refers to the history of opiate use and the modern challenges associated with chronic exposure. The authors present the prevalence of addiction and misuse of prescription opiates and discuss some of the opiate-associated effects. This includes activation of reward circuitry and compensatory receptor mechanisms. Finally, the authors provide a review on neuroadaptive changes that manifest during opiate dependence, withdrawal and relapse in animal models. EXPERT OPINION In spite of the various methods available to treat opiate addiction, there is still a huge unmet need for its management, including the creative design of novel, non-addictive pain medications. The authors believe that multifunctional compounds or combinations of compounds that inhibit pain pathways, whereas not activating the reward pathways, will begin to subdue the opiate addiction endemic.
Collapse
Affiliation(s)
- Shaness A Grenald
- University of Arizona, Department of Pharmacology , Tucson, AZ 85724-5050 , USA +1 520 626 7801 ; +1 520 626 2204 ;
| | | | | |
Collapse
|
11
|
Hone-Blanchet A, Fecteau S. Overlap of food addiction and substance use disorders definitions: analysis of animal and human studies. Neuropharmacology 2014; 85:81-90. [PMID: 24863044 DOI: 10.1016/j.neuropharm.2014.05.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/11/2014] [Accepted: 05/13/2014] [Indexed: 01/24/2023]
Abstract
Food has both homeostatic and hedonic components, which makes it a potent natural reward. Food related reward could therefore promote an escalation of intake and trigger symptoms associated to withdrawal, suggesting a behavioral parallel with substance abuse. Animal and human theoretical models of food reward and addiction have emerged, raising further interrogations on the validity of a bond between Substance Use Disorders, as clinically categorized in the DSM 5, and food reward. These models propose that highly palatable food items, rich in sugar and/or fat, are overly stimulating to the brain's reward pathways. Moreover, studies have also investigated the possibility of causal link between food reward and the contemporary obesity epidemic, with obesity being potentiated and maintained due to this overwhelming food reward. Although natural rewards are a hot topic in the definition and categorization of Substance Use Disorders, proofs of concept and definite evidence are still inconclusive. This review focuses on available results from experimental studies in animal and human models exploring the concept of food addiction, in an effort to determine if it depicts a specific phenotype and if there is truly a neurobiological similarity between food addiction and Substance Use Disorders. It describes results from sugar, fat and sweet-fat bingeing in rodent models, and behavioral and neurobiological assessments in different human populations. Although pieces of behavioral and neurobiological evidence supporting a food addiction phenotype in animals and humans are interesting, it seems premature to conclude on its validity.
Collapse
Affiliation(s)
- Antoine Hone-Blanchet
- Laboratory of Canada Research Chair in Cognitive Neuroscience, Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Medical School, Laval University, Canada
| | - Shirley Fecteau
- Laboratory of Canada Research Chair in Cognitive Neuroscience, Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Medical School, Laval University, Canada; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, USA.
| |
Collapse
|
12
|
Neugebauer NM, Einstein EB, Lopez MB, McClure-Begley TD, Mineur YS, Picciotto MR. Morphine dependence and withdrawal induced changes in cholinergic signaling. Pharmacol Biochem Behav 2013; 109:77-83. [PMID: 23651795 DOI: 10.1016/j.pbb.2013.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/22/2013] [Accepted: 04/26/2013] [Indexed: 02/01/2023]
Abstract
Cholinergic signaling is thought to be involved in morphine dependence and withdrawal, but the specific mechanisms involved remain unclear. The current study aimed to identify alterations in the cholinergic system that may contribute to the development of morphine dependence and withdrawal. Acetylcholinesterase (AChE) activity and [³H]-epibatidine binding were evaluated in order to determine if morphine dependence and withdrawal induces alterations in cholinergic signaling or expression of high affinity nicotinic acetylcholine receptors (nAChRs) in the midbrain (MB), medial habenula (MHb) and interpeduncular nucleus (IPN). The effect of cholinergic signaling through nAChRs on morphine-withdrawal induced jumping behavior was then determined. Lastly, the contribution of β4-containing nAChRs receptors in the MHb to morphine-withdrawal induced jumping behavior and neuronal activity as indicated by c-fos expression was assessed. Chronic morphine administration decreased AChE activity in MB and MHb, an effect that was no longer present following precipitated withdrawal. Morphine dependent mice showed increased nicotinic acetylcholine receptor (nAChR) levels in MB. Further, nicotine (0.4 mg/kg) and lobeline (3 mg/kg) decreased jumping behavior while mecamylamine (1 mg/kg) had no effect. Knock-down of β4 subunit-containing nAChRs in the MHb attenuated c-fos activation, but did not decrease morphine withdrawal-induced jumping. Thus, morphine withdrawal induces cholinergic signaling in the MHb, but this does not appear to be responsible for the effects of cholinergic drugs on somatic signs of opiate withdrawal, as measured by jumping behavior.
Collapse
Affiliation(s)
- Nichole M Neugebauer
- Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
13
|
Avena NM, Rada PV. Cholinergic modulation of food and drug satiety and withdrawal. Physiol Behav 2012; 106:332-6. [PMID: 22465312 DOI: 10.1016/j.physbeh.2012.03.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 01/31/2023]
Abstract
Although they comprise only a small portion of the neurons in the region, cholinergic interneurons in the dorsal striatum appear to play an important role in the regulation of various appetitive behaviors, in part, through their interactions with mesolimbic dopamine (DA) systems. In this review, we describe studies that suggest that the activity of cholinergic interneurons in the nucleus accumbens (NAc) and cholinergic projections to the ventral tegmental area (VTA) affect feeding behavior. In vivo microdialysis studies in rats have revealed that the cessation of a meal is associated with a rise in acetylcholine (ACh) levels in the NAc. ACh activation will suppress feeding, and this is also associated with an increase in synaptic accumulation of ACh. Further, we discuss how, in addition to their role in the ending of a meal, cholinergic interneurons in the NAc play an integral role in the cessation of drug use. Another cholinergic system involved in different aspects of appetitive behavior is the projection from the pedunculpontine nuclei directly to the VTA. Activation of this system enhances behaviors through activation of the mesolimbic DA system, and antagonism of ACh receptors in the VTA can reduce drug self-administration. Finally, we discuss the role of accumbens ACh in both drug and palatable food withdrawal. Studies reveal that accumbens ACh is increased during withdrawal from several different drugs of abuse (including cocaine, nicotine and morphine). This rise in extracellular levels of ACh, coupled with a decrease in extracellular levels of DA, is believed to contribute to an aversive state, which can manifest as behaviors associated with drug withdrawal. This theory has also been applied to studies of overeating and/or "food addiction," and the findings suggest a similar imbalance in DA/ACh levels, which is associated with behavioral indications of drug-like withdrawal. In summary, cholinergic neurons play an important role in the modulation of both food and drug intake, as well as the aversive aspects of food- and drug-related addictive behaviors.
Collapse
Affiliation(s)
- Nicole M Avena
- University of Florida, College of Medicine, Department of Psychiatry, McKnight Brain Institute, Gainesville FL 32610, United States.
| | | |
Collapse
|
14
|
Corticotropin-releasing factor in the nucleus accumbens shell induces swim depression, anxiety, and anhedonia along with changes in local dopamine/acetylcholine balance. Neuroscience 2012; 206:155-66. [PMID: 22245501 DOI: 10.1016/j.neuroscience.2011.12.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/04/2011] [Accepted: 12/05/2011] [Indexed: 01/28/2023]
Abstract
The nucleus accumbens shell (NAcS) has been implicated in controlling stress responses through corticotropin-releasing factor (CRF). In addition to studies indicating that CRF in the NAcS increases appetitive motivation, there is indirect evidence suggesting that NAcS CRF may also cause aversive responses and that these behaviors may be mediated through local dopamine (DA) and acetylcholine (ACh) systems. To provide a direct test of this hypothesis, we used male Sprague-Dawley rats with implanted cannulas aimed at the NAcS. Experiment 1 showed local CRF injection (10 or 50 ng/side) to increase immobility in the forced swim test and a CRF antagonist D-Phe-CRF ((12-41)) to attenuate this depressive-like behavior. In Experiment 2, injection of CRF (250 ng/side) also decreased the rats' preference for sucrose, while in Experiment 3, CRF (50 or 250 ng/side) induced anxiety-like behaviors in an elevated plus maze and open field. These same doses of CRF in Experiment 4 failed to alter the rats' locomotor activity, indicating that these behavioral changes were not caused by deficits in activity. In Experiment 5, results from in vivo microdialysis revealed that CRF in the NAcS markedly increased local extracellular ACh, while also producing a small increase in DA. These results show that NAcS CRF can generate a variety of aversive behaviors, including swim depression, anhedonia, and anxiety, in addition to approach behavior. They suggest that these behaviors may occur, in part, through enhanced activation of ACh and DA in the NAcS, respectively, supporting a role for this brain area in mediating the dual effects of stress.
Collapse
|
15
|
Avena NM, Bocarsly ME, Hoebel BG. Animal models of sugar and fat bingeing: relationship to food addiction and increased body weight. Methods Mol Biol 2012; 829:351-65. [PMID: 22231826 DOI: 10.1007/978-1-61779-458-2_23] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Binge eating is a behavior that occurs in some eating disorders, as well as in obesity and in nonclinical populations. Both sugars and fats are readily consumed by human beings and are common components of binges. This chapter describes animal models of sugar and fat bingeing, which allow for a detailed analysis of these behaviors and their concomitant physiological effects. The model of sugar bingeing has been used successfully to elicit behavioral and neurochemical signs of dependence in rats; e.g., indices of opiate-like withdrawal, increased intake after abstinence, cross-sensitization with drugs of abuse, and the repeated release of dopamine in the nucleus accumbens following repeated bingeing. Studies using the model of fat bingeing suggest that it can produce some, but not all, of the signs of dependence that are seen with sugar binge eating, as well as increase body weight, potentially leading to obesity.
Collapse
Affiliation(s)
- Nicole M Avena
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | | |
Collapse
|
16
|
Taylor KM, Mark GP, Hoebel BG. Conditioned taste aversion from neostigmine or methyl-naloxonium in the nucleus accumbens. Physiol Behav 2011; 104:82-6. [DOI: 10.1016/j.physbeh.2011.04.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
|
17
|
Parylak SL, Koob GF, Zorrilla EP. The dark side of food addiction. Physiol Behav 2011; 104:149-56. [PMID: 21557958 DOI: 10.1016/j.physbeh.2011.04.063] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 12/27/2022]
Abstract
In drug addiction, the transition from casual drug use to dependence has been linked to a shift away from positive reinforcement and toward negative reinforcement. That is, drugs ultimately are relied on to prevent or relieve negative states that otherwise result from abstinence (e.g., withdrawal) or from adverse environmental circumstances (e.g., stress). Recent work has suggested that this "dark side" shift also is a key in the development of food addiction. Initially, palatable food consumption has both positively reinforcing, pleasurable effects and negatively reinforcing, "comforting" effects that can acutely normalize organism responses to stress. Repeated, intermittent intake of palatable food may instead amplify brain stress circuitry and downregulate brain reward pathways such that continued intake becomes obligatory to prevent negative emotional states via negative reinforcement. Stress, anxiety and depressed mood have shown high comorbidity with and the potential to trigger bouts of addiction-like eating behavior in humans. Animal models indicate that repeated, intermittent access to palatable foods can lead to emotional and somatic signs of withdrawal when the food is no longer available, tolerance and dampening of brain reward circuitry, compulsive seeking of palatable food despite potentially aversive consequences, and relapse to palatable food-seeking in response to anxiogenic-like stimuli. The neurocircuitry identified to date in the "dark" side of food addiction qualitatively resembles that associated with drug and alcohol dependence. The present review summarizes Bart Hoebel's groundbreaking conceptual and empirical contributions to understanding the role of the "dark side" in food addiction along with related work of those that have followed him.
Collapse
Affiliation(s)
- Sarah L Parylak
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
18
|
Shirayama Y, Chaki S. Neurochemistry of the nucleus accumbens and its relevance to depression and antidepressant action in rodents. Curr Neuropharmacol 2010; 4:277-91. [PMID: 18654637 DOI: 10.2174/157015906778520773] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 09/06/2005] [Accepted: 02/08/2006] [Indexed: 01/24/2023] Open
Abstract
There is accumulating evidence that the nucleus accumbens (NAc) plays an important role in the pathophysiology of depression. Given that clinical depression is marked by anhedonia (diminished interest or pleasure), dysfunction of the brain reward pathway has been suggested as contributing to the pathophysiology of depression.Since the NAc is the center of reward and learning, it is hypothesized that anhedonia might be produced by hampering the function of the NAc. Indeed, it has been reported that stress, drug exposure and drug withdrawal, all of which produce a depressive-phenotype, alter various functions within the NAc, leading to inhibited dopaminergic activity in the NAc.In this review, we describe various factors as possible candidates within the NAc for the initiation of depressive symptoms. First, we discuss the roles of several neurotransmitters and neuropeptides in the functioning of the NAc, including dopamine, glutamate, gamma-aminobutyric acid (GABA), acetylcholine, serotonin, dynorphin, enkephaline, brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), melanin-concentrating hormone (MCH) and cocaine- and amphetamine-regulated transcript (CART). Second, based on previous studies, we propose hypothetical relationships among these substances and the shell and core subregions of the NAc.
Collapse
Affiliation(s)
- Yukihiko Shirayama
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Japan.
| | | |
Collapse
|
19
|
Muscarinic receptor antagonism causes a functional alteration in nucleus accumbens mu-opiate-mediated feeding behavior. Behav Brain Res 2008; 197:225-9. [PMID: 18761381 DOI: 10.1016/j.bbr.2008.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/25/2008] [Accepted: 08/04/2008] [Indexed: 11/23/2022]
Abstract
Intra-nucleus accumbens (Acb) infusion of cholinergic muscarinic antagonist, scopolamine (10 microg/0.5 microl), markedly reduced fat intake elicited by intra-Acb treatment of the mu-opioid receptor agonist, DAMGO, with 30 min and 4h pretreatment intervals. Intra-Acb scopolamine infusions also reduced food intake in food-deprived rats, but not water intake in water-deprived rats. Hence, Acb muscarinic manipulations exhibit some specificity for feeding, perhaps via interactions with the striatal opioid system.
Collapse
|
20
|
Abstract
Central nervous system cholinergic neurons arise from several discrete sources, project to multiple brain regions, and exert specific effects on reward, learning, and memory. These processes are critical for the development and persistence of addictive disorders. Although other neurotransmitters, including dopamine, glutamate, and serotonin, have been the primary focus of drug research to date, a growing preclinical literature reveals a critical role of acetylcholine (ACh) in the experience and progression of drug use. This review will present and integrate the findings regarding the role of ACh in drug dependence, with a primary focus on cocaine and the muscarinic ACh system. Mesostriatal ACh appears to mediate reinforcement through its effect on reward, satiation, and aversion, and chronic cocaine administration produces neuroadaptive changes in the striatum. ACh is further involved in the acquisition of conditional associations that underlie cocaine self-administration and context-dependent sensitization, the acquisition of associations in conditioned learning, and drug procurement through its effects on arousal and attention. Long-term cocaine use may induce neuronal alterations in the brain that affect the ACh system and impair executive function, possibly contributing to the disruptions in decision making that characterize this population. These primarily preclinical studies suggest that ACh exerts a myriad of effects on the addictive process and that persistent changes to the ACh system following chronic drug use may exacerbate the risk of relapse during recovery. Ultimately, ACh modulation may be a potential target for pharmacological treatment interventions in cocaine-addicted subjects. However, the complicated neurocircuitry of the cholinergic system, the multiple ACh receptor subtypes, the confluence of excitatory and inhibitory ACh inputs, and the unique properties of the striatal cholinergic interneurons suggest that a precise target of cholinergic manipulation will be required to impact substance use in the clinical population.
Collapse
Affiliation(s)
- Mark J Williams
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-8564, USA.
| | | |
Collapse
|
21
|
Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 2007; 32:20-39. [PMID: 17617461 PMCID: PMC2235907 DOI: 10.1016/j.neubiorev.2007.04.019] [Citation(s) in RCA: 788] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 04/19/2007] [Accepted: 04/28/2007] [Indexed: 02/07/2023]
Abstract
[Avena, N.M., Rada, P., Hoebel B.G., 2007. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neuroscience and Biobehavioral Reviews XX(X), XXX-XXX]. The experimental question is whether or not sugar can be a substance of abuse and lead to a natural form of addiction. "Food addiction" seems plausible because brain pathways that evolved to respond to natural rewards are also activated by addictive drugs. Sugar is noteworthy as a substance that releases opioids and dopamine and thus might be expected to have addictive potential. This review summarizes evidence of sugar dependence in an animal model. Four components of addiction are analyzed. "Bingeing," "withdrawal," "craving" and "cross-sensitization" are each given operational definitions and demonstrated behaviorally with sugar bingeing as the reinforcer. These behaviors are then related to neurochemical changes in the brain that also occur with addictive drugs. Neural adaptations include changes in dopamine and opioid receptor binding, enkephalin mRNA expression and dopamine and acetylcholine release in the nucleus accumbens. The evidence supports the hypothesis that under certain circumstances rats can become sugar dependent. This may translate to some human conditions as suggested by the literature on eating disorders and obesity.
Collapse
Affiliation(s)
- Nicole M. Avena
- Department of Psychology, Princeton University, Princeton, NJ 08540 USA
| | - Pedro Rada
- Department of Psychology, Princeton University, Princeton, NJ 08540 USA
| | - Bartley G. Hoebel
- Department of Psychology, Princeton University, Princeton, NJ 08540 USA
| |
Collapse
|
22
|
Pecoraro N, Dallman MF, Warne JP, Ginsberg AB, Laugero KD, la Fleur SE, Houshyar H, Gomez F, Bhargava A, Akana SF. From Malthus to motive: how the HPA axis engineers the phenotype, yoking needs to wants. Prog Neurobiol 2006; 79:247-340. [PMID: 16982128 DOI: 10.1016/j.pneurobio.2006.07.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 07/17/2006] [Accepted: 07/24/2006] [Indexed: 01/28/2023]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis is the critical mediator of the vertebrate stress response system, responding to environmental stressors by maintaining internal homeostasis and coupling the needs of the body to the wants of the mind. The HPA axis has numerous complex drivers and highly flexible operating characterisitics. Major drivers include two circadian drivers, two extra-hypothalamic networks controlling top-down (psychogenic) and bottom-up (systemic) threats, and two intra-hypothalamic networks coordinating behavioral, autonomic, and neuroendocrine outflows. These various networks jointly and flexibly control HPA axis output of periodic (oscillatory) functions and a range of adventitious systemic or psychological threats, including predictable daily cycles of energy flow, actual metabolic deficits over many time scales, predicted metabolic deficits, and the state-dependent management of post-prandial responses to feeding. Evidence is provided that reparation of metabolic derangement by either food or glucocorticoids results in a metabolic signal that inhibits HPA activity. In short, the HPA axis is intimately involved in managing and remodeling peripheral energy fluxes, which appear to provide an unidentified metabolic inhibitory feedback signal to the HPA axis via glucocorticoids. In a complementary and perhaps a less appreciated role, adrenocortical hormones also act on brain to provide not only feedback, but feedforward control over the HPA axis itself and its various drivers, as well as coordinating behavioral and autonomic outflows, and mounting central incentive and memorial networks that are adaptive in both appetitive and aversive motivational modes. By centrally remodeling the phenotype, the HPA axis provides ballistic and predictive control over motor outflows relevant to the type of stressor. Evidence is examined concerning the global hypothesis that the HPA axis comprehensively induces integrative phenotypic plasticity, thus remodeling the body and its governor, the brain, to yoke the needs of the body to the wants of the mind. Adverse side effects of this yoking under conditions of glucocorticoid excess are discussed.
Collapse
Affiliation(s)
- Norman Pecoraro
- Department of Physiology, University of California, San Francisco, CA 94143-0444, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xiang XH, Wang HL, Wu WR, Guo Y, Cao DY, Wang HS, Zhao Y. Ethological analysis of scopolamine treatment or pretreatment in morphine dependent rats. Physiol Behav 2006; 88:183-90. [PMID: 16690091 DOI: 10.1016/j.physbeh.2006.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 03/28/2006] [Accepted: 03/29/2006] [Indexed: 11/16/2022]
Abstract
Although scopolamine is currently used to treat morphine addiction in humans, its extensive actions on behaviors have not been systematically analyzed yet, and the underlying mechanisms of its effects still remain ambiguous. The present study was carried out to clarify the possible mechanisms by evaluating the effects of scopolamine pretreatment and treatment on naloxone-precipitated withdrawal signs and some of other general behaviors in morphine dependent rats. Our results showed that scopolamine pretreatment and treatment attenuated naloxone-precipitated withdrawal signs including jumping, writhing posture, weight loss, genital grooming, teeth-chattering, ptosis, diarrhea and irritability, except for wet dog shakes, while general behaviors such as water intake, urine volume and morphine excretion in urine were increased. Our findings suggest that scopolamine has significant actions in the treatment of opiate addiction, which might result from increasing morphine excretion from urine.
Collapse
Affiliation(s)
- Xiao-Hui Xiang
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Rada P, Colasante C, Skirzewski M, Hernandez L, Hoebel B. Behavioral depression in the swim test causes a biphasic, long-lasting change in accumbens acetylcholine release, with partial compensation by acetylcholinesterase and muscarinic-1 receptors. Neuroscience 2006; 141:67-76. [PMID: 16677771 DOI: 10.1016/j.neuroscience.2006.03.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/17/2006] [Accepted: 03/23/2006] [Indexed: 11/20/2022]
Abstract
The nucleus accumbens may play a role in acquisition and expression of behavioral depression as measured using the inescapable swim test. Previous work shows that a local injection of a cholinergic muscarinic-1 receptor agonist increases immobility and a specific muscarinic-1 antagonist acts as an antidepressant-like drug by increasing swimming escape efforts. The present study used microdialysis to monitor extracellular acetylcholine levels in the accumbens, fluorescent labeled toxins to monitor changes in acetylcholinesterase and muscarinic-1 receptors, and semiquantitative-polymerase chain reaction to detect changes in gene expression for the muscarinic-1 receptor. Microdialysis showed that acetylcholine levels did not change while an animal was swimming; however, a significant transient decrease occurred when the rat was returned to the dialysis cage, followed by a long-lasting increase that reached a maximum three hours after the test. Acetylcholine levels stayed high even 24 h after the initial test as evidenced by a significant elevation in basal level prior to the second swim. This increase in neurotransmitter may have been partially compensated by a significant increase in the degradative enzyme, acetylcholinesterase, and by a decrease in muscarinic-1 receptors and their gene expression. These results further demonstrate the importance of accumbens cholinergic function in the appearance of a depression-like state.
Collapse
Affiliation(s)
- P Rada
- Laboratory of Behavioral Physiology, Medical School, University of Los Andes, Merida, Venezuela.
| | | | | | | | | |
Collapse
|
25
|
Panchal V, Taraschenko OD, Maisonneuve IM, Glick SD. Attenuation of morphine withdrawal signs by intracerebral administration of 18-methoxycoronaridine. Eur J Pharmacol 2005; 525:98-104. [PMID: 16289028 DOI: 10.1016/j.ejphar.2005.09.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 09/08/2005] [Indexed: 11/22/2022]
Abstract
18-Methoxyroconaridine (18-MC), a synthetic derivative of ibogaine, reduces morphine self-administration and alleviates several signs of acute opioid withdrawal in rats. Although there is already well documented evidence of the mechanism mediating 18-MC's action to reduce the rewarding effects of morphine, nothing is known about the mechanism responsible for 18-MC's attenuation of opioid withdrawal. In vitro studies have demonstrated that 18-MC is a potent antagonist of alpha3beta4 nicotinic receptors (IC50=0.75 microM), which are predominantly located in the medial habenula and interpeduncular nuclei. Previous work indicating that alpha3beta4 nicotinic receptors mediate 18-MC's effects on drug self-administration prompted us to assess whether brain areas having high or moderate densities of alpha3beta4 receptors might be involved in 18-MC's modulation of opioid withdrawal. To test this possibility, 18-MC was locally administered into the medial habenula, interpeduncular nucleus and locus coeruleus of morphine-dependent rats; this treatment was followed by naltrexone to precipitate a withdrawal syndrome. Pretreatment with various doses of 18-MC into the locus coeruleus significantly reduced wet-dog shakes, teeth chattering, burying and diarrhea, while pretreatment into the medial habenula attenuated teeth chattering, burying, and weight loss. Some doses of 18-MC administered into the interpeduncular nucleus significantly ameliorated rearing, teeth chattering, and burying, while other doses exacerbated diarrhea and teeth chattering. The present findings suggest that 18-MC may act in all three nuclei to suppress various signs of opioid withdrawal.
Collapse
Affiliation(s)
- Vishal Panchal
- Center for Neuropharmacology and Neuroscience MC-136, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
26
|
Noda Y, Nabeshima T. Opiate physical dependence and N-methyl-D-aspartate receptors. Eur J Pharmacol 2005; 500:121-8. [PMID: 15464026 DOI: 10.1016/j.ejphar.2004.07.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 11/23/2022]
Abstract
The present review focused the involvement of N-methyl-D-aspartate (NMDA) receptors in morphine physical dependence. The increased levels of extracellular glutamate, NMDA receptor zeta subunit (NR1) mRNA, NMDA receptor epsilon 1 subunit (NR2A) protein, phosphorylated Ca(2+)/calmodulin kinase II (p-CaMKII) protein, c-fos mRNA, c-Fos protein, are observed in the specific brain areas of mice and/or rats showing signs of naloxone-precipitated withdrawal. In preclinical and clinical studies, a variety of NMDA receptor antagonists and pretreatment with an antisense oligonucleotide of the NR1 have been reported to inhibit the development, expression and/or maintenance of opiate physical dependence. In contrast to data obtained in adult animals, NMDA receptor antagonists are neither effective in blocking the development of opiate dependence nor the expression of opiate withdrawal in neonatal rats. In the NMDA receptor-deficient mice, the NR2A knockout mice show the marked loss of typical withdrawal abstinence behaviors precipitated by naloxone. The rescue of NR2A protein by electroporation into the nucleus accumbens of NR2A knockout mice reverses the loss of abstinence behaviors. The activation of CaMKII and increased expression of c-Fos protein in the brain of animals with naloxone-precipitated withdrawal syndrome are prevented by NMDA receptor antagonists, whereas the increased levels of extracellular glutamate are not prevented by them. These findings indicate that glutamatergic neurotransmission at the NMDA receptor site contributes to the development, expression and maintenance of opiate dependence, and suggest that NMDA receptor antagonists may be a useful adjunct in the treatment of opiate dependence.
Collapse
Affiliation(s)
- Yukihiro Noda
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa, Nagoya 466-8560, Japan
| | | |
Collapse
|
27
|
Rada P, Hoebel BG. Acetylcholine in the accumbens is decreased by diazepam and increased by benzodiazepine withdrawal: a possible mechanism for dependency. Eur J Pharmacol 2005; 508:131-8. [PMID: 15680263 DOI: 10.1016/j.ejphar.2004.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 12/03/2004] [Accepted: 12/09/2004] [Indexed: 11/17/2022]
Abstract
Diazepam is a benzodiazepine used in the treatment of anxiety, insomnia and seizures, but with the potential for abuse. Like the other benzodiazepine anxiolytics, diazepam does not increase dopamine in the nucleus accumbens. This raises the question as to which other neurotransmitter systems are involved in diazepam dependence. The goal was to monitor dopamine and acetylcholine simultaneously following acute and chronic diazepam treatment and after flumazenil-induced withdrawal. Rats were prepared with microdialysis probes in the nucleus accumbens and given diazepam (2, 5 and 7.5 mg/kg) acutely and again after chronic treatment. Accumbens dopamine and acetylcholine decreased, with signs of tolerance to the dopamine effect. When these animals were put into the withdrawal state with flumazenil, there was a significant rise in acetylcholine (145%, P<0.001) with a smaller significant rise in dopamine (124%, P<0.01). It is suggested that the increase in acetylcholine release, relative to dopamine, is a neural component of the withdrawal state that is aversive.
Collapse
Affiliation(s)
- Pedro Rada
- Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
28
|
Rada P, Avena NM, Hoebel BG. Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 2005; 134:737-44. [PMID: 15987666 DOI: 10.1016/j.neuroscience.2005.04.043] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2004] [Revised: 04/13/2005] [Accepted: 04/16/2005] [Indexed: 10/25/2022]
Abstract
Most drugs of abuse increase dopamine (DA) in the nucleus accumbens (NAc), and do so every time as a pharmacological response. Palatable food also releases accumbens-shell DA, but in naïve rats the effect can wane during a long meal and disappears with repetition. Under select dietary circumstances, sugar can have effects similar to a drug of abuse. Rats show signs of DA sensitization and opioid dependence when given intermittent access to sucrose, such as alterations in DA and mu-opioid receptors, cross-sensitization with amphetamine and alcohol, and behavioral and neurochemical signs of naloxone-precipitated withdrawal. The present experiment asks whether sucrose-dependent rats release DA each time they binge. We also predict that acetylcholine (ACh), which rises as the end of a meal, will be delayed in rats with intermittent access to sucrose. To create dependency, the experimental group (Daily Intermittent Sucrose) was maintained on a diet of 12-h food deprivation that extended 4 h into the dark, followed by 12-h access to a 10% sucrose solution and chow, daily, for 21 days. As the main result, these rats gradually increased their sucrose intake from 37 to 112 ml per day (from 13 to 20 ml in the first hour of access), and repeatedly increased extracellular DA to 130% of baseline as measured in the NAc shell by microdialysis during the first hour of sucrose access on day 1, day 2 and day 21. Three control groups failed to show a significant increase in extracellular DA on day 21: Sucrose only for 1 h on days 1 and 21 (Sucrose Twice), ad libitum access to sucrose and chow (Daily Ad libitum Sucrose), and intermittent chow instead of sucrose (Daily Intermittent Chow). Acetylcholine measured at the same time as DA, increased significantly toward the end and after each test meal in all groups. In the Daily Intermittent Sucrose group, the highest ACh levels (133%) occurred during the first sample after the sucrose meal ended. In summary, sucrose-dependent animals have a delayed ACh satiation response, drink more sucrose, and release more DA than sucrose- or binge-experienced, but non-dependent animals. These results suggest another neurochemical similarity between intermittent bingeing on sucrose and drugs of abuse: both can repeatedly increase extracellular DA in the NAc shell.
Collapse
Affiliation(s)
- P Rada
- Psychology Department, Green Hall, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
29
|
Zanetti E, Giaroni C, Vanti A, Canciani L, Giuliani D, Lecchini S, Frigo G. Involvement of protein kinase C in the adaptive changes of cholinergic neurons to sympathetic denervation in the guinea pig myenteric plexus. Life Sci 2003; 73:2641-54. [PMID: 12967688 DOI: 10.1016/s0024-3205(03)00665-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Supersensitivity to muscarinic, kappa- and mu-opioid agents modulating cholinergic neurons in the guinea pig colon develops after chronic sympathetic denervation. A possible role for protein kinase C (PKC) in contributing to development of these sensitivity changes was investigated. The PKC activator, phorbol-12-myristate-13-acetate (PMA), enhanced acetylcholine (ACh) overflow in preparations obtained from normal animals. The facilitatory effect of PMA was significantly reduced after prolonged exposure to the phorbol ester and by the PKC inhibitors, chelerythrine and calphostin C. Subsensitivity to the facilitatory effect of PMA developed after chronic sympathetic denervation. In this experimental condition, immunoblot analysis revealed reduced levels of PKC in myenteric plexus synaptosomes. The facilitatory effect of the muscarininc antagonist, scopolamine, on ACh overflow was significantly reduced by the phospolipase C (PLC) inhibitor, U73122, chelerythrine and calphostin C, both in normal and denervated animals. However, in both experimental groups, PLC antagonists and PKC antagonists did not affect the inhibitory effect of the muscarinic agonist, oxotremorine-M on ACh overflow. The inhibitory effects of U69593 (kappa-opioid receptor agonist) and DAMGO (mu-opioid receptor agonist) on ACh overflow significantly increased in the presence of U73122, chelerythrine and calphostin C in preparations obtained from normal animals, but not in those obtained from sympathetically denervated animals. These results indicate that activation of PKC enhances ACh release in the myenteric plexus of the guinea pig colon. At this level, chronic sympathetic denervation entails a reduced efficiency of the enzyme. In addition, PKC is involved in the inhibitory modulation of ACh release mediated by muscarinic-, kappa- and mu-opioid receptors, although with different modalities. Muscarinic receptors inhibit PKC activity, whereas kappa- and mu-opioid receptors increase PKC activity. Both the inhibitory and the facilitatory effect on PKC involve modulation of PLC activity. The possibility that the change in PKC activity represents one of the biochemical mechanisms at the basis of development of sensitivity changes to opioid and muscarinic agents after chronic sympathetic denervation is discussed.
Collapse
Affiliation(s)
- Elena Zanetti
- Clinical and Applied Pharmacology Centre, University of Insubria and University of Pavia, I-21100 Varese, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Caillé S, Rodriguez-Arias M, Minarro J, Espejo EF, Cador M, Stinus L. Changes in dopaminergic neurotransmission do not alter somatic or motivational opiate withdrawal-induced symptoms in rats. Behav Neurosci 2003; 117:995-1005. [PMID: 14570549 DOI: 10.1037/0735-7044.117.5.995] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Opiate withdrawal has been correlated with decreased extracellular dopamine (DA) levels in the nucleus accumbens (NAC) of morphine-dependent rats. The authors tested the hypothesis that DA transmission plays a critical role in the induction of motivational and somatic withdrawal symptoms. First, the authors used a 6-hydroxydopamine-induced lesion of the NAC to chronically disrupt mesolimbic DA transmission. Second, global DA neurotransmission was acutely stimulated by the nonselective DA agonist (apomorphine) or inhibited by nonselective DA antagonists (droperidol or flupentixol). Morphine-dependent rats bearing 6-hydroxydopamine-induced lesions displayed naloxone-precipitated motivational and somatic withdrawal symptoms similar to those of sham-lesioned rats. Administration of apomorphine did not reduce naloxone-induced opiate withdrawal. Moreover, in total absence of naloxone, DA antagonists did not precipitate either conditioned place aversion or somatic abstinence signs in dependent rats. Taken together, these findings suggested that DA transmission is not critical for the induction of opiate withdrawal syndrome.
Collapse
Affiliation(s)
- Stéphanie Caillé
- Centre Nacional de la Recherche Scientifique, Unite Mixte de Recherche (CNRS-UMR) 5541, Lab de Neuropsychobiologie de Desadaptations, Université Bordeaux II, Bordeaux, France.
| | | | | | | | | | | |
Collapse
|
31
|
Colantuoni C, Rada P, McCarthy J, Patten C, Avena NM, Chadeayne A, Hoebel BG. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. OBESITY RESEARCH 2002; 10:478-88. [PMID: 12055324 DOI: 10.1038/oby.2002.66] [Citation(s) in RCA: 335] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The goal was to determine whether withdrawal from sugar can cause signs of opioid dependence. Because palatable food stimulates neural systems that are implicated in drug addiction, it was hypothesized that intermittent, excessive sugar intake might create dependency, as indicated by withdrawal signs. RESEARCH METHODS AND PROCEDURES Male rats were food-deprived for 12 hours daily, including 4 hours in the early dark, and then offered highly palatable 25% glucose in addition to chow for the next 12 hours. Withdrawal was induced by naloxone or food deprivation. Withdrawal signs were measured by observation, ultrasonic recordings, elevated plus maze tests, and in vivo microdialysis. RESULTS Naloxone (20 mg/kg intraperitoneally) caused somatic signs, such as teeth chattering, forepaw tremor, and head shakes. Food deprivation for 24 hours caused spontaneous withdrawal signs, such as teeth chattering. Naloxone (3 mg/kg subcutaneously) caused reduced time on the exposed arm of an elevated plus maze, where again significant teeth chattering was recorded. The plus maze anxiety effect was replicated with four control groups for comparison. Accumbens microdialysis revealed that naloxone (10 and 20 mg/kg intraperitoneally) decreased extracellular dopamine (DA), while dose-dependently increasing acetylcholine (ACh). The naloxone-induced DA/ACh imbalance was replicated with 10% sucrose and 3 mg/kg naloxone subcutaneously. DISCUSSION Repeated, excessive intake of sugar created a state in which an opioid antagonist caused behavioral and neurochemical signs of opioid withdrawal. The indices of anxiety and DA/ACh imbalance were qualitatively similar to withdrawal from morphine or nicotine, suggesting that the rats had become sugar-dependent.
Collapse
Affiliation(s)
- Carlo Colantuoni
- Department of Psychology, Princeton University, New Jersey 08544, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Chau DT, Rada P, Kosloff RA, Taylor JL, Hoebel BG. Nucleus accumbens muscarinic receptors in the control of behavioral depression: antidepressant-like effects of local M1 antagonist in the Porsolt swim test. Neuroscience 2001; 104:791-8. [PMID: 11440810 DOI: 10.1016/s0306-4522(01)00133-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Systemically administered cholinomimetics or cholinesterase inhibitors can depress behavior in humans and animals, whereas antimuscarinic agents reverse this effect or even produce euphoria. Although these effects have been well documented, the specific brain regions that mediate them remain largely unknown. In the present experiments, muscarinic agonists and antagonists were locally injected into the nucleus accumbens of female Sprague-Dawley rats to test for their effects on behavioral depression in the Porsolt swim test and locomotor activity. Local, microinjections of the drugs in the accumbens elicited behaviors that were similar to the systemic effects reported in other studies. Injection of the non-specific agonist arecoline (40 and 80 microg) dose-dependently inhibited swimming and escape behavior. This may be mediated in part by accumbens M1 receptors because blocking these receptors with the specific antagonist pirenzepine (17.5 and 35.0 microg) did the opposite by increasing swimming. Gallamine (0.13, 0.44, and 0.88 microg), an antagonist at M2 receptors, dose-dependently decreased swimming. Two-way microdialysis suggested that this was in part due to the release of ACh by blocking M2 autoreceptors. Scopolamine, a mixed M1/M2 receptor antagonist, also released ACh but did not decrease swimming, probably because the M1 receptors were blocked; the drug (1.0 microg) increased swimming time, much like pirenzepine. With the exception of arecoline, none of the drugs significantly affected locomotor activity in a photocell cage. Arecoline (40 microg), which had decreased swimming, reduced activity. The present study suggests that muscarinic receptors in the nucleus accumbens can control immobility in the Porsolt swim test. The onset of immobility may depend on the activation of post-synaptic M1 receptors.
Collapse
Affiliation(s)
- D T Chau
- Psychology Department, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
33
|
Svingos AL, Colago EE, Pickel VM. Vesicular acetylcholine transporter in the rat nucleus accumbens shell: subcellular distribution and association with mu-opioid receptors. Synapse 2001; 40:184-92. [PMID: 11304756 DOI: 10.1002/syn.1041] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cholinergic interneurons in the nucleus accumbens shell (AcbSh) are implicated in the reinforcing behaviors that develop in response to opiates active at mu-opioid receptors (MOR). We examined the electron microscopic immunocytochemical localization of the vesicular acetylcholine transporter (VAChT) and MOR to determine the functional sites for storage and release of acetylcholine (ACh), and potential interactions involving MOR in this region of rat brain. VAChT was primarily localized to membranes of small synaptic vesicles in axon terminals. Less than 10% of the VAChT-labeled terminals were MOR-immunoreactive. In contrast, 35% of the cholinergic terminals formed symmetric or punctate synapses with dendrites showing an extrasynaptic plasmalemmal distribution of MOR. Membranes of tubulovesicles in other selective dendrites were also VAChT-labeled, and almost half of these dendrites displayed plasmalemmal MOR immunoreactivity. The VAChT-labeled dendritic tubulovesicles often apposed unlabeled axon terminals that formed symmetric synapses. Our results indicate that in the AcbSh MOR agonists can modulate the release of ACh from vesicular storage sites in axon terminals as well as in dendrites where the released ACh may serve an autoregulatory function involving inhibitory afferents. These results also suggest, however, that many of the dendrites of spiny projection neurons in the AcbSh are dually influenced by ACh and opiates active at MOR, thus providing a cellular substrate for ACh in the reinforcement of opiates.
Collapse
Affiliation(s)
- A L Svingos
- Weill Medical College of Cornell University, Department of Neurology and Neuroscience, New York, NY 10021, USA.
| | | | | |
Collapse
|
34
|
Li Z, Wu CF, Pei G, Xu NJ. Reversal of morphine-induced memory impairment in mice by withdrawal in Morris water maze: possible involvement of cholinergic system. Pharmacol Biochem Behav 2001; 68:507-13. [PMID: 11325406 DOI: 10.1016/s0091-3057(01)00456-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of morphine and morphine withdrawal on memory performance were examined in mice by using Morris water maze task. Morphine-induced memory impairment at the doses of 5 and 10 mg/kg recovered after repeated administration. Oxotremorine, a muscarinic receptor agonist, at the dose of 0.1 mg/kg ip, and physostigmine, a cholinesterase inhibitor, at the dose of 0.1 mg/kg ip, significantly antagonized morphine (10 mg/kg sc)-induced memory impairment in mice. Furthermore, repeated naloxone (0.5 mg/kg ip) attenuated scopolamine (0.2 mg/kg ip)-induced memory impairment. By using escalating doses of morphine for 13 days, morphine-induced memory impairment was continuously maintained. When withdrawal was precipitated by naloxone (5 mg/kg ip), or administration of oxotremorine (0.1 and 0.2 mg/kg ip) or physostigmine (0.05 and 0.1 mg/kg ip), the impairment was completely reversed. These results suggest that morphine-induced memory impairment could be partially due to the inhibition of the central cholinergic activity.
Collapse
Affiliation(s)
- Z Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 110015, Shenyang, People's Republic of China
| | | | | | | |
Collapse
|
35
|
Rada PV, Hoebel BG. Aversive hypothalamic stimulation releases acetylcholine in the nucleus accumbens, and stimulation-escape decreases it. Brain Res 2001; 888:60-65. [PMID: 11146052 DOI: 10.1016/s0006-8993(00)02865-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypothalamic electrodes can generate positive reinforcement, as shown by self-stimulation, and negative reinforcement shown by stimulation-escape. It was hypothesized that acetylcholine (ACh) is released in the nucleus accumbens during the aversive state that underlies stimulation-escape. If this is correct, escape behavior should lower extracellular ACh. Rats were prepared with microdialysis probes in the accumbens (posterior shell region) and electrodes in the perifornical lateral hypothalamus. Animals learned to press a lever for 0.5 s trains of stimulation (typically 3600 responses/h). Then they were given automatic stimulation to determine which animals would also learn to press a lever to turn stimulation off for 5 s at a time (typically 75 responses/h). Accumbens microdialysis showed that automatic stimulation caused extracellular ACh to double, but only in the rats that were motivated to learn stimulation-escape. When allowed to escape stimulation, these animals lowered extracellular ACh significantly. It is concluded that ACh release in the accumbens is related to the neural state that animals work to escape.
Collapse
Affiliation(s)
- P V Rada
- Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
36
|
Hajnal A, Székely M, Gálosi R, Lénárd L. Accumbens cholinergic interneurons play a role in the regulation of body weight and metabolism. Physiol Behav 2000; 70:95-103. [PMID: 10978483 DOI: 10.1016/s0031-9384(00)00236-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aims of the present study were (1) to determine whether selective lesions of the accumbens cholinergic interneurons impair feeding and body weight regulation, and (2) to characterize the nature of disturbances using motivational and metabolic challenges. Rats with bilateral cholinotoxic (AF64A) lesions in the nucleus accumbens showed a significant and lasting lag in body weight gain in comparison to the sham-operated controls. This failure to gain weight was not due to a decrease in feeding because lesioned rats actually ate more food and drank more water than controls under basal conditions. Lesion-induced deficits were also exposed when the rats were challenged with food deprivation or cold exposure. Lesioned rats ate less than controls when 24 h food deprived and maintained both a higher core temperature and a higher metabolic rate than controls following either 24-h food deprivation or exposure to cold. Thyroid hormones, insulin, and blood glucose levels were, however, within the physiological range, and no sensory and motor disturbances were observed. The results suggest that the altered body weight regulation is partly due to the enhanced metabolic responsiveness to stress. Possible explanations for the effects of the lesions are also discussed in the context of motivational alterations, including possible dopamine-acetylcholine interactions.
Collapse
Affiliation(s)
- A Hajnal
- Neurophysiology Research Group of the Hungarian Academy of Sciences at the Institute of Physiology, Pécs University Medical School, H-7643, Pécs, Hungary.
| | | | | | | |
Collapse
|
37
|
Rada PV, Hoebel BG. Supraadditive effect of d-fenfluramine plus phentermine on extracellular acetylcholine in the nucleus accumbens: possible mechanism for inhibition of excessive feeding and drug abuse. Pharmacol Biochem Behav 2000; 65:369-73. [PMID: 10683475 DOI: 10.1016/s0091-3057(99)00219-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The combination of d-fenfluramine plus phentermine (d-FEN/PHEN) provides a tool for exploring neural mechanisms that control food intake and drug abuse. Prior research suggests that dopamine (DA) in the nucleus accumbens can reinforce appetitive behavior and acetylcholine (ACh) inhibits it. When rats were given d-fenfluramine (5 mg/kg, IP) DA increased to 169% (p < 0.01), and ACh decreased slightly. Phentermine (5 mg/kg, IP) increased extracellular DA to 469% of baseline and ACh increased slightly to 124% (both p < 0.01). The d-FEN/PHEN combination, however, increased both DA and ACh with a supraadditive effect on ACh to 172%. One interpretation is that dFEN/PHEN increases DA like a meal or drug of abuse, while also increasing ACh to stop further approach behavior. This leaves the animal "satiated," as defined by reduced intake of food or drugs.
Collapse
Affiliation(s)
- P V Rada
- Princeton University, Department of Psychology, Princeton, NJ 08544, USA
| | | |
Collapse
|
38
|
Abstract
Opioid and psychostimulant drugs have long been used for the relief of chronic pain in the clinical situation. Animal studies confirm that these drugs alleviate persistent or tonic pain. Little is known, however, about the neural systems underlying the suppression of tonic pain except that they are different from those mediating the suppression of phasic (i.e., sharp and short-lasting) pain. Although spinal and brainstem-descending pain suppression mechanisms play a role in mediating the inhibition of tonic pain, it appears that this response is additionally mediated by the activation of mechanisms lying rostral to the brainstem. Recent studies suggest that the activation of mesolimbic dopamine (DA) neurons, arising from the cell bodies of the ventral tegmental area (VTA) and projecting to the nucleus accumbens (NAcc), plays an important role in mediating the suppression of tonic pain. Other studies suggest that this pain-suppression system involving the activation of mesolimbic DA neurons is naturally triggered by exposure to stress, through the endogenous release of opioids and substance P (SP) in the midbrain.
Collapse
Affiliation(s)
- N Altier
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
39
|
Kimes AS, Maldonado R, Ambrosio E, Koob GF, London ED. Cerebral glucose metabolism during opioid withdrawal following methylnaloxonium injection into the locus coeruleus. Brain Res 1998; 814:1-12. [PMID: 9838021 DOI: 10.1016/s0006-8993(98)00813-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous studies have demonstrated a widespread stimulation of regional cerebral metabolic rate(s) for glucose (rCMRglc) in morphine-dependent rats subjected to opioid withdrawal precipitated by systemic injection of naloxone. Nonetheless, many of the behavioral signs of opioid withdrawal are produced by intracerebral injections of an opioid antagonist, methylnaloxonium (MN), into the locus coeruleus (LC). The purpose of the present work was to determine the extent to which cerebral metabolic alterations in opioid withdrawal could be initiated by a local action in LC. Intracerebral injections of MN into LC increased rCMRglc in morphine-dependent rats, and the anatomical distribution of this effect was similar to that produced by systemic injections of naloxone. The present data support the view that LC is a major substrate of opioid withdrawal in the brain, and they suggest that LC plays an important role in changing rCMRglc during opioid withdrawal induced by systemic naloxone administration.
Collapse
Affiliation(s)
- A S Kimes
- Brain Imaging Center, Intramural Research Program, National Institute on Drug Abuse, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
40
|
Keys AS, Mark GP. D1 and D2 dopamine receptor mediation of amphetamine-induced acetylcholine release in nucleus accumbens. Neuroscience 1998; 86:521-31. [PMID: 9881866 DOI: 10.1016/s0306-4522(98)00018-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To assess the interaction of dopamine and acetylcholine systems in the rat nucleus accumbens in response to direct D-amphetamine administration, in vivo microdialysis measures of acetylcholine were used during reverse dialysis of amphetamine alone and in combination with D1 and D2 receptor antagonists SCH 23390 and sulpiride, respectively. During a 15-min exposure to amphetamine (50 microM) in the nucleus accumbens, acetylcholine increased to 33% above pre-infusion levels, became maximal at 15 min post-infusion (+41%) and gradually returned to baseline levels by 60 min post-amphetamine. Conversely, amphetamine (1 mM) administration caused a biphasic change in acetylcholine release with a trend toward a decrease (-14%) during exposure followed by a significant increase (+36%) at 30 min post-amphetamine that returned to baseline levels by 60 min after infusion. The increases observed during amphetamine (50 microM) exposure and during recovery from amphetamine (1 mM) were both blocked by co-administration with the D1 antagonist, SCH 23390 (10 microM), but not with the D2 antagonist, sulpiride (10 microM). Co-infusion of sulpiride eliminated the trend toward reduced acetylcholine release observed during 1 mM amphetamine whereas co-administration of SCH 23390 potentiated this decrease. A possible tonic D1 facilitation of nucleus accumbens acetylcholine release was indicated by the consistent reductions in acetylcholine release observed during infusion of SCH 23390. These results suggest that amphetamine administration in the nucleus accumbens induces a bidirectional change in acetylcholine release that is dependent on dose and opposing effects of nucleus accumbens D1 and D2 activation. In general, relatively low doses of amphetamine administered into the nucleus accumbens caused an increase in acetylcholine release that was dependent on dopamine D1 receptors whereas higher doses of amphetamine resulted in a D2-mediated decrease.
Collapse
Affiliation(s)
- A S Keys
- Department of Behavioral Neuroscience, Oregon Health Sciences University, School of Medicine, Portland 97201, USA
| | | |
Collapse
|
41
|
Fisher A, Biggs CS, Starr MS. Differential effects of NMDA and non-NMDA antagonists on the activity of aromatic L-amino acid decarboxylase activity in the nigrostriatal dopamine pathway of the rat. Brain Res 1998; 792:126-32. [PMID: 9593857 DOI: 10.1016/s0006-8993(98)00129-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study examined the acute effects of a variety of NMDA and non-NMDA antagonists on the activity of aromatic l-amino acid decarboxylase (AADC) in the corpus striatum (CS) and substantia nigra (SN) of the rat. Sixty min pretreatment with the high affinity NMDA receptor-channel blockers MK 801 (0.01, 0.1 and 1 mg/kg) and phencyclidine (4 mg/kg) elevated AADC activity in both the CS and SN (2- to 3-fold). Even more striking increases in AADC were noted with 40 mg/kg amantadine (3.8-fold for CS, 9.0-fold for SN), 40 mg/kg memantine (3.4-fold for CS, 3.1-fold for SN; 20 mg/kg no effect) and 40 mg/kg dextromethorphan (3.4-fold for CS, 6.2-fold for SN, in 6/10 'responders'). Similarly pronounced increases in AADC activity in CS (1.9-fold) and SN (2.8-fold) were detected after administering clonidine (2 mg/kg). R-HA 966 (5 mg/kg, not 1 mg/kg) modestly raised AADC activity in CS (0.45-fold) and not SN. Other drugs had no effect on the activity of the decarboxylase enzyme, including CGP 40116 (1 and 5 mg/g), eliprodil (10 mg/kg), NBQX (10 mg/kg, 30 min pretreatment) and atropine (1 mg/kg). These experiments indicate that blocking the NMDA receptor-channel (and to a lesser extent the glycine site) or stimulating alpha2-adrenoceptors, profoundly increases AADC activity, more especially in the SN than CS. By contrast, inhibiting the NMDA glutamate recognition or polyamine sites, AMPA or muscarinic receptors is without effect on AADC in either brain region. The ability of amantadine and memantine to potentiate the antiparkinsonian actions of l-DOPA in the clinic, may be due to facilitated decarboxylation of l-DOPA by the brain.
Collapse
Affiliation(s)
- A Fisher
- Department of Pharmacology, The School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | |
Collapse
|
42
|
Schildein S, Agmo A, Huston JP, Schwarting RK. Intraaccumbens injections of substance P, morphine and amphetamine: effects on conditioned place preference and behavioral activity. Brain Res 1998; 790:185-94. [PMID: 9593886 DOI: 10.1016/s0006-8993(98)00062-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nucleus accumbens of the rat plays a critical role in behavioral activation and appetitive motivation. Within the nucleus accumbens, the shell subarea may be especially relevant, since this site is anatomically related to other brain areas that are considered to play a critical role in the processing of motivation. We investigated the behavioral effects of local drug treatments aimed at the shell of the nucleus accumbens and tested the indirect dopamine agonist d-amphetamine, the opiate agonist morphine, and the neurokinin substance P. These substances are known to exert positive reinforcing effects, and can affect behavioral activity; effects that are physiologically closely related to the nucleus accumbens and its inputs and outputs. Our results show that unilateral microinjections of amphetamine (1.0 microg, 10.0 microg) into the shell of the nucleus accumbens dose-dependently stimulated behavioral activity (locomotion, rears, sniffing), and led to conditioned place preference. Furthermore, the effect of amphetamine on place preference was negatively related to the psychomotor stimulant action on rears. Morphine injections (5.0 microg) also stimulated behavioral activity and elicited contraversive turning, but were ineffective with respect to place preference. Finally, the neuropeptide substance P, injected in a dose range of 0.1-10.0 ng, had no significant behavioral effects. These findings are discussed with respect to the role of dopaminergic, peptidergic and cholinergic mechanisms in the nucleus accumbens. It is suggested that dopamine, opiates, and neurokinins in the shell of the nucleus accumbens are differentially involved in mediating behavioral activity and appetitive motivation.
Collapse
Affiliation(s)
- S Schildein
- Institute of Physiological Psychology I, and Center for Biological and Medical Research, Heinrich-Heine-Universität of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
43
|
Hajnal A, Pothos EN, Lénárd L, Hoebel BG. Effects of feeding and insulin on extracellular acetylcholine in the amygdala of freely moving rats. Brain Res 1998; 785:41-8. [PMID: 9526040 DOI: 10.1016/s0006-8993(97)01291-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extracellular levels of acetylcholine (ACh) were measured in the central nucleus of the amygdala using microdialysis in 20-min intervals before, during, and after 1 h feeding in food-deprived rats. The results were compared to the effects of peripheral injections of glucose or 'low' (200 mU) and 'high' (1 U) doses of insulin. Feeding caused a 40% increase in extracellular ACh in the amygdala during the hour-long meal. Acetylcholine returned to baseline 1 h after food was removed. Systemic injections of either glucose or insulin in ad libitum fed rats also resulted in an increase in ACh levels (+50-60%), but with a different time course. Glucose elevated ACh to a plateau within 20 min for an hour's duration; whereas both doses of insulin caused a peak in ACh release in the first 20 min followed by gradual return to baseline. The 'low' and 'high' doses of insulin had similar effects on ACh release even though they had different hypoglycemic potency as measured in blood samples. These results suggest that ACh in the AMY is involved in feeding and the response to glucose utilization.
Collapse
Affiliation(s)
- A Hajnal
- Department of Psychology, Princeton University, Princeton, NJ 08544-1010, USA
| | | | | | | |
Collapse
|
44
|
Murzi E, Rada P, Puig de Parada M, Parada MA, Valecillos B, Tilac CA, Hernandez L. Atropine decreases drinking but not feeding and induces less hypothalamic acetylcholine release in diabetic rats. Brain Res 1997; 752:184-8. [PMID: 9106455 DOI: 10.1016/s0006-8993(96)01442-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Drinking, feeding and hypothalamic extracellular acetylcholine (ACh) release was measured before and after the administration of several doses of atropine sulfate in streptozotocin (STZ)-diabetic and normal rats. Drinking but not feeding was dose-relatedly decreased by i.p. or intrahypothalamic injections of atropine in STZ-diabetic rats. Hypothalamic ACh release, as measured by microdialysis, increased less (dose-related) in diabetic than normal rats following an i.p. administration of atropine. Ach basal levels were the same in both groups. These results are discussed in terms of a hyperactive hypothalamic cholinergic (muscarinic) system involved in the diabetic polydipsia.
Collapse
Affiliation(s)
- E Murzi
- Laboratory of Behavioral Physiology, School of Medicine, Los Andes University, Mérida, Venezuela
| | | | | | | | | | | | | |
Collapse
|
45
|
Bristow LJ, Hogg JE, Hutson PH. Competitive and glycine/NMDA receptor antagonists attenuate withdrawal-induced behaviours and increased hippocampal acetylcholine efflux in morphine-dependent rats. Neuropharmacology 1997; 36:241-50. [PMID: 9144662 DOI: 10.1016/s0028-3908(97)00006-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study has examined the glycine/N-methyl-D-aspartate (NMDA) receptor antagonist, R-(+)-3-amino-1-hydroxypyrrolid-2-one (R-(+)-HA-966) and the competitive NMDA receptor antagonist, cis-4-(phosphonomethyl)piperidine-2-carboxylic acid (CGS 19755) on the behavioural syndrome and increased hipppocampal acetylcholine efflux induced during morphine-withdrawal in the rat. Subcutaneous naltrexone (1 mg/kg) injection, 48 hr after implantation of a 75 mg morphine pellet, induced a robust withdrawal syndrome consisting of wet dog shakes, ejaculations, mouth movement, ptosis, irritability to touch and diarrhoea. Pretreatment with the alpha2-adrenoceptor agonist, clonidine (0.1-0.4 mg/kg), R-(+)-HA-966 (10-60 mg/kg) or CGS 19755 (5 or 10 mg/kg) significantly reduced the incidence of withdrawal behaviours. In addition, all three compounds significantly attenuated the increase in hippocampal acetylcholine efflux induced following naltrexone (1 mg/kg, s.c.) injection in morphine-dependent rats. These results provide further evidence demonstrating that NMDA receptor antagonists attenuate both the behavioural and neurochemical effects observed during morphine withdrawal in the rat.
Collapse
Affiliation(s)
- L J Bristow
- Merck, Sharp and Dohme Research Laboratories, Neuroscience Research Center, Harlow, Essex, UK
| | | | | |
Collapse
|
46
|
Maldonado R. Participation of noradrenergic pathways in the expression of opiate withdrawal: biochemical and pharmacological evidence. Neurosci Biobehav Rev 1997; 21:91-104. [PMID: 8994212 DOI: 10.1016/0149-7634(95)00061-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Several lines of biochemical and pharmacological evidence provide support for the involvement of the noradrenergic system in the expression of the somatic symptoms of opiate withdrawal. Early studies reported changes in brain noradrenaline and metabolite levels during opiate dependence. The significance of these changes has been clarified in recent microdialysis studies indicating that acute morphine decreases the extraneuronal levels of noradrenaline, whereas an increase in release of the neurotransmitter occurs during opiate withdrawal in several brain areas. Changes in the sensitivity and density of alpha 2- and beta-adrenoceptors have also been reported, probably as a consequence of the decreased presynaptic noradrenergic activity induced during morphine dependence. In addition, the administration of alpha 2-agonists, such as clonidine, or beta-antagonists, such as propranolol, has been reported to attenuate some manifestations of opiate withdrawal. The noradrenergic structure mediating the expression of opioid abstinence seems to be the locus coeruleus. However, the activation of the locus coeruleus during morphine withdrawal seems to be primarily due to the afferent projections containing excitatory amino acids and derived from the nucleus paragigantocellularis, although intrinsic modifications, consisting of an up-regulation of the cAMP pathway, seem also to be involved in this activation. The participation of the mesolimbic dopaminergic system in opiate dependence and its relation with the changes produced in the noradrenergic system are also discussed.
Collapse
Affiliation(s)
- R Maldonado
- Département de Pharmacochimie Moléculaire et Structurale, U266 INSERM-URA D 1500 CNRS, UFR des Sciences Pharmaceutiques et Biologiques, Université René Descartes-Faculté de Pharmacie, Paris, France
| |
Collapse
|
47
|
Tjon GH, De Vries TJ, Nestby P, Wardeh G, Mulder AH, Schoffelmeer AN. Intermittent and chronic morphine treatment induces long-lasting changes in delta-opioid receptor-regulated acetylcholine release in rat striatum and nucleus accumbens. Eur J Pharmacol 1995; 283:169-76. [PMID: 7498306 DOI: 10.1016/0014-2999(95)00319-g] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Intermittent treatment of rats with morphine (10 mg/kg s.c., once daily) caused an increase (of about 30%) of the electrically evoked release of [14C]acetylcholine from cholinergic interneurons of superfused striatal slices 1-21 days after morphine withdrawal. Similarly, chronic treatment with escalating doses of morphine (5-50 mg/kg s.c., 3 times daily), causing physical dependence (unlike intermittent treatment), resulted in an enduring enhanced response of these neurons towards depolarization. Following chronic morphine treatment this adaptive increase of acetylcholine release was associated with a slight but long-lasting decrease of the (delta-opioid receptor-mediated) maximal inhibitory effect of [Met5]enkephalin, whereas upon intermittent drug treatment delta-opioid receptor desensitization was observed 1 day after opiate withdrawal only. Also in slices of the nucleus accumbens both intermittent as well as chronic morphine administration caused a long-lasting increase of the electrically evoked [14C]acetylcholine release. Therefore, we hypothesize that an enhanced (re)activity of striatal and accumbal cholinergic neurons, which are regulated by dopaminergic neurons of the ventral mesencephalon, may represent a long-lasting neuroadaptive effect of morphine (and possibly other drugs of abuse) playing a crucial role in behavioral sensitization associated with enhanced vulnerability to drugs of abuse.
Collapse
Affiliation(s)
- G H Tjon
- Graduate School Neurosciences Amsterdam, Research Institute Neurosciences Vrije Universiteit, Faculty of Medicine, Department of Pharmacology, Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Mark GP, Weinberg JB, Rada PV, Hoebel BG. Extracellular acetylcholine is increased in the nucleus accumbens following the presentation of an aversively conditioned taste stimulus. Brain Res 1995; 688:184-8. [PMID: 8542305 DOI: 10.1016/0006-8993(95)00401-b] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To determine if acetylcholine (ACh) is released in the nucleus accumbens in response to a conditioned stimulus (CS) that reminds the animal of an aversive event, in vivo microdialysis was used to monitor extracellular ACh during conditioned taste aversion. Saccharin flavored water (2.5 mM saccharin) was paired twice with nausea induced by i.p. lithium chloride (100 mg/kg). This is normally sufficient to create an aversion to the taste of saccharin, but instead of a preference test, the saccharin solution was squirted directly into the rat's mouth via a cheek catheter during nucleus accumbens microdialysis. The result was a 40% increase in extracellular ACh. We reported earlier that dopamine changes in the opposite direction; it decreases. This suggests that high synaptic ACh and low DA are correlated with an aversive state and cessation of behavior.
Collapse
Affiliation(s)
- G P Mark
- Department of Psychology, Princeton University, NJ 08544-1010, USA
| | | | | | | |
Collapse
|
49
|
Starr MS. Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson's disease. Synapse 1995; 19:264-93. [PMID: 7792721 DOI: 10.1002/syn.890190405] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The recent availability of selective ligands for NMDA and AMPA receptors has enabled neuroscientists to test the hypothesis that Parkinson's disease is a glutamate hyperactivity disorder and hence treatable with glutamate antagonists. This review takes a critical look at the motor characteristics of this new class of drugs in rodent and primate models of parkinsonism and assesses the clinical potential and pitfalls of this radical new approach. Monotherapy of Parkinson's disease with glutamate antagonists appears impractical at the present time, due to their low efficacy and unacceptable side effects, but polypharmacy with L-DOPA and a glutamate antagonist as adjuvant is a more realistic prospect. This review will focus on the ways in which glutamate receptor blockade facilitates motor recovery with L-DOPA and will examine whether the basis for this beneficial effect can be traced to a specific interaction with dopamine at D1 or D2 receptors, and therefore to discrete motor pathways within the basal ganglia.
Collapse
Affiliation(s)
- M S Starr
- Department of Pharmacology, School of Pharmacy, London, United Kingdom
| |
Collapse
|
50
|
Zocchi A, Pert A. Alterations in striatal acetylcholine overflow by cocaine, morphine, and MK-801: relationship to locomotor output. Psychopharmacology (Berl) 1994; 115:297-304. [PMID: 7871068 DOI: 10.1007/bf02245069] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The activity of cholinergic interneurons in the striatum appears to be modulated by a variety of different systems including dopamine, opiate, and glutamate. The purpose of this study was to characterize the effects of drugs known to act on these three systems (i.e., cocaine, morphine, and MK-801) on striatal ACh overflow with microdialysis procedures, and to determine if alterations in ACh function induced by these agents are related to changes in locomotor activity. Cocaine was found to increase striatal ACh following intraperitoneal injections of 20 and 40 mg/kg, but not 10 mg/kg. The increases in locomotor activity induced by cocaine appeared to be dose dependent, while the effects on striatal ACh were not. Injections of 0.1 mg/kg MK-801 (a non-competitive NMDA receptor antagonist) produced dramatic increases in locomotor activity while decreasing striatal ACh overflow. A lower dose (0.03 mg/kg) of MK-801 failed to alter locomotor activity or striatal ACh. Morphine produced an apparent dose-dependent elevation in striatal ACh while only the lowest dose (5 mg/kg) increased locomotor activity. There appears to be no relationship between alterations in striatal ACh and locomotor output following systemic administration of these psychoactive agents.
Collapse
Affiliation(s)
- A Zocchi
- Biological Psychiatry Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | | |
Collapse
|