1
|
Escelsior A, Sterlini B, Tardito S, Altosole T, Magioncalda P, Martino M, Serafini G, Murri MB, Aguglia A, Amerio A, da Silva BP, Trabucco A, Fenoglio D, Filaci G, Amore M. Evidence of alterations of Beta-endorphin levels and Mu-opioid receptor gene expression in bipolar disorder. Psychiatry Res 2022; 316:114787. [PMID: 35988328 DOI: 10.1016/j.psychres.2022.114787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Despite the well-recognized effects of endogenous opioids on mood and behavior, research on its role in bipolar disorder (BD) is still limited to small or anecdotal reports. Considering that Beta-endorphins (β-END) and Mu-opioid receptors (MOR), in particular, have a crucial activity in affective modulation, we hypothesized their alteration in BD. A cross-sectional study was conducted. We compared: (1) BD type I (BD-I) patients (n = 50) vs healthy controls (n = 27), (2) two BD-I subject subgroups: manic (MAN; n = 25) vs depressed (DEP; n = 25) subjects. Plasma levels of β-END and MOR gene expression in peripheral blood mononuclear cells were analyzed using ELISA Immunoassay qRT-PCR. We found that subjects with BD exhibited a significant upregulation of MOR gene expression and a decrease of β-END (p<0.0001 for both). MAN display higher MOR levels than DEP (p<0.001) and HC (p<0.0001). Plasma levels of β-END were lower in DEP compared to MAN (p<0.05) and HC (p<0.0001). The main limitations are the cross-sectional design and the lack of a group of euthymic subjects. Although preliminary, our results suggest a dysregulation of the endogenous opioid systems in BD. In particular, both MAN and DEP showed a reduction of β-END levels, whereas MAN was associated with MOR gene overexpression.
Collapse
Affiliation(s)
- Andrea Escelsior
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Bruno Sterlini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Samuele Tardito
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Tiziana Altosole
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Paola Magioncalda
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan; Department of Psychiatry, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Martino Belveri Murri
- Institute of Psychiatry, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Beatriz Pereira da Silva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alice Trabucco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela Fenoglio
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gilberto Filaci
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
2
|
Butelman ER, Chen CY, Lake KJ, Brown KG, Kreek MJ. Bidirectional influence of heroin and cocaine escalation in persons with dual opioid and cocaine dependence diagnoses. Exp Clin Psychopharmacol 2022; 30:31-38. [PMID: 33119382 PMCID: PMC8388238 DOI: 10.1037/pha0000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Persons with dual severe opioid and cocaine use disorders are at risk of considerable morbidity, and the bidirectional relationship of escalation of mu-opioid agonists and cocaine use is not well understood. The aim of this study was to examine the bidirectional relationship between escalation of heroin and cocaine use in volunteers dually diagnosed with opioid and cocaine dependence (OD + CD). Volunteers from New York with OD + CD (total n = 295; male = 182, female = 113; age ≥ 18 years) were interviewed with the Structured Clinical Interview for the DSM-IV Axis I Disorders and Kreek-McHugh-Schluger-Kellogg scales for dimensional measures of drug exposure, which also collect ages of 1st use and onset of heaviest use. Time of escalation was defined as age of onset of heaviest use minus age of 1st use in whole years. Times of escalation of heroin and cocaine were positively correlated in both men (Spearman r = .34, 95% confidence interval [CI: .17, .48], p < .0001) and women (Spearman r = .51, [.27, .50], p < .0001) volunteers. After we adjusted for demographic variables, a Cox regression showed that time of cocaine escalation was a predictor of time of heroin escalation (hazard ratio [HR] = 0.97, 95% CI [0.95, 0.99], p = .003). Another Cox regression showed that this relationship is bidirectional, because time of heroin escalation was also a predictor of time of cocaine escalation (HR = 0.98, [0.96-0.99], p = .016). In these adjusted models, gender was not a significant predictor of time of escalation of either heroin or cocaine. Therefore, escalation did not differ robustly by gender when adjusting for demographics and other major variables. Overall, rapid escalation of cocaine use was a predictor of rapid escalation of heroin use, and vice versa, in persons with dual severe opioid and cocaine use disorders. These findings suggest a shared vulnerability to rapid escalation of these 2 drugs in persons with dual severe opioid and cocaine use disorders. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
3
|
De Sa Nogueira D, Bourdy R, Filliol D, Romieu P, Befort K. Hippocampal mu opioid receptors are modulated following cocaine self-administration in rat. Eur J Neurosci 2021; 53:3341-3349. [PMID: 33811699 DOI: 10.1111/ejn.15217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
Cocaine addiction is a complex pathology induced by long-term brain changes. Understanding the neurochemical changes underlying the reinforcing effects of this drug of abuse is critical for reducing the societal burden of drug addiction. The mu opioid receptor plays a major role in drug reward. This receptor is modulated by chronic cocaine treatment in specific brain structures, but few studies investigated neurochemical adaptations induced by voluntary cocaine intake. In this study, we investigated whether intravenous cocaine-self administration (0.33 mg/kg/injection, fixed-ratio 1 [FR1], 10 days) in rats induces transcriptional and functional changes of the mu opioid receptor in reward-related brain regions. Epigenetic processes with histone modifications were examined for two activating marks, H3K4Me3, and H3K27Ac. We found an increase of mu opioid receptor gene expression along with a potentiation of its functionality in hippocampus of cocaine self-administering animals compared to saline controls. Chromatin immunoprecipitation followed by qPCR revealed no modifications of the histone mark H3K4Me3 and H3K27Ac levels at mu opioid receptor promoter. Our study highlights the hippocampus as an important target to further investigate neuroadaptive processes leading to cocaine addiction.
Collapse
Affiliation(s)
- David De Sa Nogueira
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Romain Bourdy
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Dominique Filliol
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Pascal Romieu
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Thériault RK, Leri F, Kalisch B. The role of neuronal nitric oxide synthase in cocaine place preference and mu opioid receptor expression in the nucleus accumbens. Psychopharmacology (Berl) 2018; 235:2675-2685. [PMID: 29992335 DOI: 10.1007/s00213-018-4961-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
RATIONALE There is evidence that central mu opioid receptors (MORs) are implicated in several aspects of cocaine addiction, and that MOR expression is elevated by cocaine in vitro and in the nucleus accumbens (NAc) when administered in vivo. OBJECTIVE To understand the cellular mechanisms involved in regulating MOR expression, this study explored whether neuronal nitric oxide synthase (nNOS) modulates the neurochemical and behavioral effects of acute and repeated cocaine administration. METHODS Male Sprague-Dawley rats received a single cocaine injection (20 mg/kg, i.p.) in combination with the selective nNOS inhibitor 7-nitroindazole (7-NI) (0, 25, or 50 mg/kg, i.p.), and the expression of MOR and nNOS messenger RNA (mRNA) and protein levels in the NAc were measured. In a separate conditioned place preference (CPP) experiment, 7-NI (0, 25, or 50 mg/kg, i.p.) was administered prior to cocaine (0 or 20 mg/kg, i.p.) conditioning sessions, and levels of MOR and nNOS mRNA and protein in the NAc were measured following CPP test. RESULTS Acute cocaine administration significantly enhanced nNOS and MOR mRNA and protein expression in the NAc, and this increase in MOR expression was blocked by 7-NI. Furthermore, in 7-NI pre-treated rats, cocaine-induced CPP was not statistically significant and the increase in MOR mRNA expression in the NAc in these animals was attenuated. CONCLUSIONS These findings suggest that nNOS modulates MOR expression following acute cocaine administration, and that cocaine CPP and associated upregulation of MOR expression involve both nNOS-dependent and independent mechanisms. Elucidation of these molecular events may identify useful therapeutic target for cocaine addiction.
Collapse
Affiliation(s)
- Rachel-Karson Thériault
- Department of Biomedical Sciences, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada.,Collaborative Neuroscience Program, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada
| | - Francesco Leri
- Collaborative Neuroscience Program, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada.,Department of Psychology, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada
| | - Bettina Kalisch
- Department of Biomedical Sciences, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada. .,Collaborative Neuroscience Program, University of Guelph (ON), Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
5
|
Dunn AD, Reed B, Guariglia C, Dunn AM, Hillman JM, Kreek MJ. Structurally Related Kappa Opioid Receptor Agonists with Substantial Differential Signaling Bias: Neuroendocrine and Behavioral Effects in C57BL6 Mice. Int J Neuropsychopharmacol 2018; 21:847-857. [PMID: 29635340 PMCID: PMC6119295 DOI: 10.1093/ijnp/pyy034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/30/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The kappa opioid receptor system has been revealed as a potential pharmacotherapeutic target for the treatment of addictions to substances of abuse. Kappa opioid receptor agonists have been shown to block the rewarding and dopamine-releasing effects of psychostimulants. Recent investigations have profiled the in vivo effects of compounds biased towards G-protein-mediated signaling, with less potent arrestin-mediated signaling. The compounds studied here derive from a series of trialkylamines: N-substituted-N- phenylethyl-N-3-hydroxyphenylethyl-amine, with N-substituents including n-butyl (BPHA), methylcyclobutyl (MCBPHA), and methylcyclopentyl (MCPPHA). METHODS BPHA, MCBPHA, and MCPPHA were characterized in vitro in a kappa opioid receptor-expressing cell line in binding assays and functional assays. We also tested the compounds in C57BL6 mice, assaying incoordination with rotarod, as well as circulating levels of the neuroendocrine kappa opioid receptor biomarker, prolactin. RESULTS BPHA, MCBPHA, and MCPPHA showed full kappa opioid receptor agonism for G-protein coupling compared with the reference compound U69,593. BPHA showed no measurable β-arrestin-2 recruitment, indicating that it is extremely G-protein biased. MCBPHA and MCPPHA, however, showed submaximal efficacy for recruiting β-arrestin-2. Studies in C57BL6 mice reveal that all compounds stimulate release of prolactin, consistent with dependence on G-protein signaling. MCBPHA and MCPPHA result in rotarod incoordination, whereas BPHA does not, consistent with the reported requirement of intact kappa opioid receptor/β-arrestin-2 mediated coupling for kappa opioid receptor agonist-induced rotarod incoordination. CONCLUSIONS BPHA, MCBPHA, and MCPPHA are thus novel differentially G-protein-biased kappa opioid receptor agonists. They can be used to investigate how signaling pathways mediate kappa opioid receptor effects in vitro and in vivo and to explore the effects of candidate kappa opioid receptor-targeted pharmacotherapeutics.
Collapse
Affiliation(s)
- Amelia D Dunn
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York,Correspondence: Amelia Dunn, BS, BA, 1230 York Ave, Box 243, New York, NY 10065 ()
| | - Brian Reed
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Catherine Guariglia
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Alexandra M Dunn
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Joshua M Hillman
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| |
Collapse
|
6
|
Becker JA, Kieffer BL, Le Merrer J. Differential behavioral and molecular alterations upon protracted abstinence from cocaine versus morphine, nicotine, THC and alcohol. Addict Biol 2017; 22:1205-1217. [PMID: 27126842 DOI: 10.1111/adb.12405] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 02/04/2023]
Abstract
Unified theories of addiction are challenged by differing drug-seeking behaviors and neurobiological adaptations across drug classes, particularly for narcotics and psychostimulants. We previously showed that protracted abstinence to opiates leads to despair behavior and social withdrawal in mice, and we identified a transcriptional signature in the extended amygdala that was also present in animals abstinent from nicotine, Δ9-tetrahydrocannabinol (THC) and alcohol. Here we examined whether protracted abstinence to these four drugs would also share common behavioral features, and eventually differ from abstinence to the prototypic psychostimulant cocaine. We found similar reduced social recognition, increased motor stereotypies and increased anxiety with relevant c-fos response alterations in morphine, nicotine, THC and alcohol abstinent mice. Protracted abstinence to cocaine, however, led to strikingly distinct, mostly opposing adaptations at all levels, including behavioral responses, neuronal activation and gene expression. Together, these data further document the existence of common hallmarks for protracted abstinence to opiates, nicotine, THC and alcohol that develop within motivation/emotion brain circuits. In our model, however, these do not apply to cocaine, supporting the notion of unique mechanisms in psychostimulant abuse.
Collapse
Affiliation(s)
- Jérôme A.J. Becker
- Médecine Translationelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104; Université de Strasbourg; France
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247; Université de Tours Rabelais; France
| | - Brigitte L. Kieffer
- Médecine Translationelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104; Université de Strasbourg; France
- Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine; McGill University; Canada
| | - Julie Le Merrer
- Médecine Translationelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104; Université de Strasbourg; France
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247; Université de Tours Rabelais; France
| |
Collapse
|
7
|
Naltrexone modulates dopamine release following chronic, but not acute amphetamine administration: a translational study. Transl Psychiatry 2017; 7:e1104. [PMID: 28440810 PMCID: PMC5416714 DOI: 10.1038/tp.2017.79] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 01/16/2023] Open
Abstract
The opioid antagonist naltrexone has been shown to attenuate the subjective effects of amphetamine. However, the mechanisms behind this modulatory effect are currently unknown. We hypothesized that naltrexone would diminish the striatal dopamine release induced by amphetamine, which is considered an important mechanism behind many of its stimulant properties. We used positron emission tomography and the dopamine D2-receptor radioligand [11C]raclopride in healthy subjects to study the dopaminergic effects of an amphetamine injection after pretreatment with naltrexone or placebo. In a rat model, we used microdialysis to study the modulatory effects of naltrexone on dopamine levels after acute and chronic amphetamine exposure. In healthy humans, naltrexone attenuated the subjective effects of amphetamine, confirming our previous results. Amphetamine produced a significant reduction in striatal radioligand binding, indicating increased levels of endogenous dopamine. However, there was no statistically significant effect of naltrexone on dopamine release. The same pattern was observed in rats, where an acute injection of amphetamine caused a significant rise in striatal dopamine levels, with no effect of naltrexone pretreatment. However, in a chronic model, naltrexone significantly attenuated the dopamine release caused by reinstatement of amphetamine. Collectively, these data suggest that the opioid system becomes engaged during the more chronic phase of drug use, evidenced by the modulatory effect of naltrexone on dopamine release following chronic amphetamine administration. The importance of opioid-dopamine interactions in the reinforcing and addictive effects of amphetamine is highlighted by the present findings and may help to facilitate medication development in the field of stimulant dependence.
Collapse
|
8
|
Craige CP, Lewandowski S, Kirby LG, Unterwald EM. Dorsal raphe 5-HT(2C) receptor and GABA networks regulate anxiety produced by cocaine withdrawal. Neuropharmacology 2015; 93:41-51. [PMID: 25656481 DOI: 10.1016/j.neuropharm.2015.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/17/2023]
Abstract
The serotonin system is intimately linked to both the mediation of anxiety and long-term effects of cocaine, potentially through interaction of inhibitory 5-HT2C receptor and gamma-aminobutyric acid (GABA) networks. This study characterized the function of the dorsal raphe (DR) 5-HT2C receptor and GABA network in anxiety produced by chronic cocaine withdrawal. C57BL/6 mice were injected with saline or cocaine (15 mg/kg) 3 times daily for 10 days, and tested on the elevated plus maze 30 min, 25 h, or 7 days after the last injection. Cocaine-withdrawn mice showed heightened anxiety-like behavior at 25 h of withdrawal, as compared to saline controls. Anxiety-like behavior was not different when mice were tested 30 min or 7 days after the last cocaine injection. Electrophysiology data revealed that serotonin cells from cocaine-withdrawn mice exhibited increased GABA inhibitory postsynaptic currents (IPSCs) in specific DR subregions dependent on withdrawal time (25 h or 7 d), an effect that was absent in cells from non-withdrawn mice (30 min after the last cocaine injection). Increased IPSC activity was restored to baseline levels following bath application of the 5-HT2C receptor antagonist, SB 242084. In a separate cohort of cocaine-injected mice at 25 h of withdrawal, both global and intra-DR blockade of 5-HT2C receptors prior to elevated plus maze testing attenuated anxiety-like behavior. This study demonstrates that DR 5-HT2C receptor blockade prevents anxiety-like behavior produced by cocaine withdrawal, potentially through attenuation of heightened GABA activity, supporting a role for the 5-HT2C receptor in mediating anxiety produced by cocaine withdrawal.
Collapse
Affiliation(s)
- Caryne P Craige
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA.
| | - Stacia Lewandowski
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Lynn G Kirby
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ellen M Unterwald
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
9
|
Peles E, Schreiber S, Adelson M. Trends in Substance Abuse and Infectious Disease Over 20 Years in a Large Methadone Maintenance Treatment (MMT) Clinic in Israel. Subst Abus 2014; 35:226-9. [DOI: 10.1080/08897077.2014.899944] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Caputi FF, Di Benedetto M, Carretta D, Bastias del Carmen Candia S, D'Addario C, Cavina C, Candeletti S, Romualdi P. Dynorphin/KOP and nociceptin/NOP gene expression and epigenetic changes by cocaine in rat striatum and nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 2014; 49:36-46. [PMID: 24184686 DOI: 10.1016/j.pnpbp.2013.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 12/11/2022]
Abstract
Cocaine induces neurochemical changes of endogenous prodynorphin-kappa opioid receptor (pDYN-KOP) and pronociceptin/orphaninFQ-nociceptin receptor (pN/OFQ-NOP) systems. Both systems play an important role in rewarding mechanisms and addictive stimulus processing by modulating drug-induced dopaminergic activation in the mesocortico-limbic brain areas. They are also involved in regulating stress mechanisms related to addiction. The aim of this study was to investigate possible changes of gene expression of the dynorphinergic and nociceptinergic system components in the nucleus accumbens (NA) and in medial and lateral caudate putamen (mCPu and lCPu, respectively) of rats, following chronic subcutaneous infusion of cocaine. In addition, the epigenetic histone modifications H3K4me3 and H3K27me3 (an activating and a repressive marker, respectively) at the promoter level of the pDYN, KOP, pN/OFQ and NOP genes were investigated. Results showed that cocaine induced pDYN gene expression up-regulation in the NA and lCPu, and its down-regulation in the mCPu, whereas KOP mRNA levels were unchanged. Moreover, cocaine exposure decreased pN/OFQ gene expression in the NA and lCPu, while NOP mRNA levels appeared significantly increased in the NA and decreased in the lCPu. Specific changes of the H3K4me3 and H3K27me3 levels were found at pDYN, pN/OFQ, and NOP gene promoter, consistent with the observed gene expression alterations. The present findings contribute to better define the role of endogenous pDYN-KOP and pN/OFQ-NOP systems in neuroplasticity mechanisms following chronic cocaine treatment. The epigenetic histone modifications underlying the gene expression changes likely mediate the effects of cocaine on transcriptional regulation of specific gene promoters that result in long-lasting drug-induced plasticity.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Manuela Di Benedetto
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Donatella Carretta
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | | | - Claudio D'Addario
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Chiara Cavina
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|
11
|
Kotlinska JH, Gibula-Bruzda E, Witkowska E, Izdebski J. Involvement of delta and mu opioid receptors in the acute and sensitized locomotor action of cocaine in mice. Peptides 2013; 48:89-95. [PMID: 23965295 DOI: 10.1016/j.peptides.2013.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/07/2013] [Accepted: 08/07/2013] [Indexed: 12/14/2022]
Abstract
Analogs of deltorphins, such as cyclo(Nδ, Nδ-carbonyl-d-Orn2, Orn4)deltorphin (DEL-6) and deltorphin II N-(ureidoethyl)amide (DK-4) are functional agonists predominantly for the delta opioid receptors (DOR) in the guinea-pig ileum and mouse vas deferens bioassays. The purpose of this study was to examine an influence of these peptides (5, 10 or 20 nmol, i.c.v.) on the acute cocaine-induced (10mg/kg, i.p.) locomotor activity and the expression of sensitization to cocaine locomotor effect. Sensitization to locomotor effect of cocaine was developed by five injections of cocaine at the dose of 10mg/kg, i.p. every 3 days. Our results indicated that DK-4 and DEL-6 differently affected the acute and sensitized cocaine locomotion. Co-administration of DEL-6 with cocaine enhanced acute cocaine locomotion only at the dose of 10 nmol, with minimal effects at the doses 5 and 20 nmol, whereas co-administration of DK-4 with cocaine enhanced acute cocaine-induced locomotion in a dose-dependent manner. Similarly to the acute effects, DEL-6 only at the dose of 10 nmol but DK-4 dose-dependently enhanced the expression of cocaine sensitization. Pre-treatment with DOR antagonist - naltrindole (5 nmol, i.c.v.) and mu opioid receptor (MOR) antagonist, β-funaltrexamine abolished the ability of both peptides to potentiate the effects of cocaine. Our study suggests that MOR and DOR are involved in the interactions between cocaine and both deltorphins analogs. A distinct dose-response effects of these peptides on cocaine locomotion probably arise from differential functional activation (targeting) of the DOR and MOR by both deltorphins analogs.
Collapse
Affiliation(s)
- J H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland.
| | | | | | | |
Collapse
|
12
|
PKA and ERK1/2 are involved in dopamine D₁ receptor-induced heterologous desensitization of the δ opioid receptor. Life Sci 2013; 92:1101-9. [PMID: 23624231 DOI: 10.1016/j.lfs.2013.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/02/2013] [Accepted: 04/16/2013] [Indexed: 11/21/2022]
Abstract
AIMS Chronic administration of cocaine attenuates delta opioid receptor (DOPR) signaling in the striatum and the desensitization is mediated by the indirect actions of cocaine on dopamine D1 receptors (D1R). In addition, DOPR and D1R co-exist in some rat striatal neurons. In the present study, we examined the underlying mechanism of DOPR desensitization by D1R activation. MAIN METHODS NG 108-15 cells stably expressing HA-rat D1 receptor (HA-D1R) and Chinese hamster ovary (CHO) cells stably expressing both FLAG-mouse DOPR (FLAG-DOPR) and HA-D1R were used as the cell models. Receptor binding, [(35)S]GTPγS binding, receptor phosphorylation and western blot were conducted to examine DOPR affinity, expression, internalization, downregulation, desensitization, phosphorylation and phosphorylated ERK1/2. KEY FINDINGS Pretreatment with either the DOPR agonist DPDPE or the D1R agonist SKF-82958 for 30min attenuated DPDPE-stimulated [(35)S]GTPγS binding to G proteins, demonstrating homologous and heterologous desensitization of the DOPR, respectively. SKF-82958 pretreatment did not affect the level of DOPR or affinity of DOPR antagonist or agonists, nor did it induce phosphorylation, internalization or down-regulation of the DOPR in the CHO-FLAG-DOPR/HA-D1R cells. Pretreatment of cells with inhibitors of PKA, MEK1 and PI3K, but not PKC, attenuated SKF-82958-induced desensitization of the DOPR. The D1R agonist SKF-82958 enhanced phosphorylation of ERK1/2, and pretreatment with inhibitors of MEK1 and PI3K, but not PKA and PKC, reduced the effect. These results indicate that activation of ERK1/2 and/or PKA, but not PKC, is involved in D1 receptor-induced heterologous desensitization of the DOPR. SIGNIFICANCE This study provides possible mechanisms underlying D1R activation-induced DOPR desensitization.
Collapse
|
13
|
Hwang CK, Wagley Y, Law PY, Wei LN, Loh HH. MicroRNAs in opioid pharmacology. J Neuroimmune Pharmacol 2012; 7:808-19. [PMID: 22068836 PMCID: PMC3295898 DOI: 10.1007/s11481-011-9323-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/24/2011] [Indexed: 01/20/2023]
Abstract
MicroRNAs (miRNA), a class of ~22-nucleotide RNA molecules, are important gene regulators that bind to the target sites of mRNAs to inhibit the gene expressions either through translational inhibition or mRNA destabilization. There are growing evidences that miRNAs have played several regulatory roles in opioid pharmacology. Like other research fields such as cancer biology, the area where numerous miRNAs are found to be involved in gene regulation, we assume that in opioid studies including research fields of drug additions and opioid receptor regulation, there may be more miRNAs waiting to be discovered. This review will summarize our current knowledge of miRNA functions on opioids biology and briefly describe future research directions of miRNAs related to opioids.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
14
|
Yoo JH, Kitchen I, Bailey A. The endogenous opioid system in cocaine addiction: what lessons have opioid peptide and receptor knockout mice taught us? Br J Pharmacol 2012; 166:1993-2014. [PMID: 22428846 DOI: 10.1111/j.1476-5381.2012.01952.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cocaine addiction has become a major concern in the UK as Britain tops the European 'league table' for cocaine abuse. Despite its devastating health and socio-economic consequences, no effective pharmacotherapy for treating cocaine addiction is available. Identifying neurochemical changes induced by repeated drug exposure is critical not only for understanding the transition from recreational drug use towards compulsive drug abuse but also for the development of novel targets for the treatment of the disease and especially for relapse prevention. This article focuses on the effects of chronic cocaine exposure and withdrawal on each of the endogenous opioid peptides and receptors in rodent models. In addition, we review the studies that utilized opioid peptide or receptor knockout mice in order to identify and/or clarify the role of different components of the opioid system in cocaine-addictive behaviours and in cocaine-induced alterations of brain neurochemistry. The review of these studies indicates a region-specific activation of the µ-opioid receptor system following chronic cocaine exposure, which may contribute towards the rewarding effect of the drug and possibly towards cocaine craving during withdrawal followed by relapse. Cocaine also causes a region-specific activation of the κ-opioid receptor/dynorphin system, which may antagonize the rewarding effect of the drug, and at the same time, contribute to the stress-inducing properties of the drug and the triggering of relapse. These conclusions have important implications for the development of effective pharmacotherapy for the treatment of cocaine addiction and the prevention of relapse.
Collapse
Affiliation(s)
- Ji Hoon Yoo
- Division of Biochemistry, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | | |
Collapse
|
15
|
Kreek MJ, Levran O, Reed B, Schlussman SD, Zhou Y, Butelman ER. Opiate addiction and cocaine addiction: underlying molecular neurobiology and genetics. J Clin Invest 2012; 122:3387-93. [PMID: 23023708 DOI: 10.1172/jci60390] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Addictive diseases, including addiction to heroin, prescription opioids, or cocaine, pose massive personal and public health costs. Addictions are chronic relapsing diseases of the brain caused by drug-induced direct effects and persisting neuroadaptations at the epigenetic, mRNA, neuropeptide, neurotransmitter, or protein levels. These neuroadaptations, which can be specific to drug type, and their resultant behaviors are modified by various internal and external environmental factors, including stress responsivity, addict mindset, and social setting. Specific gene variants, including variants encoding pharmacological target proteins or genes mediating neuroadaptations, also modify vulnerability at particular stages of addiction. Greater understanding of these interacting factors through laboratory-based and translational studies have the potential to optimize early interventions for the therapy of chronic addictive diseases and to reduce the burden of relapse. Here, we review the molecular neurobiology and genetics of opiate addiction, including heroin and prescription opioids, and cocaine addiction.
Collapse
Affiliation(s)
- Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York 10065, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Smelson D, Yu L, Buyske S, Gonzalez G, Tischfield J, Deutsch CK, Ziedonis D. Genetic association of GABA-A receptor alpha-2 and mu opioid receptor with cocaine cue-reactivity: evidence for inhibitory synaptic neurotransmission involvement in cocaine dependence. Am J Addict 2012; 21:411-5. [PMID: 22882391 PMCID: PMC3425941 DOI: 10.1111/j.1521-0391.2012.00253.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND This pilot feasibility study examined the role of genetics in laboratory-induced cocaine craving. METHODS Thirty-four African American, cocaine-depend- ent male subjects underwent a baseline assessment, cue-exposure session, and genetic analysis. Subjects were classified as either cue-reactive or nonreactive. RESULTS Among single nucleotide polymorphism markers in 13 candidate genes examined for association with cocaine cue-reactivity, two were statistically significant: GABRA2 (coding for GABA-A receptor alpha-2 subunit; rs11503014, nominal p= .001) and OPRM1 (coding for mu opioid receptor; rs2236256, nominal p= .03). CONCLUSIONS These pilot results suggest that cocaine craving shows variability among cocaine-dependent subjects, and that GABRA2 and OPRM1 polymorphisms have differential influences on cocaine cue-reactivity, warranting studies in future research.
Collapse
Affiliation(s)
- David Smelson
- Center for Health, Quality, Outcomes & Economic Research, Edith Norse Rogers VA Medical Center, Bedford, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
The comorbidity of insomnia, chronic pain, and depression: dopamine as a putative mechanism. Sleep Med Rev 2012; 17:173-83. [PMID: 22748562 DOI: 10.1016/j.smrv.2012.03.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 02/04/2023]
Abstract
Epidemiological, cross-sectional, and prospective studies suggest that insomnia, chronic pain, and depression frequently co-occur and are mutually interacting conditions. However, the mechanisms underlying these comorbid disorders have yet to be elucidated. Overlapping mechanisms in the central nervous system suggest a common neurobiological substrate(s) may underlie the development and interplay of these disorders. We propose that the mesolimbic dopamine system is an underappreciated and attractive venue for the examination of neurobiological processes involved in the interactions, development, exacerbation, and maintenance of this symptom complex. In the present article, studies from multiple disciplines are reviewed to highlight the role of altered dopaminergic function in the promotion of arousal, pain sensitivity, and mood disturbance. We argue that studies aiming to elucidate common factors accounting for the comorbidity of insomnia, chronic pain, and depression should evaluate functioning within the mesolimbic dopaminergic system and its effect on common processes known to be dysregulated in all three disorders.
Collapse
|
18
|
Butelman ER, Yuferov V, Kreek MJ. κ-opioid receptor/dynorphin system: genetic and pharmacotherapeutic implications for addiction. Trends Neurosci 2012; 35:587-96. [PMID: 22709632 DOI: 10.1016/j.tins.2012.05.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/27/2012] [Accepted: 05/17/2012] [Indexed: 11/17/2022]
Abstract
Addictions to cocaine or heroin/prescription opioids [short-acting μ-opioid receptor (MOPr) agonists] involve relapsing cycles, with experimentation/escalating use, withdrawal/abstinence, and relapse/re-escalation. κ-Opioid receptors (KOPr; encoded by OPRK1), and their endogenous agonists, the dynorphins (encoded by PDYN), have counter-modulatory effects on reward caused by cocaine or MOPr agonist exposure, and exhibit plasticity in addictive-like states. KOPr/dynorphin activation is implicated in depression/anxiety, often comorbid with addictions. In this opinion article we propose that particular stages of the addiction cycle are differentially affected by KOPr/dynorphin systems. Vulnerability and resilience can be due to pre-existing (e.g., genetic) factors, or epigenetic modifications of the OPRK1 or PDYN genes during the addiction cycle. Pharmacotherapeutic approaches limiting changes in KOPr/dynorphin tone, especially with KOPr partial agonists, may hold potential for the treatment of specific drug addictions and psychiatric comorbidity.
Collapse
MESH Headings
- Adaptation, Biological/genetics
- Adaptation, Biological/physiology
- Animals
- Behavior, Addictive/drug therapy
- Behavior, Addictive/genetics
- Behavior, Addictive/physiopathology
- Disease Models, Animal
- Drug Discovery/methods
- Dynorphins/physiology
- Enkephalins/genetics
- Genetic Predisposition to Disease/genetics
- Humans
- Illicit Drugs/pharmacology
- Narcotic Antagonists/pharmacology
- Narcotic Antagonists/therapeutic use
- Polymorphism, Genetic
- Protein Precursors/genetics
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/physiology
- Recurrence
Collapse
Affiliation(s)
- Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
19
|
Trigo JM, Martin-García E, Berrendero F, Robledo P, Maldonado R. The endogenous opioid system: a common substrate in drug addiction. Drug Alcohol Depend 2010; 108:183-94. [PMID: 19945803 DOI: 10.1016/j.drugalcdep.2009.10.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/30/2009] [Accepted: 10/28/2009] [Indexed: 12/17/2022]
Abstract
Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.
Collapse
Affiliation(s)
- José Manuel Trigo
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | | | | | | | | |
Collapse
|
20
|
Abstract
Methadone maintenance treatment (MMT) is the most widely available pharmacotherapy for opioid addiction and has been shown to be an effective and safe treatment over a period of 40 years. Although women comprise approximately 40% of clients currently being treated in MMT programs, comparatively little research geared specifically toward this group has been published. This article begins with an overview of neurobiological studies on opioid addiction, including a discussion of gender differences, followed by a review of the pharmacology of methadone. The authors then examine the particular needs and differences of women being treated in MMTs, including co-dependence with other substances, women's health issues, and psychosocial needs unique to this population. Research shows that women have different substance abuse treatment needs in comparison to their male counterparts. One New York City MMT program that has attempted to address these differences is highlighted.
Collapse
Affiliation(s)
- Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
21
|
Schroeder JA, McCafferty MR, Unterwald EM. Regulation of dynamin 2 and G protein-coupled receptor kinase 2 in rat nucleus accumbens during acute and repeated cocaine administration. Synapse 2009; 63:863-70. [PMID: 19562697 DOI: 10.1002/syn.20669] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exposure to cocaine causes many neuroadaptations including alterations in several neurotransmitter receptors and transporters. This study investigated potential mechanisms of cocaine-induced receptor and transporter regulation by measuring levels of two proteins involved in receptor and transporter trafficking, dynamin 2 and G protein-coupled receptor kinase 2 (GRK2). Male Fischer rats received three daily injections of cocaine, 15 mg/kg, in a binge-pattern (at 1 h intervals) for 1, 3, or 14 days. Brain regions of interest were collected 30 min after the last injection and proteins measured by Western blot. Acute binge-pattern cocaine administration produced a significant increase in both dynamin 2- and GRK2-immunoreactivity (227% and 358% of control) in the nucleus accumbens and GKR2 (150% of control) in the caudate putamen. Tolerance to this effect occurred, as levels of both proteins returned to baseline after 3 days of cocaine. In contrast, dynamin 2 and GRK2 were significantly decreased in the nucleus accumbens after chronic cocaine. This pattern of regulation was unique to the nucleus accumbens and not seen in the frontal cortex or substantia nigra. Pretreatment with either the dopamine (DA) D1 receptor antagonist SCH 23390 or D2 receptor antagonist eticlopride prior to acute cocaine blocked the upregulation of dynamin 2 and GRK2 in the nucleus accumbens. However, only eticlopride was effective in attenuating the decrease in these proteins following chronic cocaine exposure. These results demonstrate that two proteins involved in receptor and transporter trafficking are selectively regulated in the nucleus accumbens following acute versus chronic cocaine exposure, and dopamine receptor activation is required for this regulation.
Collapse
Affiliation(s)
- Joseph A Schroeder
- Department of Pharmacology and the Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | |
Collapse
|
22
|
Love TM, Stohler CS, Zubieta JK. Positron emission tomography measures of endogenous opioid neurotransmission and impulsiveness traits in humans. ACTA ACUST UNITED AC 2009; 66:1124-34. [PMID: 19805703 DOI: 10.1001/archgenpsychiatry.2009.134] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT The endogenous opioid system and opioid mu receptors (mu-receptors) are known to interface environmental events, positive (eg, relevant emotional stimuli) and negative (eg, stressors), with pertinent behavioral responses and to regulate motivated behavior. OBJECTIVE To examine the degree to which trait impulsiveness (the tendency to act on cravings and urges rather than to delay gratification) is predicted by baseline mu-receptor availability or the response of this system to a standardized, experientially matched stressor. DESIGN, SETTING, AND PATIENTS Nineteen young healthy male volunteers completed a personality questionnaire (NEO Personality Inventory, Revised) and underwent positron emission tomography scans with the mu-receptor-selective radiotracer carfentanil labeled with carbon 11. Measures of receptor concentrations were obtained at rest and during receipt of an experimentally maintained pain stressor of matched intensity between subjects. MAIN OUTCOME MEASURES Baseline receptor levels and stress-induced activation of mu-opioid system neurotransmission compared between subjects scoring above and below the population median on the NEO Personality Inventory, Revised, impulsiveness subscale and the orthogonal dimension (deliberation) expected to interact with it. RESULTS High impulsiveness and low deliberation scores were associated with significantly higher regional mu-receptor concentrations and greater stress-induced endogenous opioid system activation. Effects were obtained in the prefrontal and orbitofrontal cortices, anterior cingulate, thalamus, nucleus accumbens, and basolateral amygdala-all regions involved in motivated behavior and the effects of drugs of abuse. Availability of the mu-receptor and the magnitude of stress-induced endogenous opioid activation in these regions accounted for 17% to 49% of the variance in these personality traits. CONCLUSIONS Individual differences in the function of the endogenous mu-receptor system predict personality traits that confer vulnerability to or resiliency against risky behaviors such as the predisposition to develop substance use disorders. These personality traits are also implicated in psychopathological states (eg, personality disorders) in which variations in the function of this neurotransmitter system also may play a role.
Collapse
Affiliation(s)
- Tiffany M Love
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI 48109-0720, USA
| | | | | |
Collapse
|
23
|
Abstract
Earlier studies suggest that opioid receptors in the ventral tegmental area, but not the nucleus accumbens (NAc), play a role in relapse to drug-seeking behavior. However, environmental stimuli that elicit relapse also release the endogenous opioid beta-endorphin in the NAc. Using a within-session extinction/reinstatement paradigm in rats that self-administer cocaine, we found that NAc infusions of the mu-opioid receptor (MOR) agonist DAMGO moderately reinstated responding on the cocaine-paired lever at low doses (1.0-3.0 ng/side), whereas the delta-opioid receptor (DOR) agonist DPDPE induced greater responding at higher doses (300-3000 ng/side) that also enhanced inactive lever responding. Using doses of either agonist that induced responding on only the cocaine-paired lever, we found that DAMGO-induced responding was blocked selectively by pretreatment with the MOR antagonist, CTAP, whereas DPDPE-induced responding was selectively blocked by the DOR antagonist, naltrindole. Cocaine-primed reinstatement was blocked by intra-NAc CTAP but not naltrindole, indicating a role for endogenous MOR-acting peptides in cocaine-induced reinstatement of cocaine-seeking behavior. In this regard, intra-NAc infusions of beta-endorphin (100-1000 ng/side) induced marked cocaine-seeking behavior, an effect blocked by intra-NAc pretreatment with the MOR but not DOR antagonist. Conversely, cocaine seeking elicited by the enkephalinase inhibitor thiorphan (1-10 microg/side) was blocked by naltrindole but not CTAP. MOR stimulation in more dorsal caudate-putamen sites was ineffective, whereas DPDPE infusions induced cocaine seeking. Together, these findings establish distinct roles for MOR and DOR in cocaine relapse and suggest that NAc MOR could be an important therapeutic target to neutralize the effects of endogenous beta-endorphin release on cocaine relapse.
Collapse
|
24
|
Halladay LR, Iñiguez SD, Furqan F, Previte MC, Chisum AM, Crawford CA. Methylphenidate potentiates morphine-induced antinociception, hyperthermia, and locomotor activity in young adult rats. Pharmacol Biochem Behav 2008; 92:190-6. [PMID: 19100281 DOI: 10.1016/j.pbb.2008.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 11/09/2008] [Accepted: 11/24/2008] [Indexed: 02/09/2023]
Abstract
The goal of this study was to determine if the exaggerated morphine-induced conditioned place preference (CPP) response seen in adult rats after preweanling methylphenidate exposure is unique to reward-mediated behaviors or is indicative of generalized changes in opioid-mediated behaviors. Rats were exposed to saline or methylphenidate (2.0 or 5.0 mg/kg) for 10 consecutive days starting on postnatal (PD) 11 with testing beginning on PD 60. In Experiment 1, morphine-induced (0, 2.5, 5.0 or 10.0 mg/kg) antinociception was assessed using the tail immersion and hot plate tasks. In Experiment 2, morphine-induced (0, 2.5, 5.0, or 10.0 mg/kg) hyperthermia and locomotor activity were measured. Morphine caused an increase in antinociception, with early methylphenidate (5.0 mg/kg) exposure potentiating the effects of 5.0 mg/kg morphine. Rectal temperatures were elevated after morphine, with the greatest increase occurring in male rats. Methylphenidate potentiated the hyperthermic effects of morphine (10.0 mg/kg) but only in males. Moderate doses (2.5 and 5.0 mg/kg) of morphine increased the locomotor activity of adult rats, while a higher dose (10.0 mg/kg) decreased locomotion. Interestingly, methylphenidate-pretreated females showed increased locomotor activity relative to controls. These results suggest that early methylphenidate exposure induces general changes in opioid system functioning that are not specific to reward-mediated behaviors.
Collapse
Affiliation(s)
- Lindsay R Halladay
- Department of Psychology, California State University, San Bernardino, CA 92407, USA
| | | | | | | | | | | |
Collapse
|
25
|
Brain mu-opioid receptor binding: relationship to relapse to cocaine use after monitored abstinence. Psychopharmacology (Berl) 2008; 200:475-86. [PMID: 18762918 PMCID: PMC2575005 DOI: 10.1007/s00213-008-1225-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 06/02/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Cocaine users have increased regional brain mu-opioid receptor (mOR) binding which correlates with cocaine craving. The relationship of mOR binding to relapse is unknown. OBJECTIVE To evaluate regional brain mOR binding as a predictor of relapse to cocaine use is the objective of the study. MATERIALS AND METHODS Fifteen nontreatment-seeking, adult cocaine users were housed on a closed research ward for 12 weeks of monitored abstinence and then followed for up to 1 year after discharge. Regional brain mOR binding was measured after 1 and 12 weeks using positron emission tomography (PET) with [11C]carfentanil (a selective mOR agonist). Time to first cocaine use (lapse) and to first two consecutive days of cocaine use (relapse) after discharge was based on self-report and urine toxicology. RESULTS A shorter interval before relapse was associated with increased mOR binding in frontal and temporal cortical regions at 1 and 12 weeks of abstinence (Ps < 0.001) and with a lesser decrease in binding between 1 and 12 weeks (Ps < 0.0008). There were significant positive correlations between mOR binding at 12 weeks and percent days of cocaine use during first month after relapse (Ps < 0.002). In multiple linear regression analysis, mOR binding contributed significantly to the prediction of time to relapse (R2= 0.79, P < 0.001), even after accounting for clinical variables. CONCLUSIONS Increased brain mOR binding in frontal and temporal cortical regions is a significant independent predictor of time to relapse to cocaine use, suggesting an important role for the brain endogenous opioid system in cocaine addiction.
Collapse
|
26
|
Shippenberg TS, LeFevour A, Chefer VI. Targeting endogenous mu- and delta-opioid receptor systems for the treatment of drug addiction. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:442-53. [PMID: 19128202 PMCID: PMC3730841 DOI: 10.2174/187152708786927813] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drug addiction is a chronic, relapsing disorder that is characterized by a compulsion to take drug regardless of the adverse consequences that may ensue. Although the involvement of mesoaccumbal dopamine neurons in the initiation of drug abuse is well-established, neuroadaptations within the limbic cortical- striatopallidal circuit that occur as a consequence of repeated drug use are thought to lead to the behavioral dysregulation that characterizes addiction. Opioid receptors and their endogenous ligands are enriched in brain regions comprising this system and are, thus, strategically located to modulate neurotransmission therein. This article will review data suggesting an important role of mu-opioid receptor (MOPr) and delta opioid receptor (DOPr) systems in mediating the rewarding effects of several classes of abused drugs and that aberrant activity of these opioid systems may not only contribute to the behavioral dysregulation that characterizes addiction but to individual differences in addiction vulnerability.
Collapse
Affiliation(s)
- T S Shippenberg
- Integrative Neuroscience Section, NIH/ NIDA Intramural Research Program, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
27
|
Hwang CK, Song KY, Kim CS, Choi HS, Guo XH, Law PY, Wei LN, Loh HH. Epigenetic programming of mu-opioid receptor gene in mouse brain is regulated by MeCP2 and Brg1 chromatin remodelling factor. J Cell Mol Med 2008; 13:3591-615. [PMID: 19602036 PMCID: PMC4516510 DOI: 10.1111/j.1582-4934.2008.00535.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pharmacological action of morphine as a pain medication is mediated primarily through the μ-opioid receptor (MOR). With few exceptions, MOR is expressed in brain regions where opioid actions take place. The basis for this unique spatial expression of MOR remains undetermined. Recently, we reported that DNA methylation of the MOR promoter plays an important role in regulating MOR in P19 cells. In this study, we show that the differential expression of MOR in microdissected mouse brain regions coincides with DNA methylation and histone modifications. MOR expression could be induced by a demethylating agent or a histone deacetylase inhibitor in MOR-negative cells, suggesting that the MOR gene can be silenced under epigenetic control. Increases in the in vivo interaction of methyl-CpG-binding protein 2 (MeCP2) were observed in the cerebellum, in which the MOR promoter was hypermethylated and MOR expression was the lowest among all brain regions tested. MeCP2 is associated closely with Rett syndrome, a neurodevelopmental disorder. We also established novel evidence for a functional role for MeCP2’s association with the chromatin-remodelling factor Brg1 and DNA methyltransferase Dnmt1, suggesting a possible role for MeCP2 in chromatin remodelling during MOR gene regulation. We conclude that MOR gene expression is epigenetically programmed in various brain regions and that MeCP2 assists the epigenetic program during DNA methylation and chromatin remodelling of the MOR promoter.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Perrine SA, Miller JS, Unterwald EM. Cocaine regulates protein kinase B and glycogen synthase kinase-3 activity in selective regions of rat brain. J Neurochem 2008; 107:570-7. [PMID: 18717814 DOI: 10.1111/j.1471-4159.2008.05632.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein kinase B (also known as Akt) signaling regulates dopamine-mediated locomotor behaviors. Here the ability of cocaine to regulate Akt and glycogen synthase kinase 3 (GSK3) was studied. Rats were injected with cocaine or saline in a binge-pattern, which consisted of three daily injections of 15 mg/kg cocaine or 1 mL/kg saline spaced 1 h apart for 1, 3, or 14 days. Amygdala, nucleus accumbens, caudate putamen, and hippocampus tissues were dissected 30 min following the last injection and analyzed for phosphorylated and total Akt and GSK3(alpha and beta) protein levels using western blot analysis. Phosphorylation of Akt on the threonine-308 (Thr308) residue was significantly reduced in the nucleus accumbens and increased in the amygdala after 1 day of cocaine treatment; however, these effects were not accompanied by a significant decrease in GSK3 phosphorylation. Phosphorylation of Akt and GSK3 was significantly reduced after 14 days of cocaine administration, an effect that was only observed in the amygdala. Cocaine did not alter Akt or GSK3 phosphorylation in the caudate putamen or hippocampus. The findings in nucleus accumbens may reflect dopaminergic motor-stimulant activity caused by acute cocaine, whereas the effects in amygdala may be associated with changes in emotional state that occur after acute and chronic cocaine exposure.
Collapse
Affiliation(s)
- Shane A Perrine
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
29
|
Kreek MJ, Schlussman SD, Reed B, Zhang Y, Nielsen DA, Levran O, Zhou Y, Butelman ER. Bidirectional translational research: Progress in understanding addictive diseases. Neuropharmacology 2008; 56 Suppl 1:32-43. [PMID: 18725235 DOI: 10.1016/j.neuropharm.2008.07.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022]
Abstract
The focus of this review is primarily on recent developments in bidirectional translational research on the addictions, within the Laboratory of the Biology of Addictive Diseases at The Rockefeller University. This review is subdivided into major interacting aspects, including (a) Investigation of neurobiological and molecular adaptations (e.g., in genes for the opioid receptors or endogenous neuropeptides) in response to cocaine or opiates, administered under laboratory conditions modeling chronic patterns of human self-exposure (e.g., chronic escalating "binge"). (b) The impact of such drug exposure on the hypothalamic-pituitary-adrenal (HPA) axis and interacting neuropeptidergic systems (e.g., opioid, orexin and vasopressin). (c) Molecular genetic association studies using candidate gene and whole genome approaches, to define particular systems involved in vulnerability to develop specific addictions, and response to pharmacotherapy. (d) Neuroendocrine challenge studies in normal volunteers and current addictive disease patients along with former addicts in treatment, to investigate differential pharmacodynamics and responsiveness of molecular targets, in particular those also investigated in the experimental and molecular genetic approaches as described above.
Collapse
Affiliation(s)
- M J Kreek
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Regionally selective changes in neurotransmitter receptors in the brain of the 5-HT1B knockout mouse. J Chem Neuroanat 2008; 35:356-63. [DOI: 10.1016/j.jchemneu.2008.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 11/18/2022]
|
31
|
Puig-Ramos A, Santiago GS, Segarra AC. U-69593, a kappa opioid receptor agonist, decreases cocaine-induced behavioral sensitization in female rats. Behav Neurosci 2008; 122:151-60. [PMID: 18298258 DOI: 10.1037/0735-7044.122.1.151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study was designed to investigate if the kappa opioid system regulates the locomotor response to cocaine in the female rat and to determine if the effect is dependent on estradiol treatment. Adult rats were ovariectomized (OVX) and half received an estradiol (OVX-EB) implant. After a week, rats were injected for 5 consecutive days with vehicle or with the kappa opioid receptor (KOPr) agonist U-69593 (0.16, 0.32, and 0.64 mg/kg) 15 min prior to cocaine injection (15 mg/kg). Following a 7-day drug-free period, rats were challenged with cocaine (Day 13). The locomotor response to cocaine was measured on Days 1, 5, and 13. U-69593 (0.32 mg/kg) decreased cocaine-induced locomotor activity in drug-naïve OVX rats and in those that received the OVX-EB implant. These results indicate that the acute effects of U-69593 are independent of estradiol treatment. Repeated exposure to U-69593 (0.32 mg/kg) prior to cocaine decreased the development of behavioral sensitization in OVX-EB-implanted rats. This decrease in cocaine-induced hyperlocomotion persisted after 1 week of cocaine withdrawal. These data indicate that the KOPr system participates in estradiol modulation of cocaine-induced behavioral sensitization in the female rat.
Collapse
Affiliation(s)
- Anabel Puig-Ramos
- Department of Physiology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| | | | | |
Collapse
|
32
|
Abstract
The articulated goals of Dialogues in Clinical Neuroscience are to serve as "an interface between clinical neuropsychiatry and the neurosciences by providing state-of-the-art information and original insights into relevant clinical, biological, and therapeutic aspects." My laboratory the Laboratory of the Biology of Addictive Diseases at The Rockefeller University, has for years been focused on "bidirectional translational research," that is, learning by careful observations and study in patient populations with the disorders under study, in this case primarily specific addictive diseases, and then using that knowledge to create improved animal models or other laboratory-based research paradigms, while, at the same time, taking research findings made at the bench into the clinic as promptly as that is appropriate and feasible. In this invited review, therefore, the focus will be on perspectives of our Laboratory of the Biology of Addictive Diseases and related National Institutes of Health/National Institute on Drug Abuse research Center, including laboratory-based molecular neurobiological research, research using several animal models designed to mimic human patterns of drug abuse and addiction, as well as basic clinical research, intertwined with treatment-related research.
Collapse
Affiliation(s)
- Mary Jeanne Kreek
- Laboratory of Biology of Addictive Diseases, Rockefeller University, New York, NY 10021, USA.
| |
Collapse
|
33
|
Leri F, Sorge RE, Cummins E, Woehrling D, Pfaus JG, Stewart J. High-dose methadone maintenance in rats: effects on cocaine self-administration and behavioral side effects. Neuropsychopharmacology 2007; 32:2290-300. [PMID: 17314916 DOI: 10.1038/sj.npp.1301357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been demonstrated that high-dose methadone maintenance is efficacious in reducing cocaine abuse in opioid-dependent individuals, but it is not clear whether this is caused by an action of methadone on the direct reinforcing properties of cocaine or on cocaine seeking. Also, it is not clear whether high-dose methadone maintenance may induce behavioral side effects, which could limit its clinical use. Here, we report that high-dose methadone maintenance (20-40 mg/kg/day) does not reduce, and even enhances cocaine (10-30 mg/kg, i.p.)-induced elevation in dopamine concentration in the ventral striatum measured by in vivo microdialysis. In parallel, however, rats maintained on high-dose methadone (30 mg/kg/day) seek and consume significantly less cocaine than controls when tested for intravenous cocaine (0.5 mg/kg/infusion) self-administration on a progressive ratio schedule of reinforcement. This reduction in cocaine self-administration does not result from impaired sensory-motor functioning as rats maintained on high-dose methadone show normal locomotor activity. Furthermore, the reduction in responding for cocaine does not seem to result from general behavioral deficits as male rats maintained on high methadone doses respond normally to palatable food and thermal pain, although their sexual responses to receptive females are greatly suppressed. Taken together, these results from studies in rats support the usefulness of larger doses of methadone to reduce severe cocaine abuse in opioid-dependent individuals and possibly in the management of pure-cocaine addiction.
Collapse
Affiliation(s)
- Francesco Leri
- Department of Psychology, University of Guelph, Guelph, ON, Canada NIG 2WI.
| | | | | | | | | | | |
Collapse
|
34
|
Bailey A, Yoo JH, Racz I, Zimmer A, Kitchen I. Preprodynorphin mediates locomotion and D2 dopamine and mu-opioid receptor changes induced by chronic 'binge' cocaine administration. J Neurochem 2007; 102:1817-1830. [PMID: 17532787 DOI: 10.1111/j.1471-4159.2007.04661.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Evidence suggests that the kappa-opioid receptor (KOP-r) system plays an important role in cocaine addiction. Indeed, cocaine induces endogenous KOP activity, which is a mechanism that opposes alterations in behaviour and brain function resulting from repeated cocaine use. In this study, we have examined the influence of deletion of preprodynorphin (ppDYN) on cocaine-induced behavioural effects and on hypothalamic-pituitary-adrenal axis activity. Furthermore, we have measured mu-opioid receptor (MOP-r) agonist-stimulated [(35)S]GTPgammaS, dopamine D(1), D(2) receptor and dopamine transporter (DAT) binding. Male wild-type (WT) and ppDYN knockout (KO) mice were injected with saline or cocaine (45 mg/kg/day) in a 'binge' administration paradigm for 14 days. Chronic cocaine produced an enhancement of locomotor sensitisation in KO. No genotype effect was found on stereotypy behaviour. Cocaine-enhanced MOP-r activation in WT but not in KO. There was an overall decrease in D(2) receptor binding in cocaine-treated KO but not in WT mice. No changes were observed in D(1) and DAT binding. Cocaine increased plasma corticosterone levels in WT but not in KO. The data confirms that the endogenous KOP system inhibits dopamine neurotransmission and that ppDYN may mediate the enhancement of MOP-r activity and the activation of the hypothalamic-pituitary-adrenal axis after chronic cocaine treatment.
Collapse
MESH Headings
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Cocaine/adverse effects
- Cocaine-Related Disorders/genetics
- Cocaine-Related Disorders/metabolism
- Cocaine-Related Disorders/physiopathology
- Corticosterone/metabolism
- Dopamine Plasma Membrane Transport Proteins/drug effects
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Dopamine Uptake Inhibitors/adverse effects
- Drug Administration Schedule
- Dynorphins/genetics
- Dynorphins/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamo-Hypophyseal System/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Motor Activity/physiology
- Pituitary-Adrenal System/drug effects
- Pituitary-Adrenal System/physiology
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- A Bailey
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, UKDepartment of Molecular Psychiatry, Life & Brain Center, University of Bonn, Bonn, Germany
| | - J H Yoo
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, UKDepartment of Molecular Psychiatry, Life & Brain Center, University of Bonn, Bonn, Germany
| | - I Racz
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, UKDepartment of Molecular Psychiatry, Life & Brain Center, University of Bonn, Bonn, Germany
| | - A Zimmer
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, UKDepartment of Molecular Psychiatry, Life & Brain Center, University of Bonn, Bonn, Germany
| | - I Kitchen
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, UKDepartment of Molecular Psychiatry, Life & Brain Center, University of Bonn, Bonn, Germany
| |
Collapse
|
35
|
Romualdi P, Di Benedetto M, D'Addario C, Collins SL, Wade D, Candeletti S, Izenwasser S. Chronic cocaine produces decreases in N/OFQ peptide levels in select rat brain regions. J Mol Neurosci 2007; 31:159-64. [PMID: 17478889 DOI: 10.1385/jmn/31:02:159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/30/2006] [Accepted: 08/30/2006] [Indexed: 11/11/2022]
Abstract
The interaction of opioids and stimulants is well established; however, the mechanisms that underlie the role that opioid receptors play in psychostimulant action are not. Nociceptin/orphaninFQ (N/OFQ), the endogenous agonist at NOP receptors, attenuates the behavioral effects of cocaine. The effects of cocaine on N/OFQ were examined in rats using immunoautoradiographic and RIA techniques. Chronic administration of cocaine decreased N/OFQ in medial regions of the caudate putamen, the nucleus accumbens shell, and the substantia nigra. These studies show that N/OFQ levels are altered by treatment with cocaine. Furthermore, the changes in N/OFQ parallel those seen for kappa-opioid receptors, suggesting that the interactions between cocaine and these systems might be similar.
Collapse
Affiliation(s)
- Patrizia Romualdi
- Department of Pharmacology, University of Bologna, 40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Bailey A, Gianotti R, Ho A, Kreek MJ. Downregulation of κ-opioid receptors in basolateral amygdala and septum of rats withdrawn for 14 days from an escalating dose “binge” cocaine administration paradigm. Synapse 2007; 61:820-6. [PMID: 17621646 DOI: 10.1002/syn.20436] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is evidence showing that the opioid systems play an important role in cocaine addiction; fewer studies have examined their roles in cocaine withdrawal. This study was conducted to determine whether cocaine or chronic withdrawal from cocaine alters the receptor component of the kappa-opioid system. Male Fischer rats were injected with saline or cocaine (3x15 mg/kg/day for 4 days, 3x20 mg/kg/day for 4 days, 3x25 mg/kg/day for 4 days, and 3x30 mg/kg/day for 2 days), three times daily at 1-h intervals in an escalating dose paradigm for 14 days. Identically treated rats were withdrawn from cocaine or saline for 14 days. We performed quantitative autoradiographic mapping of kappa-opioid receptors (KOP-r) in the brains of rats treated with this escalating dose "binge" cocaine administration paradigm and of rats withdrawn from cocaine for 14 days. A significant condition (chronic/withdrawal) effect was shown across all regions analyzed. A significant increase in [3H]CI-977 binding to KOP-r was detected in the septum of rats treated with an escalating dose binge cocaine administration paradigm and killed 30 min after the last cocaine injection. In contrast, there was a decrease in KOP-r binding in the septum and the basolateral amygdala of rats withdrawn for 14 days from chronic escalating dose binge cocaine administration, compared to rats at the end of 14 days chronic escalating dose cocaine administration. These results reconfirm and extend that KOP-r undergoes upregulation in response to chronic binge cocaine administration here, with an escalating dose. The observed lowering in KOP-r binding, which was shown in two brain regions of cocaine withdrawn animals, might contribute to the persistent dysphoria reported a long time after the discontinuation of the drug.
Collapse
Affiliation(s)
- Alexis Bailey
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
37
|
Peles E, Kreek MJ, Kellogg S, Adelson M. High methadone dose significantly reduces cocaine use in methadone maintenance treatment (MMT) patients. J Addict Dis 2006; 25:43-50. [PMID: 16597572 DOI: 10.1300/j069v25n01_07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To evaluate whether effective methadone treatment affects cocaine use. METHODS 421 consecutive patients admitted to a methadone maintenance clinic in Israel (1993-2002) were prospectively studied. Patients' urine samples were analyzed for cocaine during months 1 and 13. RESULTS On admission 55(13.1%) of 421 patients had urine positive for cocaine and 366 had negative. Of the 55 cocaine-positive patients, 45(81.8%) stayed in treatment at least one year, as did 267(73%) of cocaine-negative. After one year (n=312) 31 of 45 cocaine users stopped and 25 of 267 started. Methadone dose was highest in 31 patients who stopped cocaine (176.1+/-42.1 mg/ day), followed by 14 who did not stop (161.4+/-37.5 mg/day), and 25 who started during treatment (122.9+/-48.7 mg/day), or 242 who never used cocaine (119.5+/-48.4 mg/day) (ANOVA, F=15.6, p<0.0005). CONCLUSIONS High methadone dose may reduce cocaine use in patients addicted to both heroin and cocaine.
Collapse
Affiliation(s)
- Einat Peles
- Dr. Miriam & Sheldon G. Adelson Clinic for Drug Abuse, Treatment & Research, Tel-Aviv Elias Sourasky Medical Center, 1 Henrietta Szold St, Tel-Aviv, 64924, Israel
| | | | | | | |
Collapse
|
38
|
Hummel M, Schroeder J, Liu-Chen LY, Cowan A, Unterwald EM. An antisense oligodeoxynucleotide to the mu opioid receptor attenuates cocaine-induced behavioral sensitization and reward in mice. Neuroscience 2006; 142:481-91. [PMID: 16893609 DOI: 10.1016/j.neuroscience.2006.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 05/22/2006] [Accepted: 06/09/2006] [Indexed: 11/24/2022]
Abstract
Numerous studies support a role for the endogenous opioid system in cocaine-influenced behavior. Few of these studies, however, selectively delineate a role for the mu opioid receptor (MOR) in this regard. This investigation examined if the MOR modulates cocaine-induced behavior in mice using a 17-base antisense oligodeoxynucleotide (AS ODN) directed against the MOR coding sequence 16-32. Specifically, cocaine-induced behavioral sensitization and conditioned reward were investigated. For the sensitization study, C57BL/6J mice received eight intermittent i.c.v. infusions of saline, mismatch oligodeoxynucleotide (ODN) (20 microg/4 microl) or AS ODN (20 microg/4 microl) over 20 days. Mice also received concomitant once daily i.p. injections of saline (4 ml/kg) or cocaine (15 mg/kg) for 10 days. There was a 7-day withdrawal period, after which all mice were challenged with cocaine (15 mg/kg) to test for behavioral sensitization. For the conditioned place preference (CPP) study, mice received five i.c.v. infusions of mismatch ODN or MOR AS ODN (days 1-5). An unbiased counterbalanced conditioning procedure was used where mice were conditioned with saline (4 ml/kg, i.p.) and cocaine (15 mg/kg, i.p.) on alternate days for four sessions (days 3-6). Mice were tested on day 7 for CPP. Immediately following testing, [3H]DAMGO (D-Ala2, N-Me-Phe4, Gly-ol5-enkephalin) receptor binding to brain homogenates was conducted. MOR AS attenuated cocaine-induced behavioral sensitization and conditioned reward. MOR AS ODN also reduced [3H]DAMGO binding. Collectively, these findings implicate the MOR as playing an important neuromodulatory role in the behavioral effects of cocaine in mice.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal
- Cocaine-Related Disorders/drug therapy
- Cocaine-Related Disorders/etiology
- Cocaine-Related Disorders/physiopathology
- Conditioning, Operant/drug effects
- Drug Administration Routes
- Drug Interactions
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacokinetics
- Male
- Mice
- Mice, Inbred C57BL
- Morphine/pharmacology
- Narcotics/pharmacology
- Oligodeoxyribonucleotides, Antisense/therapeutic use
- Protein Binding/drug effects
- Radiography/methods
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
- Reward
- Time Factors
- Tritium/pharmacokinetics
Collapse
Affiliation(s)
- M Hummel
- Department of Pharmacology and the Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | |
Collapse
|
39
|
Prenatal cocaine and morphine alter brain cyclin-dependent kinase 5 (Cdk5) activity in rat pups. Neurotoxicol Teratol 2006; 28:625-8. [PMID: 16962740 DOI: 10.1016/j.ntt.2006.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 06/22/2006] [Accepted: 06/29/2006] [Indexed: 10/24/2022]
Abstract
Pregnant rats received daily injections of saline, cocaine (20 mg/kg), morphine (2 mg/kg), or the combination of both drugs, on days 13-20 of gestation. Cyclin-dependent kinase 5 (Cdk5) activity was then measured in the resulting pups on postnatal days 1, 7, 14 and 28. Cocaine resulted in a time dependent increase in brain Cdk5 activity which peaked on day 14. Morphine, in contrast, induced a decrease in Cdk5 activity which was also maximal on day 14. Combined administration of the two drugs led to smaller increases than those seen after cocaine alone. These findings demonstrate that prenatal drug exposure can modify postnatal activity of Cdk5 in the brain and raise the possibility that alterations in Cdk5 may play a role in some of the neural and behavioral effects produced by these treatments.
Collapse
|
40
|
Leri F, Zhou Y, Goddard B, Cummins E, Kreek MJ. Effects of high-dose methadone maintenance on cocaine place conditioning, cocaine self-administration, and mu-opioid receptor mRNA expression in the rat brain. Neuropsychopharmacology 2006; 31:1462-74. [PMID: 16237390 DOI: 10.1038/sj.npp.1300927] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methadone maintenance at appropriate doses can effectively reduce cocaine abuse in heroin-dependent individuals. In the present studies, we investigated the effect of high-dose methadone maintenance cocaine conditioned place preference (CPP) and cocaine intravenous self-administration. Rats implanted with methadone-filled osmotic mini-pumps (20 and 55 mg/kg/day, SC) and conditioned with cocaine (1, 5, and 20 mg/kg, i.p.) did not express cocaine CPP. Similarly, rats implanted with methadone pumps (55 mg/kg/day) after cocaine conditioning (20 mg/kg) displayed neither spontaneous nor cocaine-precipitated (20 mg/kg, i.p.) CPP. In contrast, methadone maintenance (30 and 55 mg/kg/day, SC) did not alter the intravenous self-administration (continuous schedule of reinforcement) of various doses of cocaine (0.1, 0.5, and 2.0 mg/kg/inf). To explore neuropharmacological interactions between methadone maintenance and cocaine conditioning, we quantitatively measured mRNA levels of mu-opioid receptor (MOR) and proopiomelanocortin genes 10 days after methadone maintenance. MOR mRNA levels in both the nucleus accumbens core and frontal cortex were significantly elevated in rats exposed to cocaine during CPP conditioning. However, upregulation of MOR mRNA levels in the nucleus accumbens core were reduced by methadone maintenance in a dose-dependent manner. In conclusion, our results suggest that high-dose methadone maintenance does not alter the direct reinforcing effect of cocaine, but blocks spontaneous and cocaine-precipitated cocaine-seeking, possibly by preventing MOR alterations in the nucleus accumbens core induced by cocaine conditioning.
Collapse
Affiliation(s)
- Francesco Leri
- Department of Psychology, University of Guelph, Guelph, ON, Canada.
| | | | | | | | | |
Collapse
|
41
|
Ambrose LM, Gallagher SM, Unterwald EM, Van Bockstaele EJ. Dopamine-D1 and delta-opioid receptors co-exist in rat striatal neurons. Neurosci Lett 2006; 399:191-6. [PMID: 16517070 DOI: 10.1016/j.neulet.2006.02.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 01/24/2006] [Accepted: 02/02/2006] [Indexed: 11/22/2022]
Abstract
Cocaine's enhancement of dopaminergic neurotransmission in the mesolimbic pathway plays a critical role in the initial reinforcing properties of this drug. However, other neurotransmitter systems are also integral to the addiction process. A large body of data indicates that opioids and dopamine together mediate emotional and reinforced behaviors. In support of this, cocaine-mediated increases in activation of dopamine D1 receptors (D1R) results in a desensitization of delta-opioid receptor (DOR) signaling through adenylyl cyclase (AC) in striatal neurons. To further define cellular mechanisms underlying this effect, the subcellular distribution of DOR and D1R was examined in the rat dorsolateral striatum. Dual immunoperoxidase/gold-silver detection combined with electron microscopy was used to identify DOR and D1R immunoreactivities in the same section of tissue. Semi-quantitative analysis revealed that a subset of dendritic cellular profiles exhibited both DOR and D1R immunoreactivities. Of 198 randomly sampled D1R immunoreactive profiles, 43% contained DOR. Similarly of 165 DOR-labeled cellular profiles, 52% contained D1R. The present data provide ultrastructural evidence for co-existence between DOR and D1R in striatal neurons, suggesting a possible mechanism whereby D1R modulation may alter DOR function.
Collapse
Affiliation(s)
- L M Ambrose
- Farber Institute for Neurosciences, Department of Neurosurgery, Thomas Jefferson University, 900 Walnut Street, Suite 417, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
42
|
Bhat R, Chari G, Rao R. Effects of prenatal cocaine, morphine, or both on postnatal opioid (μ) receptor development. Life Sci 2006; 78:1478-82. [PMID: 16242731 DOI: 10.1016/j.lfs.2005.07.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 07/13/2005] [Indexed: 11/16/2022]
Abstract
We studied the effects of prenatal cocaine and morphine given separately and in combination on the (1) postnatal brain mu-opioid receptor development and (2) interaction of dopamine with mu receptors. Pregnant rats received single daily intraperitoneal (I.P.) injections of saline, cocaine (20 mg/kg), morphine (2 mg/kg), or the combination of both drugs from day 13 to day 20 of gestation. Postnatal days (P) 1, 7, 14, and 28, whole brains were analyzed for opioid receptor binding and mu mRNA. Prenatal cocaine administered by itself had no significant effect on the ontogeny of brain mu receptors on all the days studied when compared to controls. The morphine-treated group showed a significant increase in mu receptor binding on P1 and P7. Exposure to both cocaine and morphine showed a significant increase in mu receptor density on P1 and P7. In addition, there was also a significant increase in MOR mRNA in both the morphine alone and combination groups. Pretreatment with dopamine D2 receptor antagonist (sulpiride, 20 mg/kg) prior to drug administration showed decreased mu receptor binding on P1 and P7. These results suggest that prenatal exposure to morphine or a combination of cocaine and morphine significantly increases mu receptor density. By P14, mu-opioid receptor binding was no longer different than the control. This may suggest that the effect on receptor may be short-lived and that other key intracellular events may be activated to mediate the long-term effects. Also, the data show that dopaminergic mechanisms are (or opioid-dopamine interaction is) involved in the effects of morphine alone or morphine in combination with cocaine on mu receptor regulation.
Collapse
Affiliation(s)
- Rama Bhat
- Department of Pediatrics, M/C 856, University of Illinois at Chicago, 840 S. Wood St., Chicago, IL 60612, USA.
| | | | | |
Collapse
|
43
|
|
44
|
Zhou Y, Adomako-Mensah J, Yuferov V, Ho A, Zhang J, Xu M, Kreek MJ. Effects of acute “binge” cocaine on mRNA levels of μ opioid receptor and neuropeptides in dopamine D1 or D3 receptor knockout mice. Synapse 2006; 61:50-9. [PMID: 17068774 DOI: 10.1002/syn.20340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In humans, elevations of mu opioid receptor (MOP-r) binding potential (BP) in the frontal cortex (FC) are associated with cocaine craving during early abstinence. In rats, decreases in dopaminergic (DAergic) transmission in the medial FC are associated with increased cocaine-seeking behavior. DA D1 or D3 receptor homozygous knockout (D1-/- or D3-/-) mice offer the opportunity to test the roles of these specific receptors in regulating MOP-r gene expression in response to cocaine. In the present studies, we found an increase in basal MOP-r mRNA levels in the FC of both D1-/- and D3-/- mice compared to wild type controls, with no change in the nucleus accumbens (NAc) core or caudate-putamen (CPu). Acute "binge" cocaine (3 x 15 mg/kg for 2.5 h) returned FC MOP-r mRNA levels in D1-/- or D3-/- mice to those in wild type controls. In the NAc core, the MOP-r mRNA levels after acute "binge" cocaine were decreased in D1-/- mice while increased in D3-/- mice. In the CPu, however, the MOP-r mRNA levels after acute "binge" cocaine were increased in D1-/- mice while decreased in D3-/- mice. We also found a decrease in basal orexin mRNA levels in the lateral hypothalamus of the D3-/- mice, which was unaltered by acute "binge" cocaine. Together, our findings suggest that: (1) both D1 and D3 receptors are involved in FC MOP-r gene regulation; and (2) D1 and D3 receptors play opposite roles in the effects of cocaine on MOP-r gene regulation differentially in the NAc core or CPu.
Collapse
Affiliation(s)
- Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Bart G, Schluger JH, Borg L, Ho A, Bidlack JM, Kreek MJ. Nalmefene induced elevation in serum prolactin in normal human volunteers: partial kappa opioid agonist activity? Neuropsychopharmacology 2005; 30:2254-62. [PMID: 15988468 DOI: 10.1038/sj.npp.1300811] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In humans, mu- and kappa-opioid receptor agonists lower tuberoinfundibular dopamine, which tonically inhibits prolactin release. Serum prolactin is, therefore, a useful biomarker for tuberoinfundibular dopamine. The current study evaluated the unexpected finding that the relative mu- and kappa-opioid receptor selective antagonist nalmefene increases serum prolactin, indicating possible kappa-opioid receptor agonist activity. In all, 33 healthy human volunteers (14 female) with no history of psychiatric or substance use disorders received placebo, nalmefene 3 mg, and nalmefene 10 mg in a double-blind manner. Drugs were administered between 0900 and 1000 on separate days via 2-min intravenous infusion. Serial blood specimens were analyzed for serum levels of prolactin. Additional in vitro studies of nalmefene binding to cloned human kappa-opioid receptors transfected into Chinese hamster ovary cells were performed. Compared to placebo, both doses of nalmefene caused significant elevations in serum prolactin (p<0.002 for nalmefene 3 mg and p<0.0005 for nalmefene 10 mg). There was no difference in prolactin response between the 3 and 10 mg doses. Binding assays confirmed nalmefene's affinity at kappa-opioid receptors and antagonism of mu-opioid receptors. [(35)S]GTPgammaS binding studies demonstrated that nalmefene is a full antagonist at mu-opioid receptors and has partial agonist properties at kappa-opioid receptors. Elevations in serum prolactin following nalmefene are consistent with this partial agonist effect at kappa-opioid receptors. As kappa-opioid receptor activation can lower dopamine in brain regions important to the persistence of alcohol and cocaine dependence, the partial kappa agonist effect of nalmefene may enhance its therapeutic efficacy in selected addictive diseases.
Collapse
MESH Headings
- Adolescent
- Adult
- Analgesics, Opioid/metabolism
- Animals
- Benzeneacetamides/metabolism
- CHO Cells
- Cricetinae
- Dose-Response Relationship, Drug
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/metabolism
- Estradiol/blood
- Female
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/metabolism
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Prolactin/blood
- Pyrrolidines/metabolism
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Gavin Bart
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Zhou Y, Bendor JT, Yuferov V, Schlussman SD, Ho A, Kreek MJ. Amygdalar vasopressin mRNA increases in acute cocaine withdrawal: evidence for opioid receptor modulation. Neuroscience 2005; 134:1391-7. [PMID: 16039786 DOI: 10.1016/j.neuroscience.2005.05.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/29/2005] [Accepted: 05/16/2005] [Indexed: 11/16/2022]
Abstract
In humans, stress is recognized as a major factor contributing to relapse to drug abuse in abstinent individuals; drugs of abuse themselves or withdrawal from such drugs act as stressors. In the animals, evidence suggests that centrally released arginine vasopressin in both amygdala and hypothalamus plays an important role in stress-related anxiogenic behaviors. The stress responsive hypothalamic-pituitary-adrenal axis is under tonic inhibition via endogenous opioids, and cocaine withdrawal stimulates hypothalamic-pituitary-adrenal activity. The present studies were undertaken to determine whether: (1) 14-day (chronic) "binge" pattern cocaine administration (45 mg/kg/day) or its withdrawal for 3 h (acute), 1 day (subacute) or 10 days (chronic) alters arginine vasopressin mRNA levels in amygdala or hypothalamus; (2) the opioid receptor antagonist naloxone (1mg/kg) alters arginine vasopressin mRNA or hypothalamic-pituitary-adrenal hormonal responses in acute cocaine withdrawal; and (3) there are associated changes of mu opioid receptor or proopiomelanocortin mRNA levels. In amygdala, arginine vasopressin mRNA levels were unchanged after chronic "binge" cocaine, but were increased during acute cocaine withdrawal. Naloxone completely blocked this increase. Neither chronic cocaine nor its acute withdrawal altered amygdalar mu opioid receptor mRNA levels. The increase in amygdalar arginine vasopressin mRNA levels was still observed after subacute withdrawal, but not after chronic withdrawal. Although hypothalamic-pituitary-adrenal tolerance developed with chronic "binge" cocaine, there were modestly elevated plasma adrenocorticotropin hormone levels during acute withdrawal. While naloxone produced modest adrenocorticotropin hormone elevations in cocaine-naïve rats, naloxone failed to elicit an adrenocorticotropin hormone response in cocaine-withdrawn rats. In hypothalamus, neither chronic cocaine nor acute withdrawal altered arginine vasopressin, proopiomelanocortin or mu opioid receptor mRNA levels. These results show that: (1) opioid receptors mediate increased amygdalar arginine vasopressin gene expression during acute cocaine withdrawal, and (2) cocaine withdrawal renders the hypothalamic-pituitary-adrenal axis insensitive to naloxone. Our findings suggest a potential role for amygdalar arginine vasopressin in the aversive consequences of early cocaine withdrawal.
Collapse
Affiliation(s)
- Y Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Bailey A, Yuferov V, Bendor J, Schlussman SD, Zhou Y, Ho A, Kreek MJ. Immediate withdrawal from chronic "binge" cocaine administration increases mu-opioid receptor mRNA levels in rat frontal cortex. ACTA ACUST UNITED AC 2005; 137:258-62. [PMID: 15950784 DOI: 10.1016/j.molbrainres.2005.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 01/27/2005] [Accepted: 02/13/2005] [Indexed: 10/25/2022]
Abstract
An increase in preprodynorphin (ppdyn) mRNA was detected in the caudate putamen of chronically cocaine-treated and 3-h withdrawn rats. An increase in mu-opioid receptor (MOP) mRNA levels was observed in the frontal cortex of 3-h withdrawn rats. Naloxone had no effect on the increase of MOP or ppdyn mRNA levels. The results indicate that the opioid system is altered during early withdrawal from chronic cocaine administration.
Collapse
Affiliation(s)
- Alexis Bailey
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Gorelick DA, Kim YK, Bencherif B, Boyd SJ, Nelson R, Copersino M, Endres CJ, Dannals RF, Frost JJ. Imaging brain mu-opioid receptors in abstinent cocaine users: time course and relation to cocaine craving. Biol Psychiatry 2005; 57:1573-82. [PMID: 15953495 DOI: 10.1016/j.biopsych.2005.02.026] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/11/2005] [Accepted: 02/18/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cocaine treatment upregulates brain mu-opioid receptors (mOR) in animals. Human data regarding this phenomenon are limited. We previously used positron emission tomography (PET) with [11C]-carfentanil to show increased mOR binding in brain regions of 10 cocaine-dependent men after 1 and 28 days of abstinence. METHODS Regional brain mOR binding potential (BP) was measured with [11C]carfentanil PET scanning in 17 cocaine users over 12 weeks of abstinence on a research ward and in 16 healthy control subjects. RESULTS Mu-opioid receptor BP was increased in the frontal, anterior cingulate, and lateral temporal cortex after 1 day of abstinence. Mu-opioid receptor BP remained elevated in the first two regions after 1 week and in the anterior cingulate and anterior frontal cortex after 12 weeks. Increased binding in some regions at 1 day and 1 week was positively correlated with self-reported cocaine craving. Mu-opioid receptor BP was significantly correlated with percentage of days with cocaine use and amount of cocaine used per day of use during the 2 weeks before admission and with urine benzoylecgonine concentration at the first PET scan. CONCLUSIONS These results suggest that chronic cocaine use influences endogenous opioid systems in the human brain and might explain mechanisms of cocaine craving and reinforcement.
Collapse
Affiliation(s)
- David A Gorelick
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nikulina EM, Miczek KA, Hammer RP. Prolonged effects of repeated social defeat stress on mRNA expression and function of mu-opioid receptors in the ventral tegmental area of rats. Neuropsychopharmacology 2005; 30:1096-103. [PMID: 15668724 DOI: 10.1038/sj.npp.1300658] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Social defeat stress alters the activity of mesocorticolimbic dopamine projections from the ventral tegmental area (VTA), a process that has been implicated in the development of sensitization and drug-seeking behavior. We showed previously that acute brief social defeat stress increased short-term expression of mu-opioid receptor mRNA in the VTA. The present study assessed the presence and functional significance of mu-opioid receptor mRNA expression 1 week after the last episode of social defeat stress. Social defeat stress was induced in intruder rats during short confrontations with an aggressive resident rat, and subsequent exposures behind a protective screen once a day for 5 days. Regional mu-receptor mRNA levels were assessed by in situ hybridization histochemistry, and the amount of mRNA labeling was measured in the VTA and the substantia nigra (SN). Expression of mu-opioid receptor mRNA was significantly higher in defeated rats relative to handled control animals in the VTA, but not in the SN. In an additional group of rats, bilateral local intra-VTA injection of the selective mu-opioid receptor agonist DAMGO (1.0 microg per side) was performed 7-10 days after the last defeat stress or handling control procedure. Baseline motor activity did not differ between control and stressed rats. Intra-VTA DAMGO significantly increased locomotor activity in stressed rats compared to handled control rats. These results suggest that repeated social stress upregulates VTA mu-opioid receptors and can produce locomotor activation via stimulation of these receptors. This locomotor effect is probably the consequence of enhanced disinhibition of mesolimbic dopamine neurons.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Autoradiography
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Handling, Psychological
- Image Processing, Computer-Assisted
- Injections
- Male
- Motor Activity/drug effects
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/physiology
- Stress, Psychological/psychology
- Substantia Nigra/metabolism
- Up-Regulation/drug effects
- Ventral Tegmental Area/physiology
Collapse
Affiliation(s)
- Ella M Nikulina
- Department of Psychiatry, Tufts University, Boston, MA, USA.
| | | | | |
Collapse
|
50
|
O'Connor KA, Gregg TC, Davies HML, Childers SR. Effects of long-term biogenic amine transporter blockade on receptor/G-protein coupling in rat brain. Neuropharmacology 2005; 48:62-71. [PMID: 15617728 DOI: 10.1016/j.neuropharm.2004.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 07/12/2004] [Accepted: 08/20/2004] [Indexed: 11/26/2022]
Abstract
This study examines the effect of long-term elevation of brain monoamine levels on receptor/G-protein coupling by chronic administration of a highly potent tropane analog, WF-23 (2beta-propanoyl-3beta-(2-naphthyl) tropane). WF-23 blocks dopamine, serotonin and norepinephrine transporters with high affinity in vitro, and blocks transporters for at least two days following a single in vivo administration. Rats were chronically treated for 15 days with 1mg/kg WF-23, injected i.p. every two days. Receptor activation of G-proteins was determined by [35S]GTPgammaS autoradiography in brain sections for D2, 5-HT1A and alpha2-adrenergic receptors, as well as mu opioid receptors as a non-monoamine receptor control. Chronic treatment with WF-23 produced significant reductions in D2, 5-HT1A, and alpha2-adrenergic receptor-stimulated [35S]GTPgammaS binding in caudate/putamen, hippocampus and amygdala, respectively. There were no effects of WF-23 treatment on mu opioid-stimulated [35S]GTPgammaS binding. Additionally, there was no effect of WF-23 treatment on D2 receptor binding, as determined by [3H]spiperone autoradiography. These data show that chronic blockade of monoamine transporters produces specific uncoupling of receptors and G-proteins in specific brain regions in the absence of receptor downregulation.
Collapse
Affiliation(s)
- Kerry Ann O'Connor
- Wake Forest University Health Sciences, Physiology and Pharmacology Department, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|