1
|
Huang Q, Lee HH, Volpe B, Zhang Q, Xue C, Liu BC, Abuhasan YR, Li L, Yang JS, Egholm J, Gutierrez-Vazquez C, Li A, Lee A, Tang S, Wong CW, Liu T, Huang Y, Ramos RL, Stout RF, El Ouaamari A, Quintana FJ, Lowell BB, Kahn CR, Pothos EN, Cai W. Deletion of murine astrocytic vesicular nucleotide transporter increases anxiety and depressive-like behavior and attenuates motivation for reward. Mol Psychiatry 2025; 30:506-520. [PMID: 39122778 PMCID: PMC11750621 DOI: 10.1038/s41380-024-02692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Astrocytes are multi-functional glial cells in the central nervous system that play critical roles in modulation of metabolism, extracellular ion and neurotransmitter levels, and synaptic plasticity. Astrocyte-derived signaling molecules mediate many of these modulatory functions of astrocytes, including vesicular release of ATP. In the present study, we used a unique genetic mouse model to investigate the functional significance of astrocytic exocytosis of ATP. Using primary cultured astrocytes, we show that loss of vesicular nucleotide transporter (Vnut), a primary transporter responsible for loading cytosolic ATP into the secretory vesicles, dramatically reduces ATP loading into secretory lysosomes and ATP release, without any change in the molecular machinery of exocytosis or total intracellular ATP content. Deletion of astrocytic Vnut in adult mice leads to increased anxiety, depressive-like behaviors, and decreased motivation for reward, especially in females, without significant impact on food intake, systemic glucose metabolism, cognition, or sociability. These behavioral alterations are associated with significant decreases in the basal extracellular dopamine levels in the nucleus accumbens. Likewise, ex vivo brain slices from these mice show a strong trend toward a reduction in evoked dopamine release in the nucleus accumbens. Mechanistically, the reduced dopamine signaling we observed is likely due to an increased expression of monoamine oxidases. Together, these data demonstrate a key modulatory role of astrocytic exocytosis of ATP in anxiety, depressive-like behavior, and motivation for reward, by regulating the mesolimbic dopamine circuitry.
Collapse
Affiliation(s)
- Qian Huang
- Department of Molecular and Cellular Biochemistry, the Barnstable Brown Diabetes and Obesity Center, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Hiu Ham Lee
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Bryan Volpe
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Qingchen Zhang
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Chang Xue
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Brian C Liu
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Yahia R Abuhasan
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Lingyun Li
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Jeremy S Yang
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Julie Egholm
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Cristina Gutierrez-Vazquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Allen Li
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Alyssa Lee
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Sharon Tang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Chun Wa Wong
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Tiemin Liu
- Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yuan Huang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Randy F Stout
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | | | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Emmanuel N Pothos
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Weikang Cai
- Department of Molecular and Cellular Biochemistry, the Barnstable Brown Diabetes and Obesity Center, University of Kentucky College of Medicine, Lexington, KY, USA.
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
| |
Collapse
|
2
|
Harders AR, Watermann P, Karger G, Denieffe SC, Weller A, Dannemann AC, Willker JE, Köhler Y, Arend C, Dringen R. Consequences of a 2-Deoxyglucose Exposure on the ATP Content and the Cytosolic Glucose Metabolism of Cultured Primary Rat Astrocytes. Neurochem Res 2024; 49:3244-3262. [PMID: 38898248 PMCID: PMC11502578 DOI: 10.1007/s11064-024-04192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
The glucose analogue 2-deoxyglucose (2DG) has frequently been used as a tool to study cellular glucose uptake and to inhibit glycolysis. Exposure of primary cultured astrocytes to 2DG caused a time- and concentration-dependent cellular accumulation of 2-deoxyglucose-6-phosphate (2DG6P) that was accompanied by a rapid initial decline in cellular ATP content. Inhibitors of mitochondrial respiration as well as inhibitors of mitochondrial uptake of pyruvate and activated fatty acids accelerated the ATP loss, demonstrating that mitochondrial ATP regeneration contributes to the partial maintenance of the ATP content in 2DG-treated astrocytes. After a 30 min exposure to 10 mM 2DG the specific content of cellular 2DG6P had accumulated to around 150 nmol/mg, while cellular ATP was lowered by 50% to around 16 nmol/mg. Following such a 2DG6P-loading of astrocytes, glycolytic lactate production from applied glucose was severely impaired during the initial 60 min of incubation, but was reestablished during longer incubation concomitant with a loss in cellular 2DG6P content. In contrast to glycolysis, the glucose-dependent NADPH regeneration via the pentose phosphate pathway (PPP) was only weakly affected in 2DG6P-loaded astrocytes and in cells that were coincubated with glucose in the presence of an excess of 2DG. Additionally, in the presence of 2DG PPP-dependent WST1 reduction was found to have doubled compared to hexose-free control incubations, indicating that cellular 2DG6P can serve as substrate for NADPH regeneration by the astrocytic PPP. The data presented provide new insights on the metabolic consequences of a 2DG exposure on the energy and glucose metabolism of astrocytes and demonstrate the reversibility of the inhibitory potential of a 2DG-treatment on the glucose metabolism of cultured astrocytes.
Collapse
Affiliation(s)
- Antonia Regina Harders
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Patrick Watermann
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Gabriele Karger
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Sadhbh Cynth Denieffe
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Alina Weller
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Annika Carina Dannemann
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Johanna Elisabeth Willker
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Yvonne Köhler
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Christian Arend
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
3
|
Shichkova P, Coggan JS, Markram H, Keller D. Brain Metabolism in Health and Neurodegeneration: The Interplay Among Neurons and Astrocytes. Cells 2024; 13:1714. [PMID: 39451233 PMCID: PMC11506225 DOI: 10.3390/cells13201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
The regulation of energy in the brain has garnered substantial attention in recent years due to its significant implications in various disorders and aging. The brain's energy metabolism is a dynamic and tightly regulated network that balances energy demand and supply by engaging complementary molecular pathways. The crosstalk among these pathways enables the system to switch its preferred fuel source based on substrate availability, activity levels, and cell state-related factors such as redox balance. Brain energy production relies on multi-cellular cooperation and is continuously supplied by fuel from the blood due to limited internal energy stores. Astrocytes, which interface with neurons and blood vessels, play a crucial role in coordinating the brain's metabolic activity, and their dysfunction can have detrimental effects on brain health. This review characterizes the major energy substrates (glucose, lactate, glycogen, ketones and lipids) in astrocyte metabolism and their role in brain health, focusing on recent developments in the field.
Collapse
Affiliation(s)
- Polina Shichkova
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| |
Collapse
|
4
|
Barros LF, Schirmeier S, Weber B. The Astrocyte: Metabolic Hub of the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041355. [PMID: 38438188 PMCID: PMC11368191 DOI: 10.1101/cshperspect.a041355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Astrocytic metabolism has taken center stage. Interposed between the neuron and the vasculature, astrocytes exert control over the fluxes of energy and building blocks required for neuronal activity and plasticity. They are also key to local detoxification and waste recycling. Whereas neurons are metabolically rigid, astrocytes can switch between different metabolic profiles according to local demand and the nutritional state of the organism. Their metabolic state even seems to be instructive for peripheral nutrient mobilization and has been implicated in information processing and behavior. Here, we summarize recent progress in our understanding of astrocytic metabolism and its effects on metabolic homeostasis and cognition.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos, Valdivia 5110465, Chile
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Valdivia 5110693, Chile
| | - Stefanie Schirmeier
- Technische Universität Dresden, Department of Biology, 01217 Dresden, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Frame AK, Sinka JL, Courchesne M, Muhammad RA, Grahovac-Nemeth S, Bernards MA, Bartha R, Cumming RC. Altered neuronal lactate dehydrogenase A expression affects cognition in a sex- and age-dependent manner. iScience 2024; 27:110342. [PMID: 39055955 PMCID: PMC11269950 DOI: 10.1016/j.isci.2024.110342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The astrocyte-neuron lactate shuttle (ANLS) model posits that astrocyte-generated lactate is transported to neurons to fuel memory processes. However, neurons express high levels of lactate dehydrogenase A (LDHA), the rate-limiting enzyme of lactate production, suggesting a cognitive role for neuronally generated lactate. It was hypothesized that lactate metabolism in neurons is critical for learning and memory. Here transgenic mice were generated to conditionally induce or knockout (KO) the Ldha gene in CNS neurons of adult mice. High pattern separation memory was enhanced by neuronal Ldha induction in young females, and by neuronal Ldha KO in aged females. In older mice, Ldha induction caused cognitive deficits whereas Ldha KO caused cognitive improvements. Genotype-associated cognitive changes were often only observed in one sex or oppositely in males and females. Thus, neuronal-generated lactate has sex-specific cognitive effects, is largely indispensable at young age, and may be detrimental to learning and memory with aging.
Collapse
Affiliation(s)
- Ariel K. Frame
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Jessica L. Sinka
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Marc Courchesne
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | | | | | - Mark A. Bernards
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Robert C. Cumming
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
6
|
Voelz C, Schaack LEM, Kogel V, Beyer C, Seitz J, Trinh S. Reversibility of Endoplasmic Reticulum Stress Markers During Long-Term Glucose Starvation in Astrocytes. J Mol Neurosci 2024; 74:53. [PMID: 38750341 PMCID: PMC11096255 DOI: 10.1007/s12031-024-02223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Previous studies have demonstrated a brain volume decrease linked to long-term starvation in patients with anorexia nervosa (AN). Food intake is critically diminished in this disorder, leading to one of the highest mortality rates within the psychiatric disease spectrum. As reported in animal models, astrocytes seem to be the most affected cell type in AN. In a recently established primary cell culture model, an elevated unfolded protein response (UPR) was observed in long-term glucose semi-starved astrocytes. A well-functioning protein machinery is essential for every cell, and prolonged UPR will lead to cell death. As a nucleic acid stress-sensing pathway with the activator located in the endoplasmic reticulum, the regulation of the cGAS-STING pathway (cyclic GMP-AMP synthase/stimulator of interferon genes) was additionally investigated in the starvation context. In the current study, a glucose semi-starvation protocol of 15 days, during which cells were supplied with 2 mM glucose in the medium, was prolonged with an additional 6-day long recovery period. Our findings showed that increased UPR mRNA expression was reversible after re-establishing the standard glucose concentration of 25 mM. Furthermore, we were able to verify the presence of cGAS and STING in astrocytes with a characteristic presence of cGAS in the astrocyte nucleus during starvation. A correlation between STING and the glial fibrillary acidic protein (GFAP) could be established, hinting at a conditional presence of STING with a specific astrocyte phenotype.
Collapse
Affiliation(s)
- Clara Voelz
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany.
| | - Lena E M Schaack
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | - Vanessa Kogel
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Duisburg-Essen, Essen, Germany
| | - Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Dienel GA, Rothman DL. In vivo calibration of genetically encoded metabolite biosensors must account for metabolite metabolism during calibration and cellular volume. J Neurochem 2024; 168:506-532. [PMID: 36726217 DOI: 10.1111/jnc.15775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
Isotopic assays of brain glucose utilization rates have been used for more than four decades to establish relationships between energetics, functional activity, and neurotransmitter cycling. Limitations of these methods include the relatively long time (1-60 min) for the determination of labeled metabolite levels and the lack of cellular resolution. Identification and quantification of fuels for neurons and astrocytes that support activation and higher brain functions are a major, unresolved issues. Glycolysis is preferentially up-regulated during activation even though oxygen level and supply are adequate, causing lactate concentrations to quickly rise during alerting, sensory processing, cognitive tasks, and memory consolidation. However, the fate of lactate (rapid release from brain or cell-cell shuttling coupled with local oxidation) is long disputed. Genetically encoded biosensors can determine intracellular metabolite concentrations and report real-time lactate level responses to sensory, behavioral, and biochemical challenges at the cellular level. Kinetics and time courses of cellular lactate concentration changes are informative, but accurate biosensor calibration is required for quantitative comparisons of lactate levels in astrocytes and neurons. An in vivo calibration procedure for the Laconic lactate biosensor involves intracellular lactate depletion by intravenous pyruvate-mediated trans-acceleration of lactate efflux followed by sensor saturation by intravenous infusion of high doses of lactate plus ammonium chloride. In the present paper, the validity of this procedure is questioned because rapid lactate-pyruvate interconversion in blood, preferential neuronal oxidation of both monocarboxylates, on-going glycolytic metabolism, and cellular volumes were not taken into account. Calibration pitfalls for the Laconic lactate biosensor also apply to other metabolite biosensors that are standardized in vivo by infusion of substrates that can be metabolized in peripheral tissues. We discuss how technical shortcomings negate the conclusion that Laconic sensor calibrations support the existence of an in vivo astrocyte-neuron lactate concentration gradient linked to lactate shuttling from astrocytes to neurons to fuel neuronal activity.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Zhang X, Chen C, Liu Y. Navigating the metabolic maze: anomalies in fatty acid and cholesterol processes in Alzheimer's astrocytes. Alzheimers Res Ther 2024; 16:63. [PMID: 38521950 PMCID: PMC10960454 DOI: 10.1186/s13195-024-01430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and its underlying mechanisms have been a subject of great interest. The mainstream theory of AD pathology suggests that the disease is primarily associated with tau protein and amyloid-beta (Aβ). However, an increasing body of research has revealed that abnormalities in lipid metabolism may be an important event throughout the pathophysiology of AD. Astrocytes, as important members of the lipid metabolism network in the brain, play a significant role in this event. The study of abnormal lipid metabolism in astrocytes provides a new perspective for understanding the pathogenesis of AD. This review focuses on the abnormal metabolism of fatty acids (FAs) and cholesterol in astrocytes in AD, and discusses it from three perspectives: lipid uptake, intracellular breakdown or synthesis metabolism, and efflux transport. We found that, despite the accumulation of their own fatty acids, astrocytes cannot efficiently uptake fatty acids from neurons, leading to fatty acid accumulation within neurons and resulting in lipotoxicity. In terms of cholesterol metabolism, astrocytes exhibit a decrease in endogenous synthesis due to the accumulation of exogenous cholesterol. Through a thorough investigation of these metabolic abnormalities, we can provide new insights for future therapeutic strategies by literature review to navigate this complex metabolic maze and bring hope to patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuanying Chen
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yi Liu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
9
|
Nam YR, Kang M, Kim M, Seok MJ, Yang Y, Han YE, Oh SJ, Kim DG, Son H, Chang MY, Lee SH. Preparation of human astrocytes with potent therapeutic functions from human pluripotent stem cells using ventral midbrain patterning. J Adv Res 2024:S2090-1232(24)00112-7. [PMID: 38521186 DOI: 10.1016/j.jare.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024] Open
Abstract
INTRODUCTION Astrocytes are glial-type cells that protect neurons from toxic insults and support neuronal functions and metabolism in a healthy brain. Leveraging these physiological functions, transplantation of astrocytes or their derivatives has emerged as a potential therapeutic approach for neurodegenerative disorders. METHODS To substantiate the clinical application of astrocyte-based therapy, we aimed to prepare human astrocytes with potent therapeutic capacities from human pluripotent stem cells (hPSCs). To that end, we used ventral midbrain patterning during the differentiation of hPSCs into astrocytes, based on the roles of midbrain-specific factors in potentiating glial neurotrophic/anti-inflammatory activity. To assess the therapeutic effects of human midbrain-type astrocytes, we transplanted them into mouse models of Parkinson's disease (PD) and Alzheimer's disease (AD). RESULTS Through a comprehensive series of in-vitro and in-vivo experiments, we were able to establish that the midbrain-type astrocytes exhibited the abilities to effectively combat oxidative stress, counter excitotoxic glutamate, and manage pathological protein aggregates. Our strategy for preparing midbrain-type astrocytes yielded promising results, demonstrating the strong therapeutic potential of these cells in various neurotoxic contexts. Particularly noteworthy is their efficacy in PD and AD-specific proteopathic conditions, in which the midbrain-type astrocytes outperformed forebrain-type astrocytes derived by the same organoid-based method. CONCLUSION The enhanced functions of the midbrain-type astrocytes extended to their ability to release signaling molecules that inhibited neuronal deterioration and senescence while steering microglial cells away from a pro-inflammatory state. This success was evident in both in-vitro studies using human cells and in-vivo experiments conducted in mouse models of PD and AD. In the end, our human midbrain-type astrocytes demonstrated remarkable effectiveness in alleviating neurodegeneration, neuroinflammation, and the pathologies associated with the accumulation of α-synuclein and Amyloid β proteins.
Collapse
Affiliation(s)
- Ye Rim Nam
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Minji Kang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Minji Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Min Jong Seok
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Yunseon Yang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Young Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Do Gyeong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Hyeon Son
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea; Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Korea
| | - Mi-Yoon Chang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea; Department of Premedicine, College of Medicine, Hanyang University, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea.
| | - Sang-Hun Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea; Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Korea.
| |
Collapse
|
10
|
Marty-Lombardi S, Lu S, Ambroziak W, Schrenk-Siemens K, Wang J, DePaoli-Roach AA, Hagenston AM, Wende H, Tappe-Theodor A, Simonetti M, Bading H, Okun JG, Kuner R, Fleming T, Siemens J. Neuron-astrocyte metabolic coupling facilitates spinal plasticity and maintenance of inflammatory pain. Nat Metab 2024; 6:494-513. [PMID: 38443593 DOI: 10.1038/s42255-024-01001-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
Long-lasting pain stimuli can trigger maladaptive changes in the spinal cord, reminiscent of plasticity associated with memory formation. Metabolic coupling between astrocytes and neurons has been implicated in neuronal plasticity and memory formation in the central nervous system, but neither its involvement in pathological pain nor in spinal plasticity has been tested. Here we report a form of neuroglia signalling involving spinal astrocytic glycogen dynamics triggered by persistent noxious stimulation via upregulation of the Protein Targeting to Glycogen (PTG) in spinal astrocytes. PTG drove glycogen build-up in astrocytes, and blunting glycogen accumulation and turnover by Ptg gene deletion reduced pain-related behaviours and promoted faster recovery by shortening pain maintenance in mice. Furthermore, mechanistic analyses revealed that glycogen dynamics is a critically required process for maintenance of pain by facilitating neuronal plasticity in spinal lamina 1 neurons. In summary, our study describes a previously unappreciated mechanism of astrocyte-neuron metabolic communication through glycogen breakdown in the spinal cord that fuels spinal neuron hyperexcitability.
Collapse
Affiliation(s)
| | - Shiying Lu
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Oliver Wyman GmbH, Munich, Germany
| | - Wojciech Ambroziak
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Aachen, Germany
| | | | - Jialin Wang
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Hagen Wende
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Taconic Biosciences, Leverkusen, Germany
| | | | - Manuela Simonetti
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Jürgen G Okun
- Dietmar-Hopp-Metabolic Center, Division of Neuropaediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Thomas Fleming
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Jan Siemens
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
11
|
Mitra S, Chen B, Shelton JM, Nitschke S, Wu J, Covington L, Dear M, Lynn T, Verma M, Nitschke F, Fuseya Y, Iwai K, Evers BM, Minassian BA. Myofiber-type-dependent 'boulder' or 'multitudinous pebble' formations across distinct amylopectinoses. Acta Neuropathol 2024; 147:46. [PMID: 38411740 DOI: 10.1007/s00401-024-02698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
At least five enzymes including three E3 ubiquitin ligases are dedicated to glycogen's spherical structure. Absence of any reverts glycogen to a structure resembling amylopectin of the plant kingdom. This amylopectinosis (polyglucosan body formation) causes fatal neurological diseases including adult polyglucosan body disease (APBD) due to glycogen branching enzyme deficiency, Lafora disease (LD) due to deficiencies of the laforin glycogen phosphatase or the malin E3 ubiquitin ligase and type 1 polyglucosan body myopathy (PGBM1) due to RBCK1 E3 ubiquitin ligase deficiency. Little is known about these enzymes' functions in glycogen structuring. Toward understanding these functions, we undertake a comparative murine study of the amylopectinoses of APBD, LD and PGBM1. We discover that in skeletal muscle, polyglucosan bodies form as two main types, small and multitudinous ('pebbles') or giant and single ('boulders'), and that this is primarily determined by the myofiber types in which they form, 'pebbles' in glycolytic and 'boulders' in oxidative fibers. This pattern recapitulates what is known in the brain in LD, innumerable dust-like in astrocytes and single giant sized in neurons. We also show that oxidative myofibers are relatively protected against amylopectinosis, in part through highly increased glycogen branching enzyme expression. We present evidence of polyglucosan body size-dependent cell necrosis. We show that sex influences amylopectinosis in genotype, brain region and myofiber-type-specific fashion. RBCK1 is a component of the linear ubiquitin chain assembly complex (LUBAC), the only known cellular machinery for head-to-tail linear ubiquitination critical to numerous cellular pathways. We show that the amylopectinosis of RBCK1 deficiency is not due to loss of linear ubiquitination, and that another function of RBCK1 or LUBAC must exist and operate in the shaping of glycogen. This work opens multiple new avenues toward understanding the structural determinants of the mammalian carbohydrate reservoir critical to neurologic and neuromuscular function and disease.
Collapse
Affiliation(s)
- Sharmistha Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA.
| | - Baozhi Chen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - John M Shelton
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9148, USA
| | - Silvia Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Lindsay Covington
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9148, USA
| | - Mathew Dear
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Tori Lynn
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Felix Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Yasuhiro Fuseya
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto, 606-8501, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto, 606-8501, Japan
| | - Bret M Evers
- Departments of Pathology and Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9073, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA.
| |
Collapse
|
12
|
Seol SI, Kang IS, Lee JS, Lee JK, Kim C. Taurine Chloramine-Mediated Nrf2 Activation and HO-1 Induction Confer Protective Effects in Astrocytes. Antioxidants (Basel) 2024; 13:169. [PMID: 38397767 PMCID: PMC10886344 DOI: 10.3390/antiox13020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Taurine is ubiquitously distributed in mammalian tissues, with the highest levels in the brain, heart, and leukocytes. Taurine reacts with hypochlorous acid (HOCl) to produce taurine chloramine (Tau-Cl) via the myeloperoxidase (MPO) system. In this study, we elucidated the antioxidative and protective effects of Tau-Cl in astrocytes. Tau-Cl increased the expression and nuclear translocation of nuclear factor E2-related factor (Nrf2) and the expression of Nrf2-regulated antioxidant genes, including heme oxygenase 1 (HO-1). Nrf2 activity is negatively regulated by Kelch-like ECH-associated protein 1 (Keap1). Tau-Cl decreased the level of the reduced thiol groups of Keap1, resulting in the disruption of the Keap1-Nrf2 complex. Consequently, Tau-Cl rescued the H2O2-induced cell death by enhancing HO-1 expression and suppressing reactive oxygen species. In conclusion, Tau-Cl confers protective effects in astrocytes by disrupting the Keap1-Nrf2 complex, thereby promoting Nrf2 translocation to the nucleus, wherein it binds to the antioxidant response element (ARE) and accelerates the transcription of antioxidant genes. Therefore, in astrocytes, the activation of the Keap1-Nrf2-ARE pathway by Tau-Cl may increase antioxidants and anti-inflammatory mediators as well as other cytoprotective proteins, conferring protection against brain infection and injury.
Collapse
Affiliation(s)
- Song-I Seol
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Republic of Korea;
| | - In Soon Kang
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Republic of Korea; (I.S.K.); (J.S.L.)
| | - Ji Seok Lee
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Republic of Korea; (I.S.K.); (J.S.L.)
- BK21, Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Republic of Korea;
| | - Chaekyun Kim
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Republic of Korea; (I.S.K.); (J.S.L.)
- BK21, Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
13
|
Han H, Zhao Y, Du J, Wang S, Yang X, Li W, Song J, Zhang S, Zhang Z, Tan Y, Hatch GM, Zhang M, Chen L. Exercise improves cognitive dysfunction and neuroinflammation in mice through Histone H3 lactylation in microglia. Immun Ageing 2023; 20:63. [PMID: 37978517 PMCID: PMC10655345 DOI: 10.1186/s12979-023-00390-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Exercise is postulated to be a promising non-pharmacological intervention for the improvement of neurodegenerative disease pathology. However, the mechanism of beneficial effects of exercise on the brain remains to be further explored. In this study, we investigated the effect of an exercise-induced metabolite, lactate, on the microglia phenotype and its association with learning and memory. RESULTS Microglia were hyperactivated in the brains of AlCl3/D-gal-treated mice, which was associated with cognitive decline. Running exercise ameliorated the hyperactivation and increased the anti-inflammatory/reparative phenotype of microglia and improved cognition. Mice were injected intraperitoneally with sodium lactate (NaLA) had similar beneficial effects as that of exercise training. Exogenous NaLA addition to cultured BV2 cells promoted their transition from a pro-inflammatory to a reparative phenotype. CONCLUSION The elevated lactate acted as an "accelerator" of the endogenous "lactate timer" in microglia promoting this transition of microglia polarization balance through lactylation. These findings demonstrate that exercise-induced lactate accelerates the phenotypic transition of microglia, which plays a key role in reducing neuroinflammation and improving cognitive function.
Collapse
Affiliation(s)
- Hao Han
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Yawei Zhao
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Junda Du
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Sushan Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Xuehan Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Weijie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Jiayi Song
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Siwei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Ziyi Zhang
- The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yongfei Tan
- South China Institute of Collaborative Innovation, Dongguan, 523808, China
| | - Grant M Hatch
- Departments of Pharmacology and Therapeutics, Biochemistry and Medical Genetics, Center for Research and Treatment of Atherosclerosis, DREAM Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, R3E0T6, Canada
| | - Ming Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China.
| | - Li Chen
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
14
|
Mazumder AG, Julé AM, Sun D. Astrocytes of the optic nerve exhibit a region-specific and temporally distinct response to elevated intraocular pressure. Mol Neurodegener 2023; 18:68. [PMID: 37759301 PMCID: PMC10523752 DOI: 10.1186/s13024-023-00658-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The optic nerve is an important tissue in glaucoma and the unmyelinated nerve head region remains an important site of many early neurodegenerative changes. In both humans and mice, astrocytes constitute the major glial cell type in the region, and in glaucoma they become reactive, influencing the optic nerve head (ONH) microenvironment and disease outcome. Despite recognizing their importance in the progression of the disease, the reactive response of optic nerve head astrocytes remains poorly understood. METHODS To determine the global reactive response of ONH astrocytes in glaucoma we studied their transcriptional response to an elevation in IOP induced by the microbead occlusion model. To specifically isolate astrocyte mRNA in vivo from complex tissues, we used the ribotag method to genetically tag ribosomes in astrocytes, restricting analysis to astrocytes and enabling purification of astrocyte-associated mRNA throughout the entire cell, including the fine processes, for bulk RNA-sequencing. We also assessed the response of astrocytes in the more distal myelinated optic nerve proper (ONP) as glaucomatous changes manifest differently between the two regions. RESULTS Astrocytes of the optic nerve exhibited a region-specific and temporally distinct response. Surprisingly, ONH astrocytes showed very few early transcriptional changes and ONP astrocytes demonstrated substantially larger changes over the course of the experimental period. Energy metabolism, particularly oxidative phosphorylation and mitochondrial protein translation emerged as highly upregulated processes in both ONH and ONP astrocytes, with the former showing additional upregulation in antioxidative capacity and proteolysis. Interestingly, optic nerve astrocytes demonstrated a limited neuroinflammatory response, even when challenged with a more severe elevation in IOP. Lastly, there were a greater number of downregulated processes in both astrocyte populations compared to upregulated processes. CONCLUSION Our findings demonstrate an essential role for energy metabolism in the response of optic nerve astrocytes to elevated IOP, and contrary to expectations, neuroinflammation had a limited overall role. The transcriptional response profile is supportive of the notion that optic nerve astrocytes have a beneficial role in glaucoma. These previously uncharacterized transcriptional response of optic nerve astrocytes to injury reveal their functional diversity and a greater heterogeneity than previously appreciated.
Collapse
Affiliation(s)
- Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Amélie M Julé
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
15
|
Valenti D, Vacca RA. Brain Mitochondrial Bioenergetics in Genetic Neurodevelopmental Disorders: Focus on Down, Rett and Fragile X Syndromes. Int J Mol Sci 2023; 24:12488. [PMID: 37569863 PMCID: PMC10419900 DOI: 10.3390/ijms241512488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondria, far beyond their prominent role as cellular powerhouses, are complex cellular organelles active as central metabolic hubs that are capable of integrating and controlling several signaling pathways essential for neurological processes, including neurogenesis and neuroplasticity. On the other hand, mitochondria are themselves regulated from a series of signaling proteins to achieve the best efficiency in producing energy, in establishing a network and in performing their own de novo synthesis or clearance. Dysfunctions in signaling processes that control mitochondrial biogenesis, dynamics and bioenergetics are increasingly associated with impairment in brain development and involved in a wide variety of neurodevelopmental disorders. Here, we review recent evidence proving the emerging role of mitochondria as master regulators of brain bioenergetics, highlighting their control skills in brain neurodevelopment and cognition. We analyze, from a mechanistic point of view, mitochondrial bioenergetic dysfunction as causally interrelated to the origins of typical genetic intellectual disability-related neurodevelopmental disorders, such as Down, Rett and Fragile X syndromes. Finally, we discuss whether mitochondria can become therapeutic targets to improve brain development and function from a holistic perspective.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
16
|
Harders AR, Arend C, Denieffe SC, Berger J, Dringen R. Endogenous Energy Stores Maintain a High ATP Concentration for Hours in Glucose-Depleted Cultured Primary Rat Astrocytes. Neurochem Res 2023; 48:2241-2252. [PMID: 36914795 PMCID: PMC10182151 DOI: 10.1007/s11064-023-03903-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023]
Abstract
Adenosine triphosphate (ATP) is the central energy currency of all cells. Cultured primary rat astrocytes contain a specific cellular ATP content of 27.9 ± 4.7 nmol/mg. During incubation in a glucose- and amino acid-free incubation buffer, this high cellular ATP content was maintained for at least 6 h, while within 24 h the levels of ATP declined to around 30% of the initial value without compromising cell viability. In contrast, cells exposed to 1 mM and 5 mM glucose maintained the initial high cellular ATP content for 24 and 72 h, respectively. The loss in cellular ATP content observed during a 24 h glucose-deprivation was fully prevented by the presence of glucose, fructose or mannose as well as by the mitochondrial substrates lactate, pyruvate, β-hydroxybutyrate or acetate. The high initial specific ATP content in glucose-starved astrocytes, was almost completely abolished within 30 min after application of the respiratory chain inhibitor antimycin A or the mitochondrial uncoupler BAM-15, while these inhibitors lowered in glucose-fed cells the ATP content only to 60% (BAM-15) and 40% (antimycin A) within 5 h. Inhibition of the mitochondrial pyruvate carrier by UK5099 alone or of mitochondrial fatty acid uptake by etomoxir alone hardly affected the high ATP content of glucose-deprived astrocytes during an incubation for 8 h, while the co-application of both inhibitors depleted cellular ATP levels almost completely within 5 h. These data underline the importance of mitochondrial metabolism for the ATP regeneration of astrocytes and demonstrate that the mitochondrial oxidation of pyruvate and fatty acids strongly contributes to the maintenance of a high ATP concentration in glucose-deprived astrocytes.
Collapse
Affiliation(s)
- Antonia Regina Harders
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Christian Arend
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Sadhbh Cynth Denieffe
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Julius Berger
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
17
|
On-Body Hypoxia Monitor Based on Lactate Biosensors with a Tunable Concentration Range. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
18
|
β-lapachone-mediated WST1 Reduction as Indicator for the Cytosolic Redox Metabolism of Cultured Primary Astrocytes. Neurochem Res 2023; 48:2148-2160. [PMID: 36811754 PMCID: PMC10182120 DOI: 10.1007/s11064-023-03878-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
Electron cycler-mediated extracellular reduction of the water-soluble tetrazolium salt 1 (WST1) is frequently used as tool for the determination of cell viability. We have adapted this method to monitor by determining the extracellular WST1 formazan accumulation the cellular redox metabolism of cultured primary astrocytes via the NAD(P)H-dependent reduction of the electron cycler β-lapachone by cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1). Cultured astrocytes that had been exposed to β-lapachone in concentrations of up to 3 µM remained viable and showed an almost linear extracellular accumulation of WST1 formazan for the first 60 min, while higher concentrations of β-lapachone caused oxidative stress and impaired cell metabolism. β-lapachone-mediated WST1 reduction was inhibited by the NQO1 inhibitors ES936 and dicoumarol in a concentration-dependent manner, with half-maximal inhibition observed at inhibitor concentrations of about 0.3 µM. β-lapachone-mediated WST1 reduction depended strongly on glucose availability, while mitochondrial substrates such as lactate, pyruvate or ketone bodies allowed only residual β-lapachone-mediated WST1 reduction. Accordingly, the mitochondrial respiratory chain inhibitors antimycin A and rotenone hardly affected astrocytic WST1 reduction. Both NADH and NADPH are known to supply electrons for reactions catalysed by cytosolic NQO1. Around 60% of the glucose-dependent β-lapachone-mediated WST1 reduction was prevented by the presence of the glucose-6-phosphate dehydrogenase inhibitor G6PDi-1, while the glyceraldehyde-3-phosphate dehydrogenase inhibitor iodoacetate had only little inhibitory potential. These data suggest that pentose phosphate pathway-generated NADPH, and not glycolysis-derived NADH, is the preferred electron source for cytosolic NQO1-catalysed reductions in cultured astrocytes.
Collapse
|
19
|
Barros LF, Ruminot I, Sotelo-Hitschfeld T, Lerchundi R, Fernández-Moncada I. Metabolic Recruitment in Brain Tissue. Annu Rev Physiol 2023; 85:115-135. [PMID: 36270291 DOI: 10.1146/annurev-physiol-021422-091035] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Information processing imposes urgent metabolic demands on neurons, which have negligible energy stores and restricted access to fuel. Here, we discuss metabolic recruitment, the tissue-level phenomenon whereby active neurons harvest resources from their surroundings. The primary event is the neuronal release of K+ that mirrors workload. Astrocytes sense K+ in exquisite fashion thanks to their unique coexpression of NBCe1 and α2β2 Na+/K+ ATPase, and within seconds switch to Crabtree metabolism, involving GLUT1, aerobic glycolysis, transient suppression of mitochondrial respiration, and lactate export. The lactate surge serves as a secondary recruiter by inhibiting glucose consumption in distant cells. Additional recruiters are glutamate, nitric oxide, and ammonium, which signal over different spatiotemporal domains. The net outcome of these events is that more glucose, lactate, and oxygen are made available. Metabolic recruitment works alongside neurovascular coupling and various averaging strategies to support the inordinate dynamic range of individual neurons.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; .,Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile;
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; .,Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile;
| | - T Sotelo-Hitschfeld
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - R Lerchundi
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), MIRCen, Fontenay-aux-Roses, France
| | - I Fernández-Moncada
- NeuroCentre Magendie, INSERM U1215, University of Bordeaux, Bordeaux, France
| |
Collapse
|
20
|
Iqbal Z, Lei Z, Ramkrishnan AS, Liu S, Hasan M, Akter M, Lam YY, Li Y. Adrenergic signalling to astrocytes in anterior cingulate cortex contributes to pain-related aversive memory in rats. Commun Biol 2023; 6:10. [PMID: 36604595 PMCID: PMC9816175 DOI: 10.1038/s42003-022-04405-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Pain contains both sensory and affective dimensions. We identify the role of norepinephrine in colorectal distention (sub-threshold for acute pain) induced conditioned place avoidance and plasticity gene expression in the anterior cingulate cortex (ACC). Activating locus coeruleus (LC)-projecting ACC neurons facilitates pain-evoked aversive consolidation and memory, while inhibiting LC-projecting ACC neurons reversibly blocks it. Optogenetic activation of ACC astrocytes facilitates aversive behaviour. ACC astrocytic Gi manipulation suppressed aversive behaviour and early plasticity gene expression induced by opto-activation of LC neurons projecting to ACC. Evidences for the critical role of β2AR in ACC astrocytes were provided using AAV encoding β2AR miRNAi to knockdown β2AR in astrocytes. In contrast, opto-activation of ACC astrocytic β2ARs promotes aversion memory. Our findings suggest that projection-specific adrenergic astrocytic signalling in ACC is integral to system-wide neuromodulation in response to visceral stimuli, and plays a key role in mediating pain-related aversion consolidation and memory formation.
Collapse
Affiliation(s)
- Zafar Iqbal
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Zhuogui Lei
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Aruna S Ramkrishnan
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Shu Liu
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Mahadi Hasan
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Mastura Akter
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Yuk Yan Lam
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Ying Li
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
21
|
Astrocyte L-Lactate Signaling in the ACC Regulates Visceral Pain Aversive Memory in Rats. Cells 2022; 12:cells12010026. [PMID: 36611820 PMCID: PMC9818423 DOI: 10.3390/cells12010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Pain involves both sensory and affective elements. An aspect of the affective dimension of pain is its sustained unpleasantness, characterized by emotional feelings. Pain results from interactions between memory, attentional, and affective brain circuitry, and it has attracted enormous interest in pain research. However, the brain targets and signaling mechanism involved in pain remain elusive. Using a conditioned place avoidance (CPA) paradigm, we show that colorectal distention (CRD magnitude ≤ 35 mmHg, a subthreshold for pain) paired with a distinct environment can cause significant aversion to a location associated with pain-related insults in rats. We show a substantial increase in the L-lactate concentration in the anterior cingulate cortex (ACC) following CPA training. Local exogenous infusion of lactate into the ACC enhances aversive memory and induces the expression of the memory-related plasticity genes pCREB, CREB, and Erk1/2. The pharmacological experiments revealed that the glycogen phosphorylation inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) impairs memory consolidation. Furthermore, short-term Gi pathway activation of ACC astrocytes before CPA training significantly decreases the lactate level and suppresses pain-related aversive learning. The effects were reversed by the local infusion of lactate into the ACC. Our study demonstrates that lactate is released from astrocytes in vivo following visceral pain-related aversive learning and memory retrieval and induces the expression of the plasticity-related immediate early genes CREB, pCREB, and Erk1/2 in the ACC. Chronic visceral pain is an important factor in the pathophysiology of irritable bowel syndrome (IBS). The current study provides evidence that astrocytic activity in the ACC is required for visceral pain-related aversive learning and memory.
Collapse
|
22
|
Consumption and Metabolism of Extracellular Pyruvate by Cultured Rat Brain Astrocytes. Neurochem Res 2022; 48:1438-1454. [PMID: 36495387 PMCID: PMC10066139 DOI: 10.1007/s11064-022-03831-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
AbstractBrain astrocytes are considered as glycolytic cell type, but these cells also produce ATP via mitochondrial oxidative phosphorylation. Exposure of cultured primary astrocytes in a glucose-free medium to extracellular substrates that are known to be metabolised by mitochondrial pathways, including pyruvate, lactate, beta-hydroxybutyrate, alanine and acetate, revealed that among the substrates investigated extracellular pyruvate was most efficiently consumed by astrocytes. Extracellular pyruvate was consumed by the cells almost proportional to time over hours in a concentration-dependent manner with apparent Michaelis–Menten kinetics [Km = 0.6 ± 0.1 mM, Vmax = 5.1 ± 0.8 nmol/(min × mg protein)]. The astrocytic consumption of pyruvate was strongly impaired in the presence of the monocarboxylate transporter 1 (MCT1) inhibitor AR-C155858 or by application of a 10-times excess of the MCT1 substrates lactate or beta-hydroxybutyrate. Pyruvate consumption by viable astrocytes was inhibited in the presence of UK5099, an inhibitor of the mitochondrial pyruvate carrier, or after application of the respiratory chain inhibitor antimycin A. In contrast, the mitochondrial uncoupler BAM15 strongly accelerated cellular pyruvate consumption. Lactate and alanine accounted after 3 h of incubation with pyruvate for around 60% and 10%, respectively, of the pyruvate consumed by the cells. These results demonstrate that consumption of extracellular pyruvate by astrocytes involves uptake via MCT1 and that the velocity of pyruvate consumption is strongly modified by substances that affect the entry of pyruvate into mitochondria or the activity of mitochondrial respiration.
Collapse
|
23
|
Daboss EV, Tikhonov DV, Shcherbacheva EV, Karyakin AA. Ultrastable Lactate Biosensor Linearly Responding in Whole Sweat for Noninvasive Monitoring of Hypoxia. Anal Chem 2022; 94:9201-9207. [PMID: 35687799 DOI: 10.1021/acs.analchem.2c02208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report on the lactate biosensor with linear calibration range from 0.5 to 100 mM, which encircles possible levels of this metabolite concentration in both human sweat and blood. The linear calibration range at high analyte concentrations, which exceeds the Michaelis constant of lactate oxidase by several orders of magnitude, is provided by an additional perfluorosulfonated ionomer diffusion membrane. In contrast to the known lactate biosensors, which retain their response within less than a couple of hours, the reported system displays 100% response for dozens of hours even upon high analyte concentrations. The biosensors with an additional diffusion-limiting membrane have been validated for lactate detection both in human blood serum and in undiluted human sweat shortly after its secretion. Both linear response in the entire range of blood and sweat lactate concentrations and ultrahigh operational stability would provide the use of the elaborated biosensor in wearable devices for the monitoring of hypoxia.
Collapse
Affiliation(s)
- Elena V Daboss
- Chemistry Faculty of M.V. Lomonosov Moscow State University 119991 Moscow, Russia
| | - Dmitrii V Tikhonov
- Chemistry Faculty of M.V. Lomonosov Moscow State University 119991 Moscow, Russia
| | | | - Arkady A Karyakin
- Chemistry Faculty of M.V. Lomonosov Moscow State University 119991 Moscow, Russia
| |
Collapse
|
24
|
Rothman DL, Dienel GA, Behar KL, Hyder F, DiNuzzo M, Giove F, Mangia S. Glucose sparing by glycogenolysis (GSG) determines the relationship between brain metabolism and neurotransmission. J Cereb Blood Flow Metab 2022; 42:844-860. [PMID: 34994222 PMCID: PMC9254033 DOI: 10.1177/0271678x211064399] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the last two decades, it has been established that glucose metabolic fluxes in neurons and astrocytes are proportional to the rates of the glutamate/GABA-glutamine neurotransmitter cycles in close to 1:1 stoichiometries across a wide range of functional energy demands. However, there is presently no mechanistic explanation for these relationships. We present here a theoretical meta-analysis that tests whether the brain's unique compartmentation of glycogen metabolism in the astrocyte and the requirement for neuronal glucose homeostasis lead to the observed stoichiometries. We found that blood-brain barrier glucose transport can be limiting during activation and that the energy demand could only be met if glycogenolysis supports neuronal glucose metabolism by replacing the glucose consumed by astrocytes, a mechanism we call Glucose Sparing by Glycogenolysis (GSG). The predictions of the GSG model are in excellent agreement with a wide range of experimental results from rats, mice, tree shrews, and humans, which were previously unexplained. Glycogenolysis and glucose sparing dictate the energy available to support neuronal activity, thus playing a fundamental role in brain function in health and disease.
Collapse
Affiliation(s)
- Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Kevin L Behar
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mauro DiNuzzo
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, RM, Italy
| | - Federico Giove
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, RM, Italy.,Fondazione Santa Lucia IRCCS, Rome, RM, Italy
| | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
25
|
Brain Metabolic Alterations in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23073785. [PMID: 35409145 PMCID: PMC8998942 DOI: 10.3390/ijms23073785] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
The brain is one of the most energy-consuming organs in the body. Satisfying such energy demand requires compartmentalized, cell-specific metabolic processes, known to be complementary and intimately coupled. Thus, the brain relies on thoroughly orchestrated energy-obtaining agents, processes and molecular features, such as the neurovascular unit, the astrocyte-neuron metabolic coupling, and the cellular distribution of energy substrate transporters. Importantly, early features of the aging process are determined by the progressive perturbation of certain processes responsible for adequate brain energy supply, resulting in brain hypometabolism. These age-related brain energy alterations are further worsened during the prodromal stages of neurodegenerative diseases, namely Alzheimer's disease (AD), preceding the onset of clinical symptoms, and are anatomically and functionally associated with the loss of cognitive abilities. Here, we focus on concrete neuroenergetic features such as the brain's fueling by glucose and lactate, the transporters and vascular system guaranteeing its supply, and the metabolic interactions between astrocytes and neurons, and on its neurodegenerative-related disruption. We sought to review the principles underlying the metabolic dimension of healthy and AD brains, and suggest that the integration of these concepts in the preventive, diagnostic and treatment strategies for AD is key to improving the precision of these interventions.
Collapse
|
26
|
Mayorga-Weber G, Rivera FJ, Castro MA. Neuron-glia (mis)interactions in brain energy metabolism during aging. J Neurosci Res 2022; 100:835-854. [PMID: 35085408 DOI: 10.1002/jnr.25015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Life expectancy in humans is increasing, resulting in a growing aging population, that is accompanied by an increased disposition to develop cognitive deterioration. Hypometabolism is one of the multiple factors related to inefficient brain function during aging. This review emphasizes the metabolic interactions between glial cells (astrocytes, oligodendrocytes, and microglia) and neurons, particularly, during aging. Glial cells provide support and protection to neurons allowing adequate synaptic activity. We address metabolic coupling from the expression of transporters, availability of substrates, metabolic pathways, and mitochondrial activity. In aging, the main metabolic exchange machinery is altered with inefficient levels of nutrients and detrimental mitochondrial activity that results in high reactive oxygen species levels and reduced ATP production, generating a highly inflammatory environment that favors deregulated cell death. Here, we provide an overview of the glial-to-neuron mechanisms, from the molecular components to the cell types, emphasizing aging as the crucial risk factor for developing neurodegenerative/neuroinflammatory diseases.
Collapse
Affiliation(s)
- Gonzalo Mayorga-Weber
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Stem Cells and Neuroregeneration, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Janelia Research Campus, HHMI, Ashburn, VA, USA
| |
Collapse
|
27
|
Contreras EG, Sierralta J. The Fly Blood-Brain Barrier Fights Against Nutritional Stress. Neurosci Insights 2022; 17:26331055221120252. [PMID: 36225749 PMCID: PMC9549514 DOI: 10.1177/26331055221120252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
In the wild, animals face different challenges including multiple events of food
scarcity. How they overcome these conditions is essential for survival. Thus,
adaptation mechanisms evolved to allow the development and survival of an
organism during nutrient restriction periods. Given the high energy demand of
the nervous system, the molecular mechanisms of adaptation to malnutrition are
of great relevance to fuel the brain. The blood-brain barrier (BBB) is the
interface between the central nervous system (CNS) and the circulatory system.
The BBB mediates the transport of macromolecules in and out of the CNS, and
therefore, it can buffer changes in nutrient availability. In this review, we
collect the current evidence using the fruit fly, Drosophila
melanogaster, as a model of the role of the BBB in the adaptation
to starvation. We discuss the role of the Drosophila BBB during
nutrient deprivation as a potential sensor for circulating nutrients, and
transient nutrient storage as a regulator of the CNS neurogenic niche.
Collapse
Affiliation(s)
- Esteban G Contreras
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Jimena Sierralta
- Biomedical Neuroscience Institute and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
Wang Y, Peng Y, Zhang C, Zhou X. Astrocyte-neuron lactate transport in the ACC contributes to the occurrence of long-lasting inflammatory pain in male mice. Neurosci Lett 2021; 764:136205. [PMID: 34478818 DOI: 10.1016/j.neulet.2021.136205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/20/2022]
Abstract
Lactate transport is an important means of communication between astrocytes and neurons and is implicated in a variety of neurobiological processes. However, the connection between astrocyte-neuron lactate transport and nociceptive modulation has not been well established. Here, we found that Complete Freund's adjuvant (CFA)-induced inflammation pain leads to a significant increase in extracellular lactate levels in the anterior cingulate cortex (ACC). Inhibition of glycogenolysis and lactate release in the ACC disrupted the persistent, but not acute, inflammation pain induced by CFA, and this effect was reversed by exogenous L-lactate administration. Knocking down the expression of lactate transporters (MCT1, MCT4, or MCT2) also disrupted the long lasting inflammation pain induced by CFA. Moreover, glycogenolysis in the ACC is critical for the induction of molecular changes related to neuronal plasticity, including the induction of phospho- (p-) ERK, p-CREB, and Fos. Taken together, our findings indicate that astrocyte-neuron lactate transport in the ACC is critical for the occurrence of persistent inflammation pain, suggesting a novel mechanism underlying chronic pain.
Collapse
Affiliation(s)
- Yin Wang
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Yunan Peng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chenjing Zhang
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Xuelong Zhou
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
29
|
Hellas JA, Andrew RD. Neuronal Swelling: A Non-osmotic Consequence of Spreading Depolarization. Neurocrit Care 2021; 35:112-134. [PMID: 34498208 PMCID: PMC8536653 DOI: 10.1007/s12028-021-01326-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/04/2021] [Indexed: 01/22/2023]
Abstract
An acute reduction in plasma osmolality causes rapid uptake of water by astrocytes but not by neurons, whereas both cell types swell as a consequence of lost blood flow (ischemia). Either hypoosmolality or ischemia can displace the brain downwards, potentially causing death. However, these disorders are fundamentally different at the cellular level. Astrocytes osmotically swell or shrink because they express functional water channels (aquaporins), whereas neurons lack functional aquaporins and thus maintain their volume. Yet both neurons and astrocytes immediately swell when blood flow to the brain is compromised (cytotoxic edema) as following stroke onset, sudden cardiac arrest, or traumatic brain injury. In each situation, neuronal swelling is the direct result of spreading depolarization (SD) generated when the ATP-dependent sodium/potassium ATPase (the Na+/K+ pump) is compromised. The simple, and incorrect, textbook explanation for neuronal swelling is that increased Na+ influx passively draws Cl- into the cell, with water following by osmosis via some unknown conduit. We first review the strong evidence that mammalian neurons resist volume change during acute osmotic stress. We then contrast this with their dramatic swelling during ischemia. Counter-intuitively, recent research argues that ischemic swelling of neurons is non-osmotic, involving ion/water cotransporters as well as at least one known amino acid water pump. While incompletely understood, these mechanisms argue against the dogma that neuronal swelling involves water uptake driven by an osmotic gradient with aquaporins as the conduit. Promoting clinical recovery from neuronal cytotoxic edema evoked by spreading depolarizations requires a far better understanding of molecular water pumps and ion/water cotransporters that act to rebalance water shifts during brain ischemia.
Collapse
Affiliation(s)
- Julia A Hellas
- Center for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | - R David Andrew
- Center for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
30
|
Turk AZ, SheikhBahaei S. Morphometric analysis of astrocytes in vocal production circuits of common marmoset (Callithrix jacchus). J Comp Neurol 2021; 530:574-589. [PMID: 34387357 PMCID: PMC8716418 DOI: 10.1002/cne.25230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/10/2022]
Abstract
Astrocytes, the star-shaped glial cells, are the most abundant non-neuronal cell population in the central nervous system. They play a key role in modulating activities of neural networks, including those involved in complex motor behaviors. Common marmosets (Callithrix jacchus), the most vocal non-human primate (NHP), have been used to study the physiology of vocalization and social vocal production. However, the neural circuitry involved in vocal production is not fully understood. In addition, even less is known about the involvement of astrocytes in this circuit. To understand the role, that astrocytes may play in the complex behavior of vocalization, the initial step may be to study their structural properties in the cortical and subcortical regions that are known to be involved in vocalization. Here, in the common marmoset, we identify all astrocytic subtypes seen in other primate's brains, including intralaminar astrocytes. In addition, we reveal detailed structural characteristics of astrocytes and perform morphometric analysis of astrocytes residing in the cortex and midbrain regions that are associated with vocal production. We found that cortical astrocytes in these regions illustrate a higher level of complexity when compared to those in the midbrain. We hypothesize that this complexity that is expressed in cortical astrocytes may reflect their functions to meet the metabolic/structural needs of these regions.
Collapse
Affiliation(s)
- Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Tang J, Bair M, Descalzi G. Reactive Astrocytes: Critical Players in the Development of Chronic Pain. Front Psychiatry 2021; 12:682056. [PMID: 34122194 PMCID: PMC8192827 DOI: 10.3389/fpsyt.2021.682056] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is associated with long term plasticity of nociceptive pathways in the central nervous system. Astrocytes can profoundly affect synaptic function and increasing evidence has highlighted how altered astrocyte activity may contribute to the pathogenesis of chronic pain. In response to injury, astrocytes undergo a shift in form and function known as reactive astrogliosis, which affects their release of cytokines and gliotransmitters. These neuromodulatory substances have been implicated in driving the persistent changes in central nociceptive activity. Astrocytes also release lactate which neurons can use to produce energy during synaptic plasticity. Furthermore, recent research has provided insight into lactate's emerging role as a signaling molecule in the central nervous system, which may be involved in directly modulating neuronal and astrocytic activity. In this review, we present evidence for the involvement of astrocyte-derived tumor necrosis factor alpha in pain-associated plasticity, in addition to research suggesting the potential involvement of gliotransmitters D-serine and adenosine-5'-triphosphate. We also discuss work implicating astrocyte-neuron metabolic coupling, and the possible role of lactate, which has been sparsely studied in the context of chronic pain, in supporting pathological changes in central nociceptive activity.
Collapse
Affiliation(s)
| | | | - Giannina Descalzi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
32
|
Prakapenka AV, Korol DL. Estradiol selectively regulates metabolic substrates across memory systems in models of menopause. Climacteric 2021; 24:366-372. [PMID: 33982614 DOI: 10.1080/13697137.2021.1917537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Estrogen loss at menopause is thought to contribute to specific memory problems commonly encountered by women who are transitioning through or who have experienced menopause. Work in preclinical models suggests that estrogens bidirectionally regulate cognition through direct actions on different neural systems called memory systems, enhancing some types of learning and memory while impairing others. The energy load in the brain during cognitive activity is notoriously high, requiring sufficient provisions of metabolic substrates such as glucose, lactate, or ketones for optimal cognition. Thus, it is possible that estrogens bidirectionally regulate energy substrate availability within each system to produce the improvements and impairments in learning and memory. Indeed, estradiol increases extracellular levels of glucose in the hippocampus, a shift that corresponds to the hormone's beneficial effects on hippocampus-sensitive cognition. In contrast, estradiol decreases levels of lactate and ketones in the striatum, a shift that corresponds to the impairing effects of estradiol on striatum-sensitive cognition. Menopause may thus be associated with both cognitive improvements and impairments depending on estradiol status and on the problem to be solved. We propose that regulation of neural metabolism is one likely mechanism for these bidirectional effects of estradiol on cognition.
Collapse
Affiliation(s)
- A V Prakapenka
- Biology Department, Syracuse University, Syracuse, NY, USA
| | - D L Korol
- Biology Department, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
33
|
Interplay between bioenergetics and oxidative stress at normal brain aging. Aging as a result of increasing disbalance in the system oxidative stress-energy provision. Pflugers Arch 2021; 473:713-722. [PMID: 33599804 DOI: 10.1007/s00424-021-02531-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
At normal aging, the brain exhibits signs of compromised bioenergetic and increased levels of products of interaction between reactive oxygen/nitrogen species (ROS/RNS) and brain constituents. Under normal conditions, steady-state levels of ATP and ROS/RNS fluctuate in certain ranges providing basis for stable homeostasis. However, from time to time these parameters leave a "comfort zone," and at adulthood, organisms are able to cope with these challenges efficiently, whereas at aging, efficiency of the systems maintaining homeostasis declines. That is very true for the brain due to high ATP demands which are mainly covered by mitochondrial oxidative phosphorylation. Such active oxidative metabolism gives rise to intensive ROS generation as side products. The situation is worsened by high brain level of polyunsaturated fatty acids which are substrates for ROS/RNS attack and production of lipid peroxides. In this review, organization of energetic metabolism in the brain with a focus on its interplay with ROS at aging is discussed. The working hypothesis on aging as a disbalance between oxidative stress and energy provision as a reason for brain aging is proposed. From this point of view, normal age-related physiological decline in the brain functions results from increased disbalance between decrease in capability of the brain to control constantly increased incapability to maintain ROS levels and produce ATP due to amplification of vicious cycles intensification of oxidative stress <----> impairment of energy provision.
Collapse
|
34
|
Kogel V, Trinh S, Gasterich N, Beyer C, Seitz J. Long-Term Glucose Starvation Induces Inflammatory Responses and Phenotype Switch in Primary Cortical Rat Astrocytes. J Mol Neurosci 2021; 71:2368-2382. [PMID: 33580474 PMCID: PMC8585803 DOI: 10.1007/s12031-021-01800-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Astrocytes are the most abundant cell type in the brain and crucial to ensure the metabolic supply of neurons and their synapse formation. Overnutrition as present in patients suffering from obesity causes astrogliosis in the hypothalamus. Other diseases accompanied by malnutrition appear to have an impact on the brain and astrocyte function. In the eating disorder anorexia nervosa (AN), patients suffer from undernutrition and develop volume reductions of the cerebral cortex, associated with reduced astrocyte proliferation and cell count. Although an effect on astrocytes and their function has already been shown for overnutrition, their role in long-term undernutrition remains unclear. The present study used primary rat cerebral cortex astrocytes to investigate their response to chronic glucose starvation. Cells were grown with a medium containing a reduced glucose concentration (2 mM) for 15 days. Long-term glucose starvation increased the expression of a subset of pro-inflammatory genes and shifted the primary astrocyte population to the pro-inflammatory A1-like phenotype. Moreover, genes encoding for proteins involved in the unfolded protein response were elevated. Our findings demonstrate that astrocytes under chronic glucose starvation respond with an inflammatory reaction. With respect to the multiple functions of astrocytes, an association between elevated inflammatory responses due to chronic starvation and alterations found in the brain of patients suffering from undernutrition seems possible.
Collapse
Affiliation(s)
- Vanessa Kogel
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Natalie Gasterich
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|
35
|
Petit JM, Eren-Koçak E, Karatas H, Magistretti P, Dalkara T. Brain glycogen metabolism: A possible link between sleep disturbances, headache and depression. Sleep Med Rev 2021; 59:101449. [PMID: 33618186 DOI: 10.1016/j.smrv.2021.101449] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022]
Abstract
The functions of sleep and its links with neuropsychiatric diseases have long been questioned. Among the numerous hypotheses on sleep function, early studies proposed that sleep helps to replenish glycogen stores consumed during waking. Later studies found increased brain glycogen after sleep deprivation, leading to "glycogenetic" hypothesis, which states that there is a parallel increase in synthesis and utilization of glycogen during wakefulness, whereas decrease in the excitatory transmission creates an imbalance causing accumulation of glycogen during sleep. Glycogen is a vital energy reservoir to match the synaptic demand particularly for re-uptake of potassium and glutamate during intense glutamatergic transmission. Therefore, sleep deprivation-induced transcriptional changes may trigger migraine by reducing glycogen availability, which slows clearance of extracellular potassium and glutamate, hence, creates susceptibility to cortical spreading depolarization, the electrophysiological correlate of migraine aura. Interestingly, chronic stress accompanied by increased glucocorticoid levels and locus coeruleus activity and leading to mood disorders in which sleep disturbances are prevalent, also affects brain glycogen turnover via glucocorticoids, noradrenaline, serotonin and adenosine. These observations altogether suggest that inadequate astrocytic glycogen turnover may be one of the mechanisms linking migraine, mood disorders and sleep.
Collapse
Affiliation(s)
- J-M Petit
- Lausanne University Hospital, Center for Psychiatric Neuroscience, Prilly, Switzerland.
| | - E Eren-Koçak
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, and Faculty of Medicine, Department of Psychiatry, Ankara, Turkey.
| | - H Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey.
| | - P Magistretti
- King Abdullah University of Science and Technology, Saudi Arabia.
| | - T Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey.
| |
Collapse
|
36
|
Fink K, Velebit J, Vardjan N, Zorec R, Kreft M. Noradrenaline-induced l-lactate production requires d-glucose entry and transit through the glycogen shunt in single-cultured rat astrocytes. J Neurosci Res 2021; 99:1084-1098. [PMID: 33491223 DOI: 10.1002/jnr.24783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
During cognitive efforts mediated by local neuronal networks, approximately 20% of additional energy is required; this is mediated by chemical messengers such as noradrenaline (NA). NA targets astroglial aerobic glycolysis, the hallmark of which is the end product l-lactate, a fuel for neurons. Biochemical studies have revealed that astrocytes exhibit a prominent glycogen shunt, in which a portion of d-glucose molecules entering the cytoplasm is transiently incorporated into glycogen, a buffer and source of d-glucose during increased energy demand. Here, we studied single astrocytes by measuring cytosolic L-lactate ([lac]i ) with the FRET nanosensor Laconic. We examined whether NA-induced increase in [lac]i is influenced by: (a) 2-deoxy-d-glucose (2-DG, 3 mM), a molecule that enters the cytosol and inhibits the glycolytic pathway; (b) 1,4-dideoxy-1,4-imino-d-arabinitol (DAB, 300 µM), a potent inhibitor of glycogen phosphorylase and glycogen degradation; and (c) 3-nitropropionic acid (3-NPA, 1 mM), an inhibitor of the Krebs cycle. The results of these pharmacological experiments revealed that d-glucose uptake is essential for the NA-induced increase in [lac]i , and that this exclusively arises from glycogen degradation, indicating that most, if not all, d-glucose molecules in NA-stimulated cells transit the glycogen shunt during glycolysis. Moreover, under the defined transmembrane d-glucose gradient, the glycolytic intermediates were not only used to produce l-lactate, but also to significantly support oxidative phosphorylation, as demonstrated by an elevation in [lac]i when Krebs cycle was inhibited. We conclude that l-lactate production via aerobic glycolysis is an essential energy pathway in NA-stimulated astrocytes; however, oxidative metabolism is important at rest.
Collapse
Affiliation(s)
- Katja Fink
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Jelena Velebit
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia.,Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
37
|
Briski KP, Ibrahim MMH, Mahmood ASMH, Alshamrani AA. Norepinephrine Regulation of Ventromedial Hypothalamic Nucleus Astrocyte Glycogen Metabolism. Int J Mol Sci 2021; 22:ijms22020759. [PMID: 33451134 PMCID: PMC7828624 DOI: 10.3390/ijms22020759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
The catecholamine norepinephrine (NE) links hindbrain metabolic-sensory neurons with key glucostatic control structures in the brain, including the ventromedial hypothalamic nucleus (VMN). In the brain, the glycogen reserve is maintained within the astrocyte cell compartment as an alternative energy source to blood-derived glucose. VMN astrocytes are direct targets for metabolic stimulus-driven noradrenergic signaling due to their adrenergic receptor expression (AR). The current review discusses recent affirmative evidence that neuro-metabolic stability in the VMN may be shaped by NE influence on astrocyte glycogen metabolism and glycogen-derived substrate fuel supply. Noradrenergic modulation of estrogen receptor (ER) control of VMN glycogen phosphorylase (GP) isoform expression supports the interaction of catecholamine and estradiol signals in shaping the physiological stimulus-specific control of astrocyte glycogen mobilization. Sex-dimorphic NE control of glycogen synthase and GP brain versus muscle type proteins may be due, in part, to the dissimilar noradrenergic governance of astrocyte AR and ER variant profiles in males versus females. Forthcoming advances in the understanding of the molecular mechanistic framework for catecholamine stimulus integration with other regulatory inputs to VMN astrocytes will undoubtedly reveal useful new molecular targets in each sex for glycogen mediated defense of neuronal metabolic equilibrium during neuro-glucopenia.
Collapse
|
38
|
Abstract
Animal behavior was classically considered to be determined exclusively by neuronal activity, whereas surrounding glial cells such as astrocytes played only supportive roles. However, astrocytes are as numerous as neurons in the mammalian brain, and current findings indicate a chemically based dialog between astrocytes and neurons. Activation of astrocytes by synaptically released neurotransmitters converges on regulating intracellular Ca2+ in astrocytes, which then can regulate the efficacy of near and distant tripartite synapses at diverse timescales through gliotransmitter release. Here, we discuss recent evidence on how diverse behaviors are impacted by this dialog. These recent findings support a paradigm shift in neuroscience, in which animal behavior does not result exclusively from neuronal activity but from the coordinated activity of both astrocytes and neurons. Decoding how astrocytes and neurons interact with each other in various brain circuits will be fundamental to fully understanding how behaviors originate and become dysregulated in disease.
Collapse
Affiliation(s)
- Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
39
|
Ehrke E, Steinmeier J, Stapelfeldt K, Dringen R. The Menadione-Mediated WST1 Reduction by Cultured Astrocytes Depends on NQO1 Activity and Cytosolic Glucose Metabolism. Neurochem Res 2021; 46:88-99. [PMID: 31902045 DOI: 10.1007/s11064-019-02930-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
Abstract
The reduction of water-soluble tetrazolium salts (WSTs) is frequently used to determine the metabolic integrity and the viability of cultured cells. Recently, we have reported that the electron cycler menadione can efficiently connect intracellular oxidation reactions in cultured astrocytes with the extracellular reduction of WST1 and that this menadione cycling reaction involves an enzyme. The enzymatic reaction involved in the menadione-dependent WST1 reduction was found strongly enriched in the cytosolic fraction of cultured astrocytes and is able to efficiently use both NADH and NADPH as electron donors. In addition, the reaction was highly sensitive towards dicoumarol with Kic values in the low nanomolar range, suggesting that the NAD(P)H:quinone oxidoreductase 1 (NQO1) catalyzes the menadione-dependent WST1 reduction in astrocytes. Also, in intact astrocytes, dicoumarol inhibited the menadione-dependent WST1 reduction in a concentration-dependent manner with half-maximal inhibition observed at around 50 nM. Moreover, the menadione-dependent WST1 reduction by viable astrocytes was strongly affected by the availability of glucose. In the absence of glucose only residual WST1 reduction was observed, while a concentration-dependent increase in WST1 reduction was found during a 30 min incubation with maximal WST1 reduction already determined in the presence of 0.5 mM glucose. Mannose could fully replace glucose as substrate for astrocytic WST1 reduction, while other hexoses, lactate and the mitochondrial substrate β-hydroxybutyrate failed to provide electrons for the cell-dependent WST1 reduction. These results demonstrate that the menadione-mediated WST1 reduction involves cytosolic NQO1 activity and that this process is strongly affected by the availability of glucose as metabolic substrate.
Collapse
Affiliation(s)
- Eric Ehrke
- Center for Biomolecular Interactions Bremen (CBIB), Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | - Johann Steinmeier
- Center for Biomolecular Interactions Bremen (CBIB), Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | - Karsten Stapelfeldt
- Center for Biomolecular Interactions Bremen (CBIB), Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Institute for Biophysics, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen (CBIB), Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany.
| |
Collapse
|
40
|
Köhler S, Schmidt H, Fülle P, Hirrlinger J, Winkler U. A Dual Nanosensor Approach to Determine the Cytosolic Concentration of ATP in Astrocytes. Front Cell Neurosci 2020; 14:565921. [PMID: 33192312 PMCID: PMC7530325 DOI: 10.3389/fncel.2020.565921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
Adenosine triphosphate (ATP) is the central energy carrier of all cells and knowledge on the dynamics of the concentration of ATP ([ATP]) provides important insights into the energetic state of a cell. Several genetically encoded fluorescent nanosensors for ATP were developed, which allow following the cytosolic [ATP] at high spatial and temporal resolution using fluorescence microscopy. However, to calibrate the fluorescent signal to [ATP] has remained challenging. To estimate basal cytosolic [ATP] ([ATP]0) in astrocytes, we here took advantage of two ATP nanosensors of the ATeam-family (ATeam1.03; ATeam1.03YEMK) with different affinities for ATP. Altering [ATP] by external stimuli resulted in characteristic pairs of signal changes of both nanosensors, which depend on [ATP]0. Using this dual nanosensor strategy and epifluorescence microscopy, [ATP]0 was estimated to be around 1.5 mM in primary cultures of cortical astrocytes from mice. Furthermore, in astrocytes in acutely isolated cortical slices from mice expressing both nanosensors after stereotactic injection of AAV-vectors, 2-photon microscopy revealed [ATP]0 of 0.7 mM to 1.3 mM. Finally, the change in [ATP] induced in the cytosol of cultured cortical astrocytes by application of azide, glutamate, and an increased extracellular concentration of K+ were calculated as −0.50 mM, −0.16 mM, and 0.07 mM, respectively. In summary, the dual nanosensor approach adds another option for determining the concentration of [ATP] to the increasing toolbox of fluorescent nanosensors for metabolites. This approach can also be applied to other metabolites when two sensors with different binding properties are available.
Collapse
Affiliation(s)
- Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Hartmut Schmidt
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Paula Fülle
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany.,Wilhelm-Ostwald-Schule, Gymnasium der Stadt Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Ulrike Winkler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| |
Collapse
|
41
|
Jha MK, Morrison BM. Lactate Transporters Mediate Glia-Neuron Metabolic Crosstalk in Homeostasis and Disease. Front Cell Neurosci 2020; 14:589582. [PMID: 33132853 PMCID: PMC7550678 DOI: 10.3389/fncel.2020.589582] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Research over the last couple of decades has provided novel insights into lactate neurobiology and the implications of lactate transport-driven neuroenergetics in health and diseases of peripheral nerve and the brain. The expression pattern of lactate transporters in glia and neurons has now been described, though notable controversies and discrepancies remain. Importantly, down- and up-regulation experiments are underway to better understand the function of these transporters in different systems. Lactate transporters in peripheral nerves are important for maintenance of axon and myelin integrity, motor end-plate integrity, the development of diabetic peripheral neuropathy (DPN), and the functional recovery following nerve injuries. Similarly, brain energy metabolism and functions ranging from development to synaptic plasticity to axonal integrity are also dependent on lactate transport primarily between glia and neurons. This review is focused on critically analysing the expression pattern and the functions of lactate transporters in peripheral nerves and the brain and highlighting their role in glia-neuron metabolic crosstalk in physiological and pathological conditions.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
42
|
Dienel GA. Hypothesis: A Novel Neuroprotective Role for Glucose-6-phosphatase (G6PC3) in Brain-To Maintain Energy-Dependent Functions Including Cognitive Processes. Neurochem Res 2020; 45:2529-2552. [PMID: 32815045 DOI: 10.1007/s11064-020-03113-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
The isoform of glucose-6-phosphatase in liver, G6PC1, has a major role in whole-body glucose homeostasis, whereas G6PC3 is widely distributed among organs but has poorly-understood functions. A recent, elegant analysis of neutrophil dysfunction in G6PC3-deficient patients revealed G6PC3 is a neutrophil metabolite repair enzyme that hydrolyzes 1,5-anhydroglucitol-6-phosphate, a toxic metabolite derived from a glucose analog present in food. These patients exhibit a spectrum of phenotypic characteristics and some have learning disabilities, revealing a potential linkage between cognitive processes and G6PC3 activity. Previously-debated and discounted functions for brain G6PC3 include causing an ATP-consuming futile cycle that interferes with metabolic brain imaging assays and a nutritional role involving astrocyte-neuron glucose-lactate trafficking. Detailed analysis of the anhydroglucitol literature reveals that it competes with glucose for transport into brain, is present in human cerebrospinal fluid, and is phosphorylated by hexokinase. Anhydroglucitol-6-phosphate is present in rodent brain and other organs where its accumulation can inhibit hexokinase by competition with ATP. Calculated hexokinase inhibition indicates that energetics of brain and erythrocytes would be more adversely affected by anhydroglucitol-6-phosphate accumulation than heart. These findings strongly support the paradigm-shifting hypothesis that brain G6PC3 removes a toxic metabolite, thereby maintaining brain glucose metabolism- and ATP-dependent functions, including cognitive processes.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Mail Slot 500, Little Rock, AR, 72205, USA.
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
43
|
Lee JA, Hall B, Allsop J, Alqarni R, Allen SP. Lipid metabolism in astrocytic structure and function. Semin Cell Dev Biol 2020; 112:123-136. [PMID: 32773177 DOI: 10.1016/j.semcdb.2020.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are the most abundant glial cell in the central nervous system and are involved in multiple processes including metabolic homeostasis, blood brain barrier regulation and neuronal crosstalk. Astrocytes are the main storage point of glycogen in the brain and it is well established that astrocyte uptake of glutamate and release of lactate prevents neuronal excitability and supports neuronal metabolic function. However, the role of lipid metabolism in astrocytes in relation to neuronal support has been until recently, unclear. Lipids play a fundamental role in astrocyte function, including energy generation, membrane fluidity and cell to cell signaling. There is now emerging evidence that astrocyte storage of lipids in droplets has a crucial physiological and protective role in the central nervous system. This pathway links β-oxidation in astrocytes to inflammation, signalling, oxidative stress and mitochondrial energy generation in neurons. Disruption in lipid metabolism, structure and signalling in astrocytes can lead to pathogenic mechanisms associated with a range of neurological disorders.
Collapse
Affiliation(s)
- James Ak Lee
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Benjamin Hall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Jessica Allsop
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Razan Alqarni
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
44
|
Maffezzini C, Calvo-Garrido J, Wredenberg A, Freyer C. Metabolic regulation of neurodifferentiation in the adult brain. Cell Mol Life Sci 2020; 77:2483-2496. [PMID: 31912194 PMCID: PMC7320050 DOI: 10.1007/s00018-019-03430-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
Understanding the mechanisms behind neurodifferentiation in adults will be an important milestone in our quest to identify treatment strategies for cognitive disorders observed during our natural ageing or disease. It is now clear that the maturation of neural stem cells to neurones, fully integrated into neuronal circuits requires a complete remodelling of cellular metabolism, including switching the cellular energy source. Mitochondria are central for this transition and are increasingly seen as the regulatory hub in defining neural stem cell fate and neurodevelopment. This review explores our current knowledge of metabolism during adult neurodifferentiation.
Collapse
Affiliation(s)
- Camilla Maffezzini
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Javier Calvo-Garrido
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wredenberg
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.
| | - Christoph Freyer
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
45
|
Swanson RA. A thermodynamic function of glycogen in brain and muscle. Prog Neurobiol 2020; 189:101787. [PMID: 32151532 PMCID: PMC11156230 DOI: 10.1016/j.pneurobio.2020.101787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 11/20/2022]
Abstract
Brain and muscle glycogen are generally thought to function as local glucose reserves, for use during transient mismatches between glucose supply and demand. However, quantitative measures show that glucose supply is likely never rate-limiting for energy metabolism in either brain or muscle under physiological conditions. These tissues nevertheless do utilize glycogen during increased energy demand, despite the availability of free glucose, and despite the ATP cost of cycling glucose through glycogen polymer. This seemingly wasteful process can be explained by considering the effect of glycogenolysis on the amount of energy obtained from ATP (ΔG'ATP). The amount of energy obtained from ATP is reduced by elevations in inorganic phosphate (Pi). Glycogen utilization sequesters Pi in the glycogen phosphorylase reaction and in downstream phosphorylated glycolytic intermediates, thereby buffering Pi elevations and maximizing energy yield at sites of rapid ATP consumption. This thermodynamic effect of glycogen may be particularly important in the narrow, spatially constrained astrocyte processes that ensheath neuronal synapses and in cells such as astrocytes and myocytes that release Pi from phosphocreatine during energy demand. The thermodynamic effect may also explain glycolytic super-compensation in brain when glycogen is not available, and aspects of exercise physiology in muscle glycogen phosphorylase deficiency (McArdle disease).
Collapse
Affiliation(s)
- Raymond A Swanson
- Neurology Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA; Dept. of Neurology, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
46
|
Jiang X, Challiss J, Glynn P. β1-adrenoceptor-stimulated lactate production in cultured astrocytes is predominantly glycogen-independent. Biochem Pharmacol 2020; 177:114035. [PMID: 32413424 DOI: 10.1016/j.bcp.2020.114035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
Noradrenaline (NA) promotes breakdown of the glucose-polymer, glycogen, and hence enhances glycolytic production of lactate in astrocytes. Here, in cultured rat cerebrocortical astrocytes, we examined the contributions of different adrenoceptor subtypes to NA-modulated glucose metabolism, and the relationship of NA-induced glycogenolysis to lactate production. Stimulation of astrocytic glucose metabolism by NA was mediated predominantly via β1-adrenoceptors and cAMP. Constitutive β 1-adrenoceptor activity - in the absence of exogenous NA - contributed to the basal rate of glycogen turnover. Although mRNAs encoding both β 1- and β 2-adrenoceptors were detected in these astrocytes, β 2-adrenoceptors contributed little to NA-induced modulation of glucose metabolism. Activation of α2- and α 1-adrenoceptors in these cells decreased cAMP and increased cytosolic Ca2+, respectively, but did not modulate NA-induced glycogenolysis: α 2-adrenoceptors because glycogenolysis was induced maximally by NA concentrations that only began to inhibit cAMP production; and α 1-adrenoceptors possibly because of desensitisation and depletion of Ca2+ stores. Under basal conditions, astrocytes converted glucose to extracellular lactate in near stoichiometric manner. When glucose-starved astrocytes were given fresh glucose-containing medium, lactate accumulation displayed a brief lag period before attaining a steady-state rate. During this lag period NA, acting at β 1-adrenoceptors, increased the rate of lactate accumulation both in the absence and presence of an inhibitor of glycogen turnover. At the steady-state, the rate of glucose incorporation into accumulated glycogen was ~ 5% of that into lactate, but NA enhanced lactate output by 20-50%: this further indicates that NA, via β 1-adrenoceptors and cAMP, can enhance astrocytic lactate production independently of its effect on glycogen turnover.
Collapse
Affiliation(s)
- Xianguo Jiang
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 9HN, UK
| | - John Challiss
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 9HN, UK
| | - Paul Glynn
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|
47
|
Krycer JR, Quek LE, Francis D, Fazakerley DJ, Elkington SD, Diaz-Vegas A, Cooke KC, Weiss FC, Duan X, Kurdyukov S, Zhou PX, Tambar UK, Hirayama A, Ikeda S, Kamei Y, Soga T, Cooney GJ, James DE. Lactate production is a prioritized feature of adipocyte metabolism. J Biol Chem 2020; 295:83-98. [PMID: 31690627 PMCID: PMC6952601 DOI: 10.1074/jbc.ra119.011178] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Adipose tissue is essential for whole-body glucose homeostasis, with a primary role in lipid storage. It has been previously observed that lactate production is also an important metabolic feature of adipocytes, but its relationship to adipose and whole-body glucose disposal remains unclear. Therefore, using a combination of metabolic labeling techniques, here we closely examined lactate production of cultured and primary mammalian adipocytes. Insulin treatment increased glucose uptake and conversion to lactate, with the latter responding more to insulin than did other metabolic fates of glucose. However, lactate production did not just serve as a mechanism to dispose of excess glucose, because we also observed that lactate production in adipocytes did not solely depend on glucose availability and even occurred independently of glucose metabolism. This suggests that lactate production is prioritized in adipocytes. Furthermore, knocking down lactate dehydrogenase specifically in the fat body of Drosophila flies lowered circulating lactate and improved whole-body glucose disposal. These results emphasize that lactate production is an additional metabolic role of adipose tissue beyond lipid storage and release.
Collapse
Affiliation(s)
- James R Krycer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Lake-Ee Quek
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Deanne Francis
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Daniel J Fazakerley
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
| | - Sarah D Elkington
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alexis Diaz-Vegas
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kristen C Cooke
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fiona C Weiss
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaowen Duan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sergey Kurdyukov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ping-Xin Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Uttam K Tambar
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-Ku, Tokyo 100-0004, Japan
| | - Satsuki Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Yushi Kamei
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-Ku, Tokyo 100-0004, Japan
| | - Gregory J Cooney
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia.
| | - David E James
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
48
|
Heterogeneity of Astrocytes in Grey and White Matter. Neurochem Res 2019; 46:3-14. [PMID: 31797158 DOI: 10.1007/s11064-019-02926-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are a diverse and heterogeneous type of glial cells. The major task of grey and white matter areas in the brain are computation of information at neuronal synapses and propagation of action potentials along axons, respectively, resulting in diverse demands for astrocytes. Adapting their function to the requirements in the local environment, astrocytes differ in morphology, gene expression, metabolism, and many other properties. Here we review the differential properties of protoplasmic astrocytes of grey matter and fibrous astrocytes located in white matter in respect to glutamate and energy metabolism, to their function at the blood-brain interface and to coupling via gap junctions. Finally, we discuss how this astrocytic heterogeneity might contribute to the different susceptibility of grey and white matter to ischemic insults.
Collapse
|
49
|
Piotrowicz Z, Chalimoniuk M, Płoszczyca K K, Czuba M, Langfort J. Acute normobaric hypoxia does not affect the simultaneous exercise-induced increase in circulating BDNF and GDNF in young healthy men: A feasibility study. PLoS One 2019; 14:e0224207. [PMID: 31644554 PMCID: PMC6808427 DOI: 10.1371/journal.pone.0224207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/08/2019] [Indexed: 01/25/2023] Open
Abstract
Physical exercise has a neuromodulatory effect on the central nervous system (CNS) partially by modifying expression of neuropeptides produced and secreted by neurons and glial cells, among which the best examined are brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Because both neurotrophins can cross the brain-blood barrier (BBB), their blood levels indirectly reflect their production in the CNS. Moreover, both neuropeptides are involved in modulation of dopaminergic and serotoninergic system function. Because limited information is available on the effects of exercise to volition exhaustion and acute hypoxia on CNS, BDNF and GDNF formation, the aims of the present study were to verify whether 1) acute exercise to exhaustion in addition to neurons also activates glial cells and 2) additional exposure to acute normobaric moderate hypoxia affects their function. In this feasibility study we measured blood concentrations of BDNF, GDNF, and neuropeptides considered as biomarkers of brain damage (bFGF, NGF, S100B, GFAP) in seven sedentary healthy young men who performed a graded exercise test to volitional exhaustion on a cycle ergometer under normoxic (N) and hypoxic conditions: 2,000 m (H2; FiO2 = 16.6%) and 3,000 m altitude (H3; FiO2 = 14.7%). In all conditions serum concentrations of both BDNF and GDNF increased immediately after cessation of exercise (p<0.01). There was no effect of condition or interaction (condition x time of measurement) and exercise on any of the brain damage biomarkers: bFGF, NGF, S100B, GFAP. Moreover, in N (0<0.01) and H3 (p<0.05) exercise caused elevated serum 5-HT concentration. The results suggest that a graded effort to volitional exhaustion in normoxia, as well as hypoxia, simultaneously activates both neurons and astrocytes. Considering that s100B, GFAP, bFGF, and NGF (produced mainly by astrocytes) are markers of brain damage, it can be assumed that a maximum effort in both conditions is safe for the CNS.
Collapse
Affiliation(s)
- Zofia Piotrowicz
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Małgorzata Chalimoniuk
- Department of Tourism and Health in Biała Podlaska, The Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | | - Miłosz Czuba
- Department of Kinesiology, Institute of Sport, Warsaw, Poland
- Department of Sports Theory, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Józef Langfort
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
50
|
Dienel GA. The “protected” glucose transport through the astrocytic endoplasmic reticulum is too slow to serve as a quantitatively‐important highway for nutrient delivery. J Neurosci Res 2019; 97:854-862. [DOI: 10.1002/jnr.24432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Gerald A. Dienel
- Department of Neurology University of Arkansas for Medical Sciences Little Rock Arkansas
- Department of Cell Biology and Physiology University of New Mexico Albuquerque New Mexico
| |
Collapse
|