1
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
2
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Wang Y, Lin Y, He S, Wu S, Yang C. Singlet oxygen: Properties, generation, detection, and environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132538. [PMID: 37734310 DOI: 10.1016/j.jhazmat.2023.132538] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Singlet oxygen (1O2) is molecular oxygen in the excited state with high energy and electrophilic properties. It is widely found in nature, and its important role is gradually extending from chemical syntheses and medical techniques to environmental remediation. However, there exist ambiguities and controversies regarding detection methods, generation pathways, and reaction mechanisms which have hindered the understanding and applications of 1O2. For example, the inaccurate detection of 1O2 has led to an overestimation of its role in pollutant degradation. The difficulty in detecting multiple intermediate species obscures the mechanism of 1O2 production. The applications of 1O2 in environmental remediation have also not been comprehensively commented on. To fill these knowledge gaps, this paper systematically discussed the properties and generation of 1O2, reviewed the state-of-the-art detection methods for 1O2 and long-standing controversies in the catalytic systems. Future opportunities and challenges were also discussed regarding the applications of 1O2 in the degradation of pollutants dissolved in water and volatilized in the atmosphere, the disinfection of drinking water, the gas/solid sterilization, and the self-cleaning of filter membranes. This review is expected to provide a better understanding of 1O2-based advanced oxidation processes and practical applications in the environmental protection of 1O2.
Collapse
Affiliation(s)
- Yue Wang
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
4
|
Panasenko OM, Vladimirov YA, Sergienko VI. Free Radical Lipid Peroxidation Induced by Reactive Halogen Species. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S148-S179. [PMID: 38621749 DOI: 10.1134/s0006297924140098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 04/17/2024]
Abstract
The review is devoted to the mechanisms of free radical lipid peroxidation (LPO) initiated by reactive halogen species (RHS) produced in mammals, including humans, by heme peroxidase enzymes, primarily myeloperoxidase (MPO). It has been shown that RHS can participate in LPO both in the initiation and branching steps of the LPO chain reactions. The initiation step of RHS-induced LPO mainly involves formation of free radicals in the reactions of RHS with nitrite and/or with amino groups of phosphatidylethanolamine or Lys. The branching step of the oxidative chain is the reaction of RHS with lipid hydroperoxides, in which peroxyl and alkoxyl radicals are formed. The role of RHS-induced LPO in the development of human inflammatory diseases (cardiovascular and neurodegenerative diseases, cancer, diabetes, rheumatoid arthritis) is discussed in detail.
Collapse
Affiliation(s)
- Oleg M Panasenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.
| | - Yury A Vladimirov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Valery I Sergienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
5
|
Grenier A, Morissette MC, Rochette PJ, Pouliot R. Toxic Interaction Between Solar Radiation and Cigarette Smoke on Primary Human Keratinocytes. Photochem Photobiol 2023; 99:1258-1268. [PMID: 36537030 DOI: 10.1111/php.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Solar radiation and cigarette smoke are two environmental risk factors known to affect skin integrity. Although the toxic effects of these factors on skin have been widely studied separately, few studies have focused on their interaction. The objective of this study was to evaluate and understand the synergistic harmful effects of cigarette smoke and solar rays on human primary keratinocytes. The keratinocytes were exposed to cigarette smoke extract (CSE) and then irradiated with a solar simulator light (SSL). The viability, as determined by measuring metabolic activity of skin cells, and the levels of global reactive oxygen species (ROS) were evaluated after exposure to CSE and SSL. The combination of 3% CSE with 29 kJ m-2 UVA caused a decrease of 81% in cell viability, while with 10% to 20% CSE, the cell viability was null. This phototoxicity was accompanied by an increase in singlet oxygen but a decrease in type I ROS when CSE and SSL were combined in vitro. Surprisingly, an increase in the CSE's total antioxidant capacity was also observed. These results suggest a synergy between the two environmental factors in their effect on skin cells, and more precisely a phototoxicity causing a drastic decrease in cell viability.
Collapse
Affiliation(s)
- Alexe Grenier
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe Médecine Régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
| | - Mathieu C Morissette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Québec, QC, Canada
- Département de médecine, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Patrick J Rochette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe Médecine Régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département d'ophtalmologie et ORL-chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe Médecine Régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Terao J. Revisiting carotenoids as dietary antioxidants for human health and disease prevention. Food Funct 2023; 14:7799-7824. [PMID: 37593767 DOI: 10.1039/d3fo02330c] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Humans are unique indiscriminate carotenoid accumulators, so the human body accumulates a wide range of dietary carotenoids of different types and to varying concentrations. Carotenoids were once recognized as physiological antioxidants because of their ability to quench singlet molecular oxygen (1O2). In the 1990s, large-scale intervention studies failed to demonstrate that supplementary β-carotene intake reduces the incidence of lung cancer, although its antioxidant activity was supposed to contribute to the prevention of oxidative stress-induced carcinogenesis. Nevertheless, the antioxidant activity of carotenoids has attracted renewed attention as the pathophysiological role of 1O2 has emerged, and as the ability of dietary carotenoids to induce antioxidant enzymes has been revealed. This review focuses on six major carotenoids from fruit and vegetables and revisits their physiological functions as biological antioxidants from the standpoint of health promotion and disease prevention. β-Carotene 9',10'-oxygenase-derived oxidative metabolites trigger increases in the activities of antioxidant enzymes. Lutein and zeaxanthin selectively accumulate in human macular cells to protect against light-induced macular impairment by acting as antioxidants. Lycopene accumulates exclusively and to high concentrations in the testis, where its antioxidant activity may help to eliminate oxidative damage. Dietary carotenoids appear to exert their antioxidant activity in photo-irradiated skin after their persistent deposition in the skin. An acceptable level of dietary carotenoids for disease prevention should be established because they can have deleterious effects as prooxidants if they accumulate to excess levels. Finally, it is expected that the reason why humans are indiscriminate carotenoid accumulators will be understood soon.
Collapse
Affiliation(s)
- Junji Terao
- Faculty of Medicine, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
7
|
Daehn IS, Ekperikpe US, Stadler K. Redox regulation in diabetic kidney disease. Am J Physiol Renal Physiol 2023; 325:F135-F149. [PMID: 37262088 PMCID: PMC10393330 DOI: 10.1152/ajprenal.00047.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most devastating complications of diabetes mellitus, where currently there is no cure available. Several important mechanisms contribute to the pathogenesis of this complication, with oxidative stress being one of the key factors. The past decades have seen a large number of publications with various aspects of this topic; however, the specific details of redox regulation in DKD are still unclear. This is partly because redox biology is very complex, coupled with a complex and heterogeneous organ with numerous cell types. Furthermore, often times terms such as "oxidative stress" or reactive oxygen species are used as a general term to cover a wide and rich variety of reactive species and their differing reactions. However, no reactive species are the same, and not all of them are capable of biologically relevant reactions or "redox signaling." The goal of this review is to provide a biochemical background for an array of specific reactive oxygen species types with varying reactivity and specificity in the kidney as well as highlight some of the advances in redox biology that are paving the way to a better understanding of DKD development and risk.
Collapse
Affiliation(s)
- Ilse S Daehn
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Ubong S Ekperikpe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
8
|
Schloss JV. Nutritional deficiencies that may predispose to long COVID. Inflammopharmacology 2023; 31:573-583. [PMID: 36920723 PMCID: PMC10015545 DOI: 10.1007/s10787-023-01183-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Multiple nutritional deficiencies (MND) confound studies designed to assess the role of a single nutrient in contributing to the initiation and progression of disease states. Despite the perception of many healthcare practitioners, up to 25% of Americans are deficient in five-or-more essential nutrients. Stress associated with the COVID-19 pandemic further increases the prevalence of deficiency states. Viral infections compete for crucial nutrients with immune cells. Viral replication and proliferation of immunocompetent cells critical to the host response require these essential nutrients, including zinc. Clinical studies have linked levels of more than 22 different dietary components to the likelihood of COVID-19 infection and the severity of the disease. People at higher risk of infection due to MND are also more likely to have long-term sequelae, known as Long COVID.
Collapse
Affiliation(s)
- John V Schloss
- Departments of Pharmaceutical Science and Biochemistry & Molecular Biology, Schools of Pharmacy and Medicine, American University of Health Sciences, 1600 East Hill St., Signal Hill, CA, 90755, USA.
| |
Collapse
|
9
|
Murotomi K, Umeno A, Shichiri M, Tanito M, Yoshida Y. Significance of Singlet Oxygen Molecule in Pathologies. Int J Mol Sci 2023; 24:ijms24032739. [PMID: 36769060 PMCID: PMC9917472 DOI: 10.3390/ijms24032739] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species, including singlet oxygen, play an important role in the onset and progression of disease, as well as in aging. Singlet oxygen can be formed non-enzymatically by chemical, photochemical, and electron transfer reactions, or as a byproduct of endogenous enzymatic reactions in phagocytosis during inflammation. The imbalance of antioxidant enzymes and antioxidant networks with the generation of singlet oxygen increases oxidative stress, resulting in the undesirable oxidation and modification of biomolecules, such as proteins, DNA, and lipids. This review describes the molecular mechanisms of singlet oxygen production in vivo and methods for the evaluation of damage induced by singlet oxygen. The involvement of singlet oxygen in the pathogenesis of skin and eye diseases is also discussed from the biomolecular perspective. We also present our findings on lipid oxidation products derived from singlet oxygen-mediated oxidation in glaucoma, early diabetes patients, and a mouse model of bronchial asthma. Even in these diseases, oxidation products due to singlet oxygen have not been measured clinically. This review discusses their potential as biomarkers for diagnosis. Recent developments in singlet oxygen scavengers such as carotenoids, which can be utilized to prevent the onset and progression of disease, are also described.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Aya Umeno
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan
- Correspondence: ; Tel.: +81-72-751-8234
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | |
Collapse
|
10
|
Lu X, Zhou X, Qiu W, Wang Z, Wang Y, Zhang H, Yu J, Wang D, Gu J, Ma J. Kinetics and mechanism of the reaction of hydrogen peroxide with hypochlorous acid: Implication on electrochemical water treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129420. [PMID: 35816805 DOI: 10.1016/j.jhazmat.2022.129420] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Reduction of HOCl to Cl- by in-situ electrochemical synthesis or ex-situ addition of H2O2 is a feasible method to minimize Cl-DBPs and ClOx- (x = 2, 3, and 4) formation in electrochemical oxidative water treatment systems. This work has investigated the kinetics and mechanism of the reaction between H2O2 and HOCl. The kinetics study showed the species-specific second order rate constants for HOCl with H2O2 (k1), HOCl with HO2- (k2) and OCl- with H2O2 (k3) are 195.5 ± 3.3 M-1s-1, 4.0 × 107 M-1s-1 and 3.5 × 103 M-1s-1, respectively. The density functional theory calculation showed k2 is the most advantageous thermodynamically pathway because it does not need to overcome a high energy barrier. The yields of 1O2 generation from the reaction of H2O2 with HOCl were reinvestigated by using furfuryl alcohol (FFA) as a probe, and an average of 92.3% of 1O2 yields was obtained at pH 7-12. The second order rate constants of the reaction of 1O2 with 13 phenolates were determined by using the H2O2/HOCl system as a quantitative 1O2 production source. To establish a quantitative structure activity relationship, quantum chemical descriptors were more satisfactory than empirical Hammett constants. The potential implications in electrochemical oxidative water treatment were discussed at the end.
Collapse
Affiliation(s)
- Xiaohui Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoqun Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China.
| | - Ziyue Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Yishi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Haochen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Jiaxin Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Da Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jia Gu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Rishabh R, Zadeh-Haghighi H, Salahub D, Simon C. Radical pairs may explain reactive oxygen species-mediated effects of hypomagnetic field on neurogenesis. PLoS Comput Biol 2022; 18:e1010198. [PMID: 35653379 PMCID: PMC9197044 DOI: 10.1371/journal.pcbi.1010198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/14/2022] [Accepted: 05/11/2022] [Indexed: 12/21/2022] Open
Abstract
Exposures to a hypomagnetic field can affect biological processes. Recently, it has been observed that hypomagnetic field exposure can adversely affect adult hippocampal neurogenesis and hippocampus-dependent cognition in mice. In the same study, the role of reactive oxygen species (ROS) in hypomagnetic field effects has been demonstrated. However, the mechanistic reasons behind this effect are not clear. This study proposes a radical pair mechanism based on a flavin-superoxide radical pair to explain the modulation of ROS production and the attenuation of adult hippocampal neurogenesis in a hypomagnetic field. The results of our calculations favor a singlet-born radical pair over a triplet-born radical pair. Our model predicts hypomagnetic field effects on the triplet/singlet yield of comparable strength as the effects observed in experimental studies on adult hippocampal neurogenesis. Our predictions are in qualitative agreement with experimental results on superoxide concentration and other observed ROS effects. We also predict the effects of applied magnetic fields and oxygen isotopic substitution on adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Rishabh Rishabh
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dennis Salahub
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
- Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Zadeh-Haghighi H, Simon C. Radical pairs may play a role in microtubule reorganization. Sci Rep 2022; 12:6109. [PMID: 35414166 PMCID: PMC9005667 DOI: 10.1038/s41598-022-10068-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
The exact mechanism behind general anesthesia remains an open question in neuroscience. It has been proposed that anesthetics selectively prevent consciousness and memory via acting on microtubules (MTs). It is known that the magnetic field modulates MT organization. A recent study shows that a radical pair model can explain the isotope effect in xenon-induced anesthesia and predicts magnetic field effects on anesthetic potency. Further, reactive oxygen species are also implicated in MT stability and anesthesia. Based on a simple radical pair mechanism model and a simple mathematical model of MT organization, we show that magnetic fields can modulate spin dynamics of naturally occurring radical pairs in MT. We propose that the spin dynamics influence a rate in the reaction cycle, which translates into a change in the MT density. We can reproduce magnetic field effects on the MT concentration that have been observed. Our model also predicts additional effects at slightly higher fields. Our model further predicts that the effect of zinc on the MT density exhibits isotopic dependence. The findings of this work make a connection between microtubule-based and radical pair-based quantum theories of consciousness.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
13
|
Zadeh-Haghighi H, Simon C. Radical pairs can explain magnetic field and lithium effects on the circadian clock. Sci Rep 2022; 12:269. [PMID: 34997158 PMCID: PMC8742017 DOI: 10.1038/s41598-021-04334-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Drosophila's circadian clock can be perturbed by magnetic fields, as well as by lithium administration. Cryptochromes are critical for the circadian clock. Further, the radical pairs in cryptochrome also can explain magnetoreception in animals. Based on a simple radical pair mechanism model of the animal magnetic compass, we show that both magnetic fields and lithium can influence the spin dynamics of the naturally occurring radical pairs and hence modulate the circadian clock's rhythms. Using a simple chemical oscillator model for the circadian clock, we show that the spin dynamics influence a rate in the chemical oscillator model, which translates into a change in the circadian period. Our model can reproduce the results of two independent experiments, magnetic field and lithium effects on the circadian clock. Our model predicts that stronger magnetic fields would shorten the clock's period. We also predict that lithium influences the clock in an isotope-dependent manner. Furthermore, our model also predicts that magnetic fields and hyperfine interactions modulate oxidative stress. The findings of this work suggest that the quantum nature of radical pairs might play roles in the brain, as another piece of evidence in addition to recent results on xenon anesthesia and lithium effects on hyperactivity.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
14
|
Georgiou CD, Margaritis LH. Oxidative Stress and NADPH Oxidase: Connecting Electromagnetic Fields, Cation Channels and Biological Effects. Int J Mol Sci 2021; 22:10041. [PMID: 34576203 PMCID: PMC8470280 DOI: 10.3390/ijms221810041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Electromagnetic fields (EMFs) disrupt the electrochemical balance of biological membranes, thereby causing abnormal cation movement and deterioration of the function of membrane voltage-gated ion channels. These can trigger an increase of oxidative stress (OS) and the impairment of all cellular functions, including DNA damage and subsequent carcinogenesis. In this review we focus on the main mechanisms of OS generation by EMF-sensitized NADPH oxidase (NOX), the involved OS biochemistry, and the associated key biological effects.
Collapse
Affiliation(s)
- Christos D. Georgiou
- Department of Biology, Section of Genetics, Cell & Developmental Biology, University of Patras, 10679 Patras, Greece;
| | - Lukas H. Margaritis
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 26504 Athens, Greece
| |
Collapse
|
15
|
Čapek J, Roušar T. Detection of Oxidative Stress Induced by Nanomaterials in Cells-The Roles of Reactive Oxygen Species and Glutathione. Molecules 2021; 26:4710. [PMID: 34443297 PMCID: PMC8401563 DOI: 10.3390/molecules26164710] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022] Open
Abstract
The potential of nanomaterials use is huge, especially in fields such as medicine or industry. Due to widespread use of nanomaterials, their cytotoxicity and involvement in cellular pathways ought to be evaluated in detail. Nanomaterials can induce the production of a number of substances in cells, including reactive oxygen species (ROS), participating in physiological and pathological cellular processes. These highly reactive substances include: superoxide, singlet oxygen, hydroxyl radical, and hydrogen peroxide. For overall assessment, there are a number of fluorescent probes in particular that are very specific and selective for given ROS. In addition, due to the involvement of ROS in a number of cellular signaling pathways, understanding the principle of ROS production induced by nanomaterials is very important. For defense, the cells have a number of reparative and especially antioxidant mechanisms. One of the most potent antioxidants is a tripeptide glutathione. Thus, the glutathione depletion can be a characteristic manifestation of harmful effects caused by the prooxidative-acting of nanomaterials in cells. For these reasons, here we would like to provide a review on the current knowledge of ROS-mediated cellular nanotoxicity manifesting as glutathione depletion, including an overview of approaches for the detection of ROS levels in cells.
Collapse
Affiliation(s)
- Jan Čapek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic;
| | | |
Collapse
|
16
|
Zadeh-Haghighi H, Simon C. Entangled radicals may explain lithium effects on hyperactivity. Sci Rep 2021; 11:12121. [PMID: 34108537 PMCID: PMC8190433 DOI: 10.1038/s41598-021-91388-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
It is known that bipolar disorder and its lithium treatment involve the modulation of oxidative stress. Moreover, it has been observed that lithium's effects are isotope-dependent. Based on these findings, here we propose that lithium exerts its effects by influencing the recombination dynamics of a naturally occurring radical pair involving oxygen. We develop a simple model inspired by the radical-pair mechanism in cryptochrome in the context of avian magnetoreception and xenon-induced anesthesia. Our model reproduces the observed isotopic dependence in the lithium treatment of hyperactivity in rats. It predicts a magnetic-field dependence of the effectiveness of lithium, which provides one potential experimental test of our hypothesis. Our findings show that Nature might harness quantum entanglement for the brain's cognitive processes.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Quantum Alberta, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Quantum Alberta, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
17
|
Crosslinking of human plasma C-reactive protein to human serum albumin via disulfide bond oxidation. Redox Biol 2021; 41:101925. [PMID: 33714740 PMCID: PMC7966873 DOI: 10.1016/j.redox.2021.101925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/08/2023] Open
Abstract
Inter- and intra-molecular crosslinks can generate protein dysfunction, and are associated with protein aggregate accumulation in aged and diseased tissues. Crosslinks formed between multiple amino acid side chains can be reversible or irreversible. Disulfides formed either enzymatically, or as a result of oxidant-mediated reactions, are a major class of reversible crosslinks. Whilst these are commonly generated via oxidation of Cys thiol groups, they are also formed by ‘oxidant-mediated thiol-disulfide reactions’ via initial disulfide oxidation to a thiosulfinate or zwitterionic peroxide, and subsequent reaction with another thiol including those on other proteins. This generates new intermolecular protein-protein crosslinks. Here we demonstrate that photooxidation, or reaction with the biological oxidants HOCl and ONOOH, of the single disulfide present in the major human plasma inflammatory protein, C-reactive protein (CRP) can give rise to reversible disulfide bond formation with human serum albumin (HSA). This occurs in an oxidant dose-, or illumination-time-, dependent manner. These CRP-HSA crosslinks are formed both in isolated protein systems, and in fresh human plasma samples containing high, but not low, levels of CRP. The inter-protein crosslinks which involve Cys36 of CRP and Cys34 of HSA, have been detected by both immunoblotting and mass spectrometry (MS). The yield of protein-protein crosslinks depends on the nature and extent of oxidant exposure, and can be reversed by dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride. These data indicate that oxidation of disulfide bonds in proteins can be a source of novel inter-protein crosslinks, which may help rationalize the accumulation of crosslinked proteins in aged and diseased tissues. C-reactive protein (CRP) is a major acute phase inflammatory protein in human plasma. Oxidation of the single Cys36-Cys97 disulfide in CRP generates reactive intermediates. The oxidized disulfide reacts with Cys34 of human serum albumin to forms a new crosslink. The inter-protein CRP-HSA crosslink has been characterized by immunoblotting and LS-MS/MS. This novel crosslink may be a long-lived plasma marker of inflammation-induced damage.
Collapse
|
18
|
Stanley CP, Stocker R. Regulation of vascular tone and blood pressure by singlet molecular oxygen in inflammation. Curr Opin Nephrol Hypertens 2021; 30:145-150. [PMID: 33427761 DOI: 10.1097/mnh.0000000000000679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The principle aim of this review is to prompt vascular researchers interested in vascular inflammation and oxidative stress to consider singlet molecular oxygen (1O2) as a potentially relevant contributor. A secondary goal is to propose novel treatment strategies to address haemodynamic complications associated with septic shock. RECENT FINDINGS Increased inflammation and oxidative stress are hallmarks of a range of vascular diseases. We recently showed that in systemic inflammation and oxidative stress associated with models of inflammation including sepsis, the tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase-1 (Ido1) contributes to hypotension and decreased blood pressure through production of singlet molecular oxygen (1O2). Once formed, 1O2 converts tryptophan bound to Ido1 to a vasoactive hydroperoxide which decreases arterial tone and blood pressure via oxidation of a specific cysteine residue of protein kinase G1α. SUMMARY These works show, for the first time, that 1O2 contributes to arterial redox signalling and that Ido1 contributes to the regulation of blood pressure through production of a novel tryptophan-derived hydroperoxide, thus presenting a new signalling pathway as novel target in the treatment of blood pressure disorders such as sepsis.
Collapse
Affiliation(s)
- Christopher P Stanley
- Heart Research Institute, Newtown
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Roland Stocker
- Heart Research Institute, Newtown
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Al‐Nu'airat J, Oluwoye I, Zeinali N, Altarawneh M, Dlugogorski BZ. Review of Chemical Reactivity of Singlet Oxygen with Organic Fuels and Contaminants. CHEM REC 2020; 21:315-342. [DOI: 10.1002/tcr.202000143] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Jomana Al‐Nu'airat
- Murdoch University Discipline of Chemistry and Physics, College of Science, Health, Engineering and Education 90 South Street Murdoch WA 6150 Australia
| | - Ibukun Oluwoye
- Murdoch University Discipline of Chemistry and Physics, College of Science, Health, Engineering and Education 90 South Street Murdoch WA 6150 Australia
| | - Nassim Zeinali
- Murdoch University Discipline of Chemistry and Physics, College of Science, Health, Engineering and Education 90 South Street Murdoch WA 6150 Australia
| | - Mohammednoor Altarawneh
- United Arab Emirates University Chemical and Petroleum Engineering Department Sheikh Khalifa bin Zayed St Al-Ain 15551 United Arab Emirates
| | - Bogdan Z. Dlugogorski
- Charles Darwin University Energy and Resources Institute, Ellengowan Drive Darwin NT 0909 Australia
| |
Collapse
|
20
|
Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Materialien mit Selektivität für oxidative Molekülspezies für die Diagnostik und Therapie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jingxiao Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 PR China
| | - Ruibo Zhong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Dean Shuailin Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jinjun Shi
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
21
|
Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Oxidative‐Species‐Selective Materials for Diagnostic and Therapeutic Applications. Angew Chem Int Ed Engl 2020; 60:9804-9827. [DOI: 10.1002/anie.201915833] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jingxiao Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 PR China
| | - Ruibo Zhong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Dean Shuailin Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jinjun Shi
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
22
|
Abstract
![]()
Vitamin
C (ascorbic acid) is a water-soluble antioxidant and a
cofactor for a large number of enzymes. It is present in all tissues
and especially abundant in corneal epithelium, stem cells, and neurons.
Although similar to thiols in its ability to react with many reactive
oxygen species (ROS), ascorbate is much better (>100× faster)
than glutathione at scavenging of primary ROS (superoxide radical
and singlet oxygen). Ascorbate appears to be especially important
for elimination of O2•– in the
nucleus which contains little or no SOD activity. Cofactor functions
of ascorbate involve the maintenance of activity of Fe(II)/2-oxoglutarate-dependent
dioxygenases via reduction of Fe(III). The most prominent activity
of ascorbate-dependent dioxygenases in the cytoplasm is hydroxylation
of prolines in proteins involved in the formation of extracellular
matrix and regulation of metabolism and hypoxia responses. In the
nucleus, ascorbate is important for oxidative demethylation of 5-methylcytosine
in DNA (by TET proteins) and removal of methyl groups from histone
lysines (by JmjC demethylases). Differentiation and other cellular
reprograming processes involving DNA demethylation are especially
sensitive to ascorbate insufficiency. High doses of vitamin C alone
or in combinations with drugs produced cancer-suppressive effects
which involved redox, immune, and epigenetic mechanisms. Solutions
to vitamin C deficiency in cultured cells are discussed to improve
the physiological relevance of in vitro models. An
abundance of vitamin C in rodents limits their ability to fully recapitulate
human sensitivity to adverse health effects of malnutrition and xenobiotics,
including neurotoxicity, lung injury, and intergenerational and other
epigenetic effects.
Collapse
Affiliation(s)
- Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
23
|
Carroll L, Gardiner K, Ignasiak M, Holmehave J, Shimodaira S, Breitenbach T, Iwaoka M, Ogilby PR, Pattison DI, Davies MJ. Interaction kinetics of selenium-containing compounds with oxidants. Free Radic Biol Med 2020; 155:58-68. [PMID: 32439383 DOI: 10.1016/j.freeradbiomed.2020.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 02/03/2023]
Abstract
Selenium compounds have been identified as potential oxidant scavengers for biological applications due to the nucleophilicity of Se, and the ease of oxidation of the selenium centre. Previous studies have reported apparent second order rate constants for a number of oxidants (e.g. HOCl, ONOOH) with some selenium species, but these data are limited. Here we provide apparent second order rate constants for reaction of selenols (RSeH), selenides (RSeR') and diselenides (RSeSeR') with biologically-relevant oxidants (HOCl, H2O2, other peroxides) as well as overall consumption data for the excited state species singlet oxygen (1O2). Selenols show very high reactivity with HOCl and 1O2, with rate constants > 108 M-1 s-1, whilst selenides and diselenides typically react with rate constants one- (selenides) or two- (diselenides) orders of magnitude slower. Rate constants for reaction of diselenides with H2O2 and other hydroperoxides are much slower, with k for H2O2 being <1 M-1 s-1, and for amino acid and peptide hydroperoxides ~102 M-1 s-1. The rate constants determined for HOCl and 1O2 with these selenium species are greater than, or similar to, rate constants for amino acid side chains on proteins, including the corresponding sulfur-centered species (Cys and Met), suggesting that selenium containing compounds may be effective oxidant scavengers. Some of these reactions may be catalytic in nature due to ready recycling of the oxidized selenium species. These data may aid the development of highly efficacious, and catalytic, oxidant scavengers.
Collapse
Affiliation(s)
- Luke Carroll
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Kelly Gardiner
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark; The Heart Research Institute, Sydney, Australia; Sydney Medical School, University of Sydney, Australia
| | - Marta Ignasiak
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark; Department of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | | | - Shingo Shimodaira
- Brain Korea (BK21), Dept. of Chemistry, KAIST 373-1, Daejeon, South Korea
| | | | - Michio Iwaoka
- Department of Chemistry, Tokai University, Hiratsuka, Japan
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - David I Pattison
- The Heart Research Institute, Sydney, Australia; Sydney Medical School, University of Sydney, Australia; Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark; The Heart Research Institute, Sydney, Australia; Sydney Medical School, University of Sydney, Australia.
| |
Collapse
|
24
|
Zeng L, Wang MD, Ming SL, Li GL, Yu PW, Qi YL, Jiang DW, Yang GY, Wang J, Chu BB. An effective inactivant based on singlet oxygen-mediated lipid oxidation implicates a new paradigm for broad-spectrum antivirals. Redox Biol 2020; 36:101601. [PMID: 32535542 PMCID: PMC7278711 DOI: 10.1016/j.redox.2020.101601] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/16/2020] [Accepted: 06/02/2020] [Indexed: 02/02/2023] Open
Abstract
Emerging viral pathogens cause substantial morbidity and pose a severe threat to health worldwide. However, a universal antiviral strategy for producing safe and immunogenic inactivated vaccines is lacking. Here, we report an antiviral strategy using the novel singlet oxygen (1O2)-generating agent LJ002 to inactivate enveloped viruses and provide effective protection against viral infection. Our results demonstrated that LJ002 efficiently generated 1O2 in solution and living cells. Nevertheless, LJ002 exhibited no signs of acute toxicity in vitro or in vivo. The 1O2 produced by LJ002 oxidized lipids in the viral envelope and consequently destroyed the viral membrane structure, thus inhibiting the viral and cell membrane fusion necessary for infection. Moreover, the 1O2-based inactivated pseudorabies virus (PRV) vaccine had no effect on the content of the viral surface proteins. Immunization of mice with LJ002-inactiviated PRV vaccine harboring comparable antigen induced more neutralizing antibody responses and efficient protection against PRV infection than conventional formalin-inactivated vaccine. Additionally, LJ002 inactivated a broad spectrum of enveloped viruses. Together, our results may provide a new paradigm of using broad-spectrum, highly effective inactivants functioning through 1O2-mediated lipid oxidation for developing antivirals that target the viral membrane fusion process. LJ002 efficiently generates 1O2 in solution and living cells. LJ002 oxidizes lipids in the viral envelope, thus inhibiting fusion between the virus and cell membrane. LJ002-inactivated PRV vaccine has no effect on the content of antigens on the viral surface. LJ002-inactivated PRV vaccine elicits a strong neutralizing antibody response. LJ002 can inactivate a broad spectrum of enveloped viruses.
Collapse
Affiliation(s)
- Lei Zeng
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Meng-Di Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Sheng-Li Ming
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Guo-Li Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Peng-Wei Yu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Yan-Li Qi
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Da-Wei Jiang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; National Center for International Research, Ministry of Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Guo-Yu Yang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China.
| | - Jiang Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China.
| | - Bei-Bei Chu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China; National Center for International Research, Ministry of Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
25
|
Black HS, Boehm F, Edge R, Truscott TG. The Benefits and Risks of Certain Dietary Carotenoids that Exhibit both Anti- and Pro-Oxidative Mechanisms-A Comprehensive Review. Antioxidants (Basel) 2020; 9:E264. [PMID: 32210038 PMCID: PMC7139534 DOI: 10.3390/antiox9030264] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/04/2023] Open
Abstract
Carotenoid pigments, particularly β-carotene and lycopene, are consumed in human foodstuffs and play a vital role in maintaining health. β-carotene is known to quench singlet oxygen and can have strong antioxidant activity. As such, it was proposed that β-carotene might reduce the risk of cancer. Epidemiological studies found inverse relationships between cancer risk and β-carotene intake or blood levels. However, clinical trials failed to support those findings and β-carotene supplementation actually increased lung cancer incidence in male smokers. Early experimental animal studies found dietary β-carotene inhibited UV-induced skin cancers. Later studies found that β-carotene supplementation exacerbated UV-carcinogenic expression. The discrepancies of these results were related to the type of diet the animals consumed. Lycopene has been associated with reduced risk of lethal stage prostate cancer. Other carotenoids, e.g., lutein and zeaxanthin, play a vital role in visual health. Numerous studies of molecular mechanisms to explain the carotenoids' mode of action have centered on singlet oxygen, as well as radical reactions. In cellular systems, singlet oxygen quenching by carotenoids has been reported but is more complex than in organic solvents. In dietary β-carotene supplement studies, damaging pro-oxidant reactivity can also arise. Reasons for this switch are likely due to the properties of the carotenoid radicals themselves. Understanding singlet oxygen reactions and the anti-/pro-oxidant roles of carotenoids are of importance to photosynthesis, vision and cancer.
Collapse
Affiliation(s)
- Homer S. Black
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fritz Boehm
- Photobiology Research, Internationales Handelszentrum (IHZ), Friedrichstraße 95, 10117 Berlin, Germany;
| | - Ruth Edge
- Dalton Cumbrian Facility, Westlakes Science Park, The University of Manchester, Cumbria CA24 3HA, UK
| | - T. George Truscott
- School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK;
| |
Collapse
|
26
|
|
27
|
Marques EF, Medeiros MHG, Di Mascio P. Singlet oxygen-induced protein aggregation: Lysozyme crosslink formation and nLC-MS/MS characterization. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:894-905. [PMID: 31652372 DOI: 10.1002/jms.4448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Singlet molecular oxygen (1 O2 ) has been associated with a number of physiological processes. Despite the recognized importance of 1 O2 -mediated protein modifications, little is known about the role of this oxidant in crosslink formation and protein aggregation. Thus, using lysozyme as a model, the present study sought to investigate the involvement of 1 O2 in crosslink formation. Lysozyme was photochemically oxidized in the presence of rose bengal or chemically oxidized using [18 O]-labeled 1 O2 released from thermolabile endoperoxides. It was concluded that both 1 O2 generating systems induce lysozyme crosslinking and aggregation. Using SDS-PAGE and nano-scale liquid chromatography coupled to electrospray ionization mass spectrometry, the results clearly demonstrated that 1 O2 is directly involved in the formation of covalent crosslinks involving the amino acids histidine, lysine, and tryptophan.
Collapse
Affiliation(s)
- Emerson Finco Marques
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Bauer G. The synergistic effect between hydrogen peroxide and nitrite, two long-lived molecular species from cold atmospheric plasma, triggers tumor cells to induce their own cell death. Redox Biol 2019; 26:101291. [PMID: 31421409 PMCID: PMC6831866 DOI: 10.1016/j.redox.2019.101291] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Nitrite and H2O2 are long-lived species in cold atmospheric plasma and plasma-activated medium. It is known that their synergistic interaction is required for selective apoptosis induction in tumor cells that are treated with plasma-activated medium. This study shows that the interaction between nitrite and H2O2 leads to the formation of peroxynitrite, followed by singlet oxygen generation through the interaction between peroxynitrite and residual H2O2. This primary singlet oxygen causes local inactivation of few catalase molecules on the surface of tumor cells. As a consequence, H2O2 and peroxynitrite that are constantly produced by tumor cells and are usually decomposed by their protective membrane-associated catalase, are surviving at the site of locally inactivated catalase. This leads to the generation of secondary singlet oxygen through the interaction between tumor cell-derived H2O2 and peroxynitrite. This selfsustained process leads to autoamplification of secondary singlet oxygen generation and catalase inactivation. Inactivation of catalase allows the influx of H2O2 through aquaporins, leading to intracellular glutathione depletion and sensitization of the cells for apoptosis induction through lipid peroxidation. It also allows to establish intercellular apoptosis-inducing HOCl signaling, driven by active NOX1 and finalized by lipid peroxidation through hydroxyl radicals that activates the mitochondrial pathway of apoptosis. This experimentally established model is based on a triggering function of CAP and PAM-derived H2O2/nitrite that causes selective cell death in tumor cells based on their own ROS and RNS. This model explains the selectivity of CAP and PAM action towards tumor cells and is in contradiction to previous models that implicated that ROS/RNS from CAP or PAM were sufficient to directly cause cell death of tumor cells. H2O2 and nitrite generate peroxynitrite, followed by primary singlet oxygen formation. Primary singlet oxygen causes local inactivation of tumor cell protective catalase. Amplificatory generation of secondary singlet oxygen and catalase inactivation are established. Inactivation of catalase allows aquaporin-mediated influx of H2O2 and glutathione depletion. In this way, CAP and PAM trigger tumor cells to contribute to their own cell death.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical Center, University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
29
|
Cytoprotective effects and mechanisms of quercetin, quercitrin and avicularin isolated from Lespedeza cuneata G. Don against ROS-induced cellular damage. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Singlet molecular oxygen regulates vascular tone and blood pressure in inflammation. Nature 2019; 566:548-552. [DOI: 10.1038/s41586-019-0947-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 01/10/2019] [Indexed: 11/09/2022]
|
31
|
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem Rev 2019; 119:2043-2086. [DOI: 10.1021/acs.chemrev.8b00554] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Glaucia R. Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, 81531-990 Curitiba, PR, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| |
Collapse
|
32
|
Aouiss A, Anka Idrissi D, Kabine M, Zaid Y. Update of inflammatory proliferative retinopathy: Ischemia, hypoxia and angiogenesis. Curr Res Transl Med 2019; 67:62-71. [PMID: 30685380 DOI: 10.1016/j.retram.2019.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/19/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) and retinopathy of prematurity (ROP) present two examples of proliferative retinopathy, characterized by the same stages of progression; ischemia of the retinal vessels, leads to hypoxia and to correct the problem there is the setting up of uncontrolled angiogenesis, which subsequently causes blindness or even detachment of the retina. The difference is the following; that DR initiated by the metabolic complications that are due to hyperglycemia, and ROP is induced by overexposure of the neonatal retina to oxygen. In this review, we will demonstrate the physiopathological mechanism of the two forms of proliferative retinopathy DR and ROP, in particular the role of the CD40/CD40L axis and IL-1 on vascular complications and onset of inflammation of the retina, the implications of their effects on the onset of pathogenic angiogenesis, thus understanding the link between platelets and retinal ischemia. In addition, what are the therapeutic targets that could slow its progression?
Collapse
Affiliation(s)
- A Aouiss
- Laboratory of Health and Environment, Department of Biology, Faculty of Sciences Ain Chock, University of Hassan II, Casablanca, Morocco.
| | - D Anka Idrissi
- Laboratory of Health and Environment, Department of Biology, Faculty of Sciences Ain Chock, University of Hassan II, Casablanca, Morocco
| | - M Kabine
- Laboratory of Health and Environment, Department of Biology, Faculty of Sciences Ain Chock, University of Hassan II, Casablanca, Morocco
| | - Y Zaid
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montreal, H1T1C8, Quebec, Canada
| |
Collapse
|
33
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
34
|
Dharmarwardana M, Martins AF, Chen Z, Palacios PM, Nowak CM, Welch RP, Li S, Luzuriaga MA, Bleris L, Pierce BS, Sherry AD, Gassensmith JJ. Nitroxyl Modified Tobacco Mosaic Virus as a Metal-Free High-Relaxivity MRI and EPR Active Superoxide Sensor. Mol Pharm 2018; 15:2973-2983. [PMID: 29771534 PMCID: PMC6078806 DOI: 10.1021/acs.molpharmaceut.8b00262] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Superoxide overproduction is known to occur in multiple disease states requiring critical care; yet, noninvasive detection of superoxide in deep tissue remains a challenge. Herein, we report a metal-free magnetic resonance imaging (MRI) and electron paramagnetic resonance (EPR) active contrast agent prepared by "click conjugating" paramagnetic organic radical contrast agents (ORCAs) to the surface of tobacco mosaic virus (TMV). While ORCAs are known to be reduced in vivo to an MRI/EPR silent state, their oxidation is facilitated specifically by reactive oxygen species-in particular, superoxide-and are largely unaffected by peroxides and molecular oxygen. Unfortunately, single molecule ORCAs typically offer weak MRI contrast. In contrast, our data confirm that the macromolecular ORCA-TMV conjugates show marked enhancement for T1 contrast at low field (<3.0 T) and T2 contrast at high field (9.4 T). Additionally, we demonstrated that the unique topology of TMV allows for a "quenchless fluorescent" bimodal probe for concurrent fluorescence and MRI/EPR imaging, which was made possible by exploiting the unique inner and outer surface of the TMV nanoparticle. Finally, we show TMV-ORCAs do not respond to normal cellular respiration, minimizing the likelihood for background, yet still respond to enzymatically produced superoxide in complicated biological fluids like serum.
Collapse
Affiliation(s)
- Madushani Dharmarwardana
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - André F. Martins
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Zhuo Chen
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Philip M. Palacios
- Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Chance M. Nowak
- Department of Biological Sciences, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Raymond P. Welch
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Shaobo Li
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Michael A. Luzuriaga
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Leonidas Bleris
- Department of Biological Sciences, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Brad S. Pierce
- Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | - A. Dean Sherry
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Bioengineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| |
Collapse
|
35
|
Signal amplification by tumor cells: Clue to the understanding of the antitumor effects of cold atmospheric plasma and plasma-activated medium. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2017.2742000] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Liu HW, Xu S, Wang P, Hu XX, Zhang J, Yuan L, Zhang XB, Tan W. An efficient two-photon fluorescent probe for monitoring mitochondrial singlet oxygen in tissues during photodynamic therapy. Chem Commun (Camb) 2018; 52:12330-12333. [PMID: 27722455 DOI: 10.1039/c6cc05880a] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A promising two-photon fluorescent probe MNAH for detecting 1O2 during the PDT process in mitochondria was proposed for the first time. MNAH was successfully applied for two-photon imaging of 1O2 in living cells and tissues during the PDT process with deep-tissue imaging depth. MNAH can be a powerful molecular tool for studying 1O2 generation in mitochondria during the PDT process.
Collapse
Affiliation(s)
- Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Shuai Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Peng Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiao-Xiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
37
|
Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev 2018; 118:1770-1839. [DOI: 10.1021/acs.chemrev.7b00425] [Citation(s) in RCA: 479] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Huanjie Wei
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, P. R. China
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211800, P. R. China
| |
Collapse
|
38
|
Bauer G. Autoamplificatory singlet oxygen generation sensitizes tumor cells for intercellular apoptosis-inducing signaling. Mech Ageing Dev 2017; 172:59-77. [PMID: 29137940 DOI: 10.1016/j.mad.2017.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/01/2017] [Accepted: 11/01/2017] [Indexed: 11/16/2022]
Abstract
Tumor cells express NADPH oxidase-1 (NOX1) in their membrane and control NOX1-based intercellular reactive oxygen and nitrogen species (ROS/RNS)-dependent apoptosis-inducing signaling through membrane-associated catalase and superoxide dismutase. TREATMENT of tumor cells with high concentrations of H2O2, peroxnitrite, HOCl, or increasing the concentration of cell-derived NO causes initial generation of singlet oxygen and local inactivation of membrane-associated catalase. As a result, free peroxynitrite and H2O2 interact and generate secondary singlet oxygen. Inactivation of further catalase molecules by secondary singlet oxygen leads to auto-amplification of singlet oxygen generation and catalase inactivation. This allows reactivation of intercellular ROS/RNS-signaling and selective apoptosis induction in tumor cells. The initial singlet oxygen generation seems to be the critical point in this complex biochemical multistep mechanism. Initial singlet oxygen generation requires the interaction between distinct tumor cell-derived ROS and RNS and may also depend on either the induction of NO synthase expression or NOX1 activation through the FAS receptor. FAS receptor activation can be achieved by singlet oxygen. Autoamplificatory generation of singlet oxygen through the interaction between peroxynitrite and hydrogen peroxide inherits a rich potential for the establishment of synergistic effects that may be instrumental for novel approaches of tumor therapy with high selectivity towards malignant cells.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
39
|
A meta-analysis and review examining a possible role for oxidative stress and singlet oxygen in diverse diseases. Biochem J 2017; 474:2713-2731. [PMID: 28768713 DOI: 10.1042/bcj20161058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 01/29/2023]
Abstract
From kinetic data (k, T) we calculated the thermodynamic parameters for various processes (nucleation, elongation, fibrillization, etc.) of proteinaceous diseases that are related to the β-amyloid protein (Alzheimer's), to tau protein (Alzheimer's, Pick's), to α-synuclein (Parkinson's), prion, amylin (type II diabetes), and to α-crystallin (cataract). Our calculations led to ΔG≠ values that vary in the range 92.8-127 kJ mol-1 at 310 K. A value of ∼10-30 kJ mol-1 is the activation energy for the diffusion of reactants, depending on the reaction and the medium. The energy needed for the excitation of O2 from the ground to the first excited state (1Δg, singlet oxygen) is equal to 92 kJ mol-1 So, the ΔG≠ is equal to the energy needed for the excitation of ground state oxygen to the singlet oxygen (1Δg first excited) state. The similarity of the ΔG≠ values is an indication that a common mechanism in the above disorders may be taking place. We attribute this common mechanism to the (same) role of the oxidative stress and specifically of singlet oxygen, (1Δg), to the above-mentioned processes: excitation of ground state oxygen to the singlet oxygen, 1Δg, state (92 kJ mol-1), and reaction of the empty π* orbital with high electron density regions of biomolecules (∼10-30 kJ mol-1 for their diffusion). The ΔG≠ for cases of heat-induced cell killing (cancer) lie also in the above range at 310 K. The present paper is a review and meta-analysis of literature data referring to neurodegenerative and other disorders.
Collapse
|
40
|
Umeno A, Biju V, Yoshida Y. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer's disease, Parkinson's disease, and diabetes. Free Radic Res 2017; 51:413-427. [PMID: 28372523 DOI: 10.1080/10715762.2017.1315114] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breakthroughs in biochemistry have furthered our understanding of the onset and progression of various diseases, and have advanced the development of new therapeutics. Oxidative stress and reactive oxygen species (ROS) are ubiquitous in biological systems. ROS can be formed non-enzymatically by chemical, photochemical and electron transfer reactions, or as the byproducts of endogenous enzymatic reactions, phagocytosis, and inflammation. Imbalances in ROS homeostasis, caused by impairments in antioxidant enzymes or non-enzymatic antioxidant networks, increase oxidative stress, leading to the deleterious oxidation and chemical modification of biomacromolecules such as lipids, DNA, and proteins. While many ROS are intracellular signaling messengers and most products of oxidative metabolisms are beneficial for normal cellular function, the elevation of ROS levels by light, hyperglycemia, peroxisomes, and certain enzymes causes oxidative stress-sensitive signaling, toxicity, oncogenesis, neurodegenerative diseases, and diabetes. Although the underlying mechanisms of these diseases are manifold, oxidative stress caused by ROS is a major contributing factor in their onset. This review summarizes the relationship between ROS and oxidative stress, with special reference to recent advancements in the detection of biomarkers related to oxidative stress. Further, we will introduce biomarkers for the early detection of neurodegenerative diseases and diabetes, with a focus on our recent work.
Collapse
Affiliation(s)
- Aya Umeno
- a Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Takamatsu , Kagawa , Japan
| | - Vasudevanpillai Biju
- a Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Takamatsu , Kagawa , Japan.,b Laboratory of Molecular Photonics, Research Institute for Electronic Science, Hokkaido University, N20W10 , Kita Ward, Sapporo , Japan
| | - Yasukazu Yoshida
- a Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Takamatsu , Kagawa , Japan
| |
Collapse
|
41
|
Thapa B, Munk BH, Burrows CJ, Schlegel HB. Computational Study of Oxidation of Guanine by Singlet Oxygen ( 1 Δ g ) and Formation of Guanine:Lysine Cross-Links. Chemistry 2017; 23:5804-5813. [PMID: 28249102 DOI: 10.1002/chem.201700231] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Indexed: 12/20/2022]
Abstract
Oxidation of guanine in the presence of lysine can lead to guanine-lysine cross-links. The ratio of the C4, C5 and C8 crosslinks depends on the manner of oxidation. Type II photosensitizers such as Rose Bengal and methylene blue can generate singlet oxygen, which leads to a different ratio of products than oxidation by type I photosensitizers or by one electron oxidants. Modeling reactions of singlet oxygen can be quite challenging. Reactions have been explored using CASSCF, NEVPT2, DFT, CCSD(T), and BD(T) calculations with SMD implicit solvation. The spin contamination in open-shell calculations were corrected by Yamaguchi's approximate spin projection method. The addition of singlet oxygen to guanine to form guanine endo- peroxide proceeds step-wise via a zwitterionic peroxyl intermediate. The subsequent barrier for ring closure is smaller than the initial barrier for singlet oxygen addition. Ring opening of the endoperoxide by protonation at C4-O is followed by loss of a proton from C8 and dehydration to produce 8-oxoGox . The addition of lysine (modelled by methylamine) or water across the C5=N7 double bond of 8-oxoGox is followed by acyl migration to form the final spiro products. The barrier for methylamine addition is significantly lower than for water addition and should be the dominant reaction channel. These results are in good agreement with the experimental results for the formation of guanine-lysine cross-links by oxidation by type II photosensitizers.
Collapse
Affiliation(s)
- Bishnu Thapa
- Chemistry Department, Wayne State University, Detroit, Michigan, 48202, USA
| | - Barbara H Munk
- Chemistry Department, Wayne State University, Detroit, Michigan, 48202, USA
| | - Cynthia J Burrows
- Chemistry Department, University of Utah, Salt Lake City, Utah, 84112, USA
| | | |
Collapse
|
42
|
Kim MM, Ghogare AA, Greer A, Zhu TC. On the in vivo photochemical rate parameters for PDT reactive oxygen species modeling. Phys Med Biol 2017; 62:R1-R48. [PMID: 28166056 PMCID: PMC5510640 DOI: 10.1088/1361-6560/62/5/r1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photosensitizer photochemical parameters are crucial data in accurate dosimetry for photodynamic therapy (PDT) based on photochemical modeling. Progress has been made in the last few decades in determining the photochemical properties of commonly used photosensitizers (PS), but mostly in solution or in vitro. Recent developments allow for the estimation of some of these photochemical parameters in vivo. This review will cover the currently available in vivo photochemical properties of photosensitizers as well as the techniques for measuring those parameters. Furthermore, photochemical parameters that are independent of environmental factors or are universal for different photosensitizers will be examined. Most photosensitizers discussed in this review are of the type II (singlet oxygen) photooxidation category, although type I photosensitizers that involve other reactive oxygen species (ROS) will be discussed as well. The compilation of these parameters will be essential for ROS modeling of PDT.
Collapse
Affiliation(s)
- Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | | | | |
Collapse
|
43
|
Patrice T, Rozec B, Sidoroff A, Blanloeil Y, Despins P, Perrigaud C. Influence of Vitamins on Secondary Reactive Oxygen Species Production in Sera of Patients with Resectable NSCLC. Diseases 2016; 4:diseases4030025. [PMID: 28933405 PMCID: PMC5456288 DOI: 10.3390/diseases4030025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Singlet oxygen (¹O₂) oxidizes targets through the production of secondary reactive oxygen species (SOS). Cancers induce oxidative stress changing with progression, the resulting antioxidant status differing from one patient to the other. The aim of this study was to determine the oxidative status of patients with resectable Non-Small cell lung cancers (NSCLC) and the potential influence of antioxidants, compared to sera from healthy donors. MATERIALS AND METHODS Serum samples from 10 women and 28 men, 19 adenocarcinomas (ADK), 15 patients N1 or M1 were submitted to a photoreaction producing ¹O₂. Then, samples were supplemented with vitamins (Vit C, Vit E), or glutathione (GSH). RESULTS Squamous cell carcinomas (SCC) and metastatic SCCs induced a lower SOS rate. While Vit C increased SOS in controls as in patients with metastases, Vit E or the combination of Vit E and C strongly reduced SOS. GSH alone lightly decreased SOS in controls but had no effect in patients either alone or combined with Vit C. CONCLUSION In "early" lung cancers, SOS are comparable or lower than for healthy persons. The role of Vitamins varies with gender, cancer type, and metastases. This suggests that an eventual supplementation should be performed on a per-patient basis to evidence any effect.
Collapse
Affiliation(s)
- Thierry Patrice
- Anesthesiology and Intensive Care, Laënnec Hospital, 44093 Nantes, France.
| | - Bertrand Rozec
- Anesthesiology and Intensive Care, Laënnec Hospital, 44093 Nantes, France.
| | - Alexis Sidoroff
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, A-6020, Austria.
| | - Yvonnick Blanloeil
- Anesthesiology and Intensive Care, Laënnec Hospital, 44093 Nantes, France.
| | | | | |
Collapse
|
44
|
Westberg M, Bregnhøj M, Blázquez-Castro A, Breitenbach T, Etzerodt M, Ogilby PR. Control of singlet oxygen production in experiments performed on single mammalian cells. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Collin S, Bussière PO, Therias S, Lacoste J. The role of hydroperoxides in the chemiluminescence of oxidized polymers reconsidered. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Miyaji A, Kohno M, Inoue Y, Baba T. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase. Biochem Biophys Res Commun 2016; 471:450-3. [PMID: 26898801 DOI: 10.1016/j.bbrc.2016.02.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 11/18/2022]
Abstract
The generation of singlet oxygen during the oxidation of tyrosine and L-dopa using mushroom tyrosinase in a phosphate buffer (pH 7.4), the model of melanin synthesis in melanocytes, was examined. The reaction was performed in the presence of 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen and the electron spin resonance (ESR) of the spin adduct, 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), was measured. An increase in the ESR signal attributable to 4-oxo-TEMPO was observed during the oxidation of tyrosine and L-dopa with tyrosinase, indicating the generation of singlet oxygen. The results suggest that (1)O2 generation via tyrosinase-catalyzed melanin synthesis occurs in melanocyte.
Collapse
Affiliation(s)
- Akimitsu Miyaji
- Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Masahiro Kohno
- Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-G1-25 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yoshihiro Inoue
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshihide Baba
- Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan.
| |
Collapse
|
47
|
Kamal AHM, Komatsu S. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions. Mol Biol Rep 2016; 43:73-89. [PMID: 26754663 DOI: 10.1007/s11033-015-3940-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/31/2015] [Indexed: 01/15/2023]
Abstract
To know the molecular systems basically flooding conditions in soybean, biophoton emission measurements and proteomic analyses were carried out for flooding-stressed roots under light and dark conditions. Photon emission was analyzed using a photon counter. Gel-free quantitative proteomics were performed to identify significant changes proteins using the nano LC-MS along with SIEVE software. Biophoton emissions were significantly increased in both light and dark conditions after flooding stress, but gradually decreased with continued flooding exposure compared to the control plants. Among the 120 significantly identified proteins in the roots of soybean plants, 73 and 19 proteins were decreased and increased in the light condition, respectively, and 4 and 24 proteins were increased and decreased, respectively, in the dark condition. The proteins were mainly functionally grouped into cell organization, protein degradation/synthesis, and glycolysis. The highly abundant lactate/malate dehydrogenase proteins were decreased in flooding-stressed roots exposed to light, whereas the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme was increased in both light and dark conditions. Notably, however, specific enzyme assays revealed that the activities of these enzymes and biophoton emission were sharply increased after 3 days of flooding stress. This finding suggests that the source of biophoton emission in roots might involve the chemical excitation of electron or proton through enzymatic or non-enzymatic oxidation and reduction reactions. Moreover, the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme may play important roles in responses in flooding stress of soybean under the light condition and as a contributing factor to biophoton emission.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba, 305-8518, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba, 305-8518, Japan.
| |
Collapse
|
48
|
Carrette LLG, Gyssels E, De Laet N, Madder A. Furan oxidation based cross-linking: a new approach for the study and targeting of nucleic acid and protein interactions. Chem Commun (Camb) 2016; 52:1539-54. [PMID: 26679922 DOI: 10.1039/c5cc08766j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The coming of age story of furan oxidation cross-linking.
Collapse
Affiliation(s)
- L. L. G. Carrette
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - E. Gyssels
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - N. De Laet
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - A. Madder
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| |
Collapse
|
49
|
Yoshida A, Shiotsu-Ogura Y, Wada-Takahashi S, Takahashi SS, Toyama T, Yoshino F. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 151:48-53. [DOI: 10.1016/j.jphotobiol.2015.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
|
50
|
Iwasaki Y, Takahashi S, Aizawa K, Mukai K. Development of singlet oxygen absorption capacity (SOAC) assay method. 4. Measurements of the SOAC values for vegetable and fruit extracts. Biosci Biotechnol Biochem 2015; 79:280-91. [DOI: 10.1080/09168451.2014.972329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Measurements of the second-order rate constants and the singlet oxygen absorption capacity (SOAC) values for the reaction of singlet oxygen (1O2) with 23 kinds of food extracts were performed in ethanol/chloroform/D2O (50:50:1, v/v/v) solution at 35 °C. It has been clarified that the SOAC method is useful to evaluate the 1O2-quenching activity (i.e. the SOAC value) of food extracts having two orders of magnitude different rate constants from 3.18 × 104 L g−1 s−1 for tomato to 1.55 × 102 for green melon. Furthermore, comparison of the observed rate constants for the above food extracts with the calculated ones based on the concentrations of seven kinds of carotenoids included in the food extracts and the rate constants reported for each carotenoids was performed, in order to ascertain the validity of the SOAC assay method developed and to clarify the ratio of the contribution of principal carotenoids to the SOAC value.
Collapse
Affiliation(s)
- Yuko Iwasaki
- Research & Development Division, Kagome Co. Ltd., Nasushiobara-shi, Japan
| | - Shingo Takahashi
- Research & Development Division, Kagome Co. Ltd., Nasushiobara-shi, Japan
| | - Koichi Aizawa
- Research & Development Division, Kagome Co. Ltd., Nasushiobara-shi, Japan
| | - Kazuo Mukai
- Faculty of Science, Department of Chemistry, Ehime University, Matsuyama, Japan
| |
Collapse
|