1
|
Rude CI, Wilson LB, La Du J, Lalli PM, Colby SM, Schultz KJ, Smith JN, Waters KM, Tanguay RL. Aryl hydrocarbon receptor-dependent toxicity by retene requires metabolic competence. Toxicol Sci 2024; 202:50-68. [PMID: 39107868 PMCID: PMC11514837 DOI: 10.1093/toxsci/kfae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds frequently detected in the environment with widely varying toxicities. Many PAHs activate the aryl hydrocarbon receptor (AHR), inducing the expression of a battery of genes, including xenobiotic metabolizing enzymes like cytochrome P450s (CYPs); however, not all PAHs act via this mechanism. We screened several parent and substituted PAHs in in vitro AHR activation assays to classify their unique activity. Retene (1-methyl-7-isopropylphenanthrene) displays Ahr2-dependent teratogenicity in zebrafish, but did not activate human AHR or zebrafish Ahr2, suggesting a retene metabolite activates Ahr2 in zebrafish to induce developmental toxicity. To investigate the role of metabolism in retene toxicity, studies were performed to determine the functional role of cyp1a, cyp1b1, and the microbiome in retene toxicity, identify the zebrafish window of susceptibility, and measure retene uptake, loss, and metabolite formation in vivo. Cyp1a-null fish were generated using CRISPR-Cas9. Cyp1a-null fish showed increased sensitivity to retene toxicity, whereas Cyp1b1-null fish were less susceptible, and microbiome elimination had no significant effect. Zebrafish required exposure to retene between 24 and 48 hours post fertilization (hpf) to exhibit toxicity. After static exposure, retene concentrations in zebrafish embryos increased until 24 hpf, peaked between 24 and 36 hpf, and decreased rapidly thereafter. We detected retene metabolites at 36 and 48 hpf, indicating metabolic onset preceding toxicity. This study highlights the value of combining molecular and systems biology approaches with mechanistic and predictive toxicology to interrogate the role of biotransformation in AHR-dependent toxicity.
Collapse
Affiliation(s)
- Christian I Rude
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Lindsay B Wilson
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Jane La Du
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Priscila M Lalli
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Sean M Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Katherine J Schultz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Jordan N Smith
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Katrina M Waters
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Robyn L Tanguay
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| |
Collapse
|
2
|
Tiruye HM, Economopoulos S, Jørgensen KB. Synthesis of polycyclic aromatic quinones by continuous flow electrochemical oxidation: anodic methoxylation of polycyclic aromatic phenols (PAPs). Beilstein J Org Chem 2024; 20:1746-1757. [PMID: 39076291 PMCID: PMC11285069 DOI: 10.3762/bjoc.20.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
The electrochemical oxidation of polycyclic aromatic phenols (PAPs) has been developed in a microfluidic cell to synthesize polycyclic aromatic quinones (PAQs). Methanol was used as nucleophile to trap the phenoxonium cation formed in the oxidation as an acetal, that later were hydrolysed to the quinone. Formation of hydrogen gas as the cathode reaction caused challenges in the flow cell and were overcome by recycling the reaction mixture through the cell at increased flow rate several times. The specific quinones formed were guided by the position of an initial hydroxy group on the polycyclic aromatic hydrocarbon. An available para-position in the PAPs gave p-quinones, while hydroxy groups in the 2- or 3-position led to o-quinones. The substrates were analysed by cyclic voltammetry for estitmation of the HOMO/LUMO energies to shed more light on this transformation. The easy separation of the supporting electrolyte from the product will allow recycling and makes this a green transformation.
Collapse
Affiliation(s)
- Hiwot M Tiruye
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, P.O Box 8600 Forus, N-4036 Stavanger, Norway
| | - Solon Economopoulos
- Advanced Optoelectronic Nanomaterials Research Unit, Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Kåre B Jørgensen
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, P.O Box 8600 Forus, N-4036 Stavanger, Norway
| |
Collapse
|
3
|
Cui JQ, He ZQ, Ntakirutimana S, Liu ZH, Li BZ, Yuan YJ. Artificial mixed microbial system for polycyclic aromatic hydrocarbons degradation. Front Microbiol 2023; 14:1207196. [PMID: 37396390 PMCID: PMC10309208 DOI: 10.3389/fmicb.2023.1207196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants with major risks to human health. Biological degradation is environmentally friendly and the most appealing remediation method for a wide range of persistent pollutants. Meanwhile, due to the large microbial strain collection and multiple metabolic pathways, PAH degradation via an artificial mixed microbial system (MMS) has emerged and is regarded as a promising bioremediation approach. The artificial MMS construction by simplifying the community structure, clarifying the labor division, and streamlining the metabolic flux has shown tremendous efficiency. This review describes the construction principles, influencing factors, and enhancement strategies of artificial MMS for PAH degradation. In addition, we identify the challenges and future opportunities for the development of MMS toward new or upgraded high-performance applications.
Collapse
Affiliation(s)
- Jia-Qi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhi-Qiang He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Samuel Ntakirutimana
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Tiruye HM, Jørgensen KB. Oxidative synthesis of ortho-quinones from hydroxy-PAHs by stabilized formulation of 2-iodoxybenzoic acid (SIBX). Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Sleight TW, Sexton CN, Mpourmpakis G, Gilbertson LM, Ng CA. A Classification Model to Identify Direct-Acting Mutagenic Polycyclic Aromatic Hydrocarbon Transformation Products. Chem Res Toxicol 2021; 34:2273-2286. [PMID: 34662518 DOI: 10.1021/acs.chemrestox.1c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a complex group of environmental contaminants, many having long environmental half-lives. As these compounds degrade, the changes in their structure can result in a substantial increase in mutagenicity compared to the parent compound. Over time, each individual PAH can potentially degrade into several thousand unique transformation products, creating a complex, constantly evolving set of intermediates. Microbial degradation is the primary mechanism of their transformation and ultimate removal from the environment, and this process can result in mutagenic activation similar to the metabolic activation that can occur in multicellular organisms. The diversity of the potential intermediate structures in PAH-contaminated environments renders hazard assessment difficult for both remediation professionals and regulators. A mixture of structural and energetic descriptors has proven effective in existing studies for classifying which PAH transformation products will be mutagenic. However, most existing studies of environmental PAH mutagens primarily focus on nitrogenated derivatives, which are prevalent in the atmosphere and not as relevant in soil. Additionally, PAH products commonly found in the environment can range from as large as five rings to as small as a single ring, requiring a broadly inclusive methodology to comprehensively evaluate mutagenic potential. We developed a combination of supervised and unsupervised machine learning methods to predict environmentally induced PAH mutagenicity with improved performance over currently available tools. K-means clustering with principal component analysis allows us to identify molecular clusters that we hypothesize to have similar mechanisms of action. Recursive feature elimination identifies the most influential descriptors. The cluster-specific regression outperforms available classifiers in predicting direct-acting mutagens resulting from the microbial biodegradation of PAHs and provides direction for future studies evaluating the environmental hazards resulting from PAH biodegradation.
Collapse
Affiliation(s)
- Trevor W Sleight
- Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Caitlin N Sexton
- Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Leanne M Gilbertson
- Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Carla A Ng
- Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
6
|
Effects of diesel exhaust particles and urban particles on brain endothelial cells. Toxicol Res 2021; 38:91-98. [PMID: 35070944 PMCID: PMC8748579 DOI: 10.1007/s43188-021-00110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/26/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
Exposure to diesel exhaust particles (DEPs) and urban particles (UPs) increases the incidence of degenerative brain diseases as well as respiratory diseases. However, there is limited evidence on the mechanism of neurotoxicity on exposure to these particles. In the present study, the damage to blood-brain barrier (BBB) function by DEP or UP exposure was evaluated in bEnd.3 cells, which are derived from the brain tissue of Balb/c mice. It was demonstrated that DEP and UP exposure may induce oxidative stress via increasing reactive oxygen species (ROS) and decreasing total antioxidant capacity (TAC) level in bEnd.3 cells. In addition, cells exposed to DEP and UP demonstrated a resistance value of about 50% each compared to the value noted prior to exposure; additionally, Claudin-5 and ZO-1 expression levels were significantly decreased compared to the corresponding levels in the control. It was inferred that DEP or UP exposure diminishes the expression of tight junction proteins in endothelial cells through ROS generation, thereby enhancing endothelial membrane permeability. This study showed that DEPs or UPs induced cell permeability and oxidative stress by increasing ROS generation in bEnd.3 cells. This suggests the possibility that exposure to DEPs or UPs may compromise the integrity of the BBB and induce adverse effects in the CNS.
Collapse
|
7
|
Chan CC, Lin LY, Lai CH, Chuang KJ, Wu MT, Pan CH. Association of Particulate Matter from Cooking Oil Fumes with Heart Rate Variability and Oxidative Stress. Antioxidants (Basel) 2021; 10:1323. [PMID: 34439570 PMCID: PMC8389278 DOI: 10.3390/antiox10081323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Many studies have reported various cardiovascular autonomic responses to ambient particulate matter (PM) pollution, but few have reported such responses to occupational PM exposures. Even fewer have demonstrated a relationship between PM pollution and oxidative stress in humans. This panel study evaluates the association between occupational exposure to PM in cooking oil fumes (COFs), and changes in both heart rate variability (HRV) and oxidative stress responses in 54 male Chinese cooks. Linear mixed-effects regression models were adopted to estimate the strength of the association between PM and HRV. Participants' pre- and post-workshift urine samples were analyzed for 8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA). Exposure to PM in COFs from 15 min to 2 h were associated with a decrease in HRV and an increase in heart rate among cooks. The urinary 8-OHdG levels of cooks were significantly elevated after workshift exposure to COFs. The levels of PM2.5, PM1.0, and particulate benzo(a)pyrene in COFs were all positively correlated with cross-workshift urinary 8-OHdG levels. Furthermore, the levels of benzo(a)pyrene in COFs were positively correlated with cross-workshift urinary MDA levels. The effects of COFs on HRV were independent of cross-workshift urinary 8-OHdG levels. Exposure to COFs leads to disturbed autonomic function and an increased risk of oxidative DNA injury among cooks in Chinese restaurants.
Collapse
Affiliation(s)
- Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10055, Taiwan;
| | - Lian-Yu Lin
- Department of Internal Medicine, College of Medicine, National Taiwan University Hospital, Taipei 10050, Taiwan;
| | - Ching-Huang Lai
- School of Public Health, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei 11490, Taiwan;
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11490, Taiwan
| | - Ming-Tsang Wu
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80787, Taiwan;
- Research Center for Environmental Medicine, Kaohsiung Medical University, 100 ShihChuan 1st Road, Kaohsiung 87087, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 100, Tzyou 1st Road, Kaohsiung 80787, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Chih-Hong Pan
- School of Public Health, National Defense Medical Center, Taipei 11490, Taiwan;
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City 22143, Taiwan
| |
Collapse
|
8
|
Liu Y, Ren X, He L. First-principles study of benzo[a]pyrene-7,8-dione and DNA adducts. J Chem Phys 2021; 154:175102. [PMID: 34241046 DOI: 10.1063/5.0046360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in environments, and some of them are causative agents of human cancer. Previous studies concluded that benzo[a]pyrene-7,8-dione (BPQ), which is one kind of carcinogenic PAH metabolites, forms covalently bonded adducts with DNA, and the major adduct formed is a deoxyguanosine adduct. In this work, we investigate the interactions between BPQ and DNA molecules via first-principles calculations. We identify six possible DNA adducts with BPQ. In addition to the four adducts forming covalent bonds, there are two adducts bound purely by van der Waals (vdW) interactions. Remarkably, the two vdW-bound adducts have comparable, if not larger, binding energies as the covalent adducts. The results may help us gain more understanding of the interactions between PAH metabolites and DNA.
Collapse
Affiliation(s)
- Yue Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xinguo Ren
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lixin He
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
9
|
Luo K, Luo X, Cao W, Hochalter JB, Paiano V, Sipe CJ, Carmella SG, Murphy SE, Jensen J, Lam S, Golin AP, Bergstrom L, Midthun D, Fujioka N, Hatsukami D, Hecht SS. Cigarette smoking enhances the metabolic activation of the polycyclic aromatic hydrocarbon phenanthrene in humans. Carcinogenesis 2021; 42:570-577. [PMID: 33319219 PMCID: PMC8086767 DOI: 10.1093/carcin/bgaa137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Although it is well established that human cytochrome P450 1 family enzymes are induced by cigarette smoking through activation of the Ah receptor, it is not known whether this leads to increased metabolic activation or detoxification of carcinogenic polycyclic aromatic hydrocarbons (PAH), which are present in cigarette smoke and the general environment. We gave oral doses of deuterated phenanthrene ([D10]Phe), a non-carcinogenic surrogate of carcinogenic PAH such as benzo[a]pyrene, to smokers (N = 170, 1 or 10 μg doses) and non-smokers (N = 57, 1 μg dose). Bioactivation products (dihydrodiol and tetraol) and detoxification products (phenols) of [D10]Phe were determined in 6-h urine to obtain a comprehensive metabolic profile. Cigarette smoking increased the bioactivation of [D10]Phe and decreased its detoxification resulting in significantly different metabolic patterns between smokers and non-smokers (P < 0.01), consistent with increased cancer risk in smokers. The Phe bioactivation ratios ([D10]PheT/total [D9]OHPhe) were significantly higher (2.3 (P < 0.01) to 4.8 (P < 0.001) fold) in smokers than non-smokers. With solid human in vivo evidence, our results for the first time demonstrate that cigarette smoking enhances the metabolic activation of Phe, structurally representative of carcinogenic PAH, in humans, strongly supporting their causal role in cancers caused by smoking. The results suggest potential new methods for identifying smokers who could be at particularly high risk for cancer.
Collapse
Affiliation(s)
- Kai Luo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xianghua Luo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Wenhao Cao
- School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Viviana Paiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Steven G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Joni Jensen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen Lam
- British Columbia Cancer Research Center, Vancouver, British Columbia, Canada
| | - Andrew P Golin
- British Columbia Cancer Research Center, Vancouver, British Columbia, Canada
| | | | | | - Naomi Fujioka
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Dorothy Hatsukami
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Luo K, Carmella SG, Zhao Y, Tang MK, Hecht SS. Identification and quantification of phenanthrene ortho-quinones in human urine and their association with lipid peroxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115342. [PMID: 32805605 PMCID: PMC8892176 DOI: 10.1016/j.envpol.2020.115342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/11/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Although human exposure to polycyclic aromatic hydrocarbons (PAH) has been associated with in vivo oxidative damage, and hydroxyPAH metabolites have been used as biomarkers to assess PAH-induced oxidative stress, few studies have looked at the likely causative compounds for oxidative stress in humans - PAH quinones. We developed a method using pre-column derivatization - liquid chromatography-heated electrospray ionization-tandem mass spectrometry (LC-HESI-MS/MS) to analyze ortho-phenanthrene quinones (PheQs) in human urine. 1,2-PheQ and 3,4-PheQ were identified and quantified in 3 mL of human urine; their total concentrations were higher in cigarette smokers (0.79 ± 0.98 nmol/6h urine) than in nonsmokers (0.20 ± 0.98 nmol/6h urine) (p < 0.01). The total of 1,2-PheQ and 3,4-PheQ were more strongly correlated with urinary (Z)-7-[1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoic acid (8-iso-PGF2α), a biomarker of lipid peroxidation (R2 = 0.53, p < 0.001), than the other phenanthrene metabolites including phenanthrene tetraol (PheT), phenanthrene-1,2-dihydrodiol (1,2-PheD), and total phenanthrene phenols (OHPhe), consistent with the concept that PheQs and likely other PAH quinones play a causal role in the generation of reactive oxygen species (ROS) in humans. Thus, PheQs may be suitable as biomarkers to assess human exposure to oxygenated PAH and the subsequent oxidative damage. This study provides unique support, by analysis of human urinary metabolites, for the PAH quinone mediated oxidative damage hypothesis of PAH carcinogenesis.
Collapse
Affiliation(s)
- Kai Luo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| | - Steven G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Yingchun Zhao
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Mei Kuen Tang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Ghribi R, Correia AT, Elleuch B, Nunes B. Testing the impact of contaminated sediments from the southeast marine coast of Tunisia on biota: a multibiomarker approach using the flatfish Solea senegalensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29704-29721. [PMID: 31407260 DOI: 10.1007/s11356-019-05872-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Coastal marine areas are highly vulnerable to the exposure to various types of stressors and impact of chemical pollution resulting from increasing anthropogenic activities, namely pollution by metals and polycyclic aromatic hydrocarbons (PAHs). To assess ecosystem quality and functions, biomarkers can provide information about the presence and adverse effects of pollutants. Accordingly, the present study was conducted to evaluate the chronic (28 days) biologic effects of putatively contaminated sediments from the Zarzis area, located in the south of the Gulf of Gabes on the Southern Tunisian coast, on the marine flatfish Solea senegalensis. Sediments were collected at three sampling sites, impacted by wastewater discharges, aquaculture activities, and industrial contamination, and then surveyed for metals (Cd, Cu, Cr, Hg, Zn, and Pb) and organic contaminants (polycyclic aromatic hydrocarbons). The quantified biomarkers involved the determination of oxidative stress, phase II metabolism, and the extent of lipid peroxidation (catalase, CAT; glutathione peroxidase activity: total and selenium-dependent, T-GPx and Se-GPx; activities of glutathione-S-transferases, GSTs; levels of lipid peroxidation, by means of the thiobarbituric acid reactive substances assay, TBARS) and neurotoxicity (activity of acetylcholinesterase, AChE). S. senegalensis exposed to potentially contaminated sediments, collected near the aquaculture facility, presented the highest values for the generality of biomarkers tested, and a significant inhibition of AChE activity. A few lesions have been also recorded in the gills and liver tissues of S. senegalensis following chronic exposure. However, the observed lesions in gills (e.g., epithelial lifting, lamellar fusion, gills hyperplasia and hypertrophy, and leukocyte infiltration) and liver (cytoplasmic vacuolation, enlargement of sinusoids, foci of necrosis, and eosinophilic bodies) were of minimal pathological importance and/or low prevalence that did not significantly affect the weighted histopathological indices. Finally, the biological responses evidenced by this flatfish can be potentially caused by metal and PAH pollution occurring in specific areas in the southeast of Tunisia. The type and extent of the observed biochemical alterations strongly suggest that the contaminated sediments from the surveyed areas could cause early adverse biological effects on exposed biota.
Collapse
Affiliation(s)
- Rayda Ghribi
- Laboratoire d'Ingénierie de l'Environnement et d'Ecotechnologie, ENIS, Université de Sfax, BP 1173, 3038, Sfax, Tunisia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Porto, Matosinhos, Portugal
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208, Porto, Matosinhos, Portugal
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS/UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal
| | - Boubaker Elleuch
- Laboratoire d'Ingénierie de l'Environnement et d'Ecotechnologie, ENIS, Université de Sfax, BP 1173, 3038, Sfax, Tunisia
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
12
|
Trine LSD, Davis EL, Roper C, Truong L, Tanguay RL, Massey Simonich SL. Formation of PAH Derivatives and Increased Developmental Toxicity during Steam Enhanced Extraction Remediation of Creosote Contaminated Superfund Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4460-4469. [PMID: 30957485 PMCID: PMC7103206 DOI: 10.1021/acs.est.8b07231] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Steam enhanced extraction (SEE) is an in situ thermal remediation technique used to remove and recover polycyclic aromatic hydrocarbons (PAHs) from contaminated soils. However, limited studies have been conducted on the formation of PAH derivatives during and after SEE of PAH contaminated soils. Creosote contaminated soil samples collected from the Wyckoff-Eagle Harbor Superfund site were remediated with laboratory scale SEE. The samples were quantified for unsubstituted PAHs and their derivatives and assessed for developmental toxicity, pre- and post-SEE. Following SEE, unsubstituted PAH concentrations decreased, while oxygenated PAH concentrations increased in soil and aqueous extracts. Differences in developmental toxicity were also measured and linked to the formation of PAH derivatives. Additive toxicity was measured when comparing unfractionated extracts to fractionated extracts in pre- and post-SEE samples. SEE is effective in removing unsubstituted PAHs from contaminated soil, but other, potentially more toxic, PAH derivatives are formed.
Collapse
Affiliation(s)
- Lisandra Santiago Delgado Trine
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Eva L. Davis
- Groundwater, Watershed and Ecosystems Restoration Division, United States Environmental Protection Agency, Ada, OK 74820, USA
| | - Courtney Roper
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Lisa Truong
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Staci L. Massey Simonich
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
13
|
Singha LP, Sinha N, Pandey P. Rhizoremediation prospects of Polyaromatic hydrocarbon degrading rhizobacteria, that facilitate glutathione and glutathione-S-transferase mediated stress response, and enhance growth of rice plants in pyrene contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:579-588. [PMID: 30149357 DOI: 10.1016/j.ecoenv.2018.08.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/13/2018] [Accepted: 08/19/2018] [Indexed: 05/22/2023]
Abstract
Rhizoremediation is a strategy where pollutant degrading bacteria are augmented through plant roots using plant-microbe interaction. Therefore, for effective rhizoremediation of pyrene contaminated soil, bacterial strains were experimented for amelioration of stress response in host plant along with biodegradation ability. A total of 28 bacteria, having ability to degrade polycyclic aromatic hydrocarbons were isolated from contaminated sites and checked for their plant growth promoting attributes, such as indole acetic acid (IAA) production, phosphate solubilization, atmospheric nitrogen fixation and siderophore release. Among these isolates, Klebsiella pneumoniae AWD5 was found to degrade 60% of pyrene. While other isolates, i.e. Alcaligenes faecalis BDB4, Pseudomonas fragi DBC, Pseudomonas aeruginosa PDB1, Acinetobactor sp. PDB4 degraded 48.5%, 50.29%, 31.3% and 36% of pyrene, respectively, after 6 days of incubation. K. pneumoniae AWD5 produced 94.2 μg/ml IAA and 3.1 mM/mg/h unit of ACC deaminase, which was best among eighteen indole acetic acid producers and five of the 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing isolates. P. aeruginosa PDB1 resulted in highest phosphate solubilization activity of 875.26 ng/ml of soluble phosphate among seven phosphate solubilizers. The isolates AWD5 and PDB1 both have shown a good amount of siderophore release (56.3% and 84.3% unit). There was 19.1% increase in shoot length of rice seedlings treated with PDB1 in presence of pyrene. Similarly, 26.5% increase in the root length of AWD5 treated rice was recorded in pyrene contaminated soil. Bacterial inoculation also induced and improved the stress response in host plant, in presence of pyrene, as suggested by the superoxide dismutase, glutathione and glutathione-S-transferase activities in rice.
Collapse
Affiliation(s)
| | - Nibedita Sinha
- Department of Microbiology, Assam University, Silchar 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar 788011, India.
| |
Collapse
|
14
|
Lavrich KS, Corteselli EM, Wages PA, Bromberg PA, Simmons SO, Gibbs-Flournoy EA, Samet JM. Investigating mitochondrial dysfunction in human lung cells exposed to redox-active PM components. Toxicol Appl Pharmacol 2018; 342:99-107. [PMID: 29407367 DOI: 10.1016/j.taap.2018.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 11/16/2022]
Abstract
Exposure to ambient particulate matter (PM) causes cardiopulmonary morbidity and mortality through mechanisms that involve oxidative stress. 1,2-naphthoquinone (1,2-NQ) is a ubiquitous component of PM and a potent redox-active electrophile. We previously reported that 1,2-NQ increases mitochondrial H2O2 production through an unidentified mechanism. We sought to characterize the effects of 1,2-NQ exposure on mitochondrial respiration as a source of H2O2 in human airway epithelial cells. We measured the effects of acute exposure to 1,2-NQ on oxygen consumption rate (OCR) in the human bronchial epithelial cell line BEAS-2B and mitochondrial preparations using extracellular flux analysis. Complex-specific assays and NADPH depletion by glucose deprivation distinguished between mitochondrial and non-mitochondrial oxygen utilization. 1,2-NQ exposure of BEAS cells caused a rapid, marked dose-dependent increase in OCR that was independent of mitochondrial respiration, exceeded the OCR observed after mitochondrial uncoupling, and remained sensitive to NADPH depletion, implicating extra-mitochondrial redox cycling processes. Similar effects were observed with the environmentally relevant redox-cycling quinones 1,4-naphthoquinone and 9,10-phenanthrenequinone, but not with quinones that do not redox cycle, such as 1,4-benzoquinone. In mitochondrial preparations, 1,2-NQ caused a decrease in Complex I-linked substrate oxidation, suggesting impairment of pyruvate utilization or transport, a novel mechanism of mitochondrial inhibition by an environmental exposure. This study also highlights the methodological utility and challenges in the use of extracellular flux analysis to elucidate the mechanisms of action of redox-active electrophiles present in ambient air.
Collapse
Affiliation(s)
- Katelyn S Lavrich
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Elizabeth M Corteselli
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Phillip A Wages
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Steven O Simmons
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
| | | | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Penning TM. Genotoxicity of ortho-quinones: reactive oxygen species versus covalent modification. Toxicol Res (Camb) 2017. [PMID: 29527287 DOI: 10.1039/c7tx00223h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
o-Quinones are formed metabolically from natural and synthetic estrogens as well as upon exposure to polycyclic aromatic hydrocarbons (PAH) and contribute to estrogen and PAH carcinogenesis by genotoxic mechanisms. These mechanisms include the production of reactive oxygen species to produce DNA strand breaks and oxidatively damaged nucleobases; and the formation of covalent depurinating and stable DNA adducts. Unrepaired DNA-lesions can lead to mutation in critical growth control genes and cellular transformation. The genotoxicity of the o-quinones is exacerbated by nuclear translocation of estrogen o-quinones by the estrogen receptor and by the nuclear translocation of PAH o-quinones by the aryl hydrocarbon receptor. The properties of o-quinones, their formation and detoxication mechanisms, quinone-mediated DNA lesions and their mutagenic properties support an important role in hormonal and chemical carcinogenesis.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
16
|
Hilario Garcia AL, Matzenbacher CA, Santos MS, Prado L, Picada JN, Premoli SM, Corrêa DS, Niekraszewicz L, Dias JF, Grivicich I, da Silva J. Genotoxicity induced by water and sediment samples from a river under the influence of brewery effluent. CHEMOSPHERE 2017; 169:239-248. [PMID: 27880922 DOI: 10.1016/j.chemosphere.2016.11.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Brewery effluents contain complex mixtures that are discharged into rivers. Therefore, it is necessary to evaluate the genotoxic potential of these effluents. The study evaluated the genotoxicity of surface water and sediment samples from the Jacuí River in the state of Rio Grande do Sul, Brazil, which received effluents discharged from a brewery. The Salmonella/microsome test, Comet Assay and Micronucleus test on V79 cells, as well as the element profile (PIXE) and PAHs levels were used for this purpose. The surface water and sediment samples were collected in summer at three sites: 1 km upstream from the brewery discharge site (Site A); in front of the effluent discharge site, after chemical and biological treatment (Site B); about 1 km downstream from the discharge site (Site C). Only a sediment sample from Site A induced a mutagenic effect using the Salmonella/microsoma test (TA97a). All three sites presented genotoxicity (A, B and C), both for water and sediments using comet assay, and mutagenicity in the samples from Site B (surface water) and Site A and Site C (sediments) using the micronuclei tests. The results of PIXE and PAHs showed higher levels of elements for samples obtained from sites upstream and downstream from the effluent discharge. Environmental samples consist of complex mixtures of chemicals, and it is difficult to associate DNA damage with a specific element. This study showed that brewery effluent contains metals and PAHs that can induce in vitro genotoxicity under the conditions of this study.
Collapse
Affiliation(s)
- Ana Letícia Hilario Garcia
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° andar), 92425-900, Canoas, RS, Brazil; Laboratory of Ecotoxicology, Postgraduate Program in Environmental Quality, University Feevale, ERS-239, 2755, 93525-075, Novo Hamburgo, RS, Brazil
| | - Cristina Araujo Matzenbacher
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° andar), 92425-900, Canoas, RS, Brazil
| | - Marcela Silva Santos
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° andar), 92425-900, Canoas, RS, Brazil
| | - Lismare Prado
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° andar), 92425-900, Canoas, RS, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° andar), 92425-900, Canoas, RS, Brazil
| | - Suziane M Premoli
- Postgraduate Program in Genetics and Applied Toxicology (PPGGTA) - Chemistry Course, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, 92425-900, Canoas, RS, Brazil
| | - Dione S Corrêa
- Postgraduate Program in Genetics and Applied Toxicology (PPGGTA) - Chemistry Course, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, 92425-900, Canoas, RS, Brazil
| | - Liana Niekraszewicz
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 - Agronomia, Porto Alegre, RS, Brazil
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 - Agronomia, Porto Alegre, RS, Brazil
| | - Ivana Grivicich
- Laboratory of Cancer Biology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° andar), 92425-900, Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22, Sala 22 (4° andar), 92425-900, Canoas, RS, Brazil.
| |
Collapse
|
17
|
Kumagai Y, Abiko Y. Environmental Electrophiles: Protein Adducts, Modulation of Redox Signaling, and Interaction with Persulfides/Polysulfides. Chem Res Toxicol 2016; 30:203-219. [DOI: 10.1021/acs.chemrestox.6b00326] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yoshito Kumagai
- Environmental Biology Section, Faculty
of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yumi Abiko
- Environmental Biology Section, Faculty
of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
18
|
Carratt SA, Morin D, Buckpitt AR, Edwards PC, Van Winkle LS. Naphthalene cytotoxicity in microsomal epoxide hydrolase deficient mice. Toxicol Lett 2016; 246:35-41. [PMID: 26840748 DOI: 10.1016/j.toxlet.2016.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/16/2016] [Accepted: 01/24/2016] [Indexed: 12/01/2022]
Abstract
Naphthalene (NA) is a ubiquitous pollutant to which humans are widely exposed. 1,2-Dihydro-1,2-dihydroxynaphthalene (NA-dihydrodiol) is a major metabolite of NA generated by microsomal epoxide hydrolase (mEH). To investigate the role of the NA-dihydrodiol and subsequent metabolites (i.e. 1,2-naphthoquinone) in cytotoxicity, we exposed both male and female wild type (WT) and mEH null mice (KO) to NA by inhalation (5, 10, 20 ppm for 4h). NA-dihydrodiol was ablated in the KO mice. High-resolution histopathology was used to study site-specific cytotoxicity, and formation of naphthalene metabolites was measured by HPLC in microdissected airways. Swollen and vacuolated airway epithelial cells were observed in the intra- and extrapulmonary airways of all mice at and below the current OSHA standard (10 ppm). Female mice may be more susceptible to this acute cytotoxicity. In the extrapulmonary airways, WT mice were more susceptible to damage than KO mice, indicating that the metabolites associated with mEH-mediated metabolism could be partially responsible for cytotoxicity at this site. The level of cytotoxicity in the mEH KO mice at all airway levels suggests that non-mEH metabolites are contributing to NA cellular damage in the lung. Our results indicate that the apparent contribution of mEH-dependent metabolites to toxicity differs by location in the lung. These studies suggest that metabolites generated through the mEH pathway may be of minor importance in distal airway toxicity and subsequent carcinogenesis from NA exposure.
Collapse
Affiliation(s)
- S A Carratt
- Center for Health and the Environment, University of California Davis, Davis, CA 95616, USA
| | - D Morin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - A R Buckpitt
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - P C Edwards
- Center for Health and the Environment, University of California Davis, Davis, CA 95616, USA
| | - L S Van Winkle
- Center for Health and the Environment, University of California Davis, Davis, CA 95616, USA; Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
19
|
Wangpradit O, Rahaman A, Mariappan SVS, Buettner GR, Robertson LW, Luthe G. Breaking the dogma: PCB-derived semiquinone free radicals do not form covalent adducts with DNA, GSH, and amino acids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2138-2147. [PMID: 26396011 PMCID: PMC4767158 DOI: 10.1007/s11356-015-5007-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/01/2015] [Indexed: 06/05/2023]
Abstract
Covalent bond formations of free radical metabolites with biomolecules like DNA and proteins are thought to constitute a major mechanism of toxicity and carcinogenesis. Glutathione (GSH) is generally accepted as a radical scavenger protecting the cell. In the present study, we investigated a semiquinone radical (SQ(●-)) metabolite of the semivolatile 4-chlorobiphenyl, using electron paramagnetic resonance spectroscopy, and oxygen consumption. Proton nuclear magnetic resonance ((1)H NMR) and liquid chromatography-mass spectrometry (LC-MS) were also employed to elucidate the radical interaction with DNA, amino acids, and GSH. We found that DNA and oligonucleotides stabilized SQ(●-) by electron delocalization in the π-stacking system, resulting in persistent radical intercalated, rather than forming a covalent bond with SQ(●-). This finding was strongly supported by the semiempirical calculation of the semioccupied molecular orbital and the linear combination of the atomic orbitals, indicating 9.8 kcal mol(-1) energy gain. The insertion of SQ(●-) into the DNA strand may result in DNA strand breaks and interruption of DNA replication process or even activate radical mediated secondary reactions. The presence of amino acids resulted in a decrease of the electron paramagnetic resonance (EPR) signal of SQ(●-) and correlated with their isoelectric points. The pH shifts the equilibrium of the dianions of hydroquinone and influenced indirectly the formation of SQ(●-). Similar findings were observed with GSH and Cys. GSH and Cys functioned as indirect radical scavengers; their activities depend on their chemical equilibria with the corresponding quinones, and their further reaction via Michael addition. The generally accepted role of GSH as radical scavenger in biological systems should be reconsidered based upon these findings, questioning the generally accepted view of radical interaction of semiquinones with biologically active compounds, like DNA, amino acids, proteins, and radical scavengers like GSH.
Collapse
Affiliation(s)
- Orarat Wangpradit
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa, IA, 52242, USA
- Department of Occupational and Environmental Health, The University of Iowa, 100 Oakdale Campus, Iowa, IA, 52242, USA
- Sirindhorn College of Public Health, BanSuan, Muang, Chonburi, 2000, Thailand
| | - Asif Rahaman
- Department of Chemistry, City College of New York, Convent Avenue at 138th St., New York, NY, 10031, USA
| | - S V Santhana Mariappan
- Central High-Field NMR Research Facility, Department of Chemistry, The University of Iowa, Iowa, IA, 52242, USA
| | - Garry R Buettner
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa, IA, 52242, USA
- Free Radical and Radiation Biology Program, The University of Iowa, Iowa, IA, 52242, USA
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa, IA, 52242, USA
- Department of Occupational and Environmental Health, The University of Iowa, 100 Oakdale Campus, Iowa, IA, 52242, USA
| | - Gregor Luthe
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa, IA, 52242, USA.
- School of Life Science, Engineering & Design, Saxion University of Applied Sciences, Enschede, Netherlands.
- Luthe-Pharma, Fabrikstrasse 3, 48599, Gronau.
| |
Collapse
|
20
|
Chibwe L, Geier MC, Nakamura J, Tanguay RL, Aitken MD, Simonich SLM. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015. [PMID: 26200254 PMCID: PMC4666737 DOI: 10.1021/acs.est.5b00499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (prebioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (postbioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, postbioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental toxicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, postbioremediation (p < 0.05). In addition, a statistically significant increase in developmental toxicity was measured in one polar soil extract fraction, postbioremediation (p < 0.05). A series of morphological abnormalities, including peculiar caudal fin malformations and hyperpigmentation in the tail, were measured in several soil extract fractions in embryonic zebrafish, both pre- and postbioremediation. The increased toxicity measured postbioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase postbioremediation. However, the increased toxicity measured postbioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded.
Collapse
Affiliation(s)
- Leah Chibwe
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Mitra C. Geier
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Jun Nakamura
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Michael D. Aitken
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Staci L. Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Corresponding Author Address: 1141 Agricultural and Life Sciences, Corvallis, OR 97331-7301, USA; telephone: (541) 737-9194; fax: (541) 737-0497;
| |
Collapse
|
21
|
Bailey LA, Nascarella MA, Kerper LE, Rhomberg LR. Hypothesis-based weight-of-evidence evaluation and risk assessment for naphthalene carcinogenesis. Crit Rev Toxicol 2015; 46:1-42. [PMID: 26202831 PMCID: PMC4732411 DOI: 10.3109/10408444.2015.1061477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/09/2015] [Indexed: 11/13/2022]
Abstract
Inhalation of naphthalene causes olfactory epithelial nasal tumors in rats (but not in mice) and benign lung adenomas in mice (but not in rats). The limited available human data have not identified an association between naphthalene exposure and increased respiratory cancer risk. Assessing naphthalene's carcinogenicity in humans, therefore, depends entirely on experimental evidence from rodents. We evaluated the respiratory carcinogenicity of naphthalene in rodents, and its potential relevance to humans, using our Hypothesis-Based Weight-of-Evidence (HBWoE) approach. We systematically and comparatively reviewed data relevant to key elements in the hypothesized modes of action (MoA) to determine which is best supported by the available data, allowing all of the data from each realm of investigation to inform interpretation of one another. Our analysis supports a mechanism that involves initial metabolism of naphthalene to the epoxide, followed by GSH depletion, cytotoxicity, chronic inflammation, regenerative hyperplasia, and tumor formation, with possible weak genotoxicity from downstream metabolites occurring only at high cytotoxic doses, strongly supporting a non-mutagenic threshold MoA in the rat nose. We also conducted a dose-response analysis, based on the likely MoA, which suggests that the rat nasal MoA is not relevant in human respiratory tissues at typical environmental exposures. Our analysis illustrates how a thorough WoE evaluation can be used to support a MoA, even when a mechanism of action cannot be fully elucidated. A non-mutagenic threshold MoA for naphthalene-induced rat nasal tumors should be considered as a basis to determine human relevance and to guide regulatory and risk-management decisions.
Collapse
|
22
|
Human aldo-keto reductases and the metabolic activation of polycyclic aromatic hydrocarbons. Chem Res Toxicol 2014; 27:1901-17. [PMID: 25279998 PMCID: PMC4237494 DOI: 10.1021/tx500298n] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Aldo-keto reductases (AKRs) are promiscuous
NAD(P)(H) dependent
oxidoreductases implicated in the metabolic activation of polycyclic
aromatic hydrocarbons (PAH). These enzymes catalyze the oxidation
of non-K-region trans-dihydrodiols to the corresponding o-quinones with the concomitant production of reactive oxygen
species (ROS). The PAH o-quinones are Michael acceptors
and can form adducts but are also redox-active and enter into futile
redox cycles to amplify ROS formation. Evidence exists to support
this metabolic pathway in humans. The human recombinant AKR1A1 and
AKR1C1–AKR1C4 enzymes all catalyze the oxidation of PAH trans-dihydrodiols to PAH o-quinones. Many
human AKRs also catalyze the NADPH-dependent reduction of the o-quinone products to air-sensitive catechols, exacerbating
ROS formation. Moreover, this pathway of PAH activation occurs in
a panel of human lung cell lines, resulting in the production of ROS
and oxidative DNA damage in the form of 8-oxo-2′-deoxyguanosine.
Using stable-isotope dilution liquid chromatography tandem mass spectrometry,
this pathway of benzo[a]pyrene (B[a]P) metabolism was found to contribute equally with the diol-epoxide
pathway to the activation of this human carcinogen in human lung cells.
Evaluation of the mutagenicity of anti-B[a]P-diol epoxide with B[a]P-7,8-dione on
p53 showed that the o-quinone produced by AKRs was
the more potent mutagen, provided that it was permitted to redox cycle,
and that the mutations observed were G to T transversions, reminiscent
of those observed in human lung cancer. It is concluded that there
is sufficient evidence to support the role of human AKRs in the metabolic
activation of PAH in human lung cell lines and that they may contribute
to the causation of human lung cancer.
Collapse
|
23
|
Afrasiabi Z, Stovall P, Finley K, Choudhury A, Barnes C, Ahmad A, Sarkar F, Vyas A, Padhye S. Targeting triple negative breast cancer cells by N3-substituted 9,10-phenanthrenequinone thiosemicarbazones and their metal complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 114:114-119. [PMID: 23770498 DOI: 10.1016/j.saa.2013.04.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/22/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
Novel N(3)-substituted 9,10-Phenanthrenequinone thiosemicarbazones and their copper, nickel and palladium complexes are structurally characterized and reported along with the single crystal X-ray structures of three ligands and one nickel complex. All compounds were evaluated for their antiproliferative potential against Triple Negative Breast Cancer (TNBC) cells which have poor prognosis and no effective drugs to treat with. All compounds exhibited antiproliferative activity against these cells. Among the metal complexes evaluated, redox active copper complexes were found to be more potent. The possible mechanism for such enhanced activity can be attributed to the generation of oxidative stress, which was amenable for targeting through metal complexation.
Collapse
Affiliation(s)
- Zahra Afrasiabi
- Department of Life & Physical Sciences, Lincoln University, Jefferson City, MO 65101, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Afrasiabi Z, Almudhafar R, Xiao D, Sinn E, Choudhury A, Ahmad A, Vyas A, Sarkar F, Padhye S. Metal-based anticancer agents: targeting androgen-dependent and androgen-independent prostate and COX-positive pancreatic cancer cells by phenanthrenequinone semicarbazone and its metal complexes. TRANSIT METAL CHEM 2013. [DOI: 10.1007/s11243-013-9735-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Huang M, Blair IA, Penning TM. Identification of stable benzo[a]pyrene-7,8-dione-DNA adducts in human lung cells. Chem Res Toxicol 2013; 26:685-92. [PMID: 23587017 PMCID: PMC3660951 DOI: 10.1021/tx300476m] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Metabolic
activation of the proximate carcinogen benzo[a]pyrene-7,8-trans-dihydrodiol (B[a]P-7,8-trans-dihydrodiol) by aldo-keto
reductases (AKRs) leads to B[a]P-7,8-dione that is
both electrophilic and redox-active. B[a]P-7,8-dione
generates reactive oxygen species resulting in oxidative DNA damage
in human lung cells. However, information on the formation of stable
B[a]P-7,8-dione-DNA adducts in these cells is lacking.
We studied stable DNA adduct formation of B[a]P-7,8-dione
in human lung adenocarcinoma A549 cells, human bronchoalveolar H358
cells, and immortalized human bronchial epithelial HBEC-KT cells.
After treatment with 2 μM B[a]P-7,8-dione,
the cellular DNA was extracted from the cell pellets subjected to
enzyme hydrolysis and subsequent analysis by LC-MS/MS. Several stable
DNA adducts of B[a]P-7,8-dione were only detected
in A549 and HBEC-KT cells. In A549 cells, the structures of stable
B[a]P-7,8-dione-DNA adducts were identified as hydrated-B[a]P-7,8-dione-N2-2′-deoxyguanosine
and hydrated-B[a]P-7,8-dione-N1-2′-deoxyguanosine.
In HBEC-KT cells, the structures of stable B[a]P-7,8-dione-DNA
adducts were identified as hydrated-B[a]P-7,8-dione-2′-deoxyadenosine,
hydrated-B[a]P-7,8-dione-N1- or N3-2′-deoxyadenosine,
and B[a]P-7,8-dione-N1- or N3-2′-deoxyadenosine.
In each case, adduct structures were characterized by MSn spectra. Adduct structures were also compared to
those synthesized from reactions of B[a]P-7,8-dione
with either deoxyribonucleosides or salmon testis DNA in vitro but were found to be different.
Collapse
Affiliation(s)
- Meng Huang
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6160, United States
| | | | | |
Collapse
|
26
|
Olmos-Espejel JJ, García de Llasera MP, Velasco-Cruz M. Extraction and analysis of polycyclic aromatic hydrocarbons and benzo[a]pyrene metabolites in microalgae cultures by off-line/on-line methodology based on matrix solid-phase dispersion, solid-phase extraction and high-performance liquid chromatography. J Chromatogr A 2012; 1262:138-47. [DOI: 10.1016/j.chroma.2012.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/10/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
|
27
|
Huang M, Liu X, Basu SS, Zhang L, Kushman ME, Harvey RG, Blair IA, Penning TM. Metabolism and distribution of benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) in human lung cells by liquid chromatography tandem mass spectrometry: detection of an adenine B[a]P-7,8-dione adduct. Chem Res Toxicol 2012; 25:993-1003. [PMID: 22480306 DOI: 10.1021/tx200463s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) is produced in human lung cells by the oxidation of (±)-B[a]P-7,8-trans-dihydrodiol, which is catalyzed by aldo-keto reductases (AKRs). However, information relevant to the cell-based metabolism of B[a]P-7,8-dione is lacking. We studied the metabolic fate of 2 μM 1,3-[(3)H(2)]-B[a]P-7,8-dione in human lung adenocarcinoma A549 cells, human bronchoalveolar H358 cells, and immortalized human bronchial epithelial HBEC-KT cells. In these three cell lines, 1,3-[(3)H(2)]-B[a]P-7,8-dione was rapidly consumed, and radioactivity was distributed between the organic and aqueous phase of ethyl acetate-extracted media, as well as in the cell lysate pellets. After acidification of the media, several metabolites of 1,3-[(3)H(2)]-B[a]P-7,8-dione were detected in the organic phase of the media by high performance liquid chromatography-ultraviolet-radioactivity monitoring (HPLC-UV-RAM). The structures of B[a]P-7,8-dione metabolites varied in the cell lines and were identified as B[a]P-7,8-dione conjugates with glutathione (GSH) and N-acetyl-l-cysteine (NAC), 8-O-monomethylated-catechol, catechol monosulfate, and monoglucuronide, and monohydroxylated-B[a]P-7,8-dione by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We also obtained evidence for the first time for the formation of an adenine adduct of B[a]P-7,8-dione. Among these metabolites, the identity of the GSH-B[a]P-7,8-dione and the NAC-B[a]P-7,8-dione was further validated by comparison to authentic synthesized standards. The pathways of B[a]P-7,8-dione metabolism in the three human lung cell lines are formation of GSH and NAC conjugates, reduction to the catechol followed by phase II conjugation reactions leading to its detoxification, monohydroxylation, as well as formation of the adenine adduct.
Collapse
Affiliation(s)
- Meng Huang
- Center of Excellence in Environmental Toxicology and Center for Cancer Pharmacology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Esch MB, King TL, Shuler ML. The role of body-on-a-chip devices in drug and toxicity studies. Annu Rev Biomed Eng 2012; 13:55-72. [PMID: 21513459 DOI: 10.1146/annurev-bioeng-071910-124629] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-quality, in vitro screening tools are essential in identifying promising compounds during drug development. Tests with currently used cell-based assays provide an indication of a compound's potential therapeutic benefits to the target tissue, but not to the whole body. Data obtained with animal models often cannot be extrapolated to humans. Multicompartment microfluidic-based devices, particularly those that are physical representations of physiologically based pharmacokinetic (PBPK) models, may contribute to improving the drug development process. These scaled-down devices, termed micro cell culture analogs (μCCAs) or body-on-a-chip devices, can simulate multitissue interactions under near-physiological fluid flow conditions and with realistic tissue-to-tissue size ratios. Because the device can be used with both animal and human cells, it can facilitate cross-species extrapolation. Used in conjunction with PBPK models, the devices permit an estimation of effective concentrations that can be used for studies with animal models or predict the human response. The devices also provide a means for relatively high-throughput screening of drug combinations and, when utilized with a patient's tissue sample, an opportunity for individualized medicine. Here we review efforts made toward the development of microfabricated cell culture systems and give examples that demonstrate their potential use in drug development, such as identifying synergistic drug interactions as well as simulating multiorgan metabolic interactions. In addition to their use in drug development, the devices also can be used to estimate the toxicity of chemicals as occupational hazards and environmental contaminants.
Collapse
Affiliation(s)
- M B Esch
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
29
|
Borosky GL, Laali KK. In Silico study of carcinogenic o-Quinone metabolites derived from polycyclic aromatic hydrocarbons (PAHs). J PHYS ORG CHEM 2012. [DOI: 10.1002/poc.2924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gabriela L. Borosky
- Departamento de Matemática y Física, INFIQC, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba; Ciudad Universitaria; Córdoba; 5000; Argentina
| | - Kenneth K. Laali
- Department of Chemistry; University of North Florida; 1, UNF Drive; Jacksonville; FL; 32224; USA
| |
Collapse
|
30
|
Abedin Z, Sen S, Field J. Aldo-keto reductases protect lung adenocarcinoma cells from the acute toxicity of B[a]P-7,8-trans-dihydrodiol. Chem Res Toxicol 2011; 25:113-21. [PMID: 22053912 DOI: 10.1021/tx200272v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tobacco smoke exposure stimulates the expression of genes that are likely to be involved in the metabolism of its combustion products such as polycyclic aromatic hydrocarbons (PAH). Four of the smoke induced genes are aldo-keto reductases (AKR), enzymes that metabolically activate PAH to PAH o-quinones. Alternatively, PAHs are metabolized to (±)-anti-diol epoxides, such as (±)-anti-benzo[a]pyrene diol epoxide ((±)-anti-BPDE)), by the combined action of P4501A1/1B1 and epoxide hydrolase. (±)-anti-BPDE forms DNA adducts directly, while PAH o-quinones cause DNA damage by oxidative stress through a futile redox cycle. To address the role of AKRs in PAH cytotoxicity, we compared the cytotoxicity of PAH metabolites and the effects of overexpressing AKR1A1 in lung cells. (±)-anti-BPDE and B[a]P-7,8-trans-dihydrodiol, an intermediate in (±)-anti-BPDE metabolism, are toxic to A549 cells at concentrations with an IC(50) of ∼2 μM. In contrast, the PAH o-quinone B[a]P-7,8-dione was about 10-fold less toxic to A549 cells with an IC(50) > 20 μM. Similar differences in cytoxicity were observed with two other PAH o-quinones (benz[a]anthracene-3,4-dione and 7,12-dimethylbenz[a]anthracene-3,4-dione) compared with their respective diol-epoxide counterparts (BA-3,4-diol-1,2-epoxide and DMBA-3,4-diol-1,2-epoxide). In addition, both anti-BPDE and B[a]P-7,8-trans-dihydrodiol induced p53 expression ∼6 h post-treatment at concentrations as low as 1 μM consistent with extensive DNA damage. B[a]P-7,8-dione treatment did not induce p53 but generated reactive oxygen species (ROS) in A549 cells and induced the expression of oxidative response genes in H358 cells. We also observed that overexpression of AKR1A1 in H358 cells, which otherwise have low levels of AKR expression, protected cells 2-10-fold from the toxic effects of B[a]P-7,8-trans-dihydrodiol. These data suggest that overexpression of AKRs may protect lung cancer cells from the acute toxic effects of PAH.
Collapse
Affiliation(s)
- Zahidur Abedin
- Department of Pharmacology, Centers for Excellence in Environmental Toxicology and Cancer Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, United States
| | | | | |
Collapse
|
31
|
Shultz CA, Quinn AM, Park JH, Harvey RG, Bolton JL, Maser E, Penning TM. Specificity of human aldo-keto reductases, NAD(P)H:quinone oxidoreductase, and carbonyl reductases to redox-cycle polycyclic aromatic hydrocarbon diones and 4-hydroxyequilenin-o-quinone. Chem Res Toxicol 2011; 24:2153-66. [PMID: 21910479 DOI: 10.1021/tx200294c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are suspect human lung carcinogens and can be metabolically activated to remote quinones, for example, benzo[a]pyrene-1,6-dione (B[a]P-1,6-dione) and B[a]P-3,6-dione by the action of either P450 monooxygenase or peroxidases, and to non-K region o-quinones, for example B[a]P-7,8-dione, by the action of aldo keto reductases (AKRs). B[a]P-7,8-dione also structurally resembles 4-hydroxyequilenin o-quinone. These three classes of quinones can redox cycle, generate reactive oxygen species (ROS), and produce the mutagenic lesion 8-oxo-dGuo and may contribute to PAH- and estrogen-induced carcinogenesis. We compared the ability of a complete panel of human recombinant AKRs to catalyze the reduction of PAH o-quinones in the phenanthrene, chrysene, pyrene, and anthracene series. The specific activities for NADPH-dependent quinone reduction were often 100-1000 times greater than the ability of the same AKR isoform to oxidize the cognate PAH-trans-dihydrodiol. However, the AKR with the highest quinone reductase activity for a particular PAH o-quinone was not always identical to the AKR isoform with the highest dihydrodiol dehydrogenase activity for the respective PAH-trans-dihydrodiol. Discrete AKRs also catalyzed the reduction of B[a]P-1,6-dione, B[a]P-3,6-dione, and 4-hydroxyequilenin o-quinone. Concurrent measurements of oxygen consumption, superoxide anion, and hydrogen peroxide formation established that ROS were produced as a result of the redox cycling. When compared with human recombinant NAD(P)H:quinone oxidoreductase (NQO1) and carbonyl reductases (CBR1 and CBR3), NQO1 was a superior catalyst of these reactions followed by AKRs and last CBR1 and CBR3. In A549 cells, two-electron reduction of PAH o-quinones causes intracellular ROS formation. ROS formation was unaffected by the addition of dicumarol, suggesting that NQO1 is not responsible for the two-electron reduction observed and does not offer protection against ROS formation from PAH o-quinones.
Collapse
Affiliation(s)
- Carol A Shultz
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Kirsanov KI, Lesovaya EA, Sidorov RA, Belitsky GA, Yakubovskaya MG. Analysis of blastomogenic activity of mammal carcinogens in Drosophila using the wts P4 allele and RNA interference-induced P53 silencing. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411040065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Meng F, Wang Y, Myers MB, Wong BA, Gross EA, Clewell HJ, Dodd DE, Parsons BL. p53 codon 271 CGT to CAT mutant fraction does not increase in nasal respiratory and olfactory epithelia of rats exposed to inhaled naphthalene. Mutat Res 2011; 721:199-205. [PMID: 21324376 DOI: 10.1016/j.mrgentox.2011.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 11/17/2022]
Abstract
A 2-year rat tumor bioassay testing whole body exposure to naphthalene (NA) vapor found a significant increase in nasal respiratory epithelial adenomas in male rats and in olfactory epithelial neuroblastomas in female rats. To obtain mechanistic insight into NA-induced nasal carcinogenesis, NA dose-response was characterized in nasal epithelium using a tumor-relevant endpoint. Specifically, levels of p53 codon 271 CGT to CAT mutation were measured in nasal respiratory and olfactory epithelium of NA-exposed male and female rats by allele-specific competitive blocker-PCR (ACB-PCR). Male and female, 8-9 week-old F344 rats (5 rats/group) were exposed to 0, 0.1, 1.0, 10, and 30ppm NA vapor for 13 weeks (6h/day, 5 days/week). The geometric mean p53 mutant fraction (MF) levels in nasal epithelium of control treatment groups ranged between 2.05 × 10(-5) and 3.05 × 10(-5). No significant dose-related changes in p53 mutant fraction (MF) were observed in the olfactory or respiratory epithelia of female rats. However, statistically significant treatment-related differences were observed in male respiratory and olfactory epithelium, with the p53 MF in the respiratory epithelium of male rats exposed to 30ppm NA significantly lower than that in controls. Further, a significant trend of decreasing p53 MF with increasing dose was observed in the male respiratory epithelium. Of the tissue types analyzed, respiratory epithelium is the most sensitive to the cytotoxic effects of NA, suggesting cytotoxicity may be responsible for the loss of p53 mutation. Because ACB-PCR has been used successfully to detect the effects of known mutagenic carcinogens, the absence of any significant increases in p53 MF associated with NA exposure adds to the weight of evidence that NA does not operate through a directly mutagenic mode of action.
Collapse
Affiliation(s)
- Fanxue Meng
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Costa PM, Chicano-Gálvez E, López Barea J, DelValls TA, Costa MH. Alterations to proteome and tissue recovery responses in fish liver caused by a short-term combination treatment with cadmium and benzo[a]pyrene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:3338-3346. [PMID: 20719421 DOI: 10.1016/j.envpol.2010.07.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 07/18/2010] [Accepted: 07/21/2010] [Indexed: 05/29/2023]
Abstract
The livers of soles (Solea senegalensis) injected with subacute doses of cadmium (Cd), benzo[a]pyrene (B[a]P), or their combination, were screened for alterations to cytosolic protein expression patterns, complemented by cytological and histological analyses. Cadmium and B[a]P, but not combined, induced hepatocyte apoptosis and Kupfer cell hyperplasia. Proteomics, however, suggested that apoptosis was triggered through distinct pathways. Cadmium and B[a]P caused upregulation of different anti-oxidative enzymes (peroxiredoxin and glutathione peroxidase, respectively) although co-exposure impaired induction. Similarly, apoptosis was inhibited by co-exposure, to which may have contributed a synergistic upregulation of tissue metalloproteinase inhibitor, beta-actin and a lipid transport protein. The regulation factors of nine out of eleven identified proteins of different types revealed antagonistic or synergistic effects between Cd and B[a]P at the prospected doses after 24 h of exposure. The results indicate that co-exposure to Cd and B[a]P may enhance toxicity by impairing specific responses and not through cumulative damage.
Collapse
Affiliation(s)
- P M Costa
- IMAR-Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Monte de Caparica, Portugal.
| | | | | | | | | |
Collapse
|
35
|
Rhomberg LR, Bailey LA, Goodman JE. Hypothesis-based weight of evidence: A tool for evaluating and communicating uncertainties and inconsistencies in the large body of evidence in proposing a carcinogenic mode of action—naphthalene as an example. Crit Rev Toxicol 2010; 40:671-96. [PMID: 20722583 DOI: 10.3109/10408444.2010.499504] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Jin B, Lee HM, Kim SK. Conformational Analysis of Genotoxic Benzo[a] pyrene-7,8-dione-Duplex DNA Adducts Using a Molecular Dynamics Method. J Biomol Struct Dyn 2010; 27:457-64. [DOI: 10.1080/07391102.2010.10507330] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Costa PM, Caeiro S, Diniz MS, Lobo J, Martins M, Ferreira AM, Caetano M, Vale C, DelValls TA, Costa MH. Biochemical endpoints on juvenile Solea senegalensis exposed to estuarine sediments: the effect of contaminant mixtures on metallothionein and CYP1A induction. ECOTOXICOLOGY (LONDON, ENGLAND) 2009; 18:988-1000. [PMID: 19603267 DOI: 10.1007/s10646-009-0373-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 06/24/2009] [Indexed: 05/28/2023]
Abstract
Juvenile Solea senegalensis were exposed to fresh sediments from three stations of the Sado estuary (Portugal) in 28-day laboratory assays. Sediments revealed distinct levels of total organic matter, fine fraction, redox potential, trace elements (arsenic, cadmium, chromium, copper, nickel, lead and zinc) and organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls and a pesticide: dichloro diphenyl trichloroethane). Organisms were surveyed for contaminant bioaccumulation and induction of two hepatic biochemical biomarkers: metallothionein (MT) and cytochrome P450 (CYP1A), as potential indicators of exposure to metallic and organic contaminants, respectively. Using an integrative approach it was established that, although bioaccumulation is in general accordance with sediment contamination, lethality and biomarker responses are not linearly dependent of the cumulative concentrations of sediment contaminants but rather of their bioavailability and synergistic effects in organisms. It is concluded that metals and organic contaminants modulate both MT and CYP1A induction and it is suggested that reactive oxygen species may be the link between responses and effects of toxicity.
Collapse
Affiliation(s)
- Pedro M Costa
- Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Andersson E, Rotander A, von Kronhelm T, Berggren A, Ivarsson P, Hollert H, Engwall M. AhR agonist and genotoxicant bioavailability in a PAH-contaminated soil undergoing biological treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2009; 16:521-530. [PMID: 19296140 DOI: 10.1007/s11356-009-0121-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 02/09/2009] [Indexed: 05/27/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Degradation of the 16 US EPA priority PAHs in soil subjected to bioremediation is often achieved. However, the PAH loss is not always followed by a reduction in soil toxicity. For instance, bioanalytical testing of such soil using the chemical-activated luciferase gene expression (CALUX) assay, measuring the combined effect of all Ah receptor (AhR) activating compounds, occasionally indicates that the loss of PAHs does not correlate with the loss of Ah receptor-active compounds in the soil. In addition, standard PAH analysis does not address the issue of total toxicant bioavailability in bioremediated soil. MATERIALS AND METHODS To address these questions, we have used the CALUX AhR agonist bioassay and the Comet genotoxicity bioassay with RTL-W1 cells to evaluate the toxic potential of different extracts from a PAH-contaminated soil undergoing large-scale bioremediation. The extracts were also chemically analyzed for PAH16 and PCDD/PCDF. Soil sampled on five occasions between day 0 and day 274 of biological treatment was shaken with n-butanol with vortex mixing at room temperature to determine the bioavailable fraction of contaminants. To establish total concentrations, parts of the same samples were extracted using an accelerated solvent extractor (ASE) with toluene at 100 degrees C. The extracts were tested as inducers of AhR-dependent luciferase activity in the CALUX assay and for DNA breakage potential in the Comet bioassay. RESULTS The chemical analysis of the toluene extracts indicated slow degradation rates and the CALUX assay indicated high levels of AhR agonists in the same extracts. Compared to day 0, the bioavailable fractions showed no decrease in AhR agonist activity during the treatment but rather an up-going trend, which was supported by increasing levels of PAHs and an increased effect in the Comet bioassay after 274 days. The bio-TEQs calculated using the CALUX assay were higher than the TEQs calculated from chemical analysis in both extracts, indicating that there are additional toxic PAHs in both extracts that are not included in the chemically derived TEQ. DISCUSSION The response in the CALUX and the Comet bioassays as well as the chemical analysis indicate that the soil might be more toxic to organisms living in soil after 274 days of treatment than in the untreated soil, due to the release of previously sorbed PAHs and possibly also metabolic formation of novel toxicants. CONCLUSIONS Our results put focus on the issue of slow degradation rates and bioavailability of PAHs during large-scale bioremediation treatments. The release of sorbed PAHs at the investigated PAH-contaminated site seemed to be faster than the degradation rate, which demonstrates the importance of considering the bioavailable fraction of contaminants during a bioremediation process. RECOMMENDATIONS AND PERSPECTIVES It has to be ensured that soft remediation methods like biodegradation or the natural remediation approach do not result in the mobilization of toxic compounds including more mobile degradation products. For PAH-contaminated sites this cannot be assured merely by monitoring the 16 target PAHs. The combined use of a battery of biotests for different types of PAH effects such as the CALUX and the Comet assay together with bioavailability extraction methods may be a useful screening tool of bioremediation processes of PAH-contaminated soil and contribute to a more accurate risk assessment. If the bioremediation causes a release of bound PAHs that are left undegraded in an easily extracted fraction, the soil may be more toxic to organisms living in the soil as a result of the treatment. A prolonged treatment time may be one way to reduce the risk of remaining mobile PAHs. In critical cases, the remediation concept might have to be changed to ex situ remediation methods.
Collapse
Affiliation(s)
- Erika Andersson
- Man-Technology-Environment Research Centre, School of Science and Technology, Orebro University, 701 82 Orebro, Sweden
| | | | | | | | | | | | | |
Collapse
|
39
|
Ke Y, Cheng J, Zhang Z, Zhang R, Zhang Z, Shuai Z, Wu T. Increased levels of oxidative DNA damage attributable to cooking-oil fumes exposure among cooks. Inhal Toxicol 2009; 21:682-7. [DOI: 10.1080/08958370802474728] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Zhang Q, Tu T, d’Avignon DA, Gross ML. Balance of beneficial and deleterious health effects of quinones: a case study of the chemical properties of genistein and estrone quinones. J Am Chem Soc 2009; 131:1067-76. [PMID: 19115854 PMCID: PMC2631626 DOI: 10.1021/ja806478b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Substances containing a phenolic moiety are often metabolized to quinones whose high reactivity makes them difficult to study. Some of these precursors have clear health benefits, and some quinones themselves are used in cancer therapy, whereas others are deleterious. For example, dietary intake of phytoestrogen, genistein (Gen), seems to play a preventive role in breast cancer (BC) whereas prolonged exposure to chemically similar mammalian estrogens is clearly associated with elevated incidence of BC. Although both can be metabolized to reactive quinones, the catechol estrogen quinones (CEQs) modify DNA by redox cycling and/or depurination via a Michael addition. Here, we report an investigation of the chemical reactivity of Gen and estrone quinones to determine the chemical differences of these two biologically important molecules. The catechol genistein quinone (CGenQ), has a half-life of 4 +/- 1 s under physiological condition, as determined by glutathione trapping. It disappears by reacting with H2O to give a dihydrate, CGenQ x (H2O)2, whose structure was proved by NMR. Under reductive conditions, CGenQ x (H2O)2 is readily reduced to reform the catechol genistein (CGen). This reversible oxidation of CGen to CGenQ and the prompt moderation of its reactivity by hydration to CGenQ x (H2O)2 effectively hinders any redox cycling or depurination reaction of CGenQ with DNA. Catechol estrogen quinones, on the other hand, are sufficiently long-lived that they can damage DNA via a Michael addition or by redox cycling. Although the reactivity of CEQ in a nonaqueous solvent is similar to that of CGenQ, its reactivity in aqueous media with the free Ade base is more than 600 times that of CGenQ. These results suggest that rapid hydration of a quinone can moderate its reactivity toward biomolecules, allowing them to express, for example, estrogen-like properties without exhibiting the deleterious properties of redox cycling or directly damaging DNA via depurination reactions.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Chemistry, Washington University in St. Louis, MO 63130
| | - Tingting Tu
- Department of Chemistry, Washington University in St. Louis, MO 63130
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, MO 63130
| |
Collapse
|
41
|
Bogen KT. An adjustment factor for mode-of-action uncertainty with dual-mode carcinogens: the case of naphthalene-induced nasal tumors in rats. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2008; 28:1033-1051. [PMID: 18564993 DOI: 10.1111/j.1539-6924.2008.01066.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The U.S. Environmental Protection Agency (USEPA) guidelines for cancer risk assessment recognize that some chemical carcinogens may have a site-specific mode of action (MOA) involving mutation and cell-killing-induced hyperplasia. The guidelines recommend that for such dual MOA (DMOA) carcinogens, judgment should be used to compare and assess results using separate "linear" (genotoxic) versus "nonlinear" (nongenotoxic) approaches to low-level risk extrapolation. Because the guidelines allow this only when evidence supports reliable risk extrapolation using a validated mechanistic model, they effectively prevent addressing MOA uncertainty when data do not fully validate such a model but otherwise clearly support a DMOA. An adjustment-factor approach is proposed to address this gap, analogous to reference-dose procedures used for classic toxicity endpoints. By this method, even when a "nonlinear" toxicokinetic model cannot be fully validated, the effect of DMOA uncertainty on low-dose risk can be addressed. Application of the proposed approach was illustrated for the case of risk extrapolation from bioassay data on rat nasal tumors induced by chronic lifetime exposure to naphthalene. Bioassay data, toxicokinetic data, and pharmacokinetic analyses were determined to indicate that naphthalene is almost certainly a DMOA carcinogen. Plausibility bounds on rat-tumor-type-specific DMOA-related uncertainty were obtained using a mechanistic two-stage cancer risk model adapted to reflect the empirical link between genotoxic and cytotoxic effects of the most potent identified genotoxic naphthalene metabolites, 1,2- and 1,4-naphthoquinone. Bound-specific adjustment factors were then used to reduce naphthalene risk estimated by linear extrapolation (under the default genotoxic MOA assumption), to account for the DMOA exhibited by this compound.
Collapse
Affiliation(s)
- Kenneth T Bogen
- Exponent Inc., Health Sciences Group, 500 1th Street, Oakland, CA 94607, USA.
| |
Collapse
|
42
|
Possible genotoxic modes of action for naphthalene. Regul Toxicol Pharmacol 2008; 51:S43-50. [DOI: 10.1016/j.yrtph.2007.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 11/20/2007] [Accepted: 12/03/2007] [Indexed: 11/23/2022]
|
43
|
Huang HS, Han XH, Hwang BY, Park JI, Yoo SK, Lee HJ, Lim SC, Lee MK. Effects of catalpalactone on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 26:86-91. [PMID: 21783893 DOI: 10.1016/j.etap.2008.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/13/2008] [Accepted: 02/13/2008] [Indexed: 05/31/2023]
Abstract
The effects of catalpalactone on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells were investigated. Catalpalactone at 5-30μM decreased intracellular dopamine content with the IC(50) value of 22.1μM. Catalpalactone at 5-20μM, but not 30μM, did not alter cell viability. Catalpalactone at 20μM inhibited tyrosine hydroxylase (TH) and aromatic-l-amino acid decarboxylase (AADC) activities. Catalpalactone also decreased cyclic AMP levels and inhibited TH phosphorylation. In addition, catalpalactone at 20μM reduced the increases in dopamine levels induced by L-DOPA (20-50μM). Catalpalactone (5-30μM) associated with L-DOPA (50-100μM) enhanced L-DOPA-induced cytotoxicity at 48h, which was prevented by N-acetyl-l-cysteine. These results suggest that catalpalactone inhibited dopamine biosynthesis by reducing TH and AADC activities and enhanced L-DOPA-induced cytotoxiciy in PC12 cells.
Collapse
Affiliation(s)
- Hai Shan Huang
- College of Pharmacy, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bogen KT, Benson JM, Yost GS, Morris JB, Dahl AR, Clewell HJ, Krishnan K, Omiecinski CJ. Naphthalene metabolism in relation to target tissue anatomy, physiology, cytotoxicity and tumorigenic mechanism of action. Regul Toxicol Pharmacol 2008; 51:S27-36. [PMID: 18191315 PMCID: PMC4030291 DOI: 10.1016/j.yrtph.2007.10.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/29/2007] [Accepted: 10/31/2007] [Indexed: 11/27/2022]
Abstract
This report provides a summary of deliberations conducted under the charge for members of Module C Panel participating in the Naphthalene State-of-the-Science Symposium (NS(3)), Monterey, CA, October 9-12, 2006. The panel was charged with reviewing the current state of knowledge and uncertainty about naphthalene metabolism in relation to anatomy, physiology and cytotoxicity in tissues observed to have elevated tumor incidence in these rodent bioassays. Major conclusions reached concerning scientific claims of high confidence were that: (1) rat nasal tumor occurrence was greatly enhanced, if not enabled, by adjacent, histologically related focal cellular proliferation; (2) elevated incidence of mouse lung tumors occurred at a concentration (30 ppm) cytotoxic to the same lung region at which tumors occurred, but not at a lower and less cytotoxic concentration (tumorigenesis NOAEL=10 ppm); (3) naphthalene cytotoxicity requires metabolic activation (unmetabolized naphthalene is not a proximate cause of observed toxicity or tumors); (4) there are clear regional and species differences in naphthalene bioactivation; and (5) target tissue anatomy and physiology is sufficiently well understood for rodents, non-human primates and humans to parameterize species-specific physiologically based pharmacokinetic (PBPK) models for nasal and lung effects. Critical areas of uncertainty requiring resolution to enable improved human cancer risk assessment were considered to be that: (1) cytotoxic naphthalene metabolites, their modes of cytotoxic action, and detailed low-dose dose-response need to be clarified, including in primate and human tissues, and neonatal tissues; (2) mouse, rat, and monkey inhalation studies are needed to better define in vivo naphthalene uptake and metabolism in the upper respiratory tract; (3) in vivo validation studies are needed for a PBPK model for monkeys exposed to naphthalene by inhalation, coupled to cytotoxicity studies referred to above; and (4) in vivo studies are needed to validate a human PBPK model for naphthalene. To address these uncertainties, the Panel proposed specific research studies that should be feasible to complete relatively promptly. Concerning residual uncertainty far less easy to resolve, the Panel concluded that environmental, non-cytotoxic exposure levels of naphthalene do not induce tumors at rates that can be predicted meaningfully by simple linear extrapolation from those observed in rodents chronically exposed to far greater, cytotoxic naphthalene concentrations.
Collapse
Affiliation(s)
- Kenneth T Bogen
- Exponent Health & Environmental, 500 12th Street, Suite 220, Oakland, CA 94607, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Genotoxic damage in Solea senegalensis exposed to sediments from the Sado Estuary (Portugal): Effects of metallic and organic contaminants. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 654:29-37. [DOI: 10.1016/j.mrgentox.2008.04.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/14/2008] [Accepted: 04/20/2008] [Indexed: 11/21/2022]
|
46
|
Brusick D. Critical assessment of the genetic toxicity of naphthalene. Regul Toxicol Pharmacol 2007; 51:S37-42. [PMID: 17980943 DOI: 10.1016/j.yrtph.2007.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 08/29/2007] [Indexed: 11/28/2022]
Abstract
Studies demonstrating that naphthalene produces respiratory tract tumors in mice and rats raised the question of whether humans are at risk for cancer, at environmental or workplace concentrations of naphthalene. Arguments in favor of a threshold-dependent mode of action for tumor induction have been based on the facts that naphthalene does not appear to bind to DNA in vivo and that the rodent tumors occurred at high dose levels associated with substantial target site toxicity. A summary of more than 45 publications describing results for naphthalene in genetic toxicology test methods shows that 80% of the studies reported found no evidence of genotoxicity for naphthalene and that some of the studies which reported positive finding were technically unsuited to study this class of chemicals and, therefore, generated unreliable data. The remaining positive findings for naphthalene were all consistent with secondary DNA effects produced by toxicity from naphthalene alone or one of its metabolites. Based on the data reviewed in this report, it is not apparent that genetic lesions produced by naphthalene or any of its metabolites drive the tumorigenic activity.
Collapse
|
47
|
Jiang H, Gelhaus SL, Mangal D, Harvey RG, Blair IA, Penning TM. Metabolism of benzo[a]pyrene in human bronchoalveolar H358 cells using liquid chromatography-mass spectrometry. Chem Res Toxicol 2007; 20:1331-41. [PMID: 17702526 PMCID: PMC2423818 DOI: 10.1021/tx700107z] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzo[ a]pyrene (B[ a]P), a representative polycyclic aromatic hydrocarbon (PAH), is metabolically activated by three enzymatic pathways: by peroxidases (e.g., cytochrome P450 peroxidase) to yield radical cations, by P4501A1/1B1 monooxygenation and epoxide hydrolase to yield diol epoxides, and by P4501A1/1B1 monooxygenation, epoxide hydrolase, and aldo-keto reductases (AKRs) to yield o-quinones. In humans, a major exposure site for environmental and tobacco smoke PAH is the lung; however, the profile of B[ a]P metabolites formed at this site has not been well characterized. In this study, human bronchoalveolar H358 cells were exposed to B[ a]P, and metabolites generated by peroxidase (B[ a]P-1,6- and B[ a]P-3,6-diones), from cytochrome P4501A1/1B1 monooxygenation [3-hydroxy-B[ a]P, B[ a]P-7,8- and 9,10- trans-dihydrodiols, and B[ a]P- r-7, t-8, t-9, c-10-tetrahydrotetrol (B[ a]P-tetraol-1)], and from AKRs (B[ a]P-7,8-dione) were detected and quantified by RP-HPLC, with in-line photo-diode array and radiometric detection, and identified by liquid chromatography-mass spectrometry (LC-MS). Progress curves showed a lag phase in the formation of 3-hydroxy-B[ a]P, B[ a]P-7,8- trans-dihydrodiol, B[ a]P-tetraol-1, and B[ a]P-7,8-dione over 24 h. Northern blot analysis showed that B[ a]P induced P4501B1 and AKR1C isoforms in H358 cells in a time-dependent manner, providing an explanation for the lag phase. Pretreatment of H358 cells with 10 nM 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) eliminated this lag phase but did not alter the levels of the individual metabolites observed, suggesting that both B[ a]P and TCDD induction ultimately yield the same B[ a]P metabolic profile. The one exception was B[ a]P-3,6-dione which was formed without a lag phase in the absence and presence of TCDD, suggesting that the peroxidase responsible for its formation was neither P4501A1 nor 1B1. Candidate peroxidases that remain include PGH synthases and uninduced P450 isoforms. This study shows that the P4501A1/1B1 and AKR pathways are inducible in human lung cells and that the peroxidase pathway was not. It also provides evidence that each of the pathways of PAH activation yields their distinctive metabolites in H358 human lung cells and that each pathway may contribute to the carcinogenic process.
Collapse
Affiliation(s)
- Hao Jiang
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA
| | | | | | | | | | | |
Collapse
|
48
|
Gábelová A, Valovicová Z, Lábaj J, Bacová G, Binková B, Farmer PB. Assessment of oxidative DNA damage formation by organic complex mixtures from airborne particles PM(10). Mutat Res 2007; 620:135-44. [PMID: 17403525 DOI: 10.1016/j.mrfmmm.2007.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The free radical generating activity of airborne particulate matter (PM(10)) has been proposed as a primary mechanism in biological activity of ambient air pollution. In an effort to determine the impact of the complex mixtures of extractable organic matter (EOM) from airborne particles on oxidative damage to DNA, the level of 8-oxo-2'-deoxyguanosine (8-oxodG), the most prevalent and stable oxidative lesion, was measured in the human metabolically competent cell line Hep G2. Cultured cells were exposed to equivalent EOM concentrations (5-150microg/ml) and oxidative DNA damage was analyzed using a modified single cell gel electrophoresis (SCGE), which involves the incubation of whole cell DNA with repair specific DNA endonuclease, which cleaves oxidized DNA at the sites of 8-oxodG. EOMs were extracted from PM(10) collected daily (24h intervals) in three European cities: Prague (Czech Republic, two monitoring sites, Libus and Smíchov), Kosice (Slovak Republic) and Sofia (Bulgaria) during 3-month sampling periods in the winter and summer seasons. No substantial time- and dose-dependent increase of oxidative DNA lesions was detected in EOM-treated cells with the exception of the EOM collected at the monitoring site Kosice, summer sampling. In this case, 2h cell exposure to EOM resulted in a slight but significant increase of oxidative DNA damage at three from total of six concentrations. The mean 8-oxodG values at these concentrations ranged from 15.3 to 26.1 per 10(6) nucleotides with a value 3.5 per 10(6) nucleotides in untreated cells. B[a]P, the positive control, induced a variable but insignificant increase of oxidative DNA damage in Hep G2 cell (approximately 1.6-fold increase over control value). Based on these data we believe that EOM samples extracted from airborne particle PM(10) play probably only a marginal role in oxidative stress generation and oxidative lesion formation to DNA. However, adsorbed organic compounds can undergo various interactions (additive or synergistic) with other PM components or physical factors (UV-A radiation) and in this way they might enhance/multiply the adverse health effects of air pollution.
Collapse
Affiliation(s)
- Alena Gábelová
- Laboratory of Mutagenesis and Carcinogenesis, Cancer Research Institute of the Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
49
|
Hu X, Zhang Y, Zhao X, Hwang HM. Biodegradation of benzo[a]pyrene with immobilized laccase: genotoxicity of the products in HaCat and A3 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:106-13. [PMID: 17253627 DOI: 10.1002/em.20278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Benzo[a]pyrene (BaP) is listed as a priority pollutant by the U.S. Environmental Protection Agency because it is one of the most potent carcinogens of all known polycyclic aromatic hydrocarbons (PAHs). The biodegradation of BaP is of interest as a means for mitigating its effects in polluted ecosystems. In the present study, BaP was oxidized with laccase from Trametes versicolor, which was immobilized on functionalized kaolinite particles, and the cytotoxicity and genotoxicity of BaP and its degradation intermediates were measured in human HaCaT keratinocytes and A3 T lymphocytes. Cytotoxicity was assessed by fluorescein diacetate (FDA) uptake, while the alkaline Comet assay measured genotoxicity, using tail moment, tail DNA content, and tail length as metrics for DNA damage. On the basis of first-order reaction kinetics, the half life (t(1/) (2)) for the oxidization of BaP by immobilized laccase was 58.5 hr. After 87 hr of oxidation, 20 muM of BaP had decreased to 9.6 muM. HPLC analysis identified 1,6-benzo[a]pyrene quinone (1,6-BaQ), 3,6-benzo[a]pyrene quinone (3,6-BaQ), and 6,12-benzo[a]pyrene quinone (6,12-BaQ) among the oxidation products. Most treatments of HaCaT cells and A3 lymphocytes with BaP or its quinone intermediates resulted in significant decreases in viability (P < 0.05); dose-dependent decreases in cell viability were detected at concentrations of 0.1, 1, and 5 muM, but none of these treatments resulted in decreases of >30%. While treatment of HaCaT cells with as little as 0.1 muM 6,12-BaQ caused significant DNA damage, DNA damage was detected in HaCaT cells only with 1 and 5 muM 1,6-BaQ and 3,6-BaQ, and 5 muM BaP. In Comet assays conducted with A3 lymphocytes, all three quinone intermediates caused significant increase in tail DNA content at 1 and 5 muM. The results indicate that immobilized laccase is capable of degrading BaP, but several of those biodegradation products produce significant levels of DNA damage in human cells.
Collapse
Affiliation(s)
- Xiaoke Hu
- Department of Biology, Jackson State University, Jackson, Mississippi
| | | | | | | |
Collapse
|
50
|
Lee HM, Chae YH, Kwon C, Kim SK. Conformations of adducts formed between the genotoxic benzo[a]pyrene-7,8-dione and nucleosides studied by density functional theory. Biophys Chem 2007; 125:151-8. [PMID: 16962698 DOI: 10.1016/j.bpc.2006.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 07/18/2006] [Accepted: 07/18/2006] [Indexed: 10/24/2022]
Abstract
Benzo[a]pyrene (BP) is a widely distributed environmental pollutant that is metabolized by mammalian cells to a variety of genotoxic and carcinogenic intermediates that form covalent adducts with cellular DNA. One such pathway involves the metabolic activation of BP by members of the aldo-keto-reductase (AKR) family of enzymes to the highly reactive ortho-quinone, benzo[a]pyrene-7,8-dione (BPQ). This compound has been reported to react with the 2'-deoxynucleosides, dA and dG, under physiological conditions. Four BPQ-dG adducts and two -dA adducts were identified by mass spectrometry and NMR methods [Balu et al. (2004) Chem. Res. Toxicol. 17, 827-838]. However, the detailed conformations and absolute configurations around the linkage site have not been resolved. In order to determine the full conformations of these purine adducts, we carried out quantum mechanical geometry optimization using density functional theory. In the case of the BPQ-guanine adducts, six possible structures, each of which consists of two isomers, were identified. However, in the case of the adenine adducts, only four isomers were identified. The results suggest that stereoisomeric adduct pairs are expected to adopt opposite orientations with respect to the 5'-->3' direction of the modified DNA strands. The stereochemistry-dependent variations in adduct orientation may produce different biological effects, as has been observed in the case of DNA adducts derived from other metabolites of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Hyun Mee Lee
- Department of Chemistry, College of Sciences, Yeungnam University, Daedong, Gyeongsan City, Gyeong-buk 712-749, Republic of Korea
| | | | | | | |
Collapse
|