1
|
Morsy MM, Ahmad MM, Hassan NH. Maternal exposure to low-dose bisphenol A and its potential neurotoxic impact on male pups: A histological, immunohistochemical, and ultrastructural study. Tissue Cell 2024; 90:102503. [PMID: 39137535 DOI: 10.1016/j.tice.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is a widely used chemical with a harmful effect on animal and human. The neonatal and juvenile period is a highly risky neurodevelopmental period. AIM This study aimed to determine how male albino rat pups' cerebral cortex was altered by low doses of BPA given to mothers and the role of the oxidative stress. METHODS Thirty pregnant rats were randomly split into three equal groups, negative control, and positive control: received 1 cc of corn oil once a day through gastric tube and BPA treated: a dose of 200 µg/kg/day (dissolved in 1 cc corn oil). The male rat pups of each group were sacrificed at 1 week, 3 weeks and 6 weeks. The cerebra were then separated from the brain for histological and biochemical studies. RESULTS Rats administered BPA had raised levels of lipid peroxidation marker (MDA), lower levels of enzymatic antioxidants (SOD and CAT) with decreased body, cerebral weights, and decreased levels of non-enzymatic antioxidant defense (GSH). Histo-pathologically, shrunken pyramidal cells with congested blood vessels appeared. GFAP displayed increased number of positive immune-reactive astrocytes with high statistically significant increase in the area % in BPA treated group when compared to the control groups, on contrary to MBP. Semi-thin and ultra-thin BPA-sections revealed degenerative changes in myelinated axons with tiny nucleus and broken nuclear membranes. Lysosomes, dilated endoplasmic reticulum cisternae with noticeable increase in unmyelinated nerve fibers were also observed. CONCLUSION The structure of the developing cerebral cortex is negatively impacted by BPA due to oxidative stress.
Collapse
Affiliation(s)
- Manal Mohammad Morsy
- Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, 44519, Egypt.
| | - Marwa M Ahmad
- Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, 44519, Egypt.
| | - Nancy Husseiny Hassan
- Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, 44519, Egypt.
| |
Collapse
|
2
|
Kunkel TJ, Townsend A, Sullivan KA, Merlet J, Schuchman EH, Jacobson DA, Lieberman AP. The cholesterol transporter NPC1 is essential for epigenetic regulation and maturation of oligodendrocyte lineage cells. Nat Commun 2023; 14:3964. [PMID: 37407594 DOI: 10.1038/s41467-023-39733-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
The intracellular cholesterol transporter NPC1 functions in late endosomes and lysosomes to efflux unesterified cholesterol, and its deficiency causes Niemann-Pick disease Type C, an autosomal recessive lysosomal disorder characterized by progressive neurodegeneration and early death. Here, we use single-nucleus RNA-seq on the forebrain of Npc1-/- mice at P16 to identify cell types and pathways affected early in pathogenesis. Our analysis uncovers significant transcriptional changes in the oligodendrocyte lineage during developmental myelination, accompanied by diminished maturation of myelinating oligodendrocytes. We identify upregulation of genes associated with neurogenesis and synapse formation in Npc1-/- oligodendrocyte lineage cells, reflecting diminished gene silencing by H3K27me3. Npc1-/- oligodendrocyte progenitor cells reproduce impaired maturation in vitro, and this phenotype is rescued by treatment with GSK-J4, a small molecule inhibitor of H3K27 demethylases. Moreover, mobilizing stored cholesterol in Npc1-/- mice by a single administration of 2-hydroxypropyl-β-cyclodextrin at P7 rescues myelination, epigenetic marks, and oligodendrocyte gene expression. Our findings highlight an important role for NPC1 in oligodendrocyte lineage maturation and epigenetic regulation, and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Thaddeus J Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alice Townsend
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Kyle A Sullivan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jean Merlet
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel A Jacobson
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Mohamed E, Paisley CE, Meyer LC, Bigbee JW, Sato-Bigbee C. Endogenous opioid peptides and brain development: Endomorphin-1 and Nociceptin play a sex-specific role in the control of oligodendrocyte maturation and brain myelination. Glia 2020; 68:1513-1530. [PMID: 32065429 PMCID: PMC11006003 DOI: 10.1002/glia.23799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
The generation of fully functional oligodendrocytes, the myelinating cells of the central nervous system, is preceded by a complex maturational process. We previously showed that the timing of oligodendrocyte differentiation and rat brain myelination were altered by perinatal exposure to buprenorphine and methadone, opioid analogs used for the management of pregnant addicts. Those observations suggested the involvement of the μ-opioid receptor (MOR) and the nociceptin/orphanin FQ receptor (NOR). However, it remained to be determined if these receptors and their endogenous ligands could indeed control the timing of myelination under normal physiological conditions of brain development. We now found that the endogenous MOR ligand endomorphin-1 (EM-1) exerts a striking stimulatory action on cellular and morphological maturation of rat pre-oligodendrocytes, but unexpectedly, these effects appear to be restricted to the cells from the female pups. Critically, this stimulation is abolished by coincubation with the endogenous NOR ligand nociceptin. Furthermore, NOR antagonist treatment of 9-day-old female pups results in accelerated brain myelination. Interestingly, the lack of sex-dependent differences in developmental brain levels of EM-1 and nociceptin, or oligodendroglial expression of MOR and NOR, suggests that the observed sex-specific responses may be highly dependent on important intrinsic differences between the male and female oligodendrocytes. The discovery of a significant effect of EM-1 and nociceptin in the developing female oligodendrocytes and brain myelination, underscores the need for further studies investigating brain sex-related differences and their implications in opioid use and abuse, pain control, and susceptibility and remyelinating capacity in demyelinating disease as multiple sclerosis.
Collapse
Affiliation(s)
- Esraa Mohamed
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Caitlin E Paisley
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Logan C Meyer
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John W Bigbee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
4
|
Davis DL, Mahawar U, Pope VS, Allegood J, Sato-Bigbee C, Wattenberg BW. Dynamics of sphingolipids and the serine palmitoyltransferase complex in rat oligodendrocytes during myelination. J Lipid Res 2020; 61:505-522. [PMID: 32041816 DOI: 10.1194/jlr.ra120000627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Myelin is a unique lipid-rich membrane structure that accelerates neurotransmission and supports neuronal function. Sphingolipids are critical myelin components. Yet sphingolipid content and synthesis have not been well characterized in oligodendrocytes, the myelin-producing cells of the CNS. Here, using quantitative real-time PCR, LC-MS/MS-based lipid analysis, and biochemical assays, we examined sphingolipid synthesis during the peak period of myelination in the postnatal rat brain. Importantly, we characterized sphingolipid production in isolated oligodendrocytes. We analyzed sphingolipid distribution and levels of critical enzymes and regulators in the sphingolipid biosynthetic pathway, with focus on the serine palmitoyltransferase (SPT) complex, the rate-limiting step in this pathway. During myelination, levels of the major SPT subunits increased and oligodendrocyte maturation was accompanied by extensive alterations in the composition of the SPT complex. These included changes in the relative levels of two alternative catalytic subunits, SPTLC2 and -3, in the relative levels of isoforms of the small subunits, ssSPTa and -b, and in the isoform distribution of the SPT regulators, the ORMDLs. Myelination progression was accompanied by distinct changes in both the nature of the sphingoid backbone and the N-acyl chains incorporated into sphingolipids. We conclude that the distribution of these changes among sphingolipid family members is indicative of a selective channeling of the ceramide backbone toward specific downstream metabolic pathways during myelination. Our findings provide insights into myelin production in oligodendrocytes and suggest how dysregulation of the biosynthesis of this highly specialized membrane could contribute to demyelinating diseases.
Collapse
Affiliation(s)
- Deanna L Davis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Victoria S Pope
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
5
|
Torvund-Jensen J, Steengaard J, Askebjerg LB, Kjaer-Sorensen K, Laursen LS. The 3'UTRs of Myelin Basic Protein mRNAs Regulate Transport, Local Translation and Sensitivity to Neuronal Activity in Zebrafish. Front Mol Neurosci 2018; 11:185. [PMID: 29946237 PMCID: PMC6006989 DOI: 10.3389/fnmol.2018.00185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/14/2018] [Indexed: 02/04/2023] Open
Abstract
Formation of functional myelin sheaths within the central nervous system depends on expression of myelin basic protein (MBP). Following process extension and wrapping around axonal segments, this highly basic protein is required for compaction of the multi-layered membrane sheath produced by oligodendrocytes. MBP is hypothesized to be targeted to the membrane sheath by mRNA transport and local translation, which ensures that its expression is temporally and spatially restricted. The mechanistic details of how this might be regulated are still largely unknown, in particular because a model system that allows this process to be studied in vivo is lacking. We here show that the expression of the zebrafish MBP orthologs, mbpa and mbpb, is developmentally regulated, and that expression of specific mbpa isoforms is restricted to the peripheral nervous system. By analysis of transgenic zebrafish, which express a fluorescent reporter protein specifically in myelinating oligodendrocytes, we demonstrate that both mbpa and mbpb include a 3’UTR sequence, by which mRNA transport and translation is regulated in vivo. Further functional analysis suggests that: (1) the 3’UTRs delay the onset of protein expression; and that (2) several regulatory elements contribute to targeting of the mbp mRNA to the myelin sheath. Finally, we show that a pharmacological compound known to enhance neuronal activity stimulates the translation of Mbp in zebrafish in a 3’UTR-dependent manner. A similar effect was obtained following stimulation with a TrkB receptor agonist, and cell-based assays further confirmed that the receptor ligand, BDNF, in combination with other signals reversed the inhibitory effect of the 3’UTR on translation.
Collapse
Affiliation(s)
- Julie Torvund-Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jes Steengaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Dionne N, Dib S, Finsen B, Denarier E, Kuhlmann T, Drouin R, Kokoeva M, Hudson TJ, Siminovitch K, Friedman HC, Peterson AC. Functional organization of anMbpenhancer exposes striking transcriptional regulatory diversity within myelinating glia. Glia 2015; 64:175-94. [DOI: 10.1002/glia.22923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Nancy Dionne
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| | - Samar Dib
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| | - Bente Finsen
- Department of Neurobiology Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
| | - Eric Denarier
- Institut National De La Santé Et De La Recherche Médicale, U836-GIN iRTSV-GPC; Site Santé La Tronche, BP170 Grenoble Cedex 9 France
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital, Münster; Pottkamp 2 Münster Germany
| | - Régen Drouin
- Division of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences; Université De Sherbrooke; Sherbrooke Quebec Canada
| | - Maia Kokoeva
- Department of Medicine; McGill University/MUHC Research Institute; Montreal Quebec Canada
| | - Thomas J. Hudson
- Ontario Institute for Cancer Research, MaRS Centre; South Tower Toronto Ontario Canada
| | - Kathy Siminovitch
- Department of Medicine; University of Toronto, Samuel Lunenfeld and Toronto General Research Institutes; Toronto Ontario Canada
- Department of Immunology and Molecular Genetics; University of Toronto; Toronto Ontario Canada
| | - Hana C Friedman
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| | - Alan C. Peterson
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| |
Collapse
|
7
|
Gruber RC, LaRocca D, Minchenberg SB, Christophi GP, Hudson CA, Ray AK, Shafit-Zagardo B, Massa PT. The control of reactive oxygen species production by SHP-1 in oligodendrocytes. Glia 2015; 63:1753-71. [PMID: 25919645 DOI: 10.1002/glia.22842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/02/2015] [Indexed: 11/09/2022]
Abstract
We have previously described reduced myelination and corresponding myelin basic protein (MBP) expression in the central nervous system of Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) deficient motheaten (me/me) mice compared with normal littermate controls. Deficiency in myelin and MBP expression in both brains and spinal cords of motheaten mice correlated with reduced MBP mRNA expression levels in vivo and in purified oligodendrocytes in vitro. Therefore, SHP-1 activity seems to be a critical regulator of oligodendrocyte gene expression and function. Consistent with this role, this study demonstrates that oligodendrocytes of motheaten mice and SHP-1-depleted N20.1 cells produce higher levels of reactive oxygen species (ROS) and exhibit corresponding markers of increased oxidative stress. In agreement with these findings, we demonstrate that increased production of ROS coincides with ROS-induced signaling pathways known to affect myelin gene expression in oligodendrocytes. Antioxidant treatment of SHP-1-deficient oligodendrocytes reversed the pathological changes in these cells, with increased myelin protein gene expression and decreased expression of nuclear factor (erythroid-2)-related factor 2 (Nrf2) responsive gene, heme oxygenase-1 (HO-1). Furthermore, we demonstrate that SHP-1 is expressed in human white matter oligodendrocytes, and there is a subset of multiple sclerosis subjects that demonstrate a deficiency of SHP-1 in normal-appearing white matter. These studies reveal critical pathways controlled by SHP-1 in oligodendrocytes that relate to susceptibility of SHP-1-deficient mice to both developmental defects in myelination and to inflammatory demyelinating diseases.
Collapse
Affiliation(s)
- Ross C Gruber
- Department of Neurology, SUNY Upstate Medical University, Syracuse, New York.,Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Daria LaRocca
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York
| | - Scott B Minchenberg
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York
| | - George P Christophi
- Department of Neurology, SUNY Upstate Medical University, Syracuse, New York.,Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Chad A Hudson
- Department of Neurology, SUNY Upstate Medical University, Syracuse, New York.,Department of Pathology, University of Rochester, Rochester, New York
| | - Alex K Ray
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | | | - Paul T Massa
- Department of Neurology, SUNY Upstate Medical University, Syracuse, New York.,Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
8
|
Ozgen H, Kahya N, de Jonge JC, Smith GS, Harauz G, Hoekstra D, Baron W. Regulation of cell proliferation by nucleocytoplasmic dynamics of postnatal and embryonic exon-II-containing MBP isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:517-30. [DOI: 10.1016/j.bbamcr.2013.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 12/15/2022]
|
9
|
|
10
|
Eckhardt M, Yaghootfam A, Fewou SN, Zöller I, Gieselmann V. A mammalian fatty acid hydroxylase responsible for the formation of alpha-hydroxylated galactosylceramide in myelin. Biochem J 2009; 388:245-54. [PMID: 15658937 PMCID: PMC1186713 DOI: 10.1042/bj20041451] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydroxylation is an abundant modification of the ceramides in brain, skin, intestinal tract and kidney. Hydroxylation occurs at the sphingosine base at C-4 or within the amide-linked fatty acid. In myelin, hydroxylation of ceramide is exclusively found at the alpha-C atom of the fatty acid moiety. alpha-Hydroxylated cerebrosides are the most abundant lipids in the myelin sheath. The functional role of this modification, however, is not known. On the basis of sequence similarity to a yeast C26 fatty acid hydroxylase, we have identified a murine cDNA encoding FA2H (fatty acid 2-hydroxylase). Transfection of FA2H cDNA in CHO cells (Chinese-hamster ovary cells) led to the formation of alpha-hydroxylated fatty acid containing hexosylceramide. An EGFP (enhanced green fluorescent protein)-FA2H fusion protein co-localized with calnexin, indicating that the enzyme resides in the endoplasmic reticulum. FA2H is expressed in brain, stomach, skin, kidney and testis, i.e. in tissues known to synthesize fatty acid alpha-hydroxylated sphingolipids. The time course of its expression in brain closely follows the expression of myelin-specific genes, reaching a maximum at 2-3 weeks of age. This is in agreement with the reported time course of fatty acid alpha-hydroxylase activity in the developing brain. In situ hybridization of brain sections showed expression of FA2H in the white matter. Our results thus strongly suggest that FA2H is the enzyme responsible for the formation of alpha-hydroxylated ceramide in oligodendrocytes of the mammalian brain. Its further characterization will provide insight into the functional role of alpha-hydroxylation modification in myelin, skin and other organs.
Collapse
Affiliation(s)
- Matthias Eckhardt
- Institut für Physiologische Chemie, Rheinische-Friedrich-Wilhelms Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| | | | | | | | | |
Collapse
|
11
|
Aggarwal M, Zhang J, Miller MI, Sidman RL, Mori S. Magnetic resonance imaging and micro-computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery. Neuroscience 2009; 162:1339-50. [PMID: 19490934 PMCID: PMC2723180 DOI: 10.1016/j.neuroscience.2009.05.070] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 01/05/2023]
Abstract
Stereotaxic atlases of the mouse brain are important in neuroscience research for targeting of specific internal brain structures during surgical operations. The effectiveness of stereotaxic surgery depends on accurate mapping of the brain structures relative to landmarks on the skull. During postnatal development in the mouse, rapid growth-related changes in the brain occur concurrently with growth of bony plates at the cranial sutures, therefore adult mouse brain atlases cannot be used to precisely guide stereotaxis in developing brains. In this study, three-dimensional stereotaxic atlases of C57BL/6J mouse brains at six postnatal developmental stages: postnatal day (P) 7, P14, P21, P28, P63 and in adults (P140-P160) were developed, using diffusion tensor imaging (DTI) and micro-computed tomography (CT). At present, most widely-used stereotaxic atlases of the mouse brain are based on histology, but the anatomical fidelity of ex vivo atlases to in vivo mouse brains has not been evaluated previously. To account for ex vivo tissue distortion due to fixation as well as individual variability in the brain, we developed a population-averaged in vivo magnetic resonance imaging adult mouse brain stereotaxic atlas, and a distortion-corrected DTI atlas was generated by nonlinearly warping ex vivo data to the population-averaged in vivo atlas. These atlas resources were developed and made available through a new software user-interface with the objective of improving the accuracy of targeting brain structures during stereotaxic surgery in developing and adult C57BL/6J mouse brains.
Collapse
Affiliation(s)
- Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiangyang Zhang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael I. Miller
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Richard L. Sidman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Susumu Mori
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Kikusui T, Kiyokawa Y, Mori Y. Deprivation of mother-pup interaction by early weaning alters myelin formation in male, but not female, ICR mice. Brain Res 2006; 1133:115-22. [PMID: 17184748 DOI: 10.1016/j.brainres.2006.11.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 11/10/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
We previously reported that early-weaned Balb/c mice develop a persistent increase in anxiety as well as aggression, and we suggested that deprivation of mother-pup interaction from postnatal days 15 to 21 might account for this phenomenon. In the present study, we investigated developmental changes in myelin formation and behavioral effects of early weaning in male and female ICR mice. Early weaning was associated with decreased numbers of open-arm entries in an elevated plus-maze for both male and female mice at 3 weeks of age (W3); this effect was persistently observed in males, but ceased after W3 in females. Compared to the brains of normally weaned mice, the brains of the early-weaned males at W8 and of the females at W5 were of lesser mass. Western blotting with whole-brain homogenates identified four isoforms of myelin basic protein (MBP; 21.5, 18.5, 17.0, and 14.0 kDa). Expression of these MBPs increased gradually in normally weaned mice. In contrast, in the early-weaned male mice, but not the early-weaned female mice, it increased robustly at W3 and then declined at W5, as compared to the normally weaned mice. These results suggest that early weaning influences not only anxiety-related behavior but also myelin formation in the brain during the developmental period, particularly between 3 and 5 weeks of age, and male mice are more vulnerable than females to early-weaning effects on behavior and myelin formation.
Collapse
Affiliation(s)
- Takefumi Kikusui
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|
13
|
Ulrich R, Gerhauser I, Seeliger F, Baumgärtner W, Alldinger S. Matrix metalloproteinases and their inhibitors in the developing mouse brain and spinal cord: a reverse transcription quantitative polymerase chain reaction study. Dev Neurosci 2006; 27:408-18. [PMID: 16280637 DOI: 10.1159/000088455] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 07/05/2005] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are essential for coordinated extracellular matrix turnover during central nervous system development. Reverse transcription quantitative polymerase chain reaction was employed to evaluate the mRNA expression of MMP-2, -3, -7, -9, -10, -11, -12, -13, -14, -15, and -24, and TIMP-1, -2, -3, and -4 in the prosencephalon, rhombencephalon, and spinal cord of 1- to 40-week-old mice. The molecular data were interpreted in the context of morphological observations. Significantly higher expression levels of MMP-2, -11, -13, -14, -15, and -24, and TIMP-1 and -3 were found in the brain and spinal cord 1 week after birth compared to later time points, while MMP-9 and TIMP-2 upregulation was restricted to the brain. This upregulation coincided with the maximal extension of the transient cerebellar external granular layer, a marker of neuronal progenitor proliferation and migration. MMP-12 was significantly upregulated at later time points and found to be positively correlated with myelination in the rhombencephalon and spinal cord. MMP-3, -7, and -10 mRNA expressions remained unchanged or were negligible. In summary, while most of the MMPs and TIMPs studied seem to be involved in cell proliferation and migration, MMP-12 might be decisive for myelination.
Collapse
Affiliation(s)
- Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | | | | | | | | |
Collapse
|
14
|
Saleh MC, Espinosa de los Monteros A, de Arriba Zerpa GA, Fontaine I, Piaud O, Djordjijevic D, Baroukh N, Garcia Otin AL, Ortiz E, Lewis S, Fiette L, Santambrogio P, Belzung C, Connor JR, de Vellis J, Pasquini JM, Zakin MM, Baron B, Guillou F. Myelination and motor coordination are increased in transferrin transgenic mice. J Neurosci Res 2003; 72:587-94. [PMID: 12749023 DOI: 10.1002/jnr.10619] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myelin deficiency in the central nervous system (CNS) can cause severe disabling conditions. Most of the transgenic mice models overexpressing myelin components have limitations for investigators of myelin deficiency and myelin therapy as they severely alter CNS architecture. It has been postulated that transferrin (Tf) is involved in oligodendrocyte (OL) maturation and myelinogenesis. Because Tf is not an intrinsic myelin constituent, we decided to investigate if its overexpression could have an impact on the myelination process without affecting myelin integrity. We generated transgenic mice containing the complete human Tf gene specifically overexpressed in OLs. This overexpression leads to more than a 30% increase in myelin components, such as galactolipids, phospholipids, and proteins. Electron microscopy showed that myelin is structurally normal in terms of thickness and compaction. Behavior analysis showed that mice do not display significant modifications in their locomotion and cognitive and emotional abilities. Furthermore, in one of the genetic background, animals presented a significant increase in motor coordination. We did not find any modification in OL number during early postnatal development, suggesting that Tf does not act on OL proliferation. In addition, the levels of iron and ferritin remained unchanged in the brain of transgenic mice compared to control mice. Our findings indicate that, besides its known iron transport function, Tf is able to influence myelination process and induce behavioral improvements in mice.
Collapse
Affiliation(s)
- Maria-Carla Saleh
- Unité d'Expression des Gènes Eucaryotes, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Clark RE, Miskimins WK, Miskimins R. Cyclic AMP inducibility of the myelin basic protein gene promoter requires the NF1 site. Int J Dev Neurosci 2002; 20:103-11. [PMID: 12034141 DOI: 10.1016/s0736-5748(02)00013-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In the central nervous system oligodendrocyte differentiation is accompanied by the activation of a specific transcriptional program responsible for the synthesis of myelin genes. One of the signals leading to the expression of myelin components, such as the myelin basic protein (MBP) gene is cyclic AMP (cAMP). Previous work using a cell line in which the endogenous MBP gene can be induced by increased cAMP levels (D6P2T) showed that the region of the MBP gene that was required for induction of the gene by cAMP lay between -248 and -105 in the 5' flanking region. This region contains numerous transcription factor binding sites, including sites for NF1, Sp1, and MEBA. In order to determine if the NF1 site itself was specifically responsible for the cAMP responsiveness of the MBP promoter, stably transfected cells carrying MBP promoter deletion constructs were used. Deletion of just the NF1 site caused loss of responsiveness to cAMP levels. Furthermore, site-specific mutations in the NF1 site that interfere with NF1 protein binding, in the context of the full length promoter, abolished cAMP responsiveness and caused derepression of the promoter. Analysis of protein binding to the NF1 site showed that the mutation resulted in loss of binding to the site and that the proteins binding at the site are modified in the presence of cAMP elevating agents. These results demonstrate that the NF1 site is indispensable for cAMP responsiveness of the MBP promoter and, together with other DNA elements, plays a role in controlling MBP gene expression.
Collapse
Affiliation(s)
- Robert E Clark
- Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, 414 E. Clark St., Vermillion 57069, USA
| | | | | |
Collapse
|
16
|
Afshari FS, Chu AK, Sato-Bigbee C. Effect of cyclic AMP on the expression of myelin basic protein species and myelin proteolipid protein in committed oligodendrocytes: differential involvement of the transcription factor CREB. J Neurosci Res 2001; 66:37-45. [PMID: 11599000 DOI: 10.1002/jnr.1195] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Our previous results support the idea that CREB (cyclic AMP-response element binding protein) may be a mediator of neuroligand and growth factor signals that, coupled to different signal transduction pathways, play different roles at specific stages of oligodendrocyte development. In the early stages, when cells are immature precursors, CREB may play a role as a mediator of protein kinase C (PKC)/mitogen-activated protein kinase (MAPK) pathways regulating cell proliferation. In contrast, at a later stage, when cells are already committed oligodendrocytes, CREB seems to play an important role as a mediator in the stimulation of myelin basic protein (MBP) expression by cyclic AMP (cAMP). In this study, we have investigated whether cAMP and CREB play a role in regulating the expression of all or on the other hand particular MBP isoforms. The results indicated that treatment of committed oligodendrocytes with the cAMP analogue db-cAMP results in a pattern of expression of MBP-related polypeptides that most closely resembles the pattern of MBPs observed in cerebra from adult animals. Experiments in which CREB expression was inhibited using a CREB antisense oligonucleotide, suggested that CREB is involved in the cAMP-dependent stimulation of all the MBP isoforms. In contrast, we have found that db-cAMP stimulates the expression of myelin proteolipid protein (PLP) in a process that occurs despite inhibition of CREB expression. These results support the idea that cAMP stimulates the maturation of oligodendrocytes and stress the fact multiple mechanisms may convey the action of this second messenger modulating oligodendrocyte differentiation and myelination.
Collapse
Affiliation(s)
- F S Afshari
- Department of Biochemistry and Molecular Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298-0614, USA
| | | | | |
Collapse
|
17
|
Abstract
Oligodendrocytes are glial cells devoted to the production of myelin sheaths. Myelination of the CNS occurs essentially after birth. To delineate both the times of oligodendrocyte proliferation and myelination, as well as to study the consequence of dysmyelination in vivo, a model of inducible dysmyelination was developed. To achieve oligodendrocyte ablation, transgenic animals were generated that express the herpes virus 1 thymidine kinase (HSV1-TK) gene under the control of the myelin basic protein (MBP) gene promoter. The expression of the MBP-TK transgene in oligodendrocytes is not toxic on its own; however, toxicity can be selectively induced by the systemic injection of animals with nucleoside analogs, such as FIAU [1-(2-deoxy-2-fluoro-beta-delta-arabinofuranosyl)-5-iodouracil]. This system allows us to control the precise duration of the toxic insult and the degree of ablation of oligodendrocytes in vivo. We show that chronic treatment of MBP-TK mice with FIAU during the first 3 postnatal weeks triggers almost a total depletion of oligodendrocytes in the CNS. These effects are accompanied by a behavioral phenotype characterized by tremors, seizures, retarded growth, and premature animal death. We identify the period of highest oligodendrocytes division in the first 9 postnatal days. Delaying the beginning of FIAU treatments results in different degrees of dysmyelination. Dysmyelination in MBP-TK mice is always accompanied by astrocytosis. Thus, this transgenic line provides a model to study the events occurring during dysmyelination of various intensities. It also represents an invaluable tool to investigate remyelination in vivo.
Collapse
|
18
|
Bichenkov E, Ellingson JS. Ethanol exerts different effects on myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphodiesterase expression in differentiating CG-4 oligodendrocytes. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 128:9-16. [PMID: 11356257 DOI: 10.1016/s0165-3806(01)00142-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evidence suggests that abnormal myelination is one factor contributing to the neuoropathology associated with fetal alcohol syndrome. We investigated the potential teratogenic effects of ethanol (EtOH) on myelin formation by determining its effects on the developmentally regulated increased expression of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) in differentiating CG-4 oligodendrocytes (OLGs). By using CG-4 OLGs in vitro we identified processes altered by ethanol actions exerted directly on OLGs. During the first 8 days of development, EtOH decreased the expression of the major structural 18.5 and 14 kDa MBP isoforms by at least 40% at 4 days of development. EtOH concentrations between 25 and 75 mM inhibited MBP expression in a dose-dependent manner. Adding or withdrawing EtOH on specific days of differentiation reversibly modulated the expression of MBP, and the degree of inhibition was directly related to the length of ethanol exposure. As little as two consecutive days of EtOH exposure either early or late during development caused at least a 20% inhibition, however, no short critical time window of EtOH vulnerability for the inhibition was observed. The ethanol effect was selective for MBP expression, as EtOH did not alter the developmentally-regulated increased expression of CNP isozymes or enzyme activity. The results indicate that one factor contributing to the development of fetal alcohol syndrome may be defective myelination resulting from delayed and decreased MBP expression.
Collapse
Affiliation(s)
- E Bichenkov
- Department of Pathology, Anatomy, and Cell Biology, Medical College of Thomas Jefferson University, 269 Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
19
|
Sim FJ, Hinks GL, Franklin RJ. The re-expression of the homeodomain transcription factor Gtx during remyelination of experimentally induced demyelinating lesions in young and old rat brain. Neuroscience 2001; 100:131-9. [PMID: 10996464 DOI: 10.1016/s0306-4522(00)00252-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since myelination and remyelination both involve investing an axon with a myelin sheath, a plausible hypothesis is that the two processes involve the expression of similar transcription factors. In this study we have addressed this hypothesis by comparing the expression of messenger RNA of Gtx, a homeodomain transcription factor expressed within oligodendrocytes during myelination, with the expression of messenger RNAs of the major myelin proteins, myelin basic protein and proteolipid protein during remyelination of experimentally induced demyelination in the adult rat brain. We have found a close temporal and spatial association between the expression patterns of the three messenger RNA species during remyelination. By comparing the expression patterns in rapidly remyelinating lesions in young adult rats with slowly remyelinating lesions in old adult rats, we have shown that Gtx messenger RNA expression follows the reappearance of myelin basic protein and proteolipid protein messenger RNAs regardless of the rate of remyelination. This observation demonstrates a clear association between the expression of Gtx messenger RNA and myelin repair. We have also shown that there is a decrease in constitutive levels of expression of myelin basic protein, proteolipid protein and Gtx messenger RNA in old adults compared with young adults. Taken together, our results indicate that Gtx, which has multiple binding sites in the promoter regions of both myelin basic protein and proteolipid protein genes, may have a similar role in the regulation of myelin protein gene expression during remyelination as has been proposed in myelination.
Collapse
Affiliation(s)
- F J Sim
- Department of Anatomy, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK
| | | | | |
Collapse
|
20
|
Franklin RJ, Hinks GL, Woodruff RH, O'Leary MT. What roles do growth factors play in CNS remyelination? PROGRESS IN BRAIN RESEARCH 2001; 132:185-93. [PMID: 11544987 PMCID: PMC7133247 DOI: 10.1016/s0079-6123(01)32075-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- R J Franklin
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | | | | | | |
Collapse
|
21
|
Muse ED, Jurevics H, Toews AD, Matsushima GK, Morell P. Parameters related to lipid metabolism as markers of myelination in mouse brain. J Neurochem 2001; 76:77-86. [PMID: 11145980 DOI: 10.1046/j.1471-4159.2001.00015.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myelination, during both normal development and with respect to disorders of myelination, is commonly studied by morphological and/or biochemical techniques that assay as their end-points the extent of myelination. The rate of myelination is potentially a more useful parameter, but it is difficult and time-consuming to establish, requiring a complete developmental study with labor-intensive methodology. We report herein development of methodology to assay the absolute rate of myelination at any desired time during development. This involves intraperitoneal injection of (3)H(2)O to label body water pools, followed by determination of label in the myelin-specific lipid, cerebroside. The absolute amount of cerebroside synthesized can then be calculated from the specific radioactivity of body water and knowledge of the number of hydrogens from water incorporated into cerebroside. During development, the rate of cerebroside synthesis correlated well with the rate of accumulation of the myelin-specific components, myelin basic protein and cerebroside. For purposes of control, we also tested other putative, albeit less quantitative, indices of the rate of myelination. Levels of mRNA for ceramide galactosyltransferase (rate-limiting enzyme in cerebroside synthesis) and for myelin basic protein did not closely correlate with myelination at all times. Cholesterol synthesis closely matched the rate of cholesterol accumulation but did not track well with myelination. Synthesis of fatty acids did not correlate well with accumulation of either fatty acids (phospholipids) or myelin markers. We conclude that measurement of cerebroside synthesis rates provides a good measure of the rate of myelination. This approach may be useful as an additional parameter for examining the effects of environmental or genetic alterations on the rate of myelination.
Collapse
Affiliation(s)
- E D Muse
- Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599-7250, USA
| | | | | | | | | |
Collapse
|
22
|
Hinks GL, Franklin RJ. Delayed changes in growth factor gene expression during slow remyelination in the CNS of aged rats. Mol Cell Neurosci 2000; 16:542-56. [PMID: 11083917 DOI: 10.1006/mcne.2000.0897] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study we have examined whether the slower rate of CNS remyelination that occurs with age is associated with a change in growth factor expression patterns, an association that would provide further support for a causal relationship between growth factors and remyelination. Using quantitative in situ hybridization we have shown that there are differences in IGF-I, TGF-beta 1, and PDGF-A mRNA expression during remyelination of lysolecithin-induced demyelination in the spinal cord of young adult and old adult rats. IGF-I and TGF-beta1 mRNA expression in old rats had a delayed and lower peak expression compared to young rats. The initial increase in PDGF-A mRNA expression was delayed in old rats compared to young rats, but after 5 days both age groups had similar patterns of expression, as was the expression pattern of FGF-2 mRNA at all survival times. In neither age group were increases in CNTF, NT-3, or GGF-2 mRNA expression detected. An analysis of the macrophage response using oligonucleotide probes for scavenger receptor-B mRNA indicated that differences in the macrophage response in young and old animals was the likely cause of the age related change in IGF-I and TGF-beta 1 mRNA expression patterns. On the basis of these data we suggest a model of remyelination in which PDGF is involved in the initial phase of oligodendrocyte progenitor recruitment, while IGF-I and TGF-beta 1 trigger the differentiation of the recruited cells into myelinating oligodendrocytes.
Collapse
Affiliation(s)
- G L Hinks
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | | |
Collapse
|
23
|
Porter BE, Tennekoon G. Myelin and disorders that affect the formation and maintenance of this sheath. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2000; 6:47-58. [PMID: 10899797 DOI: 10.1002/(sici)1098-2779(2000)6:1<47::aid-mrdd7>3.0.co;2-m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- B E Porter
- Departments of Neurology and Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
24
|
Abstract
Myelin basic protein (MBP) plays an essential adhesive role in the formation of compact myelin in the central nervous system (CNS), but not in the peripheral nervous system (PNS). Morphologic data suggest that MBP controls the number of cytoplasmic channels or Schmidt-Lanterman incisures (SLI) present in PNS myelin. The levels of connexin-32 (Cx32) and myelin-associated glycoprotein (MAG), two components of the incisures, are inversely proportional to the levels of MBP in sciatic nerves of mice affected by the shiverer (shi) mutation, while protein zero (P0) and peripheral membrane protein 22 (PMP22), two structural components of compact myelin, remain constant. The levels of P0, PMP22, Cx32, and MAG mRNA do not vary in relationship to the levels of MBP. This indicates that MBP exerts its effect on Cx32 and MAG at a posttranscriptional level and suggests a new function for MBP in regulating gene expression in the PNS.
Collapse
Affiliation(s)
- C Smith-Slatas
- Department of Neurology, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
25
|
Lehman DM, Hale DE, Cody JT, Harrison JM, Leach RJ. Molecular, morphometric and functional analyses demonstrate that the growth hormone deficient little mouse is not hypomyelinated. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 116:191-9. [PMID: 10521563 DOI: 10.1016/s0165-3806(99)00081-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To study the effects of naturally occurring growth hormone deficiency type I on CNS myelination, we compared the myelination of brains from little and wild-type littermate mice using molecular, histological, morphometric, and functional analyses. The little mouse produces only 6-8% of normal levels of growth hormone (GH) and approximately 20% of normal circulating levels of insulin-like growth factor 1 (IGF-1). Our data show that the expression of myelin basic protein (MBP) and proteolipid protein (PLP) of the little brain exhibit the same temporal pattern and amount as that of the wild-type brain. Furthermore, the density and size of myelinated axons and the myelin sheath thickness in the corpus callosum, anterior commissure and the optic nerve are comparable in the little and wild-type brains. These regions are reduced in size in the little mouse brain proportionate to the overall reduction in brain size implying a reduction in the total number of neurons. Therefore, it follows that the total myelin content is reduced, but when normalized to brain size, the myelin concentration is unchanged. Myelin staining patterns of whole brains were identical. Moreover, functional analysis of the visual pathway indicated no difference between the little and control mice. These results are inconsistent with previous reports of hypomyelination in the little mouse and suggest that this form of GH deficiency does not adversely affect the myelination process except possibly through neuronal proliferation. However, since axon size and density are maintained, the neuronal growth may conversely be inherently limited by other restricted brain growth.
Collapse
Affiliation(s)
- D M Lehman
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78284-7762, USA
| | | | | | | | | |
Collapse
|
26
|
Ishii T, Ohsugi K, Nakamura S, Sato K, Hashimoto M, Mikoshiba K, Sakuragawa N. Gene expression of oligodendrocyte markers in human amniotic epithelial cells using neural cell-type-specific expression system. Neurosci Lett 1999; 268:131-4. [PMID: 10406022 DOI: 10.1016/s0304-3940(99)00297-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously reported that human amniotic epithelial (HAE) cells expressed neuronal and glial cell markers using immunostaining and western blotting. To study the expression system of these cell markers in HAE cells, we investigated the expression of mRNA for oligodendrocyte markers in HAE cells by reverse-transcriptase-polymerase chain reaction (RT-PCR) and northern blotting. Neural cell-specific expression system was used to examine the transcriptional activity of myelin basic protein (MBP). Oligodendrocyte markers were expressed such as CNPase, MBP and proteolipid protein (PLP and DM-20). PLP gene transcripts in the cells were in a lower level than DM-20, compared with those of human brain. Neural cell-type-specific expression system disclosed HAE cells were about 20% positive for beta-Gal using AdexMBP-NL-LacZ. This strongly indicates that HAE cells have MBP-specific gene expressing cells.
Collapse
Affiliation(s)
- T Ishii
- Department of Inherited Metabolic Disease, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Our understanding of myelination has been greatly enhanced via the study of spontaneous mutants that harbor a defect in a gene encoding one of the major myelin proteins (myelin mutants). In this study, we describe a unique genetic defect in a new myelin mutant called the Long Evans shaker (les) rat that causes severe dysmyelination of the CNS. Myelin deficits result from disruption of the myelin basic protein (Mbp) gene caused by the insertion of an endogenous retrotransposon [early transposons (ETn) element] into a noncoding region (intron 3) of the gene. The ETn element alters the normal splicing dynamics of MBP mRNA, leading to a dramatic reduction in the levels of full-length isoforms (<5% of normal) and the appearance of improperly spliced, chimeric transcripts. Although these aberrant transcripts contain proximal coding regions of the MBP gene (exons 1-3), they are unable to encode functional proteins required to maintain the structural integrity of the myelin sheath. These chimeric transcripts seem capable, however, of producing the necessary signal to initiate and coordinate myelin gene expression because normal numbers of mature oligodendrocytes synthesizing abundant levels of other myelin proteins are present in the mutant CNS. The les rat is thus an excellent model to study alternative functions of MBP beyond its well characterized role in myelin compaction.
Collapse
|
28
|
Kruger GM, Diemel LT, Copelman CA, Cuzner ML. Myelin basic protein isoforms in myelinating and remyelinating rat brain aggregate cultures. J Neurosci Res 1999; 56:241-7. [PMID: 10336253 DOI: 10.1002/(sici)1097-4547(19990501)56:3<241::aid-jnr3>3.0.co;2-h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent evidence suggests that myelin basic protein (MBP) exon-2-containing isoforms play a significant role in the onset of myelination because they are more abundant during early development. The pattern of expression of MBP exon-2-containing isoforms was studied in rat brain aggregate cultures during myelination to draw comparisons with the developing brain and at remyelination after demyelinative treatment. The pattern of MBP isoform expression in the aggregate cultures was found to be similar to that of the brain and was recapitulated after demyelination with antimyelin antibodies. Macrophage enrichment, resulting in increased accumulation of total MBP in the cultures, did not alter the isoform distribution. Both control and enriched cultures expressed a 16-kDa protein (26+/-9.8% of total MBP for control samples) that reacted with MBP antisera at the onset of myelination (day in vitro 14) but was barely detectable by day in vitro 21. The expression of this protein, also present in postnatal day 6 rat brain but no longer by day 11, has been predicted by reverse transcription polymerase chain reaction in embryonic mouse brain. The results of the present study reinforce the value of the aggregate culture system as a versatile yet accurate model of myelination and remyelination.
Collapse
Affiliation(s)
- G M Kruger
- Department of Neurochemistry, Institute of Neurology, University College London, United Kingdom
| | | | | | | |
Collapse
|
29
|
Abstract
After incomplete traumatic spinal cord injury (SCI), the spared tissue exhibits abnormal myelination that is associated with reduced or blocked axonal conductance. To examine the molecular basis of the abnormal myelination, we used a standardized rat model of incomplete SCI and compared normal uninjured tissue with that after contusion injury. We evaluated expression of mRNA for myelin proteins using in situ hybridization with oligonucleotide probes to proteolipid protein (PLP), the major protein in central myelin; myelin basic protein (MBP), a major component of central myelin and a minor component of peripheral myelin; and protein zero (P0), the major structural protein of peripheral myelin, as well as myelin transcription factor 1 (MYT1). We found reduced expression of PLP and MBP chronically after SCI in the dorsal, lateral, and ventral white matter both rostral and caudal to the injury epicenter. Detailed studies of PLP at 2 months after injury indicated that the density of expressing cells was normal but mRNA per cell was reduced. In addition, P0, normally restricted to the peripheral nervous system, was expressed both at the epicenter and in lesioned areas at least 4 mm rostral and caudal to it. Thus, after SCI, abnormal myelination of residual axons may be caused, at least in part, by changes in the transcriptional regulation of genes for myelin proteins and by altered distribution of myelin-producing cells. In addition, the expression of MYT1 mRNA and protein seemed to be upregulated after SCI in a pattern suggesting the presence of undifferentiated progenitor cells in the chronically injured cord.
Collapse
|
30
|
Tretiakova A, Gallia GL, Shcherbik N, Jameson B, Johnson EM, Amini S, Khalili K. Association of Puralpha with RNAs homologous to 7 SL determines its binding ability to the myelin basic protein promoter DNA sequence. J Biol Chem 1998; 273:22241-7. [PMID: 9712838 DOI: 10.1074/jbc.273.35.22241] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell type and developmental stage expression of the myelin basic protein (MBP) gene in mouse brain is regulated at the transcriptional level. Earlier studies from our laboratory have led to the identification of a DNA binding protein from mouse brain, named Puralpha, which interacts with the MB1 regulatory motif of the MBP and stimulates its transcription in glial cells. In this report, we demonstrate that a cellular RNA, with significant homology to 7 SL RNA is associated with Puralpha. Results from band shift competition studies indicate that Puralpha-associated RNA (PU-RNA), inhibits the interaction of immunopurified Puralpha with the MB1 DNA sequence. Results from Northern blot studies indicated that PU-RNA is expressed during various stages of brain development. Of interest, this RNA was found in association with Puralpha that was produced in the mouse brain at the early stage of brain development. Results from Northwestern analysis using a PU-RNA probe identified the regions within Puralpha that are important for Puralpha/PU-RNA association. Production of Puralpha at the early stage of brain development and its association with PU-RNA at this stage, when Puralpha exhibits poor binding ability to the MB1 DNA sequence, suggests that PU-RNA may function as a co-factor that negatively regulates Puralpha interaction with the MBP promoter sequence.
Collapse
Affiliation(s)
- A Tretiakova
- Center for NeuroVirology and NeuroOncology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Walikonis RS, Poduslo JF. Activity of cyclic AMP phosphodiesterases and adenylyl cyclase in peripheral nerve after crush and permanent transection injuries. J Biol Chem 1998; 273:9070-7. [PMID: 9535895 DOI: 10.1074/jbc.273.15.9070] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies demonstrate that cAMP levels are tightly controlled during demyelination and remyelination in Schwann cells as cAMP decreases to 8-10% of normal following both sciatic nerve crush or permanent transection injury and only begins to increase in the crushed nerve after remyelination (Poduslo, J. F., Walikonis, R. S., Domec, M., Berg, C. T., and Holtz-Heppelmann, C. J. (1995) J. Neurochem. 65, 149-159). To investigate the mechanisms responsible for this change in cAMP levels, cAMP phosphodiesterase (PDE) and adenylyl cyclase activities were determined before and after sciatic nerve injury. Basal cAMP PDE activity in soluble endoneurial homogenates of normal nerve was 34.9 +/- 1.9 pmol/mg of protein/min (chi +/- S.E.; n = 10). This activity increased about 3-fold within 6 days following both injuries. Basal PDE activity remained elevated in the transected nerve, but declined to 70 pmol/mg of protein/min in the crushed nerve at 21 and 35 days following injury. Isozyme-specific inhibitors and stimulators were used to identify the PDE families in the sciatic nerve. The low Km cAMP-specific (PDE4) and the Ca2+/calmodulin-stimulated (PDE1) families were found to predominate in assays using endoneurial homogenates. The PDE4 inhibitor rolipram also increased cAMP levels significantly after incubation of endoneurial tissue with various isozyme-specific inhibitors, indicating that PDE4 plays a major role in determining cAMP levels. PDE4 mRNA was localized by in situ hybridization to cells identified as Schwann cells by colabeling of S100, a Schwann cell specific protein. Adenylyl cyclase activity declined following injury, from 3.7 pmol/mg of protein/min in normal nerve to 0.70 pmol/mg/min by 7 days following injury. Both decreased synthesis and increased degradation contribute, therefore, to the reduced levels of cAMP following peripheral nerve injury and are likely critical to the process of Wallerian degeneration.
Collapse
Affiliation(s)
- R S Walikonis
- Department of Neurology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
32
|
Orian JM, Slavin A, Ayers MM, Bernard CC. Delayed and incomplete myelination in a transgenic mouse mutant with abnormal oligodendrocytes. J Neurosci Res 1997; 50:809-20. [PMID: 9418968 DOI: 10.1002/(sici)1097-4547(19971201)50:5<809::aid-jnr17>3.0.co;2-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In search of animal models suitable for investigating myelin repair, we have analysed myelinogenesis in a transgenic mouse mutant with delayed myelination, but with a normal life-span. The 2-50 mutant which carries a c-myc gene under the regulation of the myelin basic protein promoter has been described previously (Orian et al.: J Neurosci Res 39:604-612, 1994). Here we show that appropriate mRNA transcripts and their corresponding protein products are generated, but that the accumulation of these products is delayed in transgenic mice with respect to nontransgenic littermates. This phenomenon is associated with aberrant myelin and paucity of normal oligodendrocytes. Myelination appears to be carried out by abnormal, oligodendrocyte-like cells. We propose that the primary defect in the 2-50 mutant is an inability to generate the normal number of mature oligodendrocytes. This mutant represents a novel class of mutant in which oligodendrocyte development and myelination can be studied in the absence of interference with a gene for a structural protein of myelin, in an animal with normal survival. It may also represent a new tool to investigate in vivo gliogenesis and regulatory events bringing about the coordinated regulation of myelin protein synthesis.
Collapse
Affiliation(s)
- J M Orian
- Department of Pathology, Melbourne University, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
33
|
|
34
|
Muralidharan V, Tretiakova A, Steplewski A, Haas S, Amini S, Johnson E, Khalili K. Evidence for inhibition of MyEF-2 binding to MBP promoter by MEF-1/Pur alpha. J Cell Biochem 1997; 66:524-31. [PMID: 9282330 DOI: 10.1002/(sici)1097-4644(19970915)66:4<524::aid-jcb11>3.0.co;2-b] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myelin basic protein (MBP) is a major component of the myelin sheath whose production is developmentally controlled during myelinogenesis. Earlier studies have indicated that programmed expression of the MBP gene is regulated at the level of transcription. Evidently, the MB1 regulatory motif located between nucleotides -14 to -50 plays an important role in transcription of the MBP promoter in both in vivo systems. The MB1 element contains binding sites for the activator protein MEF-1/Pur alpha and the repressor protein MyEF-2. In this study we use bandshift assays with purified MEF-1/Pur alpha and MyEF-2 and demonstrate that binding of MyEF-2 to its target sequence is inhibited by MEF-1/Pur alpha. Under similar conditions, MyEF-2 enhances the association of MEF-1/Pur alpha with MB1 DNA. MEF-1/Pur alpha binds to MB1 in mono- and dimeric forms. Inclusion of MyEF-2 in the binding reaction increases the dimeric association of MEF-1/Pur alpha with the MB1 sequence. The use of MEF-1/Pur alpha variants in the bandshift assay suggests that two distinct regions of this protein may be involved in its binding to the MB1 sequences, and its ability to block MyEF-2 interaction with the MB1 sequence. Based on previous studies on the programmed expression of MEF-1/Pur alpha and MyEF-2 during myelination and the current findings on their interplay for binding to the MB1 motif, a model is proposed for their involvement in transcriptional regulation of the MBP gene during the course of brain development.
Collapse
Affiliation(s)
- V Muralidharan
- Center for Neurovirology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Staugaitis SM, Colman DR, Pedraza L. Membrane adhesion and other functions for the myelin basic proteins. Bioessays 1996; 18:13-8. [PMID: 8593159 DOI: 10.1002/bies.950180106] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The myelin basic proteins are a set of peripheral membrane polypeptides which play an essential role in myelination. Their most well-documented property is the unique ability to 'seal' the cytoplasmic aspects of the myelin membrane, but this is probably not the only function for these highly charged molecules. Despite extensive homology, the individual myelin basic proteins (MBPs) exhibit different expression patterns and biochemical properties, and so it is now believed that the various isoforms are not functionally equivalent in myelinating cells. We now think that while the major MBPs are intracellular adhesion molecules, some of the quantitatively less abundant isoforms that are expressed very early in development may have regulatory effects on the myelination program.
Collapse
Affiliation(s)
- S M Staugaitis
- Department of Pathology, Columbia Presbyterian Medical Center, New York, USA
| | | | | |
Collapse
|
36
|
Haas S, Steplewski A, Siracusa LD, Amini S, Khalili K. Identification of a sequence-specific single-stranded DNA binding protein that suppresses transcription of the mouse myelin basic protein gene. J Biol Chem 1995; 270:12503-10. [PMID: 7539003 DOI: 10.1074/jbc.270.21.12503] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The myelin basic protein (MBP) gene is expressed only in oligodendrocytes and Schwann cells, and expression follows a tightly regulated developmental time course. Cell type- and developmental stage-specific expression of the MBP gene appears to be regulated by a series of cis-acting elements located upstream of the transcription start site. The proximal element of the MBP regulatory region (MB1), located between nucleotides -14 and -50, is one of several elements participating in the programmed expression of MBP. In this report, we describe the molecular cloning and characterization of myelin gene expression factor-2 (Myef-2), a protein isolated from mouse brain that binds specifically to single-stranded DNA derived from the MB1 element and represses transcription of the MBP gene in transient transfection assay. Myef-2 mRNA is developmentally regulated in mouse brain; its peak expression occurs at postnatal day 7, prior to the onset of MBP expression. The developmental pattern of Myef-2 mRNA expression coincides with that previously described for SCIP, a POU domain transcription factor that also represses myelin basic protein expression. The myef-2 gene maps to mouse chromosome 2. The relevance of these findings for regulation of MBP gene expression and oligodendrocyte differentiation is discussed.
Collapse
Affiliation(s)
- S Haas
- Jefferson Institute of Molecular Medicine, Department of Biochemistry and Molecular Biology, Thomas-Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
37
|
Newman SL, Weikle AA, Neuberger TJ, Bigbee JW. Myelinogenic potential of an immortalized oligodendrocyte cell line. J Neurosci Res 1995; 40:680-93. [PMID: 7541477 DOI: 10.1002/jnr.490400514] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The myelinogenic potential of an oligodendrocyte cell line (N20.1) immortalized by transformation with a temperature-sensitive retrovirus (Verity et al., J Neurochem 60:577-587, 1993) has been evaluated in a co-culture system utilizing dorsal root ganglion neurons. When N20.1 cells were placed in co-culture with dorsal root ganglion neurons at 39 degrees C, the temperature at which TAg expression is decreased relative to that in cells maintained at 34 degrees C, there was a dramatic decrease in the N20.1 proliferation rate compared to cells maintained in the absence of neurons at either temperature. This decrease in proliferation was observed within 3 days of co-culture and appeared to precede a further decrease in TAg expression that occurred with time in response to the neurons. In co-cultures the immunoreactivity of N20.1 cells for galactocerebroside increased with time, and the cells appeared to establish contact with neurites and initiate formation of membranous sheets. When the duration of co-culture was extended to 52 days, myelin-like figures were noted by electron microscopy. Thus, the extent of N20.1 differentiation is dependent on the presence of neurons and the duration of co-culture. This culture system represents a potentially powerful tool for the study of neuronal-glial interactions influencing myelinogenesis and remyelination.
Collapse
Affiliation(s)
- S L Newman
- Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA
| | | | | | | |
Collapse
|
38
|
Steplewski A, Haas S, Amini S, Khalili K. Regulation of mouse myelin basic protein gene transcription by a sequence-specific single-stranded DNA-binding protein in vitro. Gene 1995; 154:215-8. [PMID: 7534248 DOI: 10.1016/0378-1119(94)00816-b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cell- and stage-specific transcription of the myelin basic protein (MBP)-encoding gene (Mbp) in brain is regulated by arrays of cis-acting regulatory elements positioned at the 5'-flanking region of the gene. The proximal element between nucleotides -14 to -50, termed MB1, has previously been shown to have an important role in the cell-type-specific transcription of Mbp in cells derived from the central nervous system (CNS). Here, we utilized band-shift and in vitro transcription assays to examine the ability of MEF-2, an expression factor encoded by a cDNA isolated from mouse brain, in binding to the MB1 element and regulating transcription of the Mbp promoter. Results from the band-shift assays indicated that the bacterially produced MEF-2 recognizes specific nt in the MB1 motif, and its binding to these nt reduces the overall transcriptional activity of Mbp in a cell-free extract.
Collapse
Affiliation(s)
- A Steplewski
- Jefferson Institute of Molecular Medicine, Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
39
|
|
40
|
Bahr BA, Kessler M, Rivera S, Vanderklish PW, Hall RA, Mutneja MS, Gall C, Hoffman KB. Stable maintenance of glutamate receptors and other synaptic components in long-term hippocampal slices. Hippocampus 1995; 5:425-39. [PMID: 8773255 DOI: 10.1002/hipo.450050505] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cultured hippocampal slices retain many in vivo features with regard to circuitry, synaptic plasticity, and pathological responsiveness, while remaining accessible to a variety of experimental manipulations. The present study used ligand binding, immunostaining, and in situ hybridization assays to determine the stability of AMPA- and NMDA-type glutamate receptors and other synaptic proteins in slice cultures obtained from 11 day postnatal rats and maintained in culture for at least 4 weeks. Binding of the glutamate receptor ligands [3H]AMPA and [3H]MK-801 exhibited a small and transient decrease immediately after slice preparation, but the binding levels recovered by culture day (CD) 5-10 and remained stable for at least 30 days in culture. Autoradiographic analyses with both ligands revealed labeling of dendritic fields similar to adult tissue. In addition, slices at CD 10-20 expressed a low to high affinity [3H]AMPA binding ratio that was comparable with that in the adult hippocampus (10:1). AMPA receptor subunits GluR1 and GluR2/3 and an NMDA receptor subunit (NMDAR1) exhibited similar postcutting decreases as that exhibited by the ligand binding levels, followed by stable recovery. The GluR4 AMPA receptor subunit was not evident during the first 10 CDs but slowly reached detectable levels thereafter in some slices. Immunocytochemistry and in situ hybridization techniques revealed adult-like labeling of subunit proteins in dendritic processes and their mRNAs in neuronal cell body layers. Long-term maintenance was evident for other synapse-related proteins, including synaptophysin, neural cell adhesion molecule isoforms (NCAMs), and an AMPA receptor related antigen (GR53), as well as for certain structural and cytoskeletal components (e.g., myelin basic protein, spectrin, microtubule-associated proteins). In summary, following an initial and brief depression, many synaptic components were expressed at steady-state levels in long-term hippocampal slices, thus allowing the use of such a culture system for investigations into mechanisms of brain synapses.
Collapse
Affiliation(s)
- B A Bahr
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717-3800, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Haque NS, Buchberg AM, Khalili K. Isolation and characterization of MRF-1, a brain-derived DNA-binding protein with a capacity to regulate expression of myelin basic protein gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47402-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Zoeller RT, Butnariu OV, Fletcher DL, Riley EP. Limited postnatal ethanol exposure permanently alters the expression of mRNAS encoding myelin basic protein and myelin-associated glycoprotein in cerebellum. Alcohol Clin Exp Res 1994; 18:909-16. [PMID: 7526726 DOI: 10.1111/j.1530-0277.1994.tb00059.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Experiments were designed to test the hypothesis that ethanol exposure during development can selectively affect the expression of specific isoforms of myelin protein gene expression in the rat cerebellum. We focused on myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) gene expression. Both of these genes are alternatively spliced to yield 4 (MBP) or 2 (MAG) mRNA isoforms. Prenatal ethanol exposure, delivered to the dams in a liquid diet, did not significantly alter the expression of MBP or MAG gene expression in the cerebellums of 15-day-old pups, as measured by quantitative in situ hybridization using specific oligodeoxynucleotide probes. In contrast, postnatal ethanol exposure delivered directly to the pups over a 6-day period by gastrostomy tube (PN days 4-10) reduced the expression of specific MBP and MAG isoforms in the cerebellum of animals in adulthood. These data demonstrate that ethanol exposure, especially during the period of rapid myelination, has selective effects on mRNA isoforms encoding specific MBPs and MAG.
Collapse
Affiliation(s)
- R T Zoeller
- Department of Anatomy and Neurobiology, University of Missouri School of Medicine, Columbia
| | | | | | | |
Collapse
|
43
|
Abstract
Immunization with a synthetic peptide with an amino acid sequence corresponding to mouse myelin basic protein exon-2 induced mild experimental allergic encephalitis (EAE) in B10.RIII mice, very mild disease in SJL/J mice and no disease in (SJL x PL)F1 hybrid mice. In contrast, adoptive transfer of an exon-2 peptide-specific T cell line from SJL mice induced severe relapsing EAE in syngeneic recipients. The T cell line was specific for exon-2 peptide and did not cross-react appreciably with an MBP preparation consisting of the 18.5 and 14-kDa isoforms. mRNA for exon-2 containing isoforms could be demonstrated in the spinal cord of SJL/J and B10.RIII mice by amplification using exon-2 and exon-4 oligonucleotide primers. On a relative basis, the level of exon-2 cDNA was lower than that of exon-1 cDNA in the same spinal cord preparations from both strains of mice.
Collapse
Affiliation(s)
- R B Fritz
- Department of Microbiology, Medical College of Wisconsin, Milwaukee 53226
| | | |
Collapse
|
44
|
Zelenika D, Grima B, Pessac B. A new family of transcripts of the myelin basic protein gene: expression in brain and in immune system. J Neurochem 1993; 60:1574-7. [PMID: 7681107 DOI: 10.1111/j.1471-4159.1993.tb03325.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A cDNA clone (MBP2) corresponding to a novel mouse myelin basic protein (MBP) mRNA has been isolated from an adult mouse bone marrow cDNA library. It contains the MBP exons 1a-7 except exon 5. Using PCR experiments we have determined that this MBP2 mRNA belongs to a new MBP mRNA family initiated upstream from exon 1b. Their 5' end extends into exon 1a and/or the region 0' previously described. These mRNAs are generated by alternative splicing of the primary transcript involving excision of exon 1a, 1b, 2, 5, or 6. Thus, these new mRNAs are produced from a promoter(s) located upstream from the major promoter 1b. They are expressed in brain (at least from embryonic day 15), in bone marrow, and in other hemolymphopoietic tissues, particularly in macrophage cells. As their expression is not restricted to myelinating cells, the function of these novel MBP mRNAs and putative proteins might not be related to myelination.
Collapse
Affiliation(s)
- D Zelenika
- Centre de Biologie Cellulare du CNRS, Ivry/Seine, France
| | | | | |
Collapse
|
45
|
Nakajima K, Ikenaka K, Kagawa T, Aruga J, Nakao J, Nakahira K, Shiota C, Kim SU, Mikoshiba K. Novel isoforms of mouse myelin basic protein predominantly expressed in embryonic stage. J Neurochem 1993; 60:1554-63. [PMID: 7681106 DOI: 10.1111/j.1471-4159.1993.tb03321.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Myelin basic protein (MBP), a major protein of myelin, is thought to play an important role in myelination, which occurs postnatally in mouse. Here we report that the MBP gene is expressed from the 12th embryonic day in mouse brain and that most of the predominant embryonic isoforms are not those reported previously. These isoforms have a deletion of a sequence encoded by exon 5 from the well-known isoforms. These isoforms show a unique developmental profile, i.e., they peak in the embryonic stage and decrease thereafter. In jimpy, a dysmyelinating mutant, the level of these isoforms remains high even in the older ages. These results suggest that MBPs have heretofore unknown functions unrelated to myelination before myelinogenesis begins. The possible presence of 18 isoforms of MBP mRNA, which are classified into at least three groups with different developmental profiles, is also reported here.
Collapse
Affiliation(s)
- K Nakajima
- Division of Regulation of Macromolecular Function, Osaka University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Structure and developmental regulation of Golli-mbp, a 105-kilobase gene that encompasses the myelin basic protein gene and is expressed in cells in the oligodendrocyte lineage in the brain. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53485-2] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
47
|
Abstract
Myelin basic protein (MBP) is a major constituent of myelin synthesized by oligodendrocytes and Schwann cells. We have investigated the expression of mouse MBP RNAs outside the nervous system. Nuclease protection experiments indicate that RNAs containing exon 1 and not the six downstream exons of the MBP gene are transcribed in various hemopoietic tissues. We have isolated a hemopoietic MBP-related (HMBPR) cDNA clone from a mouse bone marrow cDNA library screened with an MBP cDNA probe. This clone contains exons 1a and 1b and a part of intron 1 of the MBP gene. An additional 5' region, encoded by at least three unidentified exons, lies upstream of exon 1a. The HMBPR clone corresponds to a 5-kb RNA expressed in bone marrow, spleen, thymus, and macrophagic cells. This transcript is expressed at a similar level in brain, although at a lower level than the classical 2-kb mRNA. These data indicate that a new transcript, overlapping the MBP transcription unit and controlled by a distinct promoter, is expressed in hemopoietic tissues. This RNA might encode a 21-kDa protein sharing a common domain with MBP.
Collapse
Affiliation(s)
- B Grima
- Centre de Biologie Cellulaire du CNRS, ERS 28, Ivry/Seine, France
| | | | | |
Collapse
|
48
|
McLaurin J, Hashim G, Moscarello MA. An antibody specific for component 8 of myelin basic protein from normal brain reacts strongly with component 8 from multiple sclerosis brain. J Neurochem 1992; 59:1414-20. [PMID: 1383422 DOI: 10.1111/j.1471-4159.1992.tb08455.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myelin basic protein (MBP) consists of several components or charge isomers (C-1 through C-8) generated by one or a combination of posttranslational modifications. One of these, C-8, has been shown to contain citrulline (Cit) at defined sites formed by deimination of six arginyl residues. This unusual modification has allowed us to raise antibodies specific for this charge isomer only. To do this, a synthetic peptide, Gly-Cit-Cit-Cit-Cit, was coupled to keyhole limpet hemocyanin and injected into rabbits. The antibodies so generated reacted only with C-8 and not with any of the other charge isomers. A second antibody fraction was raised against the synthetic peptide ACitHGFLPCitHR naturally occurring between residues 24 and 33 of C-8 (all other charge isomers contain R instead of Cit at positions 25 and 31). These antibodies preferred C-8 but reacted with the other charge isomers, to the extent of approximately 25-30% of the reactivity shown with C-8. In studies with C-8 from multiple sclerosis (MS) MBP, much greater reactivity was obtained with these antibodies when compared with their reactivity with C-8 from normal MBP. Because the total number of Cit residues in C-8 from MS and normal MBP is the same, the difference in reactivity may be related to structural factors. The antibodies raised with the tetra-Cit peptide were reacted with three pairs of synthetic peptides: 24ARHGFLPRHR33 and ACitHGFLPCitHR; 120GQRPGFGYGGRAS132 and GQCitPGFGYGGCitAS; and 157GGRDSRSGSPMARR170 and GGCitDSRSGSPMACitR. They reacted only with the Cit-containing peptides in the order 157-170 greater than 120-130 greater than 24-33.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J McLaurin
- Division of Biochemistry, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
49
|
Devine-Beach K, Haas S, Khalili K. Analysis of the proximal transcriptional element of the myelin basic protein gene. Nucleic Acids Res 1992; 20:545-50. [PMID: 1371350 PMCID: PMC310421 DOI: 10.1093/nar/20.3.545] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The gene encoding myelin basic protein (MBP) contains multiple activator sequences spanning upstream of its transcriptional initiation site which differentially promote transcription in glial cells. The proximal activator sequence, designated MB1, activates transcription in a glial cell type specific manner. This sequence resides between -14 to -50 with respect to the RNA initiation site of the MBP gene. We have identified within the MB1 sequence a 10-nucleotide domain, 5'-ACCTTCAAAG-3', that increases transcription of a test promoter in glial and Schwann cells. This proximal motif functions in both orientations and specifically interacts with a nuclear protein derived from glial cells. Results of in vivo competition experiments indicate that this 10-nucleotide motif positively contributes to the overall transcriptional activity obtained from the entire MBP promoter in glial cells.
Collapse
Affiliation(s)
- K Devine-Beach
- Department of Biochemistry and Molecular Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107-6799
| | | | | |
Collapse
|
50
|
Miskimins R, Knapp L, Dewey MJ, Zhang X. Cell and tissue-specific expression of a heterologous gene under control of the myelin basic protein gene promoter in transgenic mice. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 65:217-21. [PMID: 1373994 DOI: 10.1016/0165-3806(92)90182-v] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myelin basic protein (MBP) is the second most abundant protein in CNS myelin. We have used transgenic mice to investigate the ability of the 5' flanking sequence of the mouse MBP gene to regulate the cell-type-specific- and temporal expression of a heterologous gene under its control. Transgenic mice were produced with a construct containing the bacterial chloramphenicol acetyltransferase (CAT) gene down-stream of the MBP 5' flanking sequence and CAT expression was monitored both enzymatically and histochemically. The results indicate that 1323 bp of 5' flanking sequence is sufficient to direct CAT expression specifically to the tissue and cell-type, in which MBP is normally synthesized. Additionally, this length of sequence also retains the ability to temporally regulate CAT levels in a manner analogous to endogenous MBP levels.
Collapse
Affiliation(s)
- R Miskimins
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | | | | | |
Collapse
|