1
|
The Life of a Trailing Spouse. J Neurosci 2021; 41:3-10. [PMID: 33408132 DOI: 10.1523/jneurosci.2874-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
In 1981, I published a paper in the first issue of the Journal of Neuroscience with my postdoctoral mentor, Alan Pearlman. It reported a quantitative analysis of the receptive field properties of neurons in reeler mouse visual cortex and the surprising conclusion that although the neuronal somas were strikingly malpositioned, their receptive fields were unchanged. This suggested that in mouse cortex at least, neuronal circuits have very robust systems in place to ensure the proper formation of connections. This had the unintended consequence of transforming me from an electrophysiologist into a cellular and molecular neuroscientist who studied cell adhesion molecules and the molecular mechanisms they use to regulate axon growth. It took me a surprisingly long time to appreciate that your science is driven by the people around you and by the technologies that are locally available. As a professional puzzler, I like all different kinds of puzzles, but the most fun puzzles involve playing with other puzzlers. This is my story of learning how to find like-minded puzzlers to solve riddles about axon growth and regeneration.
Collapse
|
2
|
Jin J, Tilve S, Huang Z, Zhou L, Geller HM, Yu P. Effect of chondroitin sulfate proteoglycans on neuronal cell adhesion, spreading and neurite growth in culture. Neural Regen Res 2018; 13:289-297. [PMID: 29557379 PMCID: PMC5879901 DOI: 10.4103/1673-5374.226398] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As one major component of extracellular matrix (ECM) in the central nervous system, chondroitin sulfate proteoglycans (CSPGs) have long been known as inhibitors enriched in the glial scar that prevent axon regeneration after injury. Although many studies have shown that CSPGs inhibited neurite outgrowth in vitro using different types of neurons, the mechanism by which CSPGs inhibit axonal growth remains poorly understood. Using cerebellar granule neuron (CGN) culture, in this study, we evaluated the effects of different concentrations of both immobilized and soluble CSPGs on neuronal growth, including cell adhesion, spreading and neurite growth. Neurite length decreased while CSPGs concentration arised, meanwhile, a decrease in cell density accompanied by an increase in cell aggregates formation was observed. Soluble CSPGs also showed an inhibition on neurite outgrowth, but it required a higher concentration to induce cell aggregates formation than coated CSPGs. We also found that growth cone size was significantly reduced on CSPGs and neuronal cell spreading was restrained by CSPGs, attributing to an inhibition on lamellipodial extension. The effect of CSPGs on neuron adhesion was further evidenced by interference reflection microscopy (IRM) which directly demonstrated that both CGNs and cerebral cortical neurons were more loosely adherent to a CSPG substrate. These data demonstrate that CSPGs have an effect on cell adhesion and spreading in addition to neurite outgrowth.
Collapse
Affiliation(s)
- Jingyu Jin
- Guangdong-Hongkong-Macau Institute of CNS Regeneration; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Sharada Tilve
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhonghai Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Bachleda AR, Pevny LH, Weiss ER. Sox2-Deficient Müller Glia Disrupt the Structural and Functional Maturation of the Mammalian Retina. Invest Ophthalmol Vis Sci 2016; 57:1488-99. [PMID: 27031842 PMCID: PMC4819558 DOI: 10.1167/iovs.15-17994] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Müller glia (MG), the principal glial cells of the vertebrate retina, display quiescent progenitor cell characteristics. They express key progenitor markers, including the high mobility group box transcription factor SOX2 and maintain a progenitor-like morphology. In the embryonic and mature central nervous system, SOX2 maintains neural stem cell identity. However, its function in committed Müller glia has yet to be determined. METHODS We use inducible, MG-specific genetic ablation of Sox2 in vivo at the peak of MG genesis to analyze its function in the maturation of murine MG and effects on other cells in the retina. Histologic and functional analysis of the Sox2-deficient retinas is conducted at key points in postnatal development. RESULTS Ablation of Sox2 in the postnatal retina results in disorganization of MG processes in the inner plexiform layer and mislocalized cell bodies in the nuclear layers. This disorganization is concurrent with a thinning of the neural retina and disruption of neuronal processes in the inner and outer plexiform layers. Functional analysis by electroretinography reveals a decrease in the b-wave amplitude. Disruption of MG maturation due to Sox2 ablation therefore negatively affected the function of the retina. CONCLUSIONS These results demonstrate a novel role for SOX2 in glial process outgrowth and adhesion, and provide new insights into the essential role Müller glia play in the development of retinal cytoarchitecture. Prior to this work, SOX2 was known to have a primary role in determining cell fate. Our experiments bypass cell fate conversion to establish a new role for SOX2 in a committed cell lineage.
Collapse
Affiliation(s)
- Amelia R Bachleda
- Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States 2Curriculum in Neurobiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Larysa H Pevny
- Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States 3Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ellen R Weiss
- Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States 4Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States 5Lineberger Comprehe
| |
Collapse
|
4
|
Omrani MM, Kiaie N, Ansari M, Kordestani SS. Enhanced Protein Adsorption, Cell Attachment, and Neural Differentiation with the Help of Amine Functionalized Polycaprolactone Scaffolds. J MACROMOL SCI B 2016. [DOI: 10.1080/00222348.2016.1179245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Fyn kinase genetic ablation causes structural abnormalities in mature retina and defective Müller cell function. Mol Cell Neurosci 2016; 72:91-100. [DOI: 10.1016/j.mcn.2016.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/24/2022] Open
|
6
|
Mione J, Manrique C, Duhoo Y, Roman FS, Guiraudie-Capraz G. Expression of polysialyltransferases (STX and PST) in adult rat olfactory bulb after an olfactory associative discrimination task. Neurobiol Learn Mem 2016; 130:52-60. [PMID: 26844880 DOI: 10.1016/j.nlm.2016.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 11/18/2022]
Abstract
Neuronal plasticity and neurogenesis occur in the adult hippocampus and in other brain structures such as the olfactory bulb and often involve the neural cell adhesion molecule NCAM. During an olfactory associative discrimination learning task, NCAM polysialylation triggers neuronal plasticity in the adult hippocampus. The PST enzyme likely modulates this polysialylation, but not STX, a second sialyltransferase. How the two polysialyltransferases are involved in the adult olfactory bulb remains unknown. We addressed this question by investigating the effect of olfactory associative learning on plasticity and neurogenesis. After a hippocampo-dependent olfactory associative task learning, we measured the expression of both PST and STX polysialyltransferases in the olfactory bulbs of adult rats using quantitative PCR. In parallel, immunohistochemistry was used to evaluate both NCAM polysialylation level and newly-born cells, with or without learning. After learning, no changes were observed neither in the expression level of PST and NCAM polysialylation, nor in STX gene expression level and newly-born cells number in the olfactory bulb.
Collapse
Affiliation(s)
- J Mione
- Aix Marseille Université, CNRS, NICN, UMR 7259, 13344 Marseille, France
| | - C Manrique
- Aix Marseille Université, CNRS, FR 3512, 13331 Marseille, France
| | - Y Duhoo
- Aix Marseille Université, CNRS, NICN, UMR 7259, 13344 Marseille, France
| | - F S Roman
- Aix Marseille Université, CNRS, NICN, UMR 7259, 13344 Marseille, France
| | - G Guiraudie-Capraz
- Aix Marseille Université, CNRS, NICN, UMR 7259, 13344 Marseille, France.
| |
Collapse
|
7
|
Taylor L, Arnér K, Engelsberg K, Ghosh F. Scaffolding the retina: the interstitial extracellular matrix during rat retinal development. Int J Dev Neurosci 2015; 42:46-58. [PMID: 25758423 DOI: 10.1016/j.ijdevneu.2015.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To examine the expression of interstitial extracellular matrix components and their role during retinal development. MATERIAL AND METHODS Fibronectin (FN), collagen IV (Coll IV) and laminin 5 (Lam 5) expression in rat retinas from developmental stages E17 to adult were studied. In addition, PN5 full-thickness retinas were cultured for 7 days with dispase, which selectively cleaves FN and Coll IV, at either 0.5 U/ml or 5.0 U/ml for 3 or 24h. Eyecups and retinal cultures were examined morphologically using hematoxylin and eosin staining and immunohistochemistry. RESULTS Coll IV, Lam 5 and FN were all transiently expressed in the interstitial matrix of the retinal layers during development. The retinal layers in dispase treated explants was severely disturbed in a dose and time dependent manner. CONCLUSIONS FN, Lam 5 and Coll IV, are present in the interstitial extracellular matrix during rat retinal development. Enzymatic cleavage of FN and Coll IV early in the lamination process disrupts the retinal layers implicating their pivotal role in this process.
Collapse
Affiliation(s)
- Linnéa Taylor
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden.
| | - Karin Arnér
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden
| | - Karl Engelsberg
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden
| | - Fredrik Ghosh
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden
| |
Collapse
|
8
|
Friedman LG, Benson DL, Huntley GW. Cadherin-based transsynaptic networks in establishing and modifying neural connectivity. Curr Top Dev Biol 2015; 112:415-65. [PMID: 25733148 DOI: 10.1016/bs.ctdb.2014.11.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is tacitly understood that cell adhesion molecules (CAMs) are critically important for the development of cells, circuits, and synapses in the brain. What is less clear is what CAMs continue to contribute to brain structure and function after the early period of development. Here, we focus on the cadherin family of CAMs to first briefly recap their multidimensional roles in neural development and then to highlight emerging data showing that with maturity, cadherins become largely dispensible for maintaining neuronal and synaptic structure, instead displaying new and narrower roles at mature synapses where they critically regulate dynamic aspects of synaptic signaling, structural plasticity, and cognitive function. At mature synapses, cadherins are an integral component of multiprotein networks, modifying synaptic signaling, morphology, and plasticity through collaborative interactions with other CAM family members as well as a variety of neurotransmitter receptors, scaffolding proteins, and other effector molecules. Such recognition of the ever-evolving functions of synaptic cadherins may yield insight into the pathophysiology of brain disorders in which cadherins have been implicated and that manifest at different times of life.
Collapse
Affiliation(s)
- Lauren G Friedman
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Deanna L Benson
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - George W Huntley
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
9
|
Manrique C, Migliorati M, Gilbert V, Brezun JM, Chaillan FA, Truchet B, Khrestchatisky M, Guiraudie-Capraz G, Roman FS. Dynamic expression of the polysialyltransferase in adult rat hippocampus performing an olfactory associative task. Hippocampus 2014; 24:979-89. [DOI: 10.1002/hipo.22284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 01/16/2023]
Affiliation(s)
| | | | - Valérie Gilbert
- Aix Marseille Université, CNRS; FR 3512 13331 Marseille France
| | | | | | - Bruno Truchet
- Aix Marseille Université, CNRS; UMR 7291 13331 Marseille France
| | | | | | - François S. Roman
- Aix Marseille Université, CNRS, NICN; UMR 7259 13344 Marseille France
| |
Collapse
|
10
|
Santos ARC, Corredor RG, Obeso BA, Trakhtenberg EF, Wang Y, Ponmattam J, Dvoriantchikova G, Ivanov D, Shestopalov VI, Goldberg JL, Fini ME, Bajenaru ML. β1 integrin-focal adhesion kinase (FAK) signaling modulates retinal ganglion cell (RGC) survival. PLoS One 2012; 7:e48332. [PMID: 23118988 PMCID: PMC3485184 DOI: 10.1371/journal.pone.0048332] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/24/2012] [Indexed: 12/16/2022] Open
Abstract
Extracellular matrix (ECM) integrity in the central nervous system (CNS) is essential for neuronal homeostasis. Signals from the ECM are transmitted to neurons through integrins, a family of cell surface receptors that mediate cell attachment to ECM. We have previously established a causal link between the activation of the matrix metalloproteinase-9 (MMP-9), degradation of laminin in the ECM of retinal ganglion cells (RGCs), and RGC death in a mouse model of retinal ischemia-reperfusion injury (RIRI). Here we investigated the role of laminin-integrin signaling in RGC survival in vitro, and after ischemia in vivo. In purified primary rat RGCs, stimulation of the β1 integrin receptor with laminin, or agonist antibodies enhanced RGC survival in correlation with activation of β1 integrin’s major downstream regulator, focal adhesion kinase (FAK). Furthermore, β1 integrin binding and FAK activation were required for RGCs’ survival response to laminin. Finally, in vivo after RIRI, we observed an up-regulation of MMP-9, proteolytic degradation of laminin, decreased RGC expression of β1 integrin, FAK and Akt dephosphorylation, and reduced expression of the pro-survival molecule bcl-xL in the period preceding RGC apoptosis. RGC death was prevented, in the context of laminin degradation, by maintaining β1 integrin activation with agonist antibodies. Thus, disruption of homeostatic RGC-laminin interaction and signaling leads to cell death after retinal ischemia, and maintaining integrin activation may be a therapeutic approach to neuroprotection.
Collapse
Affiliation(s)
- Andrea Rachelle C. Santos
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Raul G. Corredor
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Betty Albo Obeso
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ephraim F. Trakhtenberg
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Neuroscience Program, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ying Wang
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jamie Ponmattam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Galina Dvoriantchikova
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Valery I. Shestopalov
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jeffrey L. Goldberg
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Neuroscience Program, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mary Elizabeth Fini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Michaela Livia Bajenaru
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
11
|
Itofusa R, Kamiguchi H. Polarizing membrane dynamics and adhesion for growth cone navigation. Mol Cell Neurosci 2011; 48:332-8. [PMID: 21459144 DOI: 10.1016/j.mcn.2011.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022] Open
Abstract
Neuronal network formation relies on the motile behavior of growth cones at the tip of navigating axons. Accumulating evidence indicates that growth cone motility requires spatially controlled endocytosis and exocytosis that can redistribute bulk membrane and functional cargos such as cell adhesion molecules. For axon elongation, the growth cone recycles cell adhesion molecules from its rear to its leading front through endosomes, thereby polarizing growth cone adhesiveness along the axis of migration direction. In response to extracellular guidance cues, the growth cone turns by retrieving membrane components from the retractive side or by supplying them to the side facing the new direction. We propose that polarized membrane trafficking creates adhesion gradients along and across the front-to-rear axis of growth cones that are essential for axon elongation and turning, respectively. This review will examine how growth cone adhesiveness can be patterned by spatially coordinated endocytosis and exocytosis of cell adhesion molecules. This article is part of a Special Issue entitled 'Neuronal Function'.
Collapse
Affiliation(s)
- Rurika Itofusa
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | | |
Collapse
|
12
|
Oblander SA, Brady-Kalnay SM. Distinct PTPmu-associated signaling molecules differentially regulate neurite outgrowth on E-, N-, and R-cadherin. Mol Cell Neurosci 2010; 44:78-93. [PMID: 20197094 DOI: 10.1016/j.mcn.2010.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/26/2010] [Accepted: 02/17/2010] [Indexed: 12/16/2022] Open
Abstract
Classical cadherins play distinct roles in axon growth and guidance in the visual system, however, the signaling pathways they activate remain unclear. Growth cones on each cadherin substrate have a unique morphology suggesting that distinct signals are activated by neurite outgrowth on E-, N-, and R-cadherin. We previously demonstrated that receptor protein tyrosine phosphatase-mu (PTPmu) is required for E- and N-cadherin-dependent neurite outgrowth. In this manuscript, we demonstrate that PTPmu regulates R-cadherin-mediated neurite outgrowth. Furthermore, we evaluated whether known PTPmu-associated signaling proteins, Rac1, Cdc42, IQGAP1 and PKCdelta, regulate neurite outgrowth mediated by these cadherins. While Rac1 activity is required for neurite outgrowth on all three cadherins Cdc42/IQGAP1 are required only for N- and R-cadherin-mediated neurite outgrowth. In addition, we determined that PKC activity is required for E- and R-cadherin-mediated, but not N-cadherin-mediated neurite outgrowth. In summary, distinct PTPmicro-associated signaling proteins are required to promote neurite outgrowth on cadherins.
Collapse
Affiliation(s)
- Samantha A Oblander
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
13
|
Wang XL, Yu T, Zhang JS, Yan QC, Luo YH. Fibronectin and focal adhesion kinase small interfering RNA modulate rat retinal Müller cells adhesion and migration. Cell Mol Neurobiol 2009; 29:549-56. [PMID: 19172391 DOI: 10.1007/s10571-009-9346-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 01/05/2009] [Indexed: 01/04/2023]
Abstract
Retinal Müller cells (RMCs) hypertrophy and proliferation play a crucial role in epiretinal membrane formation. This study was designed to analyze the effects of Fibronectin and specific FAK siRNA in cell adhesion and migration in rat Müller cells. RMCs were cultured and identified by GFAP, Vimentin, and GLAST mAb, respectively. The cells were planted on dishes coated with Fibronectin at 0, 1, 5, 10, 50, and 100 microg/ml. The attachment and migration assay was applied to characterize the RMCs-Fibronectin interactions. Cell lysis and Western blotting were utilized to detect beta(1)-integrin, FAK, and GLAST protein expression. Then the cells were treated with FAK siRNA, non-targeting siRNA, and control medium. The cell cycle and apoptosis rate was determined by flow cytometry. The attachment, migration, and Western blotting assay were repeated. These data suggested that almost all the cells expressed GFAP, Vimentin, and GLAST, respectively, which ensured most of the harvested cells were RMCs. In attachment assay, the A570 values increased significantly with time (F = 1105.439, P < 0.001) and Fibronectin concentration (F = 424.683, P < 0.001). There were significant difference between each Fibronectin concentration in RMCs migration (F = 34.703, P < 0.000). The expression ratio of FAK, beta(1)-integrin, and GLAST elevated significantly as Fibronectin concentration increased (F = 54.755, P < 0.000; F = 119.962, P < 0.000; F = 39.287, P < 0.000). The Fibronectin pretreatment was settled on 50 microg/ml for siRNA inhibition assays. The specific FAK siRNA treatment significantly increased G(0)/G(1) percentage and apoptosis rate compared with NT siRNA and control group (F = 11.526, P = 0.009; F = 64.772, P < 0.000). The apoptotic rate was significantly suppressed by inhibitors of caspase-8 and 3 (F = 10.500, P = 0.011). The A570 values were significantly suppressed in FAK siRNA groups compared with NT siRNA and control group (F = 154.241, P < 0.000), and the mean migratory cells per view field were significantly decreased (F = 10.906, P = 0.001). FAK and GLAST expression ratio decreased significantly after FAK siRNA treatment (F = 5.315, P = 0.047; F = 5.985, P = 0.042). Take together, FAK is involved in beta(1)-integrin mediated adhesive signaling and play a critical role in regulating Müller cell adhesion, migration, and so far as to glutamate transportation functions.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Department of Ophthalmology, and the Key Laboratory of Lens, The Fourth Affiliated Hospital, China Medical University, Heping District, Shenyang, China.
| | | | | | | | | |
Collapse
|
14
|
Yeaney NK, He M, Tang N, Malouf AT, O'Riordan MA, Lemmon V, Bearer CF. Ethanol inhibits L1 cell adhesion molecule tyrosine phosphorylation and dephosphorylation and activation of pp60(src). J Neurochem 2009; 110:779-90. [PMID: 19457108 DOI: 10.1111/j.1471-4159.2009.06143.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fetal alcohol syndrome is a leading cause of mental retardation. The neuropathology found in patients with fetal alcohol syndrome overlaps with those with mutations in the gene for cell adhesion molecule (L1). We have previously shown that L1-mediated neurite outgrowth and L1 activation of extracellular receptor kinases 1/2 are inhibited at low concentrations of ethanol. One possible mechanism for this effect is through disruption of a tyrosine-based sorting signal, Y(1176)RSLE, on the cytoplasmic domain of L1. Our goal was to determine if ethanol inhibited the sorting signal or its phosphorylation state. Using cerebellar granule neurons and dorsal root ganglion neurons, we found that ethanol had no effect on L1 distribution to the growth cone or its ability to be expressed on the cell surface as determined by confocal microscopy. In cerebellar granule neurons, clustering of L1 resulted in increased dephosphorylation of Y(1176), increased L1 tyrosine phosphorylation, and an increase in the activation of pp60(src) as measured by immunoblot. All changes were inhibited by 25 mM ethanol. Using PP2 to inhibit pp60(src) activation resulted in inhibition of increases in L1 tyrosine and extracellular receptor kinases 1/2 phosphorylation, and Y(1176) dephosphorylation. We conclude that ethanol disrupts L1 trafficking/signaling following its expression on the surface of the growth cone, and prior to its activation of pp60(src).
Collapse
|
15
|
Bekirov IH, Nagy V, Svoronos A, Huntley GW, Benson DL. Cadherin-8 and N-cadherin differentially regulate pre- and postsynaptic development of the hippocampal mossy fiber pathway. Hippocampus 2008; 18:349-63. [PMID: 18064706 DOI: 10.1002/hipo.20395] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells sort into regions and groups in part by their selective surface expression of particular classic cadherins during development. In the nervous system, cadherin-based sorting can define axon tracts, restrict axonal and dendritic arbors to particular regions or layers, and may encode certain aspects of synapse specificity. The underlying model has been that afferents and their targets hold in common the expression of a particular cadherin, thereby providing a recognition code of homophilic cadherin binding. However, most neurons express multiple cadherins, and it is not clear whether multiple cadherins all act similarly in shaping neural circuitry. Here we asked how two such cadherins, cadherin-8 and N-cadherin, influence the guidance and differentiation of hippocampal mossy fibers. Using organotypic hippocampal cultures, we find that cadherin-8 regulates mossy fiber fasciculation and targeting, but has little effect on CA3 dendrites. In contrast, N-cadherin regulates mossy fiber fasciculation, but has little impact on axonal growth and targeting. However, N-cadherin is essential for CA3 dendrite arborization. Both cadherins are required for formation of proper numbers of presynaptic terminals. Mechanistically, such differential actions of these two cadherins could, in theory, reflect coupling to distinct intracellular binding partners. However, we find that both cadherins bind beta-catenin in dentate gyrus (DG). This suggests that cadherins may engage different intracellular signaling cascades downstream of beta-catenin, coopt different extracellular binding partners, or target distinct subcellular domains. Together our findings demonstrate that cadherin-8 and N-cadherin are critical for generating the mossy fiber pathway, but that each contributes differentially to afferent and target differentiation, thereby complementing one another in the assembly of a synaptic circuit.
Collapse
Affiliation(s)
- Iddil H Bekirov
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
16
|
Blackmore M, Letourneau PC. L1, beta1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord. ACTA ACUST UNITED AC 2007; 66:1564-83. [PMID: 17058193 DOI: 10.1002/neu.20311] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Embryonic birds and mammals are capable of axon regeneration after spinal cord injury, but this ability is lost during a discrete developmental transition. We recently showed that changes within maturing neurons, as opposed to changes solely in the spinal cord environment, significantly restrict axon regeneration during development. The developmental changes within neurons that limit axon regeneration remain unclear. One gap in knowledge is the identity of the adhesive receptors that embryonic neurons use to extend axons in the spinal cord. Here we test the roles of L1/NgCAM, beta1 integrin, and cadherins, using a coculture system in which embryonic chick brainstem neurons regenerate axons into an explant of embryonic spinal cord. By in vivo and in vitro methods, we found that brainstem neurons reduce axonal expression of L1 as they mature. Disrupting either L1 or beta1 integrin function individually in our coculture system partially inhibited growth of brainstem axons in spinal cords, while disrupting cadherin function alone had no effect. However, when all three adhesive receptors were blocked simultaneously, axon growth in the spinal cord was reduced by 90%. Using immunohistochemistry and in situ hybridization we show that during the period when neurons lose their regenerative capacity they reduce expression of mRNA for N-cadherin, and reduce axonal L1/NgCAM protein through a post-transcriptional mechanism. These data show that embryonic neurons use L1/NgCAM, beta1 integrin, and cadherin receptors for axon regeneration in the embryonic spinal cord, and raise the possibility that a reduced expression of these essential receptors may contribute to the low-regenerative capacity of older neurons.
Collapse
Affiliation(s)
- Murray Blackmore
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
17
|
Oblander SA, Ensslen-Craig SE, Longo FM, Brady-Kalnay SM. E-cadherin promotes retinal ganglion cell neurite outgrowth in a protein tyrosine phosphatase-mu-dependent manner. Mol Cell Neurosci 2007; 34:481-92. [PMID: 17276081 PMCID: PMC1853338 DOI: 10.1016/j.mcn.2006.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/01/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022] Open
Abstract
During development of the visual system, retinal ganglion cells (RGCs) require cell-cell adhesion molecules and extracellular matrix proteins for axon growth. In this study, we demonstrate that the classical cadherin, E-cadherin, is expressed in RGCs from E6 to E12 and promotes neurite outgrowth from all regions of the chick retina at E6, E8 and E10. E-cadherin is also expressed in the optic tectum. E-cadherin adhesion blocking antibodies specifically inhibit neurite outgrowth on an E-cadherin substrate. The receptor-type protein tyrosine phosphatase, PTPmu, associates with E-cadherin. In this manuscript, we demonstrate that antisense-mediated down-regulation of PTPmu, overexpression of catalytically inactive PTPmu and perturbation of endogenous PTPmu using a specific PTPmu inhibitor peptide results in a substantial reduction in neurite outgrowth on E-cadherin. Taken together, these findings demonstrate that E-cadherin is an important adhesion molecule for chick RGC neurite outgrowth and suggest that PTPmu expression and catalytic activity are required for outgrowth on an E-cadherin substrate.
Collapse
Affiliation(s)
| | | | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Susann M. Brady-Kalnay
- *Corresponding Author: Susann M. Brady-Kalnay, Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4960, Phone: 216-368-0330, Fax: 216-368-3055, E-mail:
| |
Collapse
|
18
|
Burgess A, Weng YQ, Ypsilanti AR, Cui X, Caines G, Aubert I. Polysialic acid limits septal neurite outgrowth on laminin. Brain Res 2007; 1144:52-8. [PMID: 17335782 DOI: 10.1016/j.brainres.2007.01.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 01/23/2007] [Accepted: 01/24/2007] [Indexed: 11/25/2022]
Abstract
Polysialic acid (PSA) is a large carbohydrate found exclusively on the neural cell adhesion molecule (NCAM). In the adult brain, PSA is re-expressed by septal axons sprouting and regenerating in an environment rich in laminin. Using an in vitro model, we tested the possibility that PSA limits septal outgrowth by preventing maximal interactions with a laminin substrate. Our results indicate that PSA removal from primary septal neurons plated on laminin significantly increased neurite outgrowth at 12 h (14%, p<0.05) and 24 h (22%, p<0.01). In contrast, the removal of PSA had no impact on septal neurite outgrowth on poly-D-lysine. PSA did not influence the plating adhesion of septal neurons on laminin or poly-D-lysine, indicating that the increase in neurite outgrowth caused by PSA removal on laminin is not related to the initial attachment of the neurons to this substrate. Neurite length on laminin was significantly reduced by the function-blocking beta1-integrin antibody in the presence of PSA (20% decrease, p<0.05), and following PSA removal (34% decrease compared to neurites treated with endoN and without the beta1-integrin antibody, p<0.01). Importantly, the beta1-integrin antibody completely abolished the neurite outgrowth promoting effect of PSA removal on laminin. The beta1-integrin antibody had no impact on septal neurite length on poly-D-lysine. Taken together, these results indicate that the removal of PSA from septal neurons increases neurite outgrowth on laminin by promoting interactions between beta1-integrin and laminin.
Collapse
Affiliation(s)
- Alison Burgess
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Major DL, Brady-Kalnay SM. Rho GTPases regulate PTPmu-mediated nasal neurite outgrowth and temporal repulsion of retinal ganglion cell neurons. Mol Cell Neurosci 2007; 34:453-67. [PMID: 17234431 PMCID: PMC1855295 DOI: 10.1016/j.mcn.2006.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 09/25/2006] [Accepted: 11/30/2006] [Indexed: 01/01/2023] Open
Abstract
Members of the receptor protein tyrosine phosphatase (RPTP) subfamily of cell adhesion molecules (CAMs) mediate neurite outgrowth and growth cone repulsion. PTPmu is a growth permissive substrate for nasal retinal ganglion cell (RGC) neurites and a growth inhibitory substrate for temporal RGCs. In this manuscript, we demonstrate that the distinct PTPmu-dependent phenotypes of nasal outgrowth and temporal repulsion are regulated by Rho GTPases. The role of Rho GTPases in the regulation of nasal outgrowth and temporal repulsion was tested by utilizing dominant negative and constitutively active forms of Rac1, RhoA and Cdc42 in Bonhoeffer stripe assays. Nasal neurite outgrowth on PTPmu was blocked by Cdc42-DN. Temporal repulsion to a PTPmu substrate was substantially reduced by addition of Cdc42-DN. The molecule that regulates the switch between permissive versus repulsive responses to PTPmu is Rac1 for temporal neurons. Inhibition of Rac1 is required for repulsion of temporal neurons. Interestingly, adding Rac1-CA to temporal RGC neurons converted PTPmu-dependent repulsion to a permissive response. In addition, adding exogenous Rac1-DN to nasal neurons induced a phenotype switch from a permissive to repulsive response to PTPmu. Together these data suggest that Cdc42 activity is required for both permissive and repulsive responses to PTPmu. However, the key to PTPmu-dependent repulsion is inhibition of Rac1 activity in temporal RGC neurons.
Collapse
Affiliation(s)
| | - Susann M. Brady-Kalnay
- *Corresponding author: Susann M. Brady-Kalnay, Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4960, Phone: (216) 368-0330, Fax: (216) 368-3055,
| |
Collapse
|
20
|
Chaudhry N, de Silva U, Smith GM. Cell adhesion molecule L1 modulates nerve-growth-factor-induced CGRP-IR fiber sprouting. Exp Neurol 2006; 202:238-49. [PMID: 16860320 DOI: 10.1016/j.expneurol.2006.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/16/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
Overexpression of nerve growth factor (NGF) using adenoviruses (Adts) after spinal cord injury induces extensive regeneration and sprouting of calcitonin-gene-related peptide immunoreactive (CGRP-IR) fibers, whereas overexpression of cell adhesion molecules (CAMs) has no effect on the normal distribution of these fibers. Interestingly, co-expression of cell adhesion molecule L1 and NGF significantly decreases (p<0.0001) CGRP-IR fiber sprouting within the spinal cord, when compared to NGF alone. Co-expression of cell adhesion molecules NCAM or N-cadherin had no effect on NGF-induced CGRP-IR fiber sprouting. These data demonstrate that reduced sprouting is specific to L1 co-expression and not other cell adhesion molecules. In vitro studies carried out to address potential mechanisms show that neurite outgrowth over astrocytes overexpressing L1 in the presence of NGF is comparable to controls, indicating that other factors present in vivo might be involved in the L1-mediated reduction in sprouting. One potential factor is semaphorin 3A (sema3A), which mediates growth cone collapse of CGRP-positive axons. Recent studies have shown that L1 is important in sema3A receptor signaling for cortical neurons. In our study, co-expression of sema3A indeed reduces neurite outgrowth from DRG neurons by about 40% on L1-expressing astrocytes. Based on these results, we hypothesize that overexpression of L1 potentiates sema3A signaling resulting in reduced sprouting.
Collapse
Affiliation(s)
- Nagarathnamma Chaudhry
- Department of Physiology, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0298, USA
| | | | | |
Collapse
|
21
|
Yamagata M, Sanes JR. Versican in the developing brain: lamina-specific expression in interneuronal subsets and role in presynaptic maturation. J Neurosci 2006; 25:8457-67. [PMID: 16162928 PMCID: PMC6725682 DOI: 10.1523/jneurosci.1976-05.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) of the extracellular matrix help stabilize synaptic connections in the postnatal brain and impede regeneration after injury. Here, we show that a CSPG of the lectican family, versican, also promotes presynaptic maturation in the developing brain. In the embryonic chick optic tectum, versican is expressed selectively by subsets of interneurons confined to the retinorecipient laminae, in which retinal axons arborize and form synapses. It is a major receptor for the Vicia villosa B4 lectin (VVA), shown previously to inhibit invasion of the retinorecipient lamina by retinal axons (Inoue and Sanes, 1997). In vitro, versican promotes enlargement of presynaptic varicosities in retinal axons. Depletion of versican in ovo, by RNA interference, results in retinal arbors with smaller than normal varicosities. We propose that versican provides a lamina-specific cue for presynaptic maturation and discuss the related but distinct effects of versican depletion and VVA blockade.
Collapse
Affiliation(s)
- Masahito Yamagata
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
22
|
Ensslen-Craig SE, Brady-Kalnay SM. PTP mu expression and catalytic activity are required for PTP mu-mediated neurite outgrowth and repulsion. Mol Cell Neurosci 2005; 28:177-88. [PMID: 15607952 DOI: 10.1016/j.mcn.2004.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/10/2004] [Accepted: 08/25/2004] [Indexed: 12/22/2022] Open
Abstract
Cell adhesion molecules (CAMs) regulate neural development via both homophilic and heterophilic binding interactions. Various members of the receptor protein tyrosine phosphatase (RPTP) subfamily of CAMs mediate neurite outgrowth, yet in many cases, their ligands remain unknown. However, the PTP mu subfamily members are homophilic binding proteins. PTP mu is a growth-permissive substrate for nasal retinal ganglion cell (RGC) neurites and a growth inhibitory substrate for temporal RGC neurites. Whether PTP mu regulates these distinct behaviors via homophilic or heterophilic binding interactions is not currently known. In this manuscript, we demonstrate that PTP mu influences RGC axon guidance behaviors only in the E8 retina and not earlier in development. In addition, we demonstrate that PTP mu is permissive only for neurites from ventral-nasal retina and is repulsive to neurites from all other retinal quadrants. Furthermore, we show that PTP mu-mediated nasal neurite outgrowth and temporal repulsion require PTP mu expression and catalytic activity. These results are consistent with PTP mu homophilic binding generating a tyrosine phosphatase-dependent signal that ultimately leads to axon outgrowth or repulsion and that PTP mu's role in regulating axon guidance may be tightly regulated developmentally. In summary, these data demonstrate that PTP mu expression and catalytic activity are important in vertebrate axon guidance.
Collapse
Affiliation(s)
- Sonya E Ensslen-Craig
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-7960, USA
| | | |
Collapse
|
23
|
Schwander M, Shirasaki R, Pfaff SL, Müller U. Beta1 integrins in muscle, but not in motor neurons, are required for skeletal muscle innervation. J Neurosci 2005; 24:8181-91. [PMID: 15371519 PMCID: PMC6729792 DOI: 10.1523/jneurosci.1345-04.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In vitro studies have provided evidence that beta1 integrins in motor neurons promote neurite outgrowth, whereas beta1 integrins in myotubes regulate acetylcholine receptor (AChR) clustering. Surprisingly, using genetic studies in mice, we show here that motor axon outgrowth and neuromuscular junction (NMJ) formation in large part are unaffected when the integrin beta1 gene (Itgb1) is inactivated in motor neurons. In the absence of Itgb1 expression in skeletal muscle, interactions between motor neurons and muscle are defective, preventing normal presynaptic differentiation. Motor neurons fail to terminate their growth at the muscle midline, branch excessively, and develop abnormal nerve terminals. These defects resemble the phenotype of agrin-null mice, suggesting that signaling molecules such as agrin, which coordinate presynaptic and postsynaptic differentiation, are not presented properly to nerve terminals. We conclude that Itgb1 expression in muscle, but not in motor neurons, is critical for NMJ development.
Collapse
Affiliation(s)
- Martin Schwander
- Department of Cell Biology and Institute for Childhood and Neglected Disease, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
24
|
Wolman MA, Liu Y, Tawarayama H, Shoji W, Halloran MC. Repulsion and attraction of axons by semaphorin3D are mediated by different neuropilins in vivo. J Neurosci 2005; 24:8428-35. [PMID: 15456815 PMCID: PMC6729895 DOI: 10.1523/jneurosci.2349-04.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Class 3 semaphorins are known to repel and/or sometimes attract axons; however, their role in guiding developing axons in the CNS in vivo is still essentially unknown. We investigated the role of Semaphorin3D (Sema3D) in the formation of the early axon pathways in the zebrafish CNS. Morpholino knock-down shows that Sema3D is essential for the correct formation of two early axon pathways. Sema3D appears to guide axons of the nucleus of the medial longitudinal fasciculus (nucMLF) by repulsion and modulation of fasciculation. In contrast, Sema3D appears to be attractive to telencephalic neurons that form the anterior commissure (AC). Knock-down of Neuropilin-1A (Npn-1A) phenocopied the effects of Sema3D knock-down on the nucMLF axons, and knock-down of either Npn-1A or Npn-2B phenocopied the defects of the AC. Furthermore, simultaneous partial knock-down experiments demonstrated genetic interactions among Sema3D, Npn-1A, and Npn-2B. Together, these data support the hypothesis that Sema3D may act as a repellent through receptors containing Npn-1A and as an attractant via receptors containing Npn-1A and Npn-2B.
Collapse
Affiliation(s)
- Marc A Wolman
- Department of Zoology and Anatomy, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
25
|
Ensslen SE, Brady-Kalnay SM. PTPmu signaling via PKCdelta is instructive for retinal ganglion cell guidance. Mol Cell Neurosci 2004; 25:558-71. [PMID: 15080886 DOI: 10.1016/j.mcn.2003.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 11/24/2003] [Accepted: 12/03/2003] [Indexed: 01/03/2023] Open
Abstract
The receptor protein tyrosine phosphatase (RPTP) PTPmu mediates distinct cellular responses in nasal and temporal retinal ganglion cell (RGC) axons. PTPmu is permissive for nasal RGC neurite outgrowth and inhibitory to temporal RGCs. In addition, PTPmu causes preferential temporal growth cone collapse. Previous studies demonstrated that PTPmu associates with the scaffolding protein RACK1 and the protein kinase C-delta (PKCdelta) isoform in chick retina and that PKCdelta activity is required for PTPmu-mediated RGC outgrowth. Using in vitro stripe and collapse assays, we find that PKCdelta activity is required for both inhibitory and permissive responses of RGCs to PTPmu, with higher levels of PKCdelta activation associated with temporal growth cone collapse and repulsion. A potential mechanism for differential PKCdelta activation is due to the gradient of PTPmu expression in the retina. PTPmu is expressed in a high temporal, low nasal step gradient in the retina. In support of this, overexpression of exogenous PTPmu in nasal neurites results in a phenotypic switch from permissive to repulsive in response to PTPmu. Together, these results suggest that the differential expression of PTPmu within the retina is instructive for RGC guidance and that the magnitude of PKCdelta activation in response to PTPmu signaling results in the distinct cellular behaviors of nasal and temporal RGCs.
Collapse
Affiliation(s)
- Sonya E Ensslen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | |
Collapse
|
26
|
Dowell-Mesfin NM, Abdul-Karim MA, Turner AMP, Schanz S, Craighead HG, Roysam B, Turner JN, Shain W. Topographically modified surfaces affect orientation and growth of hippocampal neurons. J Neural Eng 2004; 1:78-90. [PMID: 15876626 DOI: 10.1088/1741-2560/1/2/003] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Extracellular matrix molecules provide biochemical and topographical cues that influence cell growth in vivo and in vitro. Effects of topographical cues on hippocampal neuron growth were examined after 14 days in vitro. Neurons from hippocampi of rat embryos were grown on poly-L-lysine-coated silicon surfaces containing fields of pillars with varying geometries. Photolithography was used to fabricate 1 microm high pillar arrays with different widths and spacings. Beta(III)-tubulin and MAP-2 immunocytochemistry and scanning electron microscopy were used to describe neuronal processes. Automated two-dimensional tracing software quantified process orientation and length. Process growth on smooth surfaces was random, while growth on pillared surfaces exhibited the most faithful alignment to pillar geometries with smallest gap sizes. Neurite lengths were significantly longer on pillars with the smallest inter-pillar spacings (gaps) and 2 microm pillar widths. These data indicate that physical cues affect neuron growth, suggesting that extracellular matrix topography may contribute to cell growth and differentiation. These results demonstrate new strategies for directing and promoting neuronal growth that will facilitate studies of synapse formation and function and provide methods to establish defined neural networks.
Collapse
|
27
|
Sánchez-López A, Cuadros MA, Calvente R, Tassi M, Marín-Teva JL, Navascués J. Radial migration of developing microglial cells in quail retina: A confocal microscopy study. Glia 2004; 46:261-73. [PMID: 15048849 DOI: 10.1002/glia.20007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microglial cells spread within the nervous system by tangential and radial migration. The cellular mechanism of tangential migration of microglia has been described in the quail retina but the mechanism of their radial migration has not been studied. In this work, we clarify some aspects of this mechanism by analyzing morphological features of microglial cells at different steps of their radial migration in the quail retina. Microglial cells migrate in the vitreal half of the retina by successive jumps from the vitreal border to progressively more scleral levels located at the vitreal border, intermediate regions, and scleral border of the inner plexiform layer (IPL). The cellular mechanism used for each jump consists of the emission of a leading thin radial process that ramifies at a more scleral level before retraction of the rear of the cell. Hence, radial migration and ramification of microglial cells are simultaneous events. Once at the scleral border of the IPL, microglial cells migrate through the inner nuclear layer to the outer plexiform layer by another mechanism: they retract cell processes, become round, and squeeze through neuronal bodies. Microglial cells use radial processes of s-laminin-expressing Müller cells as substratum for radial migration. Levels where microglial cells stop and ramify at each jump are always interfaces between retinal strata with strong tenascin immunostaining and strata showing weak or no tenascin immunoreactivity. When microglial cell radial migration ends, tenascin immunostaining is no longer present in the retina. These findings suggest that tenascin plays a role in the stopping and ramification of radially migrating microglial cells.
Collapse
Affiliation(s)
- Ana Sánchez-López
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Tucker ES, Tolbert LP. Reciprocal interactions between olfactory receptor axons and olfactory nerve glia cultured from the developing moth Manduca sexta. Dev Biol 2003; 260:9-30. [PMID: 12885552 DOI: 10.1016/s0012-1606(03)00207-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In olfactory systems, neuron-glia interactions have been implicated in the growth and guidance of olfactory receptor axons. In the moth Manduca sexta, developing olfactory receptor axons encounter several types of glia as they grow into the brain. Antennal nerve glia are born in the periphery and enwrap bundles of olfactory receptor axons in the antennal nerve. Although their peripheral origin and relationship with axon bundles suggest that they share features with mammalian olfactory ensheathing cells, the developmental roles of antennal nerve glia remain elusive. When cocultured with antennal nerve glial cells, olfactory receptor growth cones readily advance along glial processes without displaying prolonged changes in morphology. In turn, olfactory receptor axons induce antennal nerve glial cells to form multicellular arrays through proliferation and process extension. In contrast to antennal nerve glia, centrally derived glial cells from the axon sorting zone and antennal lobe never form arrays in vitro, and growth-cone glial-cell encounters with these cells halt axon elongation and cause permanent elaborations in growth cone morphology. We propose that antennal nerve glia play roles similar to olfactory ensheathing cells in supporting axon elongation, yet differ in their capacity to influence axon guidance, sorting, and targeting, roles that could be played by central olfactory glia in Manduca.
Collapse
Affiliation(s)
- Eric S Tucker
- Department of Cell Biology and Anatomy, University of Arizona, PO Box 245044, Tucson, AZ 85724-5044, USA
| | | |
Collapse
|
29
|
Helle T, Deiss S, Schwarz U, Schlosshauer B. Glial and neuronal regulation of the lipid carrier R-FABP. Exp Cell Res 2003; 287:88-97. [PMID: 12799185 DOI: 10.1016/s0014-4827(03)00109-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuroembryogenesis critically depends on signaling molecules that modulate cell proliferation, differentiation, and the formation of neural networks. In an attempt to identify potential morphogenetic active components that are distributed in a graded fashion in the developing nervous system, we generated substraction libraries of the embryonic nasal and temporal chick retina. Selected clones were analyzed by sequencing, Northern and Western blotting, in situ hybridization, and immunocytochemistry. Retinal fatty acid-binding protein (R-FABP) mRNA displayed the most pronounced topographic gradient. R-FABP was most strongly expressed in nasal retina, though topographic differences were not evident on the protein level. R-FABP expression was subject to a pronounced spatio-temporal regulation. Peak expression was at the period of cell generation/migration and differentiation. To identify the cell types involved in R-FAPB synthesis, ganglion cells as the only retinal projection neurons were enriched by enzymatic delayering. Cell somata, axons, and growth cones were R-FABP immunoreactive. Most interestingly, R-FABP immunoreactivity was critically dependent on the growth substratum. It was abrogated when axons grew on isolated glial endfeet. Radial glia purified by complement-mediated cytolysis also expressed R-FABP at moderate levels. The expression level was significantly increased during mitosis and dropped down again in postmitotic cells. Further on, transient loss of cell-cell and substratum contact induced a subcellular redistribution of R-FABP. In conjunction with the morphogen-binding activity of other FABP family members and their impact on cell migration and tissue differentiation, R-FABP characteristics suggest a regulatory function during retinal histogenesis but not during topographic map formation.
Collapse
Affiliation(s)
- Thomas Helle
- Max-Planck-Institute for Developmental Biology, Spemannstrasse 35/Abt. II; D-72076, Tuebingen, Germany
| | | | | | | |
Collapse
|
30
|
Abstract
Thalamocortical axons are precisely targeted to cortical layer IV, but the identity of specific molecules that govern the establishment of laminar specificity in the thalamocortical projection has been elusive. In this study, we test the role of N-cadherin, a homophilic cell adhesion molecule, in laminar targeting of thalamocortical axons using cocultured thalamic and cortical slice explants exposed to N-cadherin function-blocking antibodies or inhibitory peptides. In untreated cocultures, labeled thalamocortical axons normally grow to and stop in layer IV, forming terminal-like arbors. In the N-cadherin-blocked cocultures, thalamic axons reach layer IV by growing through deep layers at the same rate as those in the untreated cocultures, but instead of terminating in layer IV, they continue growing uninterruptedly through layer IV and extend into supragranular layers to reach the outermost cortical edge, where some form terminal-like arbors in this aberrant laminar position. In cocultures in which the cortical slice is taken at an earlier maturational stage, one that corresponds to a time when thalamic axons are normally growing through deep layers before the emergence of layer IV from the cortical plate, thalamic axon ingrowth through deep layers is significantly attenuated by N-cadherin blocking reagents. These data indicate that N-cadherin has multifaceted roles in establishing the thalamocortical projection, governing aspects of both thalamic axon ingrowth and laminar targeting by acting as a layer IV stop signal, which progressively change in parallel with the maturational state of the cortex.
Collapse
|
31
|
Kelley MW. Cell adhesion molecules during inner ear and hair cell development, including notch and its ligands. Curr Top Dev Biol 2003; 57:321-56. [PMID: 14674486 DOI: 10.1016/s0070-2153(03)57011-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cellular adhesion plays a key role in a number of unique developmental events, including proliferation, cell fate, morphogenesis, neurite outgrowth, fasciculation, and synaptogensis. The number of families of molecules that can mediate cell adhesion and the number of members of each of those families has continued to increase over time. Moreover, the potential for the formation of different pairs of heterodimers with different binding specificities, and for both homo- and hetero-dimeric interactions suggest that a vast number of specific signaling events can be mediated through the expression of different combinations of adhesion factors at different developmental time points. By comparison with the number of known adhesion molecules and their potential effects, our understanding of the role of adhesion in ear development is extremely limited. The patterns of expression for some adhesion molecules have been determined for some aspects of inner ear development. Similarly, with a few exceptions, functional data to indicate the roles of these adhesion molecules are also lacking. However, a consideration of even the limited existing data must lead to the conclusion that adhesion molecules play key roles in all aspects of the development of the auditory system. Unique expression domains for different groups of adhesion molecules within the developing otocyst and ear strongly suggest a role in the determination of different cellular domains. Similarly, the specific expression of adhesion molecules on developing neurites and their target hair cells, suggests a key role for adhesion in the establishment of neuronal connections and possible the development of tonotopy. Finally, the recent demonstration that Cdh23 and Pcdh15 play specific roles in the formation of the hair cell stereociliary bundle provides compelling evidence for the importance of adhesion molecules in the development of stereocilia. With the imminent completion of the mouse genome, it seems likely that the number of adhesion molecules can soon be fixed and that it will then be possible to generate a more comprehensive map of expression of these molecules within the developing inner ear. At the same time, the generation of new transgenic and molecular technologies promises to provide researchers with new tools to examine the specific effects of different adhesion molecules during inner ear development.
Collapse
Affiliation(s)
- Matthew W Kelley
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA
| |
Collapse
|
32
|
Renaud-Young M, Gallin WJ. In the first extracellular domain of E-cadherin, heterophilic interactions, but not the conserved His-Ala-Val motif, are required for adhesion. J Biol Chem 2002; 277:39609-16. [PMID: 12154084 DOI: 10.1074/jbc.m201256200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The classical cadherins, definitive proteins of the cadherin superfamily, are characterized functionally by their ability to mediate calcium-dependent cell aggregation in vitro. To test hypothetical mechanisms of adhesion, we have constructed two mutants of the chicken E-cadherin protein, one with the highly conserved His-Ala-Val (HAV) sequence motif reversed to Val-Ala-His (VAH), the other lacking the first extracellular domain (EC1). The inversion of HAV to VAH has no effect on the capacity of E-cadherin to mediate adhesion. Deletion of EC1 completely eliminates the ability of E-cadherin to mediate homophilic adhesion, but the deletion mutant is capable of adhering heterophilically to both unmutated E-cadherin and to the HAV/VAH mutant. These results demonstrate that the conserved HAV sequence motif is not involved in cadherin-mediated adhesion as has been suggested previously and supports the idea that in the context of the cell surface, cadherin-mediated cell-cell adhesion involves an interaction of EC1 with other domains of the cadherin extracellular moiety and not the "linear zipper" model, which posits trans interactions only between EC1 on apposing cell surfaces.
Collapse
Affiliation(s)
- Margaret Renaud-Young
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | |
Collapse
|
33
|
Shan W, Yoshida M, Wu XR, Huntley GW, Colman DR. Neural (N-) cadherin, a synaptic adhesion molecule, is induced in hippocampal mossy fiber axonal sprouts by seizure. J Neurosci Res 2002; 69:292-304. [PMID: 12125071 DOI: 10.1002/jnr.10305] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Aberrant mossy fiber sprouting and synaptic reorganization are plastic responses in human temporal lobe epilepsy, and in pilocarpine-induced epilepsy in rodents. Although the morphological features of the hippocampal epileptic reaction have been well documented, the molecular mechanisms underlying these structural changes are not understood. The classic cadherins, calcium-dependent cell adhesion molecules, are known to function in development in neurite outgrowth, synapse formation, and stabilization. In pilocarpine-induced status epilepticus, the expression of N-cadherin mRNA was sharply upregulated and reached a maximum level (1- to 2.5-fold) at 1- to 4 weeks postseizure in the granule cell layer and the pyramidal cell layer of CA3. N-cadherin protein was correspondingly increased and became concentrated in the inner molecular layer of the dentate gyrus, consistent with the position of mossy fiber axonal sprouts. Moreover, N-cadherin labeling was punctate; colocalized with definitive synaptic markers, and partially localized on polysialated forms of neural cell adhesion molecule (PSA-NCAM)-positive dendrites of granule cells in the inner molecular layer. Our findings show that N-cadherin is likely to be a key factor in responsive synaptogenesis following status epilepticus, where it functions as a mediator of de novo synapse formation.
Collapse
Affiliation(s)
- Weisong Shan
- The Corinne Goldsmith Dickinson Center for Multiple Sclerosis, The Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | |
Collapse
|
34
|
Bartsch U, Bartsch S, Dörries U, Schachner M. Immunohistological Localization of Tenascin in the Developing and Lesioned Adult Mouse Optic Nerve. Eur J Neurosci 2002; 4:338-352. [PMID: 12106360 DOI: 10.1111/j.1460-9568.1992.tb00881.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To gain insight into the morphogenetic functions of the recognition molecule tenascin in the central nervous system, we have studied its localization in the developing and lesioned adult mouse optic nerve using light and electron microscopic immunocytochemistry. Since tenascin is a secreted molecule, we have analysed the tenascin-synthesizing cells in tissue sections of retinae and optic nerves by in situ hybridization. A weak and homogeneous tenascin immunoreactivity was detectable in the developing retinal nerve fibre layer and optic nerve of 14-day-old mouse embryos, the earliest developmental age investigated. In the optic nerve of neonatal and 1-week-old animals, a high number of tenascin messenger RNA (mRNA)-containing cells were present, and antibodies to tenascin labelled the surfaces of astrocytes and unmyelinated retinal ganglion cell axons. With increasing age, expression of tenascin in the optic nerve was down-regulated at the mRNA and protein levels. At the fourth postnatal week, blood vessels in the optic nerve and collagen fibrils in the vicinity of meningeal fibroblast-like cells still showed significant immunoreactivity, but the optic nerve tissue proper no longer did so. In adult animals, tenascin was no longer detectable in association with blood vessels located in the myelinated part of the optic nerve, and meninges were only weakly immunoreactive. Also, tenascin mRNA-containing cells were no longer detectable in the myelinated part of the adult mouse optic nerve and few labelled cells were found in the meninges. In the retina, ganglion cells contained no detectable levels of tenascin mRNA at any of the developmental ages analysed. No significant up-regulation of tenascin expression was seen in the nerve tissue proper of transected proximal (i.e. retinal) and distal (i.e. cranial) optic nerve stumps of adult mice during the first 4 weeks after lesioning, the time period studied. However, collagen fibrils associated with meningeal fibroblast-like cells and located near the lesion site became strongly tenascin-immunoreactive 2 days after lesioning. Also, some blood vessels at the lesion site became immunoreactive. We conclude that tenascin in the optic nerve is synthesized by glial cells and not by retinal ganglion cells. The detectability of tenascin at embryonic ages suggests that it may mediate neurite growth in vivo. The absence of a strong, lesion-induced up-regulation of tenascin expression in the regeneration-prohibitive mouse optic nerve contrasts with the lesion-induced pronounced up-regulation in the regeneration-permissive peripheral nervous system, and may indicate a functional involvement of tenascin in regenerative processes. The high tenascin positivity of collagen fibrils at early postnatal ages and after lesioning suggests that tenascin expression may be correlated with mitotic activity of the associated meningeal fibroblast-like cells. Finally, tenascin may be involved in the process of vascularization, since the molecule is associated with blood vessels in developing and adult lesioned, but not intact adult, optic nerves.
Collapse
Affiliation(s)
- Udo Bartsch
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
35
|
Protein tyrosine phosphatase-mu differentially regulates neurite outgrowth of nasal and temporal neurons in the retina. J Neurosci 2002. [PMID: 11978837 DOI: 10.1523/jneurosci.22-09-03615.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell adhesion molecules play an important role in the development of the visual system. The receptor-type protein tyrosine phosphatase, PTPmu is a cell adhesion molecule that mediates cell aggregation and may signal in response to adhesion. PTPmu is expressed in the chick retina during development and promotes neurite outgrowth from retinal ganglion cell (RGC) axons in vitro (Burden-Gulley and Brady-Kalnay, 1999). The axons of RGC neurons form the optic nerve, which is the sole output from the retina to the optic tectum in the chick. In this study, we observed that PTPmu expression in RGC axons occurs as a step gradient, with temporal axons expressing the highest level of PTPmu. PTPmu expression in the optic tectum occurred as a smooth descending gradient from anterior to posterior regions during development. Because temporal RGC axons innervate anterior tectal regions, PTPmu may regulate the formation of topographic projections to the tectum. In agreement with this hypothesis, a differential response of RGC neurites to a PTPmu substrate was also observed: RGCs of temporal retina were unable to extend neurites on PTPmu compared with neurites of nasal retina. When given a choice between PTPmu and a second substrate, the growth cones of temporal neurites clustered at the PTPmu border and stalled, thus avoiding additional growth on the PTPmu substrate. In contrast, PTPmu was permissive for growth of nasal neurites. Finally, application of soluble PTPmu to retinal cultures resulted in the collapse of temporal but not nasal growth cones. Therefore, PTPmu may specifically signal to temporal RGC axons to cease their forward growth after reaching the anterior tectum, thus allowing for subsequent innervation of deeper tectal layers.
Collapse
|
36
|
Rosdahl JA, Mourton TL, Brady-Kalnay SM. Protein kinase C delta (PKCdelta) is required for protein tyrosine phosphatase mu (PTPmu)-dependent neurite outgrowth. Mol Cell Neurosci 2002; 19:292-306. [PMID: 11860281 DOI: 10.1006/mcne.2001.1071] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein tyrosine phosphatase mu (PTPmu) is an adhesion molecule in the immunoglobulin superfamily and is expressed in the developing nervous system. We have shown that PTPmu can promote neurite outgrowth of retinal ganglion cells and it regulates neurite outgrowth mediated by N-cadherin (S. M. Burden-Gulley and S. M. Brady-Kalnay, 1999, J. Cell Biol. 144, 1323-1336). We previously demonstrated that PTPmu binds to the scaffolding protein RACK1 in yeast and mammalian cells (T. Mourton et al., 2001, J. Biol. Chem. 276, 14896-14901). RACK1 is a receptor for activated protein kinase C (PKC). In this article, we demonstrate that PKC is involved in PTPmu-dependent signaling. PTPmu, RACK1, and PKCdelta exist in a complex in cultured retinal cells and retinal tissue. Using pharmacologic inhibition of PKC, we demonstrate that PKCdelta is required for neurite outgrowth of retinal ganglion cells on a PTPmu substrate. These results suggest that PTPmu signaling via RACK1 requires PKCdelta activity to promote neurite outgrowth.
Collapse
Affiliation(s)
- Jullia A Rosdahl
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4960, USA
| | | | | |
Collapse
|
37
|
Keith CH, Wilson MT. Factors controlling axonal and dendritic arbors. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 205:77-147. [PMID: 11336394 DOI: 10.1016/s0074-7696(01)05003-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The sculpting and maintenance of axonal and dendritic arbors is largely under the control of molecules external to the cell. These factors include both substratum-associated and soluble factors that can enhance or inhibit the outgrowth of axons and dendrites. A large number of factors that modulate axonal outgrowth have been identified, and the first stages of the intracellular signaling pathways by which they modify process outgrowth have been characterized. Relatively fewer factors and pathways that affect dendritic outgrowth have been described. The factors that affect axonal arbors form an incompletely overlapping set with those that affect dendritic arbors, allowing selective control of the development and maintenance of these critical aspects of neuronal morphology.
Collapse
Affiliation(s)
- C H Keith
- Department of Cellular Biology. University of Georgia, Athens, 30605, USA
| | | |
Collapse
|
38
|
Thanos S, Mey J. Development of the visual system of the chick. II. Mechanisms of axonal guidance. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 35:205-45. [PMID: 11423155 DOI: 10.1016/s0165-0173(01)00049-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The quest to understand axonal guidance mechanisms requires exact and multidisciplinary analyses of axon navigation. This review is the second part of an attempt to synthesise experimental data with theoretical models of the development of the topographic connection of the chick retina with the tectum. The first part included classic ideas from developmental biology and recent achievements on the molecular level in understanding cytodifferentiation and histogenesis [J. Mey, S. Thanos, Development of the visual system of the chick. (I) Cell differentiation and histogenesis, Brain Res. Rev. 32 (2000) 343-379]. The present part deals with the question of how millions of fibres exit from the eye, traverse over several millimetres and spread over the optic tectum to assemble a topographic map, whose precision accounts for the sensory performance of the visual system. The following topics gained special attention in this review. (i) A remarkable conceptual continuity between classic embryology and recent molecular biology has revealed that positional cellular specification precedes and determines the formation of the retinotectal map. (ii) Graded expression of asymmetric genes, transcriptional factors and receptors for signal transduction during early development seem to play a crucial role in determining the spatial identity of neurons within surface areas of retina and optic tectum. (iii) The chemoaffinity hypothesis constitutes the conceptual framework for development of the retinotopic organisation of the primary visual pathway. Studies of repulsive factors in vitro developed the original hypothesis from a theoretical postulate of chemoattraction to an empirically supported concept based on chemorepulsion. (iv) The independent but synchronous development of retina and optic tectum in topo-chronologically corresponding patterns ensures that ingrowing retinal axons encounter receptive target tissue at appropriate locations, and at the time when connections are due to be formed. (v) The growth cones of the retino-fugal axons seem to be guided both by local cues on glial endfeet and within the extracellular matrix. On the molecular level, the ephrins and their receptors have emerged as the most likely candidates for the material substrate of a topographic projection along the anterior-posterior axis of the optic tectum. Yet, since a number of alternative molecules have been proposed for the same function, it remains the challenge for the near future to define the proportional contribution of each one of the individual mechanisms proposed by matching theoretical predictions with the experimental evidence.
Collapse
Affiliation(s)
- S Thanos
- Department of Experimental Ophthalmology, School of Medicine, University of Münster, Domagkstr. 15, 48149, Münster, Germany.
| | | |
Collapse
|
39
|
Steinbach K, Bauch H, Stier H, Schlosshauer B. Tissue-specific neuro-glia interactions determine neurite differentiation in ganglion cells. Eur J Cell Biol 2001; 80:245-55. [PMID: 11322389 DOI: 10.1078/0171-9335-00151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Guided formation and extension of axons versus dendrites is considered crucial for structuring the nervous system. In the chick visual system, retinal ganglion cells (RGCs) extend their axons into the tectum opticum, but not into glial somata containing retina layers. We addressed the question whether the different glia of retina and tectum opticum differentially affect axon growth. Glial cells were purified from retina and tectum opticum by complement-mediated cytolysis of non-glial cells. RGCs were purified by enzymatic delayering from flat mounted retina. RGCs were seeded onto retinal versus tectal glia monolayers. Subsequent neuritic differentiation was analysed by immunofluorescence microscopy and scanning electron microscopy. Qualitative and quantitative evaluation revealed that retinal glia somata inhibited axons. Time-lapse video recording indicated that axonal inhibition was based on the collapse of lamellipodia- and filopodia-rich growth cones of axons. In contrast to retinal glia, tectal glia supported axonal extension. Notably, retinal glia were not inhibitory for neurons in general, because in control experiments axon extension of dorsal root ganglia was not hampered. Therefore, the axon inhibition by retinal glia was neuron type-specific. In summary, the data demonstrate that homotopic (retinal) glia somata inhibit axonal outgrowth of RGCs, whereas heterotopic (tectal) glia of the synaptic target area support RGC axon extension. The data underscore the pivotal role of glia in structuring the developing nervous system.
Collapse
Affiliation(s)
- K Steinbach
- Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Reutlingen, Germany
| | | | | | | |
Collapse
|
40
|
Monnier PP, Beck SG, Bolz J, Henke-Fahle S. The polysialic acid moiety of the neural cell adhesion molecule is involved in intraretinal guidance of retinal ganglion cell axons. Dev Biol 2001; 229:1-14. [PMID: 11133150 DOI: 10.1006/dbio.2000.9970] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have characterized the antigen recognized by mab10, a monoclonal antibody that has been shown to modify outgrowth of thalamic and cortical axons in vitro, and investigated the influence of this antibody on axonal growth in the chicken retina in vivo. Immunopurification, peptide sequencing, and biochemical characterization proved the epitope recognized by mab10 to be polysialic acid (PSA), associated with the neural cell adhesion molecule (NCAM). Intravitreal injections of antibody-secreting hybridoma cells were combined with whole-mount studies using the fluorescent tracer 1,1'-dioctadecyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate (DiI). Pathfinding at the optic fissure was affected, resulting in a failure of axons to exit into the nerve. Misprojections also occurred in more peripheral areas of the retina; however, axons eventually oriented toward the center. Similar projection errors were observed after enzymatic removal of PSA by injecting endoneuraminidase N (endo N). Quantitative measurements of the optic nerve diameter as well as the width of the optic fiber layer confirmed that many axons failed to leave the retina and grew back in the optic fiber layer of the retina. Our findings suggest that NCAM-linked PSA is involved in guiding ganglion cell axons in the retina and at the optic fissure.
Collapse
Affiliation(s)
- P P Monnier
- Department of Ophthalmology, University of Tübingen, Schleichstrasse 12, Tübingen, D-72076, Germany
| | | | | | | |
Collapse
|
41
|
Cubillos S, Urbina M, Lima L. Differential taurine effect on outgrowth from goldfish retinal ganglion cells after optic crush or axotomy. Influence of the optic tectum. Int J Dev Neurosci 2000; 18:843-53. [PMID: 11154854 DOI: 10.1016/s0736-5748(00)00040-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The interaction between innervated tissues, targets and nerves is crucial in the maintenance of physiological conditions, and the disturbance of this harmony causes the production of morphological and biochemical changes. After lesion of the optic nerve, several modifications take place in the retina, the optic tectum and the optic nerve. The influence of the tectum on the outgrowth from the goldfish retina and the possible role of taurine was studied. Ganglion retinal cells were identified by retrolabeling with Dil. Crushing the optic nerve 10 days prior to plating retinal cells, as compared with optic axotomy, did not affect the survival of cultured retinal cells, as well as the length of the neurites. However, the number of neurites per cell and the branching of the longest fiber were higher after axotomy than after crushing. The addition of taurine to the medium did not modify this response at 5 days in culture. At early periods in culture, the stimulatory effect on isolated ganglion cell outgrowth produced by taurine was enhanced after axotomy respecting crushing of the optic nerve, but was not affected in retinal explants. The addition of medium from cultured optic tectum several days post-crush of the optic nerve to retinal explants from intact retinas or coming from post-crush retina modified the outgrowth, being inhibitory or stimulatory in a time-dependent manner. The co-culture of optic tectum and retina also affected the outgrowth from the retina with a byphasic shape. The results support the differential response of the retina facing partial or complete interruption with the target and limit the effect of taurine to early periods in culture. In addition, the production of inhibitory factors from the tectum, plus the stimulatory ones, are strongly supported by this work.
Collapse
Affiliation(s)
- S Cubillos
- Laboratorio tie Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | |
Collapse
|
42
|
Abstract
The formation of the myriad of neuronal connections within the vertebrate nervous system relies on expression of molecular tags that match extending axon populations with synaptic target sites. Recent work suggests that cadherins, a group of calcium-dependent cell adhesion molecules, are candidates to serve such a role. The diversity of the cadherin family in the nervous system allows for a multitude of interactions to specify neuronal connections. Specific cadherin types demarcate subpopulations of developing axons that interconnect within neuronal circuits. Expression of different cadherin species at select synapse populations raises exciting prospects for this molecule class in controlling adhesive interactions during synaptogenesis and plasticity. Regulation of cadherin-mediated adhesive strength is an attractive mechanism to explain the different cadherin functions in axon growth and at synapses.
Collapse
Affiliation(s)
- B Ranscht
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
43
|
Abstract
In this review article, we summarize recently accumulated knowledge regarding the molecular mechanisms, which control retinal development. Retinal neurons are born in two waves of cytogenesis. In the first wave, neurons of cone circuitry are generated, whereas in the second wave, rod circuitry is added. Neurons generated in these two waves of cytogenesis differ in many respects, including the molecular cues used for migrational guidance. The neurons generated in the second phase of proliferation are arranged in radial columns associated with Müller cells, whereas those of the first phase are often found outside the radial columns. Certain early born cone photoreceptors may form templates for the arrangement of additional mosaics of other cell types. These mosaic arrangements of cell bodies are subsequently refined by lateral displacement of cells and apoptosis. Müller cells may play an important role in directing migration of second phase neurons within groups of radial columns and also in guiding the projections of these neurons so that specific connections are formed. The Müller cell's ability to exert these influences perhaps resides in a variety of cell adhesion molecules such as L1/NgCAM, F11, and 5A11, which are expressed on the surface of Müller cells and retinal neurons. CAMs also promote neurite outgrowth through second messenger pathways.
Collapse
Affiliation(s)
- R K Sharma
- Department of Ophthalmology, University of Tennessee, Memphis, USA
| | | |
Collapse
|
44
|
Abstract
The central nervous system (CNS) is divided into diverse embryological and functional compartments. The early embryonic CNS consists of a series of transverse subdivisions (neuromeres) and longitudinal domains. These embryonic subdivisions represent histogenetic fields in which neurons are born and aggregate in distinct cell groups (brain nuclei and layers). Different subsets of these aggregates become selectively connected by nerve fiber tracts and, finally, by synapses, thus forming the neural circuits of the functional systems in the CNS. Recent work has shown that 30 or more members of the cadherin family of morphoregulatory molecules are differentially expressed in the developing and mature brain at almost all stages of development. In a regionally specific fashion, most cadherins studied to date are expressed by the embryonic subdivisions of the early embryonic brain, by developing brain nuclei, cortical layers and regions, and by fiber tracts, neural circuits and synapses. Each cadherin shows a unique expression pattern that is distinct from that of other cadherins. Experimental evidence suggests that cadherins contribute to CNS regionalization, morphogenesis and fiber tract formation, possibly by conferring preferentially homotypic adhesiveness (or other types of interactions) between the diverse structural elements of the CNS. Cadherin-mediated adhesive specificity may thus provide a molecular code for early embryonic CNS regionalization as well as for the development and maintenance of functional structures in the CNS, from embryonic subdivisions to brain nuclei, cortical layers and neural circuits, down to the level of individual synapses.
Collapse
Affiliation(s)
- C Redies
- Institute of Anatomy, University of Essen Medical School, Hufelandstrasse 55, Germany.
| |
Collapse
|
45
|
Steinbach K, Schlosshauer B. Regulatory cell interactions between retinal ganglion cells and radial glia during axonal and dendritic outgrowth. Microsc Res Tech 2000; 48:12-24. [PMID: 10620781 DOI: 10.1002/(sici)1097-0029(20000101)48:1<12::aid-jemt3>3.0.co;2-o] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuronal differentiation and the formation of cell polarity are crucial events during the development of the nervous system. Cell polarity is a prerequisite for directed information flux within neuronal networks. In this article, we focus on neuro-glial cell interactions that influence the establishment of neural cell polarity and the directed outgrowth of axons versus dendrites. The cellular model discussed in detail is the retinal ganglion cell (RGC) of the chick retina, which is investigated by a comprehensive set of in vitro assays. The experiments demonstrate that retinal microenvironment determines axon vs. dendrite formation of RGCs. The instructive differences in different retinal microenvironments are substantially influenced by radial glia. Different glial domains support or inhibit axon vs. dendrite outgrowth. The data support the notion that neuro-glial interactions are crucial for directed neurite outgrowth.
Collapse
Affiliation(s)
- K Steinbach
- Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen (NMI), 72770 Reutlingen, Germany
| | | |
Collapse
|
46
|
Gerhardt H, Rascher G, Schuck J, Weigold U, Redies C, Wolburg H. R- and B-cadherin expression defines subpopulations of glial cells involved in axonal guidance in the optic nerve head of the chicken. Glia 2000. [DOI: 10.1002/1098-1136(200008)31:2<131::aid-glia50>3.0.co;2-h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Guillonneau X, Regnier-Ricard F, Jeanny JC, Thomasseau S, Courtois Y, Mascarelli F. Regulation of FGF soluble receptor type 1 (SR1) expression and distribution in developing, degenerating, and FGF2-treated retina. Dev Dyn 2000; 217:24-36. [PMID: 10679927 DOI: 10.1002/(sici)1097-0177(200001)217:1<24::aid-dvdy3>3.0.co;2-c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The spatial and temporal patterns of expression and content of the fibroblast growth factor (FGF) soluble receptor SR1, a specific inhibitor of FGF, were investigated during embryonic and postnatal development of the retina in Fisher rats. As early as at embryonic day 18 (E18), SR1 mRNA and protein were detected in the retina. SR1 protein was strongly associated with the differentiating ganglion cells and its distribution paralleled the radial pattern of retinal development, from center to periphery. From E18 to postnatal day 5, the levels of both SR1 mRNA and SR1 protein remained constant. Thereafter, they decreased rapidly, by a factor of 5 in the adult retina. SR1 was labeled in the inner nuclear layer, but never in the photoreceptor nuclei. In the neural retina of RCS dystrophic rats, the levels SR1 mRNA and SR1 protein were 2 to 3 times higher than those in the normal congenic controls, before and during photoreceptor degeneration. These results provide the first evidence that a natural FGF inhibitor is regulated during retina development and degeneration and suggest that changes in SR1 content may be involved in the regulation of FGF activities in retina. This was confirmed in vivo in RCS rats, in which delayed photoreceptor apoptosis by intravitreal injection of FGF2 was accompanied by a downregulation of SR1 expression. Dev Dyn 2000;217:24-36.
Collapse
Affiliation(s)
- X Guillonneau
- Développement, vieillissement et pathologie de la rétine, INSERM U. 450, affiliée CNRS, Association Claude Bernard, Paris, France
| | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Paffenholz R, Kuhn C, Grund C, Stehr S, Franke WW. The arm-repeat protein NPRAP (neurojungin) is a constituent of the plaques of the outer limiting zone in the retina, defining a novel type of adhering junction. Exp Cell Res 1999; 250:452-64. [PMID: 10413599 DOI: 10.1006/excr.1999.4534] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the retina, special plaque-bearing adhering junctions are aligned to form a planar system (the "outer limiting zone," OLZ) of heterotypic connections between the photoreceptor cells and the surrounding glial cells ("Müller cells"), together with homotypic junctions. In the plaques of these junctions, which contain N-cadherin-and possibly also related cadherins-we have identified, by immunolocalization techniques, a recently discovered neural tissue-specific protein, neurojungin, a member of the plakoglobin/armadillo protein family. In these plaques we have also detected other adherens plaque proteins, such as alpha- and beta-catenin, protein p120, and vinculin, as well as proteins known as constituents of tight junction plaques, such as symplekin and protein ZO-1, and the desmosomal plaque protein plakophilin 2. This unusual combination of proteins and the demonstrated absence of plakoglobin define the OLZ junctions as a new and distinct category of adhering junction, which probably has special architectural functions.
Collapse
Affiliation(s)
- R Paffenholz
- Division of Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
50
|
Liu Q, Marrs JA, Raymond PA. Spatial correspondence between R-cadherin expression domains and retinal ganglion cell axons in developing zebrafish. J Comp Neurol 1999; 410:290-302. [PMID: 10414534 DOI: 10.1002/(sici)1096-9861(19990726)410:2<290::aid-cne10>3.0.co;2-s] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mechanisms underlying axonal pathfinding have been investigated for decades, and numerous molecules have been shown to play roles in this process, including members of the cadherin family of cell adhesion molecules. We showed in the companion paper that a member of the cadherin family (zebrafish R-cadherin) is expressed in retinal ganglion cells, and in presumptive visual structures in zebrafish brain, during periods when the axons were actively extending toward their targets. The present study extends the earlier work by using 1,1'-dioctadecyl-3,3,3',3', tetramethylindocarbocyanine perchlorate (DiI) anterograde tracing techniques to label retinal ganglion cell axons combined with R-cadherin in situ hybridization to explicitly examine the association ofretinal axons and brain regions expressing R-cadherin message. We found that in zebrafish embryos at 46-54 hours postfertilization, DiI-labeled retinal axons were closely associated with cells expressing R-cadherin message in the hypothalamus, the pretectum, and the anterolateral optic tectum. These results demonstrate that R-cadherin is appropriately distributed to play a role in regulating development of the zebrafish visual system, and in particular, pathfinding and synaptogenesis of retinal ganglion cell axons.
Collapse
Affiliation(s)
- Q Liu
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109, USA.
| | | | | |
Collapse
|