1
|
Bugiani M, Plug BC, Man JHK, Breur M, van der Knaap MS. Heterogeneity of white matter astrocytes in the human brain. Acta Neuropathol 2022; 143:159-177. [PMID: 34878591 DOI: 10.1007/s00401-021-02391-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Astrocytes regulate central nervous system development, maintain its homeostasis and orchestrate repair upon injury. Emerging evidence support functional specialization of astroglia, both between and within brain regions. Different subtypes of gray matter astrocytes have been identified, yet molecular and functional diversity of white matter astrocytes remains largely unexplored. Nonetheless, their important and diverse roles in maintaining white matter integrity and function are well recognized. Compelling evidence indicate that impairment of normal astrocytic function and their response to injury contribute to a wide variety of diseases, including white matter disorders. In this review, we highlight our current understanding of astrocyte heterogeneity in the white matter of the mammalian brain and how an interplay between developmental origins and local environmental cues contribute to astroglial diversification. In addition, we discuss whether, and if so, how, heterogeneous astrocytes could contribute to white matter function in health and disease and focus on the sparse human research data available. We highlight four leukodystrophies primarily due to astrocytic dysfunction, the so-called astrocytopathies. Insight into the role of astroglial heterogeneity in both healthy and diseased white matter may provide new avenues for therapies aimed at promoting repair and restoring normal white matter function.
Collapse
|
2
|
Hastings N, Kuan WL, Osborne A, Kotter MRN. Therapeutic Potential of Astrocyte Transplantation. Cell Transplant 2022; 31:9636897221105499. [PMID: 35770772 PMCID: PMC9251977 DOI: 10.1177/09636897221105499] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell transplantation is an attractive treatment strategy for a variety of brain disorders, as it promises to replenish lost functions and rejuvenate the brain. In particular, transplantation of astrocytes has come into light recently as a therapy for amyotrophic lateral sclerosis (ALS); moreover, grafting of astrocytes also showed positive results in models of other conditions ranging from neurodegenerative diseases of older age to traumatic injury and stroke. Despite clear differences in etiology, disorders such as ALS, Parkinson's, Alzheimer's, and Huntington's diseases, as well as traumatic injury and stroke, converge on a number of underlying astrocytic abnormalities, which include inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. In this review, we examine these convergent pathways leading to astrocyte dysfunction, and explore the existing evidence for a therapeutic potential of transplantation of healthy astrocytes in various models. Existing literature presents a wide variety of methods to generate astrocytes, or relevant precursor cells, for subsequent transplantation, while described outcomes of this type of treatment also differ between studies. We take technical differences between methodologies into account to understand the variability of therapeutic benefits, or lack thereof, at a deeper level. We conclude by discussing some key requirements of an astrocyte graft that would be most suitable for clinical applications.
Collapse
Affiliation(s)
- Nataly Hastings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Wei-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrew Osborne
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mark R N Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Crompton LA, Cordero‐Llana O, Caldwell MA. Astrocytes in a dish: Using pluripotent stem cells to model neurodegenerative and neurodevelopmental disorders. Brain Pathol 2017; 27:530-544. [PMID: 28585380 PMCID: PMC8028895 DOI: 10.1111/bpa.12522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
Neuroscience and Neurobiology have historically been neuron biased, yet up to 40% of the cells in the brain are astrocytes. These cells are heterogeneous and regionally diverse but universally essential for brain homeostasis. Astrocytes regulate synaptic transmission as part of the tripartite synapse, provide metabolic and neurotrophic support, recycle neurotransmitters, modulate blood flow and brain blood barrier permeability and are implicated in the mechanisms of neurodegeneration. Using pluripotent stem cells (PSC), it is now possible to study regionalised human astrocytes in a dish and to model their contribution to neurodevelopmental and neurodegenerative disorders. The evidence challenging the traditional neuron-centric view of degeneration within the CNS is reviewed here, with focus on recent findings and disease phenotypes from human PSC-derived astrocytes. In addition we compare current protocols for the generation of regionalised astrocytes and how these can be further refined by our growing knowledge of neurodevelopment. We conclude by proposing a functional and phenotypical characterisation of PSC-derived astrocytic cultures that is critical for reproducible and robust disease modelling.
Collapse
Affiliation(s)
- Lucy A. Crompton
- School of Biochemistry, Medical Sciences BldUniversity of BristolBristolBS8 1TDUK
| | - Oscar Cordero‐Llana
- Bristol Medical School, Medical Sciences BldUniversity of BristolBristolBS8 1TDUK
| | - Maeve A. Caldwell
- Trinity College Institute for NeuroscienceTrinity College Dublin 2Ireland
| |
Collapse
|
4
|
Isoflurane impairs the capacity of astrocytes to support neuronal development in a mouse dissociated coculture model. J Neurosurg Anesthesiol 2015; 26:363-8. [PMID: 25191957 DOI: 10.1097/ana.0000000000000119] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND There is growing concern that pediatric exposure to anesthetic agents may cause long-lasting deficits in learning by impairing brain development. Most studies to date on this topic have focused on the direct effects of anesthetics on developing neurons. Relatively little attention has been paid to possible effects of anesthetics on astrocytes, a glial cell type that plays an important supporting role in neuronal development. METHODS Astrocytes were exposed to isoflurane and then cocultured with unexposed neurons to test for astrocyte-specific toxic effects on neuronal growth. Axon length was measured in the cocultured neurons to assess neuronal growth. RESULTS We found that neurons cocultured with astrocytes exposed to isoflurane exhibited a 30% reduction in axon outgrowth. Further experimentation showed that this effect is likely due to reduced levels of brain-derived neurotrophic factor in the coculture media. CONCLUSIONS Isoflurane interferes with the ability of cultured astrocytes to support neuronal growth. This finding represents a potentially novel mechanism through which general anesthetics may interfere with brain development.
Collapse
|
5
|
Mendonça JEF, Vilela MCR, Bittencourt H, Lapa RM, Oliveira FG, Alessio MLM, Guedes RCA, De Oliveira Costa MSM, Da Costa BLDSA. GFAP Expression in Astrocytes of Suprachiasmatic Nucleus and Medial Preoptic Area are Differentially Affected by Malnutrition during Rat Brain Development. Nutr Neurosci 2013; 7:223-34. [PMID: 15682649 DOI: 10.1080/10284150400010038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of the present study was investigate, in young rats, the effects of malnutrition on astrocyte distribution of two hypothalamic regions, the circadian pacemaker suprachiasmatic nucleus (SCN) and the medial preoptic area (MPA). Control rats were born from mothers fed on commercial diet since gestation and malnourished rats from mothers fed on multideficient diet, from the beginning of gestation (GLA group) or from the onset of lactation (LA group). After weaning, pups received ad libitum the same diet as their mothers, and were maintained under a 12/12 h light/dark cycle. The animals were analyzed either at 30-33, or 60-63 days of life. Brain coronal sections (50 microm) were processed to visualize glial fibrillary acidic protein (GFAP) immunoreactivity. Compared to control rats, both malnourished groups of 30 and 60 days exhibited a reduced number of GFAP-immunoreactive astrocytes in the SCN. The total GFAP-immunoreactive area in the SCN of the GLA group differed from the control group at both age ranges analyzed. The GFAP expression as measured by the relative optical density (ROD) exhibited a 50-60% reduction in the MPA in both malnourished groups, compared to controls. The results suggest that malnutrition early in life leads to alterations in gliogenesis or glial cell proliferation in both nuclei, being these alterations greater in the MPA. Compensatory plasticity mechanisms in the GFAP-expression seem to be developed in the astrocyte differentiation process in the SCN, especially when the malnutrition is installed from the lactation.
Collapse
|
6
|
Krencik R, Ullian EM. A cellular star atlas: using astrocytes from human pluripotent stem cells for disease studies. Front Cell Neurosci 2013; 7:25. [PMID: 23503583 PMCID: PMC3596764 DOI: 10.3389/fncel.2013.00025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/28/2013] [Indexed: 11/13/2022] Open
Abstract
What roles do astrocytes play in human disease?This question remains unanswered for nearly every human neurological disorder. Yet, because of their abundance and complexity astrocytes can impact neurological function in many ways. The differentiation of human pluripotent stem cells (hPSCs) into neuronal and glial subtypes, including astrocytes, is becoming routine, thus their use as tools for modeling neurodevelopment and disease will provide one important approach to answer this question. When designing experiments, careful consideration must be given to choosing paradigms for differentiation, maturation, and functional analysis of these temporally asynchronous cellular populations in culture. In the case of astrocytes, they display heterogeneous characteristics depending upon species of origin, brain region, developmental stage, environmental factors, and disease states, all of which may render experimental results highly variable. In this review, challenges and future directions are discussed for using hPSC-derived astroglial progenitors and mature astrocytes for neurodevelopmental studies with a focus on exploring human astrocyte effects upon neuronal function. As new technologies emerge to measure the functions of astrocytes in vitro and in vivo, there is also a need for a standardized source of human astrocytes that are most relevant to the diseases of interest.
Collapse
Affiliation(s)
- Robert Krencik
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, CA, USA
| | | |
Collapse
|
7
|
Aoyama M, Kakita H, Kato S, Tomita M, Asai K. Region-specific expression of a water channel protein, aquaporin 4, on brain astrocytes. J Neurosci Res 2012; 90:2272-80. [DOI: 10.1002/jnr.23117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/18/2012] [Accepted: 06/27/2012] [Indexed: 11/11/2022]
|
8
|
Noble M, Davies JE, Mayer-Pröschel M, Pröschel C, Davies SJA. Precursor cell biology and the development of astrocyte transplantation therapies: lessons from spinal cord injury. Neurotherapeutics 2011; 8:677-93. [PMID: 21918888 PMCID: PMC3210359 DOI: 10.1007/s13311-011-0071-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review summarizes current progress on development of astrocyte transplantation therapies for repair of the damaged central nervous system. Replacement of neurons in the injured or diseased central nervous system is currently one of the most popular therapeutic goals, but if neuronal replacement is attempted in the absence of appropriate supporting cells (astrocytes and oligodendrocytes), then the chances of restoring neurological functional are greatly reduced. Although the past 20 years have offered great progress on oligodendrocyte replacement therapies, astrocyte transplantation therapies have been both less explored and comparatively less successful. We have now developed successful astrocyte transplantation therapies by pre-differentiating glial restricted precursor (GRP) cells into a specific population of GRP cell-derived astrocytes (GDAs) by exposing the GRP cells to bone morphogenetic protein-4 (BMP) prior to transplantation. When transplanted into transected rat spinal cord, rat and human GDAs(BMP) promote extensive axonal regeneration, rescue neuronal cell survival, realign tissue structure, and restore behavior to pre-injury levels on a grid-walk analysis of volitional foot placement. Such benefits are not provided by GRP cells themselves, demonstrating that the lesion environment does not direct differentiation in a manner optimally beneficial for the restoration of function. Such benefits also are not provided by transplantation of a different population of astrocytes generated from GRP cells exposed to ciliary neurotrophic factor (GDAs(CNTF)), thus providing the first transplantation-based evidence of functional heterogeneity in astrocyte populations. Moreover, lessons learned from the study of rat cells are strongly predictive of outcomes using human cells. Thus, these studies provide successful strategies for the use of astrocyte transplantation therapies for restoration of function following spinal cord injury.
Collapse
Affiliation(s)
- Mark Noble
- University of Rochester Stem Cell and Regenerative Medicine Institute and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
9
|
Abstract
Unique subpopulations of specialized metabolic sensing neurons reside in a distributed network throughout the brain and respond to alterations in ambient levels of various metabolic substrates by altering their activity. Variations in local brain substrate levels reflect their transport across the blood- and cerebrospinal-brain barriers as well as local production by astrocytes. There are a number of mechanisms by which such metabolic sensing neurons alter their activity in response to changes in substrate levels, but it is clear that these neurons cannot be considered in isolation. They are heavily dependent on astrocyte and probably tanycyte metabolism and function but also respond to hormones (e.g. leptin and insulin) and cytokines that cross the blood-brain barrier from the periphery as well as hard-wired neural inputs from metabolic sensors in peripheral sites such as the hepatic portal vein, gastrointestinal tract, and carotid body. Thus, these specialized neurons are capable of monitoring and integrating multiple signals from the periphery as a means of regulating peripheral energy homeostasis.
Collapse
Affiliation(s)
- Barry E Levin
- Neurology Service (127C), Veterans Affairs Medical Center, 385 Tremont Avenue, East Orange, New Jersey 07018, USA.
| | | | | | | |
Collapse
|
10
|
Moore NH, Costa LG, Shaffer SA, Goodlett DR, Guizzetti M. Shotgun proteomics implicates extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation. J Neurochem 2010. [DOI: 10.1111/j.0022-3042.2008.05836.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Wanner IB, Deik A, Torres M, Rosendahl A, Neary JT, Lemmon VP, Bixby JL. A new in vitro model of the glial scar inhibits axon growth. Glia 2009; 56:1691-709. [PMID: 18618667 DOI: 10.1002/glia.20721] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes respond to central nervous system (CNS) injury with reactive astrogliosis and participate in the formation of the glial scar, an inhibitory barrier for axonal regeneration. Little is known about the injury-induced mechanisms underlying astrocyte reactivity and subsequent development of an axon-inhibitory scar. We combined two key aspects of CNS injury, mechanical trauma and co-culture with meningeal cells, to produce an in vitro model of the scar from cultures of highly differentiated astrocytes. Our model displayed widespread morphological signs of astrocyte reactivity, increases in expression of glial fibrillary acidic protein (GFAP), and accumulation of GFAP in astrocytic processes. Expression levels of scar-associated markers, phosphacan, neurocan, and tenascins, were also increased. Importantly, neurite growth from various CNS neuronal populations was significantly reduced when neurons were seeded on the scar-like cultures, compared with growth on cultures of mature astrocytes. Quantification of neurite growth parameters on the scar model demonstrated significant reductions in neuronal adhesion and neurite lengths. Interestingly, neurite outgrowth of postnatal neurons was reduced to a greater extent than that of embryonic neurons, and outgrowth inhibition varied among neuronal populations. Scar-like reactive sites and neurite-inhibitory patches were found throughout these cultures, creating a patchwork of growth-inhibitory areas mimicking a CNS injury site. Thus, our model showed relevant aspects of scar formation and produced widespread inhibition of axonal regeneration; it should be useful both for examining mechanisms underlying scar formation and to assess various treatments for their potential to improve regeneration after CNS injury. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Ina B Wanner
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Moore NH, Costa LG, Shaffer SA, Goodlett DR, Guizzetti M. Shotgun proteomics implicates extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation. J Neurochem 2008; 108:891-908. [PMID: 19077055 DOI: 10.1111/j.1471-4159.2008.05836.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Astrocytes play an important role in neuronal development through the release of soluble factors that affect neuronal maturation. Shotgun proteomics followed by gene ontology analysis was used in this study to identify proteins present in the conditioned medium of primary rat astrocytes. One hundred and thirty three secreted proteins were identified, the majority of which were never before reported to be produced by astrocytes. Extracellular proteins were classified based on their biological and molecular functions; most of the identified proteins were involved in neuronal development. Semi-quantitative proteomic analysis was carried out to identify changes in the levels of proteins released by astrocytes after stimulation with the cholinergic agonist carbachol, as we have previously reported that carbachol-treated astrocytes elicit neuritogenesis in hippocampal neurons through the release of soluble factors. Carbachol up-regulated secretion of 15 proteins and down-regulated the release of 17 proteins. Changes in the levels of four proteins involved in neuronal differentiation (thrombospondin-1, fibronectin, plasminogen activator inhibitor-1, and plasminogen activator urokinase) were verified by western blot or ELISA. In conclusion, this study identified a large number of proteins involved in neuronal development in the astrocyte secretome and implicated extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation.
Collapse
Affiliation(s)
- Nadia H Moore
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, USA
| | | | | | | | | |
Collapse
|
13
|
Taylor AR, Robinson MB, Milligan CE. In vitro methods to prepare astrocyte and motoneuron cultures for the investigation of potential in vivo interactions. Nat Protoc 2007; 2:1499-507. [PMID: 17545986 DOI: 10.1038/nprot.2007.208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol details methods to isolate and purify astrocytes and motoneurons (MNs) from the chick lumbar spinal cord. In addition, an approach to study the influences of astrocyte secreted factors on MNs is provided. Astrocytes are isolated between embryonic days 10 and 12 (E10-12), propagated in serum (2-3 h) and differentiated in chemically defined medium (3-4 h). When prepared according to this protocol, astrocyte cultures are more than 98% pure when assessed using the astrocyte-specific markers glial fibrillary acidic protein (GFAP) and S100beta. MNs are isolated between E5.5 and 6.0 (3-4 h) using a procedure that takes selective advantage of the large size of these cells. These cultures can be maintained using individual trophic factors, target-derived factors or astrocyte-derived factors, the preparation of which is also described (5-6 h). All or part of these techniques can be used to investigate a variety of processes that occur during nervous system development and disease or after injury.
Collapse
Affiliation(s)
- Anna R Taylor
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
14
|
Yamaguchi H, Zhu J, Yu T, Sasaki K, Umetsu H, Kidachi Y, Ryoyama K. Low-level bisphenol A increases production of glial fibrillary acidic protein in differentiating astrocyte progenitor cells through excessive STAT3 and Smad1 activation. Toxicology 2006; 226:131-42. [PMID: 16860915 DOI: 10.1016/j.tox.2006.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 06/13/2006] [Accepted: 06/14/2006] [Indexed: 11/17/2022]
Abstract
The effects of bisphenol A (BPA) on the differentiation of serum-free mouse embryo (SFME) cells, the astrocyte progenitor cells in the central nervous system, were examined. SFME cells were exposed to 10 ng/ml leukemia inhibitory factor (LIF) and 10ng/ml bone morphogenetic protein 2 (BMP2) to increase glial fibrillary acidic protein (GFAP) expression and induce cell differentiation. Various concentrations of BPA (0.1 pg/ml-1 microg/ml) were then added to determine their effects on the cell differentiation. SFME cells were effectively differentiated by LIF and BMP2 in completely serum-free cultures. Cell proliferation following cell differentiation was not significantly affected by low-level BPA. However, GFAP expression was significantly increased in SFME cells in the presence of 1-100 pg/ml BPA. These increases were due to excessive activation of signal transducer and activator of transcription 3 (STAT3) and mothers against decapentaplegic homolog 1 (Smad1) by the low-level BPA.
Collapse
Affiliation(s)
- Hideaki Yamaguchi
- Graduate School of Environmental Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Pellitteri R, Russo A, Stanzani S. Schwann cell: A source of neurotrophic activity on cortical glutamatergic neurons in culture. Brain Res 2006; 1069:139-44. [PMID: 16376313 DOI: 10.1016/j.brainres.2005.11.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/11/2005] [Accepted: 11/12/2005] [Indexed: 01/16/2023]
Abstract
Glial cells secrete numerous soluble molecules that enhance the development and the survival of different neuronal types cultured in vitro. Schwann cells (SC) play an important role as they are the source of different trophic substances and present a great neurotrophic activity. The aim of this study is to investigate the influence of postnatal SC on embryonic glutamatergic neurons. Co-cultures of SC from sciatic nerve of postnatal rats and neurons from rat embryonic cerebral cortex were successfully established, and cells were immunocytochemically characterized using mono and polyclonal antibodies as different glial and neuronal markers. Furthermore, some neuronal cultures were added with Nerve Growth Factor (NGF) and Insulin-like Growth Factor (IGF) to compare to co-cultures. Our results show that SC promote an increase in the number of glutamatergic cortical neurons; moreover, these neurons present an evidence of dense axonal and dendritic outgrowth even when were fed with conditioned medium obtained from SC cultures. In conclusion, our data suggest that substances produced by SC exert a positive effect on central neuron survival and differentiation as indicated by processes of elongation and that this activity is mediated by soluble factors. Therefore, it is possible to consider the SC as a source of growth factors and might be suitable for the development of a neuroprotective effect in neurodegenerative disorders.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Section of Catania, viale R. Margherita 6, 95123 Catania, Italy.
| | | | | |
Collapse
|
16
|
Joosten EAJ, Veldhuis WB, Hamers FPT. Collagen containing neonatal astrocytes stimulates regrowth of injured fibers and promotes modest locomotor recovery after spinal cord injury. J Neurosci Res 2004; 77:127-42. [PMID: 15197746 DOI: 10.1002/jnr.20088] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The use of collagen as a vehicle to transplant neonatal astroglial cells into the lesioned spinal cord of the adult rat allows a precise application of these cells into the lesion gap and minimizes the migration of the transplanted cells. This approach might lead to anatomical and functional recovery. In the present study, 20 adult female Wistar rats were subjected to a dorsal hemisection at thoracic spinal cord levels. Cultured cortical neonatal rat astrocytes were transplanted into the lesion with collagen as a vehicle (N = 10). Prior to transplantation, the cultured astroglial cells were labelled with fast blue. Control rats received collagen implants only (N = 10). During 1 month of survival time, functional recovery of all rats was continuously monitored. Histological data showed that the prelabelled astroglial cells survived transplantation and were localized predominantly in the collagen implant. Virtually no fast blue-labelled GFAP-positive astroglial cells migrated out of the implant into the adjacent host spinal cord. The presence of transplanted neonatal astroglial cells resulted in a significant increase in the number of ingrowing neurofilament-positive fibers (including anterogradely labeled corticospinal axons) into the implant. Ingrowing fibers were closely associated with the transplanted astroglial cells. The implantation of neonatal astroglial cells did result in modest temporary improvements of locomotor recovery as observed during open-field locomotion analysis (BBB subscore) or during crossing of a walkway (catwalk).
Collapse
Affiliation(s)
- E A J Joosten
- Department of Anesthesiology, Academic Hospital Maastricht, Maastricht, The Netherlands.
| | | | | |
Collapse
|
17
|
Deumens R, Koopmans GC, Den Bakker CGJ, Maquet V, Blacher S, Honig WMM, Jérôme R, Pirard JP, Steinbusch HWM, Joosten EAJ. Alignment of glial cells stimulates directional neurite growth of CNS neurons in vitro. Neuroscience 2004; 125:591-604. [PMID: 15099673 DOI: 10.1016/j.neuroscience.2004.02.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2004] [Indexed: 11/25/2022]
Abstract
Olfactory ensheathing cells (OECs) together with olfactory nerve fibroblasts (ONFs) and neonatal astrocytes are potent stimulators of neurite growth in adulthood and during development, respectively. Since it is known that alignment of glial cells is important for the correct outgrowth of axon tracts, it was hypothesized that the alignment of glial cells stimulates directional and enhanced neurite outgrowth. Adult OEC/ONF and neonatal astrocytes were cultured either on biodegradable poly(d,l)-lactide matrices or in Petri dishes for 4 days. Thereafter neonatal cerebral cortical neurons were added. After a 2-days coculture period the cultures were fixed and processed for a combined MAP-2 and phosphorylated neurofilament (RT97) staining. The neurite growth (neurite elongation and neurite formation) and the neurite direction were assessed. We show that (1). OEC/ONF cultures are more potent in stimulating the length of the longest neurite of cocultured neurons, (2). alignment of glial is achieved in vitro on our biomatrices, (3). aligned glial/biomatrix complexes do not enhance neurite growth, and (4). aligned glial/biomatrix complexes direct neurite outgrowth. These data have significant implications for in vivo experiments focusing on glial transplantation. Transplanting glial/biomatrix complexes may stimulate the directional regrowth of severed axons across a lesion site.
Collapse
Affiliation(s)
- R Deumens
- Department of Psychiatry and Neuropsychology, European Graduate School for Neuroscience (EURON), Universiteit Maastricht, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yamaguchi H, Kidachi Y, Ryoyama K. Increased synthesis of GFAP by TCDD in differentiation-disrupted SFME cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2003; 15:1-8. [PMID: 21782673 DOI: 10.1016/j.etap.2003.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2002] [Accepted: 08/07/2003] [Indexed: 05/31/2023]
Abstract
The effects of 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) on gene expression and synthesis of glial fibrillary acidic protein (GFAP) in differentiation-disrupted serum-free mouse embryo (SFME) cells were examined. SFME cells were exposed to fetal calf serum (FCS) and dimethyl sulfoxide (DMSO) to induce differentiation and increase GFAP synthesis. Disruption of differentiation was caused by low-level toluene, significantly inhibiting GFAP synthesis. TCDD at 0.01, 0.1 and 1 pg/ml in the presence of low-level toluene increased GFAP synthesis in the SFME cells, while expression of GFAP mRNA showed no significant change. The TCDD-treated SFME cells detached from the culture substratum, indicating an apparent change in cell adhesion. These results suggest that low-level TCDD further disrupts differentiation of SFME cells in the presence of low-level toluene by upregulating GFAP synthesis and by altering the ability in cell adhesion and that GFAP synthesis is not disrupted at transcription but at translation.
Collapse
Affiliation(s)
- Hideaki Yamaguchi
- Graduate School of Environmental Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | | | | |
Collapse
|
19
|
Scotti Campos L. Evidence for astrocyte heterogeneity: a distinct subpopulation of protoplasmic-like glial cells is detected in transgenic mice expressing Lmo1-lacZ. Glia 2003; 43:195-207. [PMID: 12898699 DOI: 10.1002/glia.10254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The adult mammalian central nervous system (CNS) contains a large number of different cell types, which arise from the ventricular (VZ) and subventricular zones during embryonic development. In this study, we used a transgenic mouse expressing Lmo1-LacZ from a randomly inserted promoter/reporter gene construct to identify a glial subpopulation. LMO1 is an LIM domain-containing protein, thought to act in protein-protein interactions. We found first that in the adult transgenic CNS, beta-galactosidase (beta-gal) was expressed in a specific subpopulation of protoplasmic-like cells, which did not express detectable levels of glial fibrilary acidic protein unless a lesion was produced. Secondly, during development, beta-gal(+) cells were found arising from discrete regions of the VZ. Taken together, these results identify a subpopulation of protoplasmic glial cells in the adult CNS and suggest that they arise from a restricted VZ region during CNS development.
Collapse
|
20
|
Morale MC, Gallo F, Tirolo C, L'Episcopo F, Gennuso F, Testa N, Caniglia S, Spina-Purrello V, Avola R, Scoto GM, Marchetti B. The reproductive system at the neuroendocrine-immune interface: focus on LHRH, estrogens and growth factors in LHRH neuron-glial interactions. Domest Anim Endocrinol 2003; 25:21-46. [PMID: 12963097 DOI: 10.1016/s0739-7240(03)00043-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bidirectional communication between the neuroendocrine and immune systems plays a pivotal role in health and disease. Signals generated by the hypothalamic-pituitary-gonadal (HPG) axis (i.e. luteinizing hormone-releasing hormone, LHRH, and sex steroids) are major players coordinating the development immune system function. Conversely, products generated by immune system activation exert powerful and longlasting effects on HPG axis activity. In the central nervous system (CNS), one chief neuroendocrine-immune (NEI) compartment is represented by the astroglial cell population and its mediators. Of special interest, the major supporting cells of the brain and the thymus, astrocytes and thymic epithelial cells, share a similar origin and a similar set of peptides, transmitters, hormones and cytokines functioning as paracrine/autocrine regulators. This may explain some fundamental analogies in LHRH regulation of both cell types during ontogeny and in adult life. Hence, the neuropeptide LHRH significantly modulates astrocyte and thymic cell development and function. Here we focus this work on LHRH neuron-glial signaling cascades which dictate major changes during LHRH neuronal differentiation and growth as well as in response to hormonal manipulations and pro-inflammatory challenges. The interplay between LHRH, growth factors, estrogens and pro-inflammatory mediators will be discussed, and the potential physiopathological implications of these findings summarized. The overall study highlights the plasticity of this intersystem cross-talk and emphasize neuron-glial interactions as a key regulatory level of neuroendocrine axes activity.
Collapse
Affiliation(s)
- M C Morale
- Department of Neuropharmacology, OASI Institute for Research and Care (IRCCS) on Mental Retardation and Brain Aging, Via Conte Ruggero 73, 94018 Troina (EN), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Younossi-Hartenstein A, Salvaterra PM, Hartenstein V. Early development of the Drosophila brain: IV. Larval neuropile compartments defined by glial septa. J Comp Neurol 2003; 455:435-50. [PMID: 12508318 DOI: 10.1002/cne.10483] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study, we have analyzed the architecture of the brain neuropile of the Drosophila larva, which is formed by two main structural elements: long axon tracts and terminal axonal/dendritic arborizations carrying synapses. By using several molecular markers expressed in neurons and glial cells, we show that the early larval neuropile is subdivided by glial sheaths into numerous compartments. The three-dimensional layout of these compartments and their relationship to the pattern of long axon tracts described in the accompanying article (Nassif et al. [2003] J. Comp. Neurol 417-434) was modeled by using a three-dimensional illustration computer software. On the basis of their location relative to each other and to long axon tracts, larval brain compartments can be identified with compartments defined by structural and functional criteria for the adult fly brain. We find that small precursors of most of the compartments of the adult central brain can be identified in the early larva. Changes in brain compartmental organization occurring during larval growth are described. Neuropile compartments, representing easily identifiable landmark structures, will assist in future analyses of Drosophila brain development in which the exact location of neurons and their axonal trajectories is of importance.
Collapse
Affiliation(s)
- Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
22
|
Damodaran TV, Bilska MA, Rahman AA, Abou-Doni MB. Sarin causes early differential alteration and persistent overexpression in mRNAs coding for glial fibrillary acidic protein (GFAP) and vimentin genes in the central nervous system of rats. Neurochem Res 2002; 27:407-15. [PMID: 12064357 DOI: 10.1023/a:1015508132137] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurotoxic effects of single dose of 0.5 x LD50 sarin (O-isopropylmethylphosphonoflouridate) on central nervous system (CNS) of male Sprague-Dawley rats were studied. We investigated the mRNA expression of the astroglial marker genes glial fibrillary acidic protein (GFAP) and vimentin to evaluate the fate of astroglial and neuronal cells, because reactive gliosis is very often used to assess the extent of CNS damage. Rats were treated with 50 microg/kg/ml of sarin and terminated at the time-points 1 and 2 hours and 1, 3, and 7 days post-treatment. Control rats were treated with normal saline. Total RNA was extracted and Northern blots were hybridized with cDNA probes for GFAP and vimentin, as well as 28S RNA (control). The data obtained indicate that a single dose of sarin (0.5 x LD50) showed induction in the transcript levels of GFAP and vimentin in the cortex, cerebellum, brainstem and midbrain, and spinal cord. The induction showed distinct spatial-temporal differences for each tissue studied. Both GFAP and vimentin were induced at 1 hour in all the tissues studied except brainstem, where moderate and high levels of GFAP induction were noted at 1 and 3 days. Overexpressed transcript levels of GFAP and vimentin remained high in more responsive tissues such as the brainstem and midbrain. Other tissues, such as the cortex, spinal cord, and cerebellum showed a more downward trend for either GFAP or vimentin, or both, transcript levels at 7 days. It is noteworthy that both cortex (318 +/- 12%) and spinal cord (368 +/- 12%) showed relatively higher induction of GFAP, whereas cortex alone showed the highest level of overexpressed vimentin transcript levels (284 +/- 11%). Overall it is also clear that both GFAP and vimentin are needed for the effective recovery involving co-ordinated alternating up- and downregulation of these two key astrocyte genes, depending on tissue specificity. The changes seen in the transcript levels of GFAP and vimentin may be the result of astrocyte dysfunction and loss, accompanied by compensatory proliferation and dedifferentiation of the astroglia. These changes could affect the neuronal cell types, thus altering the neuron-glia homeostasis.
Collapse
Affiliation(s)
- Tirupapuliyar V Damodaran
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
23
|
Opposite actions of brain-derived neurotrophic factor and neurotrophin-3 on firing features and ion channel composition of murine spiral ganglion neurons. J Neurosci 2002. [PMID: 11850465 DOI: 10.1523/jneurosci.22-04-01385.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is now well established that sensory neurons and receptors display characteristic morphological and electrophysiological properties tailored to their functions. This is especially evident in the auditory system, where cells are arranged tonotopically and are highly specialized for precise coding of frequency- and timing-dependent auditory information. Less well understood, however, are the mechanisms that give rise to these biophysical properties. We have provided insight into this issue by using whole-cell current-clamp recordings and immunocytochemistry to show that BDNF and NT-3, neurotrophins found normally in the cochlea, have profound effects on the firing properties and ion channel distribution of spiral ganglion neurons in the murine cochlea. Exposure of neurons to BDNF caused all neurons, regardless of their original cochlear position, to display characteristics of the basal neurons. Conversely, NT-3 caused cells to show the properties of apical neurons. These results are consistent with oppositely oriented gradients of these two neurotrophins and/or their high-affinity receptors along the tonotopic map, and they suggest that a combination of neurotrophins are necessary to establish the characteristic firing features of postnatal spiral ganglion neurons.
Collapse
|
24
|
Piontek J, Régnier-Vigouroux A, Brandt R. Contact with astroglial membranes induces axonal and dendritic growth of human CNS model neurons and affects the distribution of the growth-associated proteins MAP1B and GAP43. J Neurosci Res 2002; 67:471-83. [PMID: 11835314 DOI: 10.1002/jnr.10094] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of morphological complexity of CNS neurons is thought to be regulated by extracellular factors and cellular contact. To analyze the role of contact with astroglia in this process and to determine the intraneuronal mechanisms involved, an in vitro system was developed where terminally differentiated and polar human CNS model neurons (NT2-N neurons) were cultured on a layer of mouse astrocytes or isolated membrane fractions in chemically defined medium. Morphometric analysis revealed that physical contact with living astrocytes increased the lengths of axonal and dendritic processes and lead to an increased number of branch points. Contact with astrocytes also resulted in a redistribution of the growth-associated proteins MAP1b and GAP-43 toward the growth cones of NT2-N neurons. Astrocyte-contact did not lead to a maturation of the neurons as would be detected by an increased expression of tau isoforms containing the adult-specific exons 2 and 3. Culture on immobilized membrane fractions prepared from astrocytes also increased the morphological complexity of the neurons in a qualitatively similar manner. The results indicate that physical contact with astrocyte membranes increases the morphological complexity of CNS model neurons through a mechanism that involves a redistribution of growth-associated proteins to neuronal growth cones. NT2-N neurons may provide a useful cellular model to analyze cytoskeletal mechanisms during the development of terminally differentiated and polar human neurons.
Collapse
Affiliation(s)
- Jörg Piontek
- Department of Neurobiology, IZN, University of Heidelberg, Im Neuenheimer Feld 364, D-16920 Heidelberg, Germany
| | | | | |
Collapse
|
25
|
Le R, Esquenazi S. Astrocytes mediate cerebral cortical neuronal axon and dendrite growth, in part, by release of fibroblast growth factor. Neurol Res 2002; 24:81-92. [PMID: 11783758 DOI: 10.1179/016164102101199459] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Astrocytes occupy a central role in central nervous system (CNS) function. In particular astyrocytes can support neurite growth, in part, by release of diffusable factors. We therefore performed biochemical analysis of astrocyte conditioned medium to examine possible mechanisms of astrocyte mediated axon and dendrite growth in the mammalian CNS. Culture medium was conditioned on purified astrocyte monolayers derived from P3 rat cerebral cortex or on fibroblasts. Conditioned medium (CM) was subject to protein denaturation, molecular weight fractionation, and heparin affinity chromatography. E18 mouse cerebral cortical neurons were then cultured in the various media or directly on astrocyte monolayers and axon and dendrite growth from 50 neurons in each condition quantified after 3 DIV using double-labeled immunohistochemical techniques. Axon and dendrite growth was supported by astrocyte CM and both were significantly greater than process growth from neurons incubated in fibroblast CM. Protein denaturation significantly reduced astrocyte CM support of axon and dendrite growth. Following ultrafiltration and dialysis dendrite and axon growth was observed in the molecular weight fraction between 10 and 100 kDa. Axon growth also was observed in the CM molecular weight fraction greater than 100 kDa. Conditioned medium was eluted on a heparin column; when the bound fragment was reconstituted in chemically defined medium extensive dendrite and axon growth was observed. Since fibroblast growth factor (FGF) has these biochemical characteristics we added anti-bFGF neutralizing antibodies to astrocyte monolayers or CM; this significantly reduced astrocyte support of process growth. By contrast, the addition of heparin, which helps activate FGF receptors, to astrocyte CM further enhanced process growth. Western blot analysis confirmed that bFGF was present in astrocyte CM. We then examined axon and dendrite growth from cortical neurons after the addition of various growth factors to chemically defined medium. Axon and dendrite growth, similar to that found in astrocyte CM was observed after the addition of bFGF or aFGF. Astrocyte support of cerebral cortical neuron axon and dendrite growth in vitro may be explained, in part, by FGF release.
Collapse
Affiliation(s)
- RouxPeterD Le
- Department of Neurosurgery, University of Pennsylvania, Philadelphia 19107, USA.
| | | |
Collapse
|
26
|
Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neurite growth by modifying adhesion molecule expression. J Neurosci 2001. [PMID: 11487638 DOI: 10.1523/jneurosci.21-16-06147.2001] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intermediate filaments (IFs) are a major component of the cytoskeleton in astrocytes. Their role is far from being completely understood. Immature astrocytes play a major role in neuronal migration and neuritogenesis, and their IFs are mainly composed of vimentin. In mature differentiated astrocytes, vimentin is replaced by the IF protein glial fibrillary acidic protein (GFAP). In response to injury of the CNS in the adult, astrocytes become reactive, upregulate the expression of GFAP, and reexpress vimentin. These modifications contribute to the formation of a glial scar that is obstructive to axonal regeneration. Nevertheless, astrocytes in vitro are considered to be the ideal substratum for the growth of embryonic CNS axons. In the present study, we have examined the potential role of these two major IF proteins in both neuronal survival and neurite growth. For this purpose, we cocultured wild-type neurons on astrocytes from three types of knock-out (KO) mice for GFAP or/and vimentin in a neuron-astrocyte coculture model. We show that the double KO astrocytes present many features of immaturity and greatly improve survival and neurite growth of cocultured neurons by increasing cell-cell contact and secreting diffusible factors. Moreover, our data suggest that the absence of vimentin is not a key element in the permissivity of the mutant astrocytes. Finally, we show that only the absence of GFAP is associated with an increased expression of some extracellular matrix and adhesion molecules. To conclude, our results suggest that GFAP expression is able to modulate key biochemical properties of astrocytes that are implicated in their permissivity.
Collapse
|
27
|
Steinbach K, Bauch H, Stier H, Schlosshauer B. Tissue-specific neuro-glia interactions determine neurite differentiation in ganglion cells. Eur J Cell Biol 2001; 80:245-55. [PMID: 11322389 DOI: 10.1078/0171-9335-00151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Guided formation and extension of axons versus dendrites is considered crucial for structuring the nervous system. In the chick visual system, retinal ganglion cells (RGCs) extend their axons into the tectum opticum, but not into glial somata containing retina layers. We addressed the question whether the different glia of retina and tectum opticum differentially affect axon growth. Glial cells were purified from retina and tectum opticum by complement-mediated cytolysis of non-glial cells. RGCs were purified by enzymatic delayering from flat mounted retina. RGCs were seeded onto retinal versus tectal glia monolayers. Subsequent neuritic differentiation was analysed by immunofluorescence microscopy and scanning electron microscopy. Qualitative and quantitative evaluation revealed that retinal glia somata inhibited axons. Time-lapse video recording indicated that axonal inhibition was based on the collapse of lamellipodia- and filopodia-rich growth cones of axons. In contrast to retinal glia, tectal glia supported axonal extension. Notably, retinal glia were not inhibitory for neurons in general, because in control experiments axon extension of dorsal root ganglia was not hampered. Therefore, the axon inhibition by retinal glia was neuron type-specific. In summary, the data demonstrate that homotopic (retinal) glia somata inhibit axonal outgrowth of RGCs, whereas heterotopic (tectal) glia of the synaptic target area support RGC axon extension. The data underscore the pivotal role of glia in structuring the developing nervous system.
Collapse
Affiliation(s)
- K Steinbach
- Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Reutlingen, Germany
| | | | | | | |
Collapse
|
28
|
Lanuza MA, Garcia N, Santafe M, Nelson PG, Fenoll-Brunet MR, Tomas J. Pertussis toxin-sensitive G-protein and protein kinase C activity are involved in normal synapse elimination in the neonatal rat muscle. J Neurosci Res 2001; 63:330-40. [PMID: 11170183 DOI: 10.1002/1097-4547(20010215)63:4<330::aid-jnr1027>3.0.co;2-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Individual skeletal muscle fibers in most new-born rodents are innervated at a single endplate by several motor axons. During the first postnatal weeks, the polyneuronal innervation decreases in a process of synaptic elimination. Previous studies showed that the naturally occurring serine-protease thrombin mediates the activity-dependent synapse reduction at the neuromuscular junction (NMJ) in vitro and that thrombin-receptor activation may modulate nerve terminal consolidation through a protein kinase mechanism. To test whether these mechanisms may be operating in vivo, we applied external thrombin and its inhibitor hirudin, and several substances affecting the G protein-protein kinase C system (GP-PKC) directly over the external surface of the neonatal rat Levator auris longus muscle. Muscles were processed for immunocytochemistry to simultaneously detect acetylcholine receptors (AChRs) and axons for counting the percentage of polyinnervated NMJ. We found that exogenous thrombin accelerated synapse loss and hirudin blocked axonal removal. Phorbol-12-myristate-13-acetate, a potent PKC activator, had a similar effect as thrombin, whereas the PKC inhibitors, calphostin C and staurosporine, prevented axonal removal. Pertussis toxin, an effective blocker of GP function, blocked synapse elimination. These findings suggest that the normal synapse elimination in the neonatal rat muscle may be modulated, at least in part, by the pertussis-sensitive G-protein and PKC activity and that thrombin could play a role in the postnatal synaptic maturation in vivo.
Collapse
Affiliation(s)
- M A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus (Tarragona), Spain.
| | | | | | | | | | | |
Collapse
|
29
|
Avola R, Spina-Purrello V, Gallo F, Morale MC, Marletta N, Costa A, Tirolo C, Testa N, Reale S, Marchetti B. Immortalized hypothalamic luteinizing hormone-releasing hormone (LHRH) neurons induce a functional switch in the growth factor responsiveness of astroglia: involvement of basic fibroblast growth factor. Int J Dev Neurosci 2000; 18:743-63. [PMID: 11154844 DOI: 10.1016/s0736-5748(00)00052-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent evidence indicates that astroglial-derived growth factors (GFs) participate in the development of luteinizing hormone-releasing hormone (LHRH) neurons, but it is still unknown whether LHRH neurons may exert a reciprocal modulation of glial cell function. Using immortalized hypothalamic LHRH (GT1-1) neurons in co-culture with glial cells, we have recently shown that basic fibroblast growth factor (bFGF) plays a prominent role in the glial-induced acquisition of the mature LHRH phenotype by GT1-1 cells. We have resorted to this model and combined biochemical and morphological approaches to study whether the response of glial cells to a number of GFs (including bFGF, insulin-like growth factor I, IGF-I, epidermal growth factor, EGF and insulin) expressed during LHRH neuron differentiation, is modulated by co-culture with pure LHRH neurons. Pre-treatment of hypothalamic astrocytes with an inactive ('priming') dose of bFGF for 12 h powerfully increased astroglia proliferative response to IGF-I (10 ng/ml), EGF (10 g/ml) and insulin (10 microg/ml), inducing a 65-100% increase in the [3H]thymidine incorporation compared to untreated cultures. When astroglial cells and developing GT1-1 neurons were co-cultured for 5 days in vitro (DIV), the [3H]thymidine incorporation was significantly higher than in astroglial cells cultured without neurons. Application of the different GFs to the co-culture for either 12 or 24 h further stimulated DNA synthesis to various extent according to the GF applied and the time of application. Localization of the proliferating cells by dual immunohistochemical staining, followed by cell counting and bromodeoxiuridine (BrdU) labeling index calculation, revealed that the incorporation of BrdU was restricted to the nuclei of LHRH-immunopositive neurons. Such changes were accompanied by extensive morphological alterations of astroglial and LHRH fiber networks, whereas neutralization of bFGF activity in GT1-1 neuron-glial co-cultures by a bFGF-antibody, dramatically counteracted the observed effects. The functional switch of astroglia proliferative response to GFs coupled to the potent morphological and functional modifications of developing glia and pure LHRH neurons observed in vitro, support a bidirectional interaction between immortalized LHRH neurons and astroglial cells and identify bFGF as a key player in this crosstalk.
Collapse
Affiliation(s)
- R Avola
- Department of Chemical Sciences, Medical School, University of Catania, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cambiasso MJ, Colombo JA, Carrer HF. Differential effect of oestradiol and astroglia-conditioned media on the growth of hypothalamic neurons from male and female rat brains. Eur J Neurosci 2000; 12:2291-8. [PMID: 10947808 DOI: 10.1046/j.1460-9568.2000.00120.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine whether soluble products from different CNS regions differ in their ability to support oestrogen-stimulated neurite growth, hypothalamic neurons from sexually segregated embryos were cultured with astroglia-conditioned medium (CM) derived from cortex, striatum and mesencephalon, with or without 17-beta-oestradiol 100 nM added to the medium. After 48 h in vitro, neurite outgrowth was quantified by morphometric analysis. Astroglia-CM from mesencephalon (a target for the axons of hypothalamic neurons) induced the greatest axogenic response in males and in this case only a neuritogenic effect could be demonstrated for oestradiol. On the other hand, astroglia-CM from regions that do not receive projections from ventromedial hypothalamus inhibited axon growth. A sexual difference in the response of hypothalamic neurons to astroglia-CM and oestradiol was found; growth of neurons from female foetuses was increased by astroglia-CM from mesencephalon, but no neuritogenic effect could be demonstrated for oestradiol in these cultures. Blot immunobinding demonstrated the presence of receptors for neurotrophic factors in cultures of hypothalamic neurons; Western blot analysis of these cultures demonstrated that oestradiol increased the concentration of trkB and IGF-I Rbeta, whereas trkA was not detected and the concentration of trkC was not modified. These results support the hypothesis that target regions produce some factor(s) that stimulate the growth of axons from projecting neurons and further indicate that in the case of males this effect is modulated by oestradiol, perhaps mediated through the upregulation of trkB and IGF-I receptors.
Collapse
Affiliation(s)
- M J Cambiasso
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET, Córdoba, Argentina
| | | | | |
Collapse
|
31
|
Gallo F, Morale MC, Spina-Purrello V, Tirolo C, Testa N, Farinella Z, Avola R, Beaudet A, Marchetti B. Basic fibroblast growth factor (bFGF) acts on both neurons and glia to mediate the neurotrophic effects of astrocytes on LHRH neurons in culture. Synapse 2000; 36:233-53. [PMID: 10819902 DOI: 10.1002/(sici)1098-2396(20000615)36:4<233::aid-syn1>3.0.co;2-i] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Luteinizing hormone-releasing hormone (LHRH) neurons play a pivotal role in the neuroendocrine control of mammalian reproduction. Astrocytes were shown to be involved in the regulation of LHRH neuronal function, but little is known about the contribution of astroglial-derived factors in the regulation of LHRH neuron development. In order to gain insight into the mechanisms regulating the development of these cells, at morphological and biochemical levels we characterized the neurotrophic effects exerted by young astrocytes (maintained in culture for 8 days in vitro) and old astrocytes (maintained 26 days) on the differentiation, proliferation, and phenotypic expression of immortalized hypothalamic LHRH (GT(1-1)) neurons in vitro. Culturing GT(1-1) cells in the presence of young glia for different time intervals caused a marked acceleration in the acquisition of their neuronal phenotype. At all times examined, GT(1-1) cells cocultured with young glia exhibited a significantly greater extension of processes/cell, larger number of processes/cell and greater surface area of growth cones than GT(1-1) cells grown over nonglial adhesive substrates (polylysine). By contrast, when GT(1-1) neurons were cocultured with old glia, the length of neuronal processes and the growth cone surface area were significantly lower than in control GT(1-1) neurons cultured in the absence of glia. At 3 days in vitro (DIV), GT(1-1) neurons cocultured with young glia exhibited a 50% lower incorporation of [(3)H]thymidine than GT(1-1) neurons cultured without glia. By contrast, in the presence of old glia [(3)H]thymidine incorporation was significantly higher in cells cocultured with glia than in GT(1-1) neurons cultured alone. Localization of the proliferating cells by dual immunohistochemical staining revealed that the incorporation of bromodeoxiuridine (BrdU) was restricted to nuclei of GT(1-1) neurons when these were cocultured with young glia, but associated with both neurons and astrocytes in the presence of old glia. At the functional level, coculture of GT(1-1) neurons with young glia increased the spontaneous release of LHRH as compared to GT(1-1) neurons grown in the absence of glia. By contrast, in the presence of old glia LHRH release in the medium was significantly lower than in controls. Conditioned medium of young glia (ACM-Y) induced significant neurotrophic and functional effects on GT(1-1) cells, but these effects were 50% less potent than the coculture itself. Heat denaturation of ACM-Y totally abolished its neurotrophic and functional properties, indicating that they involved a peptide factor. Suppression of bFGF activity in ACM-Y reduced its neurotrophic activity by approximately 40%, but did not affect its LHRH release-promoting effects. By contrast, neutralization of endogenous bFGF activity in GT(1-1) neurons cocultured with young glia counteracted both neurotrophic and functional effects of young glia. Treatment of old glia with bFGF rescued its neurotrophic and functional effects on GT(1-1) cells. Moreover, the ACM of aged bFGF-treated old glia was the most powerful neurotrophic stimulus for GT(1-1) neurons. These results suggest that: 1) soluble peptidic factors, including bFGF, and mechanism(s) requiring coculture are responsible for the highly potent neurotrophic and functional effects of young glia; 2) the inhibitory effects of old glia on neurite outgrowth and LHRH release are mediated in part by soluble inhibitory molecules and in part by factors requiring coculture with old glia; 3) old glia may revert to a growth-supporting state when treated with bFGF and this functional shift involves a diffusible molecule with potent neurotrophic and functional effects on immortalized LHRH neurons. (c) 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- F Gallo
- Department of Pharmacology, Medical School, University of Catania, 95125 Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Damodaran TV, Abou-Donia MB. Alterations in levels of mRNAs coding for glial fibrillary acidic protein (GFAP) and vimentin genes in the central nervous system of hens treated with diisopropyl phosphorofluoridate (DFP). Neurochem Res 2000; 25:809-16. [PMID: 10943999 DOI: 10.1023/a:1007565407341] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diisopropyl phophorofluoridate (DFP) produces organophosphorus-ester induced delayed neurotoxicity (OPIDN) in the hen, human and other sensitive species. We studied the effect of DFP admimistration (1.7 mg/kg/s.c.) on the expression of Intermediate Filament (IF) proteins: Glial Fibrillary Acidic Protein (GFAP) and vimentin which are known indicators of neurotoxicity and astroglial pathology. The hens were sacrificed at different time points i.e. 1,2,5,10 and 20 days. Total RNA was extracted from the following brain regions: cerebrum, cerebellum, and brainstem as well as spinal cord. Northern blots prepared using standard protocols were hybridized with GFAP and vimentin as well as beta-actin and 18S RNA cDNA (controls) probes. The results indicate a differential/spatial/temporal regulation of GFAP and vimentin levels which may be due to the result of disruption of glial-neuronal network. The GFAP transcript levels reached near control levels (88% and 95%) at 20 days post DFP treatment after an initial down-regulation (60% and 73%) in highly susceptible tissues like spinal cord and brainstem respectively. However vimentin transcript levels remained down-regulated (61% and 53%) at 20 days after an early reduced levels(47% and 55%) for spinal cord and brainstem respectively. This may be due to the astroglial pathology resulting in neuronal alterations or vice-versa. In cerebellum (less susceptile tissue) GFAP levels were moderately down-regulated at 1,2 and 5 days and reached near control values at 10 and 20 days. Vimentin was rapidly reinduced (128%) in cerebellum at 5 days and remained at the same level at 10 days and then returned to control values at 20 days after an initial down-regulation at 1 and 2 days. Thus these alterations were less drastic in cerebellum as indicated by initial susceptibility followed by rapid recovery. On the other hand both GFAP and vimentin levels were upregulated from 2 days onwards in the non-susceptible tissue cerebrum, implying protective mechanisms from the beginning. Hence the DFP induced astroglial pathology as indicated by the complex expression profile of GFAP and vimentin mRNA levels may be playing an important role in the delayed degeneration of axons or is the result of progressive degeneration of axons in OPIDN.
Collapse
Affiliation(s)
- T V Damodaran
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27708, USA
| | | |
Collapse
|
33
|
Dijkstra S, Bär PR, Gispen WH, Joosten EA. Selective stimulation of dendrite outgrowth from identified corticospinal neurons by homotopic astrocytes. Neuroscience 1999; 92:1331-42. [PMID: 10426488 DOI: 10.1016/s0306-4522(99)00060-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Corticospinal neurons were identified in primary cultures of cortical neurons established from rats that had been injected with a fluorescent tracer to retrogradely label the corticospinal tract. We measured neurite outgrowth from corticospinal neurons after they had been co-cultured with astrocytes derived from either the cerebral cortex (homotopic region) or spinal cord (target region) of postnatal rats. The axon length of corticospinal neurons was increased when they were cultured on astroglial monolayers compared to a control monolayer (fibroblasts). However, no difference in axon length was noted on cortical versus spinal cord-derived astrocytes. On the other hand, total dendritic length was increased on cortical compared to spinal cord astrocytes. This increase in total dendrite length was not the result of differences in the length of primary dendrites, but primarily of a higher number of dendrites and increased branching on the cortical astroglia. If the corticospinal neurons were co-cultured without physical contact with the astrocytes, axonal and dendritic outgrowth were not stimulated when compared to the fibroblast control. The data indicate that dendritic growth from corticospinal neurons is preferentially promoted by astrocytes from the cerebral cortex, whereas axonal growth is not influenced by the anatomical origin of the astrocytes. The impact of these findings on our understanding of the role of astrocytes in the development and regeneration of the corticospinal tract is discussed.
Collapse
Affiliation(s)
- S Dijkstra
- Department of Experimental Neurology, Rudolf Magnus Institute for Neurosciences, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
34
|
Gomes FC, Paulin D, Moura Neto V. Glial fibrillary acidic protein (GFAP): modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res 1999; 32:619-31. [PMID: 10412574 DOI: 10.1590/s0100-879x1999000500016] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intermediate filament (IF) proteins constitute an extremely large multigene family of developmentally and tissue-regulated cytoskeleton proteins abundant in most vertebrate cell types. Astrocyte precursors of the CNS usually express vimentin as the major IF. Astrocyte maturation is followed by a switch between vimentin and glial fibrillary acidic protein (GFAP) expression, with the latter being recognized as an astrocyte maturation marker. Levels of GFAP are regulated under developmental and pathological conditions. Upregulation of GFAP expression is one of the main characteristics of the astrocytic reaction commonly observed after CNS lesion. In this way, studies on GFAP regulation have been shown to be useful to understand not only brain physiology but also neurological disease. Modulators of GFAP expression include several hormones such as thyroid hormone, glucocorticoids and several growth factors such as FGF, CNTF and TGF beta, among others. Studies of the GFAP gene have already identified several putative growth factor binding domains in its promoter region. Data obtained from transgenic and knockout mice have provided new insights into IF protein functions. This review highlights the most recent studies on the regulation of IF function by growth factors and hormones.
Collapse
Affiliation(s)
- F C Gomes
- Departamento de Anatomia, Universidade Federal do Rio de Janeiro, Brasil
| | | | | |
Collapse
|
35
|
Abstract
In order to investigate the influence of neuron-glia interaction on astrocyte differentiation, we used a transgenic mouse bearing part of the gene promoter of the astrocytic maturation marker GFAP linked to the beta-galactosidase (beta-gal) reporter gene. Addition of embryonic cerebral hemisphere (CH) neurons to transgenic CH astrocyte monolayers increased by 50-60% beta-gal positive cell number. Such event was dependent on the brain regional origin of the neurons and was followed by an arrest of astrocytes from the cell cycle and induction of glial differentiation. Time-course assays demonstrated that maximum effect was observed after 24 h of coculture. Addition of conditioned medium (CM) derived from CH neurons also increased beta-gal positive CH astrocytic cell number. However, such CM had no effect on midbrain and cerebellum astroglia. Together, these data suggest that neurons secrete brain region-specific soluble factors which induce GFAP gene promoter, as measured by beta-gal expression, thus suggesting that neuron-glia interaction might induce the astrocytic differentiation program.
Collapse
Affiliation(s)
- F C Gomes
- Departamento de Anatomia, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
36
|
Mahoney MJ, Saltzman WM. Cultures of cells from fetal rat brain: methods to control composition, morphology, and biochemical activity. Biotechnol Bioeng 1999; 62:461-7. [PMID: 9921155 DOI: 10.1002/(sici)1097-0290(19990220)62:4<461::aid-bit9>3.0.co;2-a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fetal tissue transplantation is a promising new approach for the treatment of neurodegenerative diseases, but the optimal conditions for preparing cells for transplantation have not been defined. The growth of a population of septal brain cells, primarily containing cholinergic neurons and glia, was characterized after seeding at densities from 5 x 10(4) to 6 x 10(5) cells/cm2, on polystyrene-, collagen-, laminin-, and fibronectin-coated surfaces, in the presence of serum and/or serum-free medium. Differentiated glial cells were selected by culture on fibronectin or laminin surfaces, in the presence of low amounts of serum (2.5% FBS) and G5, a soluble factor containing EGF and insulin. Differentiated neuronal cells were selected by culture on laminin, in the presence of low amounts of serum (2.5% FBS) and N2, a soluble factor containing supplemental hormones. In each case, a minimum seeding density of 1 x 10(5) cells/cm2 was required. Neuronal growth could be maintained long term (21 days) with high levels of neuronal activity (ChAT activity).
Collapse
Affiliation(s)
- M J Mahoney
- Department of Chemical Engineering, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
37
|
Houweling DA, Bär PR, Gispen WH, Joosten EA. Spinal cord injury: bridging the lesion and the role of neurotrophic factors in repair. PROGRESS IN BRAIN RESEARCH 1999; 117:455-71. [PMID: 9932425 DOI: 10.1016/s0079-6123(08)64032-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- D A Houweling
- Department of Neurology, Rudolf Magnus Institute for Neurosciences, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
38
|
Identification of a signaling pathway activated specifically in the somatodendritic compartment by a heparan sulfate that regulates dendrite growth. J Neurosci 1998. [PMID: 9822735 DOI: 10.1523/jneurosci.18-23-09751.1998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In two earlier reports we demonstrated that natural heparan sulfate, but not dermatan or chondroitin sulfate glycosaminoglycans, stimulate axonal elongation and inhibit dendrite growth in vitro (Lafont et al., 1992). The latter specific effect on dendrite elongation was reproduced by chemically synthesized heparan sulfates and by SR 80037A, a purified sulfated and hexanoylated heparin fragment (Lafont et al., 1994). Adding radioactive SR 80037A to purified neurons demonstrated the existence, at the neuronal surface, of heparan sulfate-specific and saturable binding sites, suggesting that SR 80037A activates specific signal transduction pathways. In the present study, using rat or mouse neurons from the embryonic cortex, we show that SR 80037A signaling involves one or several G-coupled receptor or receptors, small GTPases rhoA and/or rhoC, and one or several PKCs. We also demonstrate that the rapid soma rounding elicited by SR 80037A does not require protein synthesis but that the long-term effect on dendrite initiation requires protein synthesis in a short period after the addition of the heparan sulfate. Finally, by preparing membranes from the somatodendritic or axonal compartments we demonstrate that the identified signaling pathway is activated by SR 80037A primarily in the somatodendritic compartment and is not sensitive to the addition of a dermatan sulfate glycosaminoglycan that does not induce the axonal phenotype by impairing dendrite initiation and elongation.
Collapse
|
39
|
TrkB signaling modulates spine density and morphology independent of dendrite structure in cultured neonatal Purkinje cells. J Neurosci 1998. [PMID: 9786964 DOI: 10.1523/jneurosci.18-21-08559.1998] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotrophins cooperate with neural activity to modulate CNS neuronal survival and dendritic differentiation. In a previous study, we demonstrated that a critical balance of neurotrophin and neural activity is required for Purkinje cell survival in cocultures of purified granule and Purkinje cells (Morrison and Mason, 1998). Here we investigate whether TrkB signaling regulates dendrite and spine development of Purkinje cells. BDNF treatment of purified Purkinje cells cultured alone did not elicit formation of mature dendrites or spines. In cocultures of granule and Purkinje cells, however, continuous treatment with BDNF over a 2 week postnatal culture period increased the density of Purkinje cell dendritic spines relative to controls without causing a shift in the proportions of headed and filopodia-like spines. The increase in spine number was blocked by adding TrkB-IgG to the medium together with BDNF. Although BDNF alone did not consistently modify the morphology of dendritic spines, treatment with TrkB-IgG alone yielded spines with longer necks than those in control cultures. None of these treatments altered Purkinje cell dendritic complexity. These analyses reveal a role for TrkB signaling in modulating spine development, consistent with recently reported effects of neurotrophins on synaptic function. Moreover, spine development can be uncoupled from dendrite outgrowth in this reductionist system of purified presynaptic and postsynaptic neurons.
Collapse
|
40
|
Bugga L, Gadient RA, Kwan K, Stewart CL, Patterson PH. Analysis of neuronal and glial phenotypes in brains of mice deficient in leukemia inhibitory factor. JOURNAL OF NEUROBIOLOGY 1998; 36:509-24. [PMID: 9740023 DOI: 10.1002/(sici)1097-4695(19980915)36:4<509::aid-neu5>3.0.co;2-#] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Leukemia inhibitory factor (LIF) can regulate the survival and differentiation of certain neurons and glial cells in culture. To determine the role of this cytokine in the central nervous system in vivo, we examined the brains of young and adult mice in which the LIF gene was disrupted. Immunohistochemical staining of neurons for choline acetyltransferase, tyrosine hydroxylase, serotonin, parvalbumin, calbindin, neuropeptide Y, vasoactive intestinal polypeptide, and calcitonin gene-related peptide revealed no significant differences between null mutant and wild-type (WT) brains. In contrast, analysis of glial phenotypes demonstrated striking deficits in the LIF-knockout brain. Staining with several anti-glial fibrillary acidic protein (GFAP) antibodies showed that the number of GFAP-positive cells in various regions of the hippocampus in the female mutant is much lower than in the WT. The null male hippocampus also displays a significant, though less marked deficit. The number of astrocytes in the mutant hippocampus, as determined by S-100 staining, is not, however, significantly different from WT. In addition, quantification of immunohistochemical staining of female, but not male, mutants reveals a significant deficit in myelin basic protein content in three brain regions, suggesting alterations in oligodendrocytes as well. Thus, while overall brain histology appears normal, the absence of LIF in vivo leads to specific, sexually dimorphic alterations in glial phenotype.
Collapse
Affiliation(s)
- L Bugga
- Biology Division, California Institute of Technology, Pasadena 91125, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
The normal adult vertebrate nervous system is a relative quiescent tissue in terms of cell proliferation. However, astrocytes in many regions of the central nervous system (CNS) retain the capacity to undergo cell division. To examine the mechanisms that regulate the proliferation of astrocytes in the CNS we have utilized an in vitro assay in which astrocyte density and cellular environment could be regulated. We demonstrate that type 1 astrocytes derived from the cerebral cortex of developing rats exhibit a profound density-dependent inhibition of proliferation. This inhibition of proliferation was cell type specific, but not restricted to type 1 astrocytes. NIH 3T3 cells but not smooth muscle cells inhibited astrocyte proliferation, while contact-inhibited astrocytes did not inhibit oligodendrocyte proliferation. Co-culture of type 1 astrocytes with neurons from a variety of sources resulted in induction of a process-bearing astrocyte morphology and promoted glial cell proliferation. Thus, induction of a process-bearing astrocyte morphology does not lead to a cessation of proliferation. The inhibition of astrocyte proliferation did not appear to be mediated through the release or sequestration of soluble factors but rather could be induced by membrane-associated factors.
Collapse
Affiliation(s)
- Y Nakatsuji
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
42
|
Lima FR, Gonçalves N, Gomes FC, de Freitas MS, Moura Neto V. Thyroid hormone action on astroglial cells from distinct brain regions during development. Int J Dev Neurosci 1998; 16:19-27. [PMID: 9664219 DOI: 10.1016/s0736-5748(98)00002-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Astrocytes are target to triiodothyronine (T3) hormone action during rat brain development. In this work, we show that astrocytes from distinct developing brain regions are differently responsive to thyroid hormone. Distinctly from embryonic or newborn cerebral hemisphere and mesencephalic astrocytes, newborn cerebellar and embryonic hippocampal astrocytes do not change their morphology in response of hormone treatment. We also analysed protein synthesis and secretion from these T3-treated astrocytes. The results showed a significant increase in protein synthesis in astrocytes from older brain regions. Maximum effect, however, was observed in cerebral hemisphere astrocytes from newborn rats. The protein secretion effect was also more evident in the cerebral hemisphere as well as in cerebellar astrocytes from newborn rats. In addition, we examined T3 effects on GFAP/vimentin expression by culturing 6-day old cerebellar astrocytes. In this case T3 seems to induce GFAP expression which might be occurring as a first step to astrocyte differentiation.
Collapse
Affiliation(s)
- F R Lima
- Departamento de Anatomia, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
43
|
Barnea A, Aguila-Mansilla N, Lu G, Ho RH. Opposite effects of astrocyte-derived soluble factor(s) on the functional expression of fetal peptidergic neurons in aggregate cultures: enhancement of neuropeptide Y and suppression of somatostatin. J Neurosci Res 1997; 50:605-17. [PMID: 9404722 DOI: 10.1002/(sici)1097-4547(19971115)50:4<605::aid-jnr11>3.0.co;2-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies established that fetal rat and human neuropeptide Y (NPY) cortical neurons in aggregate cultures are differentially regulated. Whereas brain-derived neurotrophic factor (BDNF) or phorbol 12-myristate-13-acetate (PMA) induces NPY production in rat cultures, only PMA does so in human cultures. We addressed these questions: 1) Do soluble products of rat or human astrocytes (conditioned medium; rCM and hCM, respectively) enhance the functional expression of cultured NPY neurons and if so, do they enhance the expression of somatostatin (SRIF) neurons as well? 2) Is the NPY-enhancing activity (EA) in the CM species specific? rCM enhanced (approximately 2-fold) both basal and BDNF-stimulated production of NPY and coculture of rat aggregates and astrocytes did not prevent this NPY-EA. Likewise, the hCM enhanced (approximately 2.5-fold) basal and PMA-stimulated production of NPY by human aggregates. Moreover, the hCM enhanced NPY production by rat aggregates and rCM enhanced NPY production by human aggregates. In addition, rCM and hCM each enhanced BDNF-, forskolin-, or PMA-stimulated NPY production by rat aggregates. Under each of the above conditions, the rCM/hCM suppressed (approximately 50%) production of SRIF by rat aggregates. In summary, secretory products of rat and human astrocytes exert opposite effects on the functional expression of NPY and SRIF neurons in culture: enhancement of NPY and suppression of SRIF. By the criteria evaluated in this study, these astrocyte-derived activities do not exhibit species specificity.
Collapse
Affiliation(s)
- A Barnea
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center at Dallas, 75235-9032, USA.
| | | | | | | |
Collapse
|
44
|
Lochter A, Schachner M. Inhibitors of protein kinases abolish ECM-mediated promotion of neuronal polarity. Exp Cell Res 1997; 235:124-9. [PMID: 9281360 DOI: 10.1006/excr.1997.3655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Different extracellular matrix (ECM) molecules, when presented to hippocampal neurons in culture in a substrate-bound form, exert strikingly similar effects on the establishment of neuronal polarity, i.e., the growth of axon-like major neurites is favored, whereas extension of dendrite-like minor neurites is inhibited. To gain insight into the underlying signal transduction processes, we have investigated the effects of modulators of protein kinase activity on the morphology of neurons cultured on tenascin-R, tenascin-C, and laminin-entactin substrates. We found differential effects of broad-spectrum protein kinase inhibitors: H-7 promoted the growth of minor neurites, whereas H-8 reduced the growth of major neurites on ECM but not control substrates. In contrast, chelerythrine, a specific inhibitor of protein kinase C, selectively affected growth of both minor and major neurites on control, but not on ECM substrates. Finally, reagents which elevate intracellular cAMP levels facilitated growth of minor neurites and inhibited growth of major neurites and thus interfered with the establishment of a polarized phenotype on both ECM and control substrates. Our results suggest that protein kinases mediate the effects of ECM molecules on neuronal polarity and that different kinases control extension of axons and dendrites.
Collapse
Affiliation(s)
- A Lochter
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, Hamburg, D-20246, Germany
| | | |
Collapse
|
45
|
Munirathinam S, Rao MS, Mohan YR, Raju TR. Regeneration of the olfactory tract following neonatal lesion in rats. Exp Neurol 1997; 144:174-82. [PMID: 9126168 DOI: 10.1006/exnr.1997.6419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuronal regeneration following early postnatal olfactory tract transection (OTS) was investigated in newborn Wistar rats. Olfactory tract lesioned rats were sacrificed at different time periods and the brains processed for Nissl staining. This was used to study the neural cell architecture; fiber tracts (myelinated fibers) were examined with Luxol Fast Blue staining. In addition, a neuronal tracing technique (i.e., retrograde labeling) was employed to study the reestablishment of connections with the target sites following transection of the tract. Degeneration of the olfactory tract was evident at the 7th day following lesion. Regeneration of the tract was not apparent even up to 60 days following transection. However, by 240 days, the olfactory tract had regenerated and the tract fibers had reestablished connection. This was confirmed by retrograde labeling of mitral cells of the olfactory bulb with Fast Blue (FB) injected into the piriform cortex, the target site of these neurons. In this study, we show that mammalian olfactory tract can regenerate spontaneously if the olfactory tract is lesioned neonatally. The results suggest that the olfactory tract is an excellent model to investigate some issues related to central nervous system regeneration.
Collapse
Affiliation(s)
- S Munirathinam
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | | | | | | |
Collapse
|
46
|
Chondroitin sulfate proteoglycan and tenascin in the wounded adult mouse neostriatum in vitro: dopamine neuron attachment and process outgrowth. J Neurosci 1997. [PMID: 8987827 DOI: 10.1523/jneurosci.16-24-08005.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Extracellular matrix (ECM) molecules, including chondroitin-4 or chondroitin-6 sulfate proteoglycans (CSPGs) and tenascin, are upregulated in and around wounds and transplants to the adult CNS. In the present study, striatal wounds from adult mice were used in a novel in vitro paradigm to assess the effects of these wound-associated molecules on embryonic dopamine cell attachment and neurite outgrowth. Light and electron microscopic immunocytochemistry studies have shown that astroglial scar constituents persist in cultured explants for at least 1 week in vitro, and despite the loss of neurons from adult striatal explants, there is a retention of certain structural features suggesting that the wound explant-neuron coplant is a viable model for analysis of graft-scar interactions. Explants from the wounded striatum taken at different times after a penetrating injury in vivo were used as substrates for embryonic ventral mesencephalon neurons that were plated on their surfaces. Dopamine cell attachment is increased significantly in relation to the expression of both CSPG and tenascin. The increase in neuronal attachment in this paradigm, however, is accompanied by a postlesion survival time-dependent significant decrease in neuritic growth from these cells. In vitro ECM antibody treatment suggests that CSPG may be responsible for heightened dopamine cell attachment and that tenascin simultaneously may support cell attachment while inhibiting neurite growth. The present study offers a new approach for the in vitro analysis of cell and molecular interactions after brain injury and brain grafting, in essence acting as a nigrostriatal transplant-in-a-dish.
Collapse
|
47
|
Kim JA, Druse MJ. Deficiency of essential neurotrophic factors in conditioned media produced by ethanol-exposed cortical astrocytes. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 96:1-10. [PMID: 8922663 DOI: 10.1016/0165-3806(96)00057-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Prior research in this laboratory has shown that in utero ethanol exposure adversely affects the development of serotonergic neurons. The current study investigated the hypothesis that cortical astrocytes produce trophic factors which are essential for the development of the fetal precursors of serotonergic and other raphe neurons (e.g. rhombencephalic neurons), and that ethanol exposure impairs the production of these factors by astrocytes. The results of these experiments demonstrated that cultured cortical astrocytes produce trophic factors which are necessary for the development of rhombencephalic neurons. Conditioned media obtained from control astrocytes promoted both general neuronal development (increased cell number, cell survival, DNA content, protein content, and neurite outgrowth) and serotonergic neuronal development (increased number of serotonin (5-HT) immunopositive cells and [3H]5-HT uptake). However, the conditioned media produced by ethanol-treated astrocytes (ECM) lacked essential neurotrophic factors. Neuronal cultures maintained in ECM had reduced DNA and neuronal survival, and altered neurite outgrowth. 5-HT immunopositive neurons and [3H]5-HT uptake were also decreased in ECM cultures. Thus, the damaging effects of in utero ethanol exposure on developing serotonergic neurons may be due to impaired production of astroglial neurotrophic factors.
Collapse
Affiliation(s)
- J A Kim
- Neuroscience Program, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | |
Collapse
|
48
|
Woldbye DP, Bolwig TG, Kragh J, Jørgensen OS. Synaptic degeneration and remodelling after fast kindling of the olfactory bulb. Neurochem Res 1996; 21:585-93. [PMID: 8726967 DOI: 10.1007/bf02527757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Kindling of the olfactory bulb using a novel fast protocol (within 24 h) was studied in rats. In target brain regions, the effects of kindling were measured on the concentration of glial fibrillary acidic protein (GFAP) by dot-blot and on the concentrations of neural cell adhesion molecule (NCAM) and the 25 kDa synaptosomal associated protein of the D3 immunoprecipitate (D3(SNAP-25)) by crossed immunoelectrophoresis. Bilateral increases in the levels of GFAP, indicating activation of astrocytes, were detected in primary olfactory cortical projection areas, including the piriform cortex, and also in the basolateral amygdala and dentate gyrus, suggesting that these regions may be functionally altered during the kindling process. In the piriform cortex and dentate gyrus increased NCAM/D3(SNAP-25) ratios found ipsilaterally at seven days after kindling probably reflect an elevated rate of synaptic remodelling. At this time, however, an overall pattern of ipsilateral decreases in the synaptic marker proteins NCAM and D3(SNAP-25) indicated that this remodelling occurred on a background of synaptic degeneration. These results confirm previous studies showing that kindling is associated with synaptic remodelling and neuronal degeneration in the hippocampal formation and extends the area of plasticity to include the piriform cortex which is believed to be central to the kindling process.
Collapse
Affiliation(s)
- D P Woldbye
- Department of Psychiatry, National University Hospital: Rigshospitalet-6234, Copenhagen, Denmark
| | | | | | | |
Collapse
|
49
|
Abstract
A morphogenic role of neurotransmitters during cellular differentiation in vitro has been demonstrated in recent years. Using in situ hybridization, we confirm the presence of the D1 receptor at E16 and show additionally that the transcript is relatively widespread and present in both proliferative and differentiating areas of the cerebral wall. Because DA receptor expression precedes the arrival of presynaptic terminals during forebrain development, we examined the role of DA in cerebral cortical neuron differentiation in vitro, using immunohistochemical markers of dendrites, microtubule-associated-membrane protein 2 (MAP2) and axons, neurofilament protein (NF-H). Neurite length, cell size, and cell viability in response to D1 and D2 receptor agonists SKF38393 and quinpirole, respectively, and to DA were analyzed in neurons obtained from embryonic (E) day 16 rats. We have shown that 1) paradoxically, DA at different concentrations can either stimulate or inhibit neurite outgrowth; 2) there is a bimodal pattern of DA-induced axonal outgrowth, i.e., at low and high doses; 3) D2 receptor activation induces neurite outgrowth while D1 receptor activation is inhibitory; 4) D2-mediated neurite elongation is preferentially axonal while D1 receptor activation reduces both axonal and dendritic outgrowth; 5) low doses of DA promote the expression of cytoskeletal components of axonal maturation; and 6) D1 receptor activation decreases neuronal size. We suggest that DA may influence cellular differentiation and circuitry formation early in development of the cerebral cortex through receptor-mediated effects on process outgrowth, which could lead to effects on circuit formation.
Collapse
Affiliation(s)
- B S Reinoso
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, UMDNJ, Piscataway 08854, USA
| | | | | |
Collapse
|
50
|
Brewer GJ. Serum-free B27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J Neurosci Res 1995; 42:674-83. [PMID: 8600300 DOI: 10.1002/jnr.490420510] [Citation(s) in RCA: 448] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two fundamental questions about neuron cell culture were addressed. Can one serum-free medium that was developed for optimum growth of hippocampal neurons support the growth of neurons from other regions of the brain? Is the region specific state of differentiation maintained in culture? To answer these questions, we isolated neurons from six other rat brain regions, placed them in culture in B27/Neurobasal defined medium, and analyzed their morphology and growth dependence on cell density after 4 days in culture. Neuronal identity was confirmed by immunostaining with antibodies to neurofilament 200. Neurons from each brain region maintained distinctive morphologies in culture in the virtual absence of glia. Cells isolated from embryonic day 18 cerebral cortex by digestion with papain showed the same high survival as hippocampal neurons, e.g., 70% survival for cells plated at 160/mm2. At this age and density, neurons from the septum showed slightly lower survival, 45%. Survival of dentate granule neurons from postnatal day four brains was 30-40%, significantly lower, and relatively independent of plating density. This suggests an absence of dependence on trophic factors or contact for dentate granule neurons. Growth of cerebellar granule neurons isolated from postnatal day 7, 8, or 9 brains in B27/Neurobasal was compared to growth in BME/10% serum. Viability in serum-free medium at 4 days was much better than that in serum, did not require KCl elevated to 25 mM, and occurred without substantial growth of glia. Cerebellar granule neurons plated at 1,280 cells/mm2 were maintained in culture for three weeks with 17% of the original cell density surviving. Survival of cells isolated from embryonic day 18 substantia nigra was 50% at 160 cells/mm2 after 4 days, similar to that of striatum, but slightly less than hippocampal neuron survival. The dopaminergic phenotype of the substantia nigral neurons was maintained over 2 weeks in culture as judged by immunoreactivity with antibodies to tyrosine hydroxylase. During this time, immunoreactivity was found in the processes as they grew out from the soma. Together, these studies suggest that B27/Neurobasal will be a useful medium for maintaining the differentiated growth of neurons from many brain regions. Potential applications of a common growth medium for different neurons are discussed.
Collapse
Affiliation(s)
- G J Brewer
- Southern Illinois University School of Medicine, Springfield 62794-1220, USA
| |
Collapse
|