1
|
László BR, Kertes E, Ollmann T, Péczely L, Kovács A, Karádi Z, Lénárd L, László K. The Role of Intra-Amygdaloid Neurotensin and Dopamine Interaction in Spatial Learning and Memory. Biomedicines 2022; 10:biomedicines10123138. [PMID: 36551894 PMCID: PMC9775557 DOI: 10.3390/biomedicines10123138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Neurotransmitter and neuromodulator neurotensin (NT) has been proved to facilitate spatial and passive avoidance learning after microinjected into the rat central nucleus of amygdala (CeA). These previous studies of our laboratory also revealed that neurotensin-1 receptor (NTS1) is involved in the mentioned actions of NT. Extensive literature confirms the interaction between neurotensinergic and dopaminergic systems, and our research group also suppose that the mesolimbic dopaminergic system (MLDS) is involved in the spatial learning and memory-facilitating effect of NT in the CeA. In the present work, NT and dopamine (DA) interaction has been examined in the Morris water maze and passive avoidance tests. Rats received 100 ng NT, 5 µg dopamine D2 receptor antagonist sulpiride in itself, sulpiride as a pretreatment before NT or vehicle solution into the CeA. NT microinjection significantly decreased target-finding latency in the Morris water maze test and significantly increased entrance latency in the passive avoidance test, as was expected based on our previous findings. The DA D2 receptor antagonist pretreatment was able to inhibit both effects of NT. The results confirm the facilitatory effect of NT on spatial learning and memory and let us conclude that these actions can be exerted via the DA D2 receptors.
Collapse
Affiliation(s)
- Bettina Réka László
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Szentágothai Research Center, Cellular Bioimpedance Research Group, 7624 Pécs, Hungary
- Szentágothai Center, Molecular Endocrinology and Neurophysiology Research Group, University of Pécs, 7624 Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Szentágothai Research Center, Cellular Bioimpedance Research Group, 7624 Pécs, Hungary
- Szentágothai Center, Molecular Endocrinology and Neurophysiology Research Group, University of Pécs, 7624 Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, 7602 Pécs, Hungary
- Correspondence:
| |
Collapse
|
2
|
Dominguez‐Lopez S, Sharma R, Beckstead MJ. Neurotensin receptor 1 deletion decreases methamphetamine self-administration and the associated reduction in dopamine cell firing. Addict Biol 2021; 26:e12854. [PMID: 31742874 DOI: 10.1111/adb.12854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/26/2019] [Accepted: 10/28/2019] [Indexed: 12/26/2022]
Abstract
We previously reported that a non-selective pharmacological blockade of neurotensin receptors in the ventral tegmental area (VTA) decreases methamphetamine (METH) self-administration in mice. Here, we explored the consequences of genetic deletion of neurotensin receptor 1 (NtsR1) on METH self-administration and VTA dopamine neuron firing activity. We implanted mice with an indwelling jugular catheter and trained them to nose-poke for intravenous infusions of METH. Mice with NtsR1 deletion (KO) acquired self-administration similar to wildtype (WT) and heterozygous (HET) littermates. However, in NtsR1 KO and HET mice, METH intake and motivated METH seeking decreased when the response requirement was increased to a fixed ratio 3 and when mice were tested on a progressive ratio protocol. After completion of METH self-administration, single cell in vivo extracellular recordings of dopamine firing activity in the VTA were obtained in anesthetized mice. Non-bursting dopamine neurons from KO mice fired at slower rates than those from WT mice, supporting an excitatory role for NtsR1 on VTA dopamine neuronal activity. In WT mice, a history of METH self-administration decreased dopamine cell firing frequency compared with cells from drug-naïve controls. NtsR1 KO and HET mice did not exhibit this decline in dopamine cell firing activity after METH experience. We also observed an increase in population activity following METH self-administration that was strongest in the WT group. Our results suggest a role for NtsR1 in METH-seeking behavior and indicate that ablation of NtsR1 prevents the detrimental effects of prolonged METH self-administration on VTA dopamine cell firing frequency.
Collapse
Affiliation(s)
- Sergio Dominguez‐Lopez
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation Oklahoma City OK USA
| | - Ramaswamy Sharma
- Department of Cell Systems & Anatomy, UT Health San Antonio San Antonio TX USA
| | - Michael J. Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation Oklahoma City OK USA
| |
Collapse
|
3
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
4
|
The role of intraamygdaloid neurotensin and dopamine interaction in conditioned place preference. Behav Brain Res 2018; 344:85-90. [DOI: 10.1016/j.bbr.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/21/2023]
|
5
|
Dominguez-Lopez S, Piccart E, Lynch WB, Wollet MB, Sharpe AL, Beckstead MJ. Antagonism of Neurotensin Receptors in the Ventral Tegmental Area Decreases Methamphetamine Self-Administration and Methamphetamine Seeking in Mice. Int J Neuropsychopharmacol 2018; 21:361-370. [PMID: 29272412 PMCID: PMC5888879 DOI: 10.1093/ijnp/pyx117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/24/2022] Open
Abstract
Background Neurotensin is a peptide that modulates central dopamine neurotransmission and dopamine-related behaviors. Methamphetamine self-administration increases neurotensin levels in the ventral tegmental area, but the consequences for self-administration behavior have not been described. Here we test the hypothesis that antagonizing neurotensin receptors in the ventral tegmental area attenuates the acquisition of methamphetamine self-administration and methamphetamine intake. Methods We implanted mice with an indwelling catheter in the right jugular vein and bilateral cannulae directed at the ventral tegmental area. Mice were then trained to nose-poke for i.v. infusions of methamphetamine (0.1 mg/kg/infusion) on a fixed ratio 3 schedule. Results Mice receiving microinfusions of the neurotensin NTS1/NTS2 receptor antagonist SR142948A in the ventral tegmental area (10 ng/side) prior to the first 5 days of methamphetamine self-administration required more sessions to reach acquisition criteria. Methamphetamine intake was decreased in SR142948A-treated mice both during training and later during maintenance of self-administration. Drug seeking during extinction, cue-induced reinstatement, and progressive ratio schedules was also reduced in the SR142948A group. The effects of SR142948A were not related to changes in basal locomotor activity or methamphetamine psychomotor properties. In both SR142948A- and saline-treated mice, a strong positive correlation between methamphetamine intake and enhanced locomotor activity was observed. Conclusion Our results suggest that neurotensin input in the ventral tegmental area during initial methamphetamine exposure contributes to the acquisition of methamphetamine self-administration and modulates later intake and methamphetamine-seeking behavior in mice. Furthermore, our results highlight the role of endogenous neurotensin in the ventral tegmental area in the reinforcing efficacy of methamphetamine, independent of its psychomotor effects.
Collapse
Affiliation(s)
- Sergio Dominguez-Lopez
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas
| | - Elisabeth Piccart
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas
| | - William B Lynch
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas
| | - Mackenna B Wollet
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas
| | - Amanda L Sharpe
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas
| |
Collapse
|
6
|
Lénárd L, László K, Kertes E, Ollmann T, Péczely L, Kovács A, Kállai V, Zagorácz O, Gálosi R, Karádi Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018; 85:1-20. [DOI: 10.1016/j.neubiorev.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
|
7
|
Ferraro L, Tiozzo Fasiolo L, Beggiato S, Borelli AC, Pomierny-Chamiolo L, Frankowska M, Antonelli T, Tomasini MC, Fuxe K, Filip M. Neurotensin: A role in substance use disorder? J Psychopharmacol 2016; 30:112-27. [PMID: 26755548 DOI: 10.1177/0269881115622240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurotensin is a tridecapeptide originally identified in extracts of bovine hypothalamus. This peptide has a close anatomical and functional relationship with the mesocorticolimbic and nigrostriatal dopamine system. Neural circuits containing neurotensin were originally proposed to play a role in the mechanism of action of antipsychotic agents. Additionally, neurotensin-containing pathways were demonstrated to mediate some of the rewarding and/or sensitizing properties of drugs of abuse.This review attempts to contribute to the understanding of the role of neurotensin and its receptors in drug abuse. In particular, we will summarize the potential relevance of neurotensin, its related compounds and neurotensin receptors in substance use disorders, with a focus on the preclinical research.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Laura Tiozzo Fasiolo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea C Borelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Malgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Tiziana Antonelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Kjell Fuxe
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Malgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
8
|
Rouibi K, Bose P, Rompré PP, Warren RA. Ventral Midbrain NTS1 Receptors Mediate Conditioned Reward Induced by the Neurotensin Analog, D-Tyr[11]neurotensin. Front Neurosci 2015; 9:470. [PMID: 26733785 PMCID: PMC4686738 DOI: 10.3389/fnins.2015.00470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/24/2015] [Indexed: 11/13/2022] Open
Abstract
The present study was aimed at characterizing the mechanisms by which neurotensin (NT) is acting within the ventral midbrain to induce a psychostimulant-like effect. In a first experiment, we determine which subtype(s) of NT receptors is/are involved in the reward-inducing effect of ventral midbrain microinjection of NT using the conditioned place-preference (CPP) paradigm. In a second study, we used in vitro patch clamp recording technique to characterize the NT receptor subtype(s) involved in the modulation of glutamatergic neurotransmission (excitatory post-synaptic current, EPSC) in ventral tegmental neurons that expressed (Ih+), or do not express (Ih-), a hyperpolarization-activated cationic current. Behavioral studies were performed with adult male Long-Evans rats while electrophysiological recordings were obtained from brain slices of rat pups aged between 14 and 21 days. Results show that bilateral ventral midbrain microinjections of 1.5 and 3 nmol of D-Tyr[11]NT induced a CPP that was respectively attenuated or blocked by co-injection with 1.2 nmol of the NTS1/NTS2 antagonist, SR142948, and the preferred NTS1 antagonist, SR48692. In electrophysiological experiments, D-Tyr[11]NT (0.01-0.5 μM) attenuated glutamatergic EPSC in Ih+ but enhanced it in Ih- neurons. The attenuation effect (Ih+ neurons) was blocked by SR142948 (0.1 μM) while the enhancement effect (Ih- neurons) was blocked by both antagonists (0.1 μM). These findings suggest that (i) NT is acting on ventral midbrain NTS1 receptors to induce a rewarding effect and (ii) that this psychostimulant-like effect could be due to a direct action of NT on dopamine neurons and/or an enhancement of glutamatergic inputs to non-dopamine (Ih-) neurons.
Collapse
Affiliation(s)
- Khalil Rouibi
- Department of Neurosciences, Université de MontréalMontréal, QC, Canada; FRQ-S Research Group in Behavioral Neurobiology, Department of Psychology, Concordia UniversityMontréal, QC, Canada
| | - Poulomee Bose
- Department of Psychiatry, Faculty of Medicine, Université de Montréal Montréal, QC, Canada
| | - Pierre-Paul Rompré
- Department of Neurosciences, Université de MontréalMontréal, QC, Canada; FRQ-S Research Group in Behavioral Neurobiology, Department of Psychology, Concordia UniversityMontréal, QC, Canada
| | - Richard A Warren
- Department of Psychiatry, Faculty of Medicine, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
9
|
Positive reinforcing effect of neurotensin microinjection into the ventral pallidum in conditioned place preference test. Behav Brain Res 2015; 278:470-5. [DOI: 10.1016/j.bbr.2014.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 12/23/2022]
|
10
|
Yetnikoff L, Lavezzi HN, Reichard RA, Zahm DS. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 2014; 282:23-48. [PMID: 24735820 DOI: 10.1016/j.neuroscience.2014.04.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/21/2022]
Abstract
This review covers the intrinsic organization and afferent and efferent connections of the midbrain dopaminergic complex, comprising the substantia nigra, ventral tegmental area and retrorubral field, which house, respectively, the A9, A10 and A8 groups of nigrostriatal, mesolimbic and mesocortical dopaminergic neurons. In addition, A10dc (dorsal, caudal) and A10rv (rostroventral) extensions into, respectively, the ventrolateral periaqueductal gray and supramammillary nucleus are discussed. Associated intrinsic and extrinsic connections of the midbrain dopaminergic complex that utilize gamma-aminobutyric acid (GABA), glutamate and neuropeptides and various co-expressed combinations of these compounds are considered in conjunction with the dopamine-containing systems. A framework is provided for understanding the organization of massive afferent systems descending and ascending to the midbrain dopaminergic complex from the telencephalon and brainstem, respectively. Within the context of this framework, the basal ganglia direct and indirect output pathways are treated in some detail. Findings from rodent brain are briefly compared with those from primates, including humans. Recent literature is emphasized, including traditional experimental neuroanatomical and modern gene transfer and optogenetic studies. An attempt was made to provide sufficient background and cite a representative sampling of earlier primary papers and reviews so that people new to the field may find this to be a relatively comprehensive treatment of the subject.
Collapse
Affiliation(s)
- L Yetnikoff
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| | - H N Lavezzi
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - R A Reichard
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - D S Zahm
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| |
Collapse
|
11
|
Comparison of the locomotor-activating effects of bicuculline infusions into the preoptic area and ventral pallidum. Brain Struct Funct 2013; 219:511-26. [PMID: 23423460 DOI: 10.1007/s00429-013-0514-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/31/2013] [Indexed: 01/02/2023]
Abstract
Ambulatory locomotion in the rodent is robustly activated by unilateral infusions into the basal forebrain of type A gamma-aminobutyric acid receptor antagonists, such as bicuculline and picrotoxin. The present study was carried out to better localize the neuroanatomical substrate(s) underlying this effect. To accomplish this, differences in total locomotion accumulated during a 20-min test period following bicuculline versus saline infusions in male Sprague-Dawley rats were calculated, rank ordered and mapped on a diagram of basal forebrain transposed from immunoprocessed sections. The most robust locomotor activation was elicited by bicuculline infusions clustered in rostral parts of the preoptic area. Unilateral infusions of bicuculline into the ventral pallidum produced an unanticipatedly diminutive activation of locomotion, which led us to evaluate bilateral ventral pallidal infusions, and these also produced only a small activation of locomotion, and, interestingly, a non-significant trend toward suppression of rearing. Subjects with bicuculline infused bilaterally into the ventral pallidum also exhibited persistent bouts of abnormal movements. Bicuculline infused unilaterally into other forebrain structures, including the bed nucleus of stria terminalis, caudate-putamen, globus pallidus, sublenticular extended amygdala and sublenticular substantia innominata, did not produce significant locomotor activation. Our data identify the rostral preoptic area as the main substrate for the locomotor-activating effects of basal forebrain bicuculline infusions. In contrast, slight activation of locomotion and no effect on rearing accompanied unilateral and bilateral ventral pallidal infusions. Implications of these findings for forebrain processing of reward are discussed.
Collapse
|
12
|
Nimitvilai S, Arora DS, McElvain MA, Brodie MS. Suppression of Gq Function Using Intra-Pipette Delivery of shRNA during Extracellular Recording in the Ventral Tegmental Area. Front Cell Neurosci 2013; 7:7. [PMID: 23408114 PMCID: PMC3569574 DOI: 10.3389/fncel.2013.00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/16/2013] [Indexed: 11/13/2022] Open
Abstract
Selective suppression of protein function in the brain can be achieved using specific silencing RNAs administered in vivo. A viral delivery system is often employed to transfect neurons with small hairpin RNA (shRNA) directed against specific proteins, and intervals of several days are allowed between microinjection of the shRNA-containing virus into the brain and experiments to assess suppression of gene function. Here we report studies using extracellular recording of dopaminergic neurons of the ventral tegmental area (DA VTA neurons) recorded in brain slices in which lentivirus containing shRNA directed against Gq was included in the recording pipette, and suppression of Gq-related function was observed within the time frame of the recording. The action of neurotensin (NT) is associated with activation of Gq, and the firing rate of DA VTA neurons is increased by NT. With shRNA directed against Gq in the pipette, there was a significant reduction of NT excitation within 2 h. Likewise, time-dependent dopamine desensitization, which we have hypothesized to be Gq-dependent, was not observed when shRNA directed against Gq was present in the pipette and dopamine was tested 2 h after initiation of recording. As the time interval (2 h) is relatively short, we tested whether blockade of protein synthesis with cycloheximide delivered via the recording pipette would alter Gq-linked responses similarly. Both NT-induced excitation and dopamine desensitization were inhibited in the presence of cycloheximide. Inclusion of shRNA in the recording pipette may be an efficient and selective way to dampen responses linked to Gq, and, more generally, the use of lentiviral-packaged shRNA in the recording pipette is a means to produce selective inhibition of the function of specific proteins in experiments.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | | | | | | |
Collapse
|
13
|
Hall FS, Centeno M, Perona MTG, Adair J, Dobner PR, Uhl GR. Effects of neurotensin gene knockout in mice on the behavioral effects of cocaine. Psychopharmacology (Berl) 2012; 219:35-45. [PMID: 21720755 DOI: 10.1007/s00213-011-2370-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 05/29/2011] [Indexed: 10/18/2022]
Abstract
RATIONALE The neuropeptide neurotensin (NT), which has been implicated in the modulation of dopamine signaling, is expressed in a subset of dopamine neurons and antagonism of the NT receptor has been reported to reduce psychostimulant-induced behavior. Gene knockout (KO) of the neurotensin/neuromedin N precursor provides an approach to delineating possible roles of endogenous NT in psychostimulant-induced responses. OBJECTIVES Involvement of NT in cocaine responses was examined by comparing acute and conditioned locomotor responses, conditioned place preference, and sensitization in wild-type (WT), heterozygous, and homozygous NT KO mice. RESULTS NT KO mice did not differ from their WT or heterozygous littermates in either baseline or acute cocaine-stimulated locomotor activity. The locomotor stimulant effects of cocaine were slightly prolonged in these mice under some, but not all, experimental conditions. The rewarding effects of cocaine as assessed in the conditioned place preference and conditioned locomotion paradigms were also similar between genotypes at all cocaine doses tested. CONCLUSIONS These results suggest that endogenous NT is not involved in cocaine-mediated behaviors in most circumstances, but under some conditions, a slight prolongation of the effects of cocaine was observed in the absence of endogenous NT.
Collapse
Affiliation(s)
- F Scott Hall
- Molecular Neurobiology Branch, National Institute on Drug Abuse, NIH/DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
14
|
László K, Tóth K, Kertes E, Péczely L, Ollmann T, Madarassy-Szücs A, Lénárd L. The role of neurotensin in passive avoidance learning in the rat central nucleus of amygdala. Behav Brain Res 2011; 226:597-600. [PMID: 21946307 DOI: 10.1016/j.bbr.2011.08.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/23/2011] [Accepted: 08/27/2011] [Indexed: 11/30/2022]
Abstract
Tridecapeptide neurotensin (NT) acts as a neurotransmitter and/or neuromodulator and plays a role in learning and reinforcement. The central nucleus of amygdala (CeA), which is relatively rich in NT and neurotensin-1 receptors (NTS1), participates in the regulation of memory and learning mechanisms. The aim of this study was to examine the possible effect of NT and NTS1 antagonist (ANT) on passive avoidance learning after their microinjection into the CeA of male wistar rats. NT significantly increased the latency time. Effect of NT was blocked by ANT pretreatment. ANT in itself had no effect. Our results show that in the rat CeA NT facilitates passive avoidance learning via NTS1.
Collapse
Affiliation(s)
- Kristóf László
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | | | | | | | | | | | | |
Collapse
|
15
|
Alburges ME, Hoonakker AJ, Horner KA, Fleckenstein AE, Hanson GR. Methylphenidate alters basal ganglia neurotensin systems through dopaminergic mechanisms: a comparison with cocaine treatment. J Neurochem 2011; 117:470-8. [DOI: 10.1111/j.1471-4159.2011.07215.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Li J, Chen C, Chen C, He Q, Li H, Li J, Moyzis RK, Xue G, Dong Q. Neurotensin receptor 1 gene (NTSR1) polymorphism is associated with working memory. PLoS One 2011; 6:e17365. [PMID: 21394204 PMCID: PMC3048867 DOI: 10.1371/journal.pone.0017365] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 02/01/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Recent molecular genetics studies showed significant associations between dopamine-related genes (including genes for dopamine receptors, transporters, and degradation) and working memory, but little is known about the role of genes for dopamine modulation, such as those related to neurotensin (NT), in working memory. A recent animal study has suggested that NT antagonist administration impaired working memory in a learning task. The current study examined associations between NT genes and working memory among humans. METHODS Four hundred and sixty healthy undergraduate students were assessed with a 2-back working memory paradigm. 5 SNPs in the NTSR1 gene were genotyped. 5 ANOVA tests were conducted to examine whether and how working memory differed by NTSR1 genotype, with each SNP variant as the independent variable and the average accuracy on the working memory task as the dependent variable. RESULTS ANOVA results suggested that two SNPs in the NTSR1 gene (rs4334545 and rs6090453) were significantly associated with working memory. These results survived corrections for multiple comparisons. CONCLUSIONS Our results demonstrated that NTSR1 SNP polymorphisms were significantly associated with variance in working memory performance among healthy adults. This result extended previous rodent studies showing that the NT deficiency impairs the working memory function. Future research should replicate our findings and extend to an examination of other dopamine modulators.
Collapse
Affiliation(s)
- Jin Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
- Department of Psychology and Social Behavior, University of California Irvine, Irvine, California, United States of America
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California Irvine, Irvine, California, United States of America
| | - Chunhui Chen
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Qinghua He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
- Department of Psychology, University of Southern California, Los Angeles, California, United States of America
| | - He Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Jun Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Robert K. Moyzis
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
| | - Gui Xue
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
- Department of Psychology, University of Southern California, Los Angeles, California, United States of America
| | - Qi Dong
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
17
|
Effects of neurotensin in amygdaloid spatial learning mechanisms. Behav Brain Res 2010; 210:280-3. [PMID: 20219557 DOI: 10.1016/j.bbr.2010.02.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/17/2010] [Accepted: 02/18/2010] [Indexed: 12/31/2022]
Abstract
Neurotensin (NT) acts as a neurotransmitter and/or neuromodulator and plays a role in learning and reward related processes. The central nucleus of amygdala (CeA) participates in the regulation of memory and learning mechanisms. In Morris water maze test, rats were microinjected with NT or neurotensin receptor-1 (NTS1) antagonist SR 48692 (ANT). NT significantly reduced the escape latency. Effect of NT was blocked by ANT pretreatment. Our results show that in the rat CeA NT facilitates spatial learning. We clarified that NTS1s are involved in this action.
Collapse
|
18
|
László K, Tóth K, Kertes E, Péczely L, Lénárd L. The role of neurotensin in positive reinforcement in the rat central nucleus of amygdala. Behav Brain Res 2009; 208:430-5. [PMID: 20035801 DOI: 10.1016/j.bbr.2009.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/10/2009] [Accepted: 12/12/2009] [Indexed: 10/20/2022]
Abstract
In the central nervous system neurotensin (NT) acts as a neurotransmitter and neuromodulator. It was shown that NT has positive reinforcing effects after its direct microinjection into the ventral tegmental area. The central nucleus of amygdala (CeA), part of the limbic system, plays an important role in learning, memory, regulation of feeding, anxiety and emotional behavior. By means of immunohistochemical and radioimmune methods it was shown that the amygdaloid body is relatively rich in NT immunoreactive elements and NT receptors. The aim of our study was to examine the possible effects of NT on reinforcement and anxiety in the CeA. In conditioned place preference test male Wistar rats were microinjected bilaterally with 100 or 250 ng NT in volume of 0.4 microl or 35 ng neurotensin receptor 1 (NTS1) antagonist SR 48692 alone, or NTS1 antagonist 15 min before 100 ng NT treatment. Hundred or 250 ng NT significantly increased the time rats spent in the treatment quadrant. Prior treatment with the non-peptide NTS1 antagonist blocked the effects of NT. Antagonist itself did not influence the reinforcing effect. In elevated plus maze test we did not find differences among the groups as far as the anxiety index (time spent on the open arms) was concerned. Our results suggest that in the rat ACE NT has positive reinforcing effects. We clarified that NTS1s are involved in this action. It was also shown that NT does not influence anxiety behavior.
Collapse
Affiliation(s)
- Kristóf László
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | | | | | | | | |
Collapse
|
19
|
Ferraro L, Tomasini MC, Fuxe K, Agnati LF, Mazza R, Tanganelli S, Antonelli T. Mesolimbic dopamine and cortico-accumbens glutamate afferents as major targets for the regulation of the ventral striato-pallidal GABA pathways by neurotensin peptides. ACTA ACUST UNITED AC 2007; 55:144-54. [PMID: 17448541 DOI: 10.1016/j.brainresrev.2007.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 12/11/2022]
Abstract
The tridecapeptide neurotensin (NT) acts in the mammalian brain as a primary neurotransmitter or neuromodulator of classical neurotransmitters. Morphological and functional in vitro and in vivo studies have demonstrated the existence of close interactions between NT and dopamine both in limbic and in striatal brain regions. Additionally, biochemical and neurochemical evidence indicates that in these brain regions NT plays also a crucial role in the regulation of the aminoacidergic signalling. It is suggested that in the nucleus accumbens the regulation of prejunctional dopaminergic transmission induced by NT may be primarily due to indirect mechanism(s) involving mediation via the aminoacidergic neuronal systems with increased glutamate release followed by increased GABA release in the nucleus accumbens rather than a direct action of the peptide on accumbens dopaminergic terminals. The neurochemical profile of action of NT in the control of the pattern of dopamine, glutamate and GABA release in the nucleus accumbens differs to a substantial degree from that shown by the peptide in the dorsal striatum. The neuromodulatory NT mechanisms in the regulation of the ventral striato-pallidal GABA pathways are discussed and their relevance for schizophrenia is underlined.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Waraczynski M. Muscimol inactivation of the septo-preoptic complex affects medial forebrain bundle self-stimulation only when directed at the complex's ventrolateral components. Behav Brain Res 2007; 178:98-107. [PMID: 17196270 DOI: 10.1016/j.bbr.2006.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/30/2006] [Accepted: 12/02/2006] [Indexed: 11/15/2022]
Abstract
Elements of the septo-preoptic basal forebrain complex, particularly the lateral and medial septum, the diagonal band of Broca, and the magnocellular preoptic area, have been linked to medial forebrain bundle (MFB) self-stimulation. This study examines the roles of these areas in MFB self-stimulation by temporarily inactivating them with 25 and 50ng doses of the GABA(A) receptor agonist muscimol. Changes in performance capacity and stimulation reward effectiveness were evaluated with the rate-frequency curve shift paradigm. When infused into the lateral and medial septum and the vertical limb of the diagonal band of Broca, both doses of muscimol were as ineffective as saline in altering either the rats' maximum rate of response for stimulation or the frequency required to maintain half-maximal response rate (required frequency). However, when infused into the horizontal limb of the diagonal band of Broca or the magnocellular preoptic area, muscimol substantially decreased maximal response rate and modestly increased required frequency. Changes in maximum rate were dose-dependent, but changes in required frequency were not. Muscimol infusions contralateral to the stimulated hemisphere were as effective as ipsilateral infusions; bilateral infusions tended to so suppress responding that resulting rate-frequency curves were often invalid. These results suggest a role in MFB self-stimulation for only the ventrolateral components of the septo-preoptic complex, and support past observations of considerable bilaterality in the neural systems that support self-stimulation.
Collapse
Affiliation(s)
- Meg Waraczynski
- Department of Psychology, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190, USA.
| |
Collapse
|
21
|
Geisler S, Bérod A, Zahm DS, Rostène W. Brain neurotensin, psychostimulants, and stress--emphasis on neuroanatomical substrates. Peptides 2006; 27:2364-84. [PMID: 16934369 DOI: 10.1016/j.peptides.2006.03.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 03/05/2006] [Indexed: 12/29/2022]
Abstract
Neurotensin (NT) is a peptide that is widely distributed throughout the brain. NT is involved in locomotion, reward, stress and pain modulation, and in the pathophysiology of drug addiction and depression. In its first part this review brings together relevant literature about the neuroanatomy of NT and its receptors. The second part focuses on functional-anatomical interactions between NT, the mesotelencephalic dopamine system and structures targeted by dopaminergic projections. Finally, recent data about the actions of NT in processes underlying behavioral sensitization to psychostimulant drugs and the involvement of NT in the regulation of the hypothalamo-pituitary-adrenal gland axis are considered.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Pharmacological and Physiological Science, Saint Louis University, School of Medicine, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
22
|
Cáceda R, Kinkead B, Nemeroff CB. Neurotensin: role in psychiatric and neurological diseases. Peptides 2006; 27:2385-404. [PMID: 16891042 DOI: 10.1016/j.peptides.2006.04.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 04/01/2006] [Indexed: 10/24/2022]
Abstract
Neurotensin (NT), an endogenous brain-gut peptide, has a close anatomical and functional relationship with the mesocorticolimbic and neostriatal dopamine system. Dysregulation of NT neurotransmission in this system has been hypothesized to be involved in the pathogenesis of schizophrenia. Additionally, NT containing circuits have been demonstrated to mediate some of the mechanisms of action of antipsychotic drugs, as well as the rewarding and/or sensitizing properties of drugs of abuse. NT receptors have been suggested to be novel targets for the treatment of psychoses or drug addiction.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Suite 4000 WMRB, 101 Woodruff Circle, Atlanta, GA 30322 4990, USA.
| | | | | |
Collapse
|
23
|
Reynolds SM, Geisler S, Bérod A, Zahm DS. Neurotensin antagonist acutely and robustly attenuates locomotion that accompanies stimulation of a neurotensin-containing pathway from rostrobasal forebrain to the ventral tegmental area. Eur J Neurosci 2006; 24:188-96. [PMID: 16882016 DOI: 10.1111/j.1460-9568.2006.04791.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotensin exerts complex effects on the mesolimbic dopamine system that alter motivation and contribute to neuroadaptations associated with psychostimulant drug administration. Activation of abundant neurotensin receptors in the ventral tegmental area (VTA) enhances dopamine neuron activity and associated release of dopamine in the nucleus accumbens (Acb) and cortex. In view of recent anatomical studies demonstrating that 70% of all neurotensin-containing neurons projecting to the VTA occupy the lateral preoptic area-rostral lateral hypothalamus (LPH) and lateral part of the medial preoptic area (MPOA), the present study examined functionality in the LPH-MPOA neurotensinergic pathway in the rat. Disinhibition (resulting ultimately in stimulation-like effects) of LPH-MPOA neurons with microinjected bicuculline (50 or 100 ng in 0.25 microL) produced locomotor activation that was considerably attenuated by systemic administration of the neurotensin antagonist SR 142948 A (0.03 and 0.1 mg/kg). In contrast, locomotion elicited in this manner was completely blocked by SR 142948 A infused directly into the VTA (5.0 and 15.0 ng in 0.25 microL). Baseline locomotion was unaffected by systemic or intra-VTA administration of SR 142948 A and LPH-MPOA-elicited locomotion was unaffected by infusion of SR 142948 A into the substantia nigra pars compacta and sites rostral and dorsal to the VTA. Locomotion was not elicited by infusions of bicuculline into the lateral hypothalamus at sites caudal to the LPH-MPOA, where neurotensin neurons projecting to the VTA are fewer. The results demonstrate the capacity of a neurotensin-containing pathway from LPH-MPOA to VTA to modulate locomotion. This pathway may be important in linking hippocampal and mesolimbic mechanisms in normal behaviour and drug addiction.
Collapse
Affiliation(s)
- Sheila M Reynolds
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St Louis, MO 63104, USA
| | | | | | | |
Collapse
|
24
|
Geisler S, Zahm DS. On the retention of neurotensin in the ventral tegmental area (VTA) despite destruction of the main neurotensinergic afferents of the VTA--implications for the organization of forebrain projections to the VTA. Brain Res 2006; 1087:87-104. [PMID: 16626637 DOI: 10.1016/j.brainres.2006.02.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 02/18/2006] [Accepted: 02/24/2006] [Indexed: 11/20/2022]
Abstract
Neurotensin (NT) modulates ventral tegmental area (VTA) signaling in a manner relevant to psychostimulant drug actions, thus inviting evaluation of psychostimulant effects in conditions of reduced or absent VTA NT. However, in a preliminary study, NT immunoreactivity (-ir) in the VTA was unaffected following destruction of the main concentration of forebrain neurotensinergic VTA afferents in the lateral preoptic-rostral lateral hypothalamic continuum (LPH) and adjacent lateral part of the medial preoptic area (MPOA). This study attempted to determine what measures are necessary to obtain a significant reduction of VTA NT-ir. Large unilateral ibotenic acid lesions were made in several structures containing NTergic, VTA-projecting neurons, including the LPH-MPOA, nucleus accumbens, VTA itself and dorsal raphe. None of these was associated with substantial ipsilateral loss of NT-ir in the VTA, lateral hypothalamus or lateral habenula. Combinations of lesions, such as LPH-MPOA plus VTA and LPH-MPOA plus dorsal raphe, also failed to substantially reduce NT-ir in these structures. Transections of the medial forebrain bundle (mfb) likewise failed to produce a substantial loss of VTA NT-ir measured with immunohistochemistry and radioimmunoassay. Transections of the mfb were carried out in combination with infusions of retrograde and anterograde axonal tract-tracers, revealing that the routes taken by some forebrain NT-ir VTA afferents circumvent mfb transections. All of these results together are consistent with the hypothesis that the connectional organization of forebrain and brainstem, potentially in combination with limited adaptive synaptogenesis, renders the VTA relatively insensitive to moderate losses of neurotensinergic and, perhaps, other peptidergic afferents.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, MO 63104, USA
| | | |
Collapse
|
25
|
Radja F, Bauco P, Rompré PP. Effects of excitotoxic lesions of the medial prefrontal cortex on density of high affinity [125I-Tyr3]neurotensin binding sites within the ventral midbrain and striatum. Eur J Pharmacol 2006; 539:158-63. [PMID: 16714012 DOI: 10.1016/j.ejphar.2006.03.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 03/13/2006] [Accepted: 03/27/2006] [Indexed: 11/21/2022]
Abstract
The present study was aimed at determining the extent to which excitotoxic lesions of the medial prefrontal cortex reduce neurotensin receptors within the striatum, the nucleus accumbens, the ventral tegmental area and the substantia nigra. The medial prefrontal cortex was unilaterally lesioned with ibotenic acid and 10 days later brain sections were processed for neurotensin receptor autoradiographic analysis using 0.1 nM [(125)I-Tyr3]neurotensin with, or without, levocabastine. Analysis revealed at least two sites, one levocabastine-insensitive neurotensin NT(1) and one levocabastine-sensitive neurotensin NT(2)-like. The proportion of the latter site was high within the caudal striatum, the nucleus accumbens and the medial prefrontal cortex. Lesions produced a 60% to 80% reduction in neurotensin NT(1) within the ipsilateral medial prefrontal cortex, but no change in the sub-cortical nuclei. An increase in neurotensin NT(2)-like receptors was found in ipsilateral dorso-caudal caudate. These results show that a significant amount of neurotensin NT(1) receptors are located on neurons within the medial prefrontal cortex but not on their efferent terminals.
Collapse
Affiliation(s)
- Fatiha Radja
- Centre de Recherche de Fernand-Seguin, Hôpital Louis-H. Lafontaine et Département de Psychiatrie, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
26
|
St-Gelais F, Legault M, Bourque MJ, Rompré PP, Trudeau LE. Role of calcium in neurotensin-evoked enhancement in firing in mesencephalic dopamine neurons. J Neurosci 2004; 24:2566-74. [PMID: 15014132 PMCID: PMC6729478 DOI: 10.1523/jneurosci.5376-03.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotensin (NT) increases neurotransmission within the mesolimbic dopamine system by enhancing the firing rate of dopaminergic (DAergic) neurons and by acting at the nerve terminal level. The signal transduction pathways involved in these effects have not been characterized, but NT receptors are coupled to the phospholipase C pathway and Ca(2+) mobilization. However, an enhancement of intracellular Ca(2+) concentration ([Ca(2+)](i)) evoked by NT in DAergic neurons has yet to be demonstrated. Furthermore, the hypothesis that the excitatory effects of NT in DAergic neurons are Ca(2+) dependent is currently untested. In whole-cell recording experiments, DAergic neurons in culture were identified by their selective ability to express a cell-specific green fluorescent protein reporter construct. These experiments confirmed that NT increases firing rate in cultured DAergic neurons. This effect was Ca(2+) dependent because it was blocked by intracellular dialysis with BAPTA. Using Ca(2+) imaging, we showed that NT caused a rapid increase in [Ca(2+)](i) in DAergic neurons. Most of the Ca(2+) originated from the extracellular medium. NT-induced excitation and Ca(2+) influx were blocked by SR48692, an antagonist of the type 1 NT receptor. Blocking IP(3) receptors using heparin prevented the excitatory effect of NT. Moreover, Zn(2+) and SKF96365 both blocked the excitatory effect of NT, suggesting that nonselective cationic conductances are involved. Finally, although NT can also induce a rise in [Ca(2+)](i) in astrocytes, we find that NT-evoked excitation of DAergic neurons can occur independently of astrocyte activation.
Collapse
Affiliation(s)
- Fannie St-Gelais
- Département de Pharmacologie, Centre de Recherche en Sciences Neurologiques, Université de Montréal, Montréal, Québec, Canada H3T IJ4
| | | | | | | | | |
Collapse
|
27
|
Abstract
Memory is thought to be subserved by structural and functional alteration in synaptic connectivity. But although neuronal plasticity requires gene expression, the identity of the proteins involved is largely unknown. Using the chick 1-day-old passive avoidance learning paradigm and differential display RNA fingerprinting, we identified 13 candidate genes which are upregulated in the intermediate medial hyperstriatum ventrale (IMHV), an area that has been correlated with the initial processing of memory formation. One of the induced genes is a new member of the cyclin family, with high homology to cyclin L (ania-6a). Analysis of the expression pattern of this gene after training revealed two time waves of induction: the first correlated with learning and initial memory process in the IMHV; the second correlated with memory consolidation, first in the IMHV, and then in the lobus paraolefactoris. There is a correlation between methylanthranilate (MeA) concentrations (the malaise substrate in the passive avoidance training procedure), the duration of memory and the expression level of cyclin S. While training chicks on low concentrations of MeA causes short-term memory and low expression level of cyclin S, high concentration of MeA induces long-term memory and high expression level of cyclin S in the IMHV. The role of cyclins in the regulation of neuronal-plasticity-related gene expression was overlooked, and it might serve as a key step in long-term memory formation.
Collapse
Affiliation(s)
- Sarit Edelheit
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | | |
Collapse
|
28
|
Legault M, Congar P, Michel FJ, Trudeau LE. Presynaptic action of neurotensin on cultured ventral tegmental area dopaminergic neurones. Neuroscience 2002; 111:177-87. [PMID: 11955721 DOI: 10.1016/s0306-4522(01)00614-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dopamine-containing neurones of the ventral tegmental area express neurotensin receptors which are involved in regulating cell firing and dopamine release. Although indirect evidence suggests that some neurotensin receptors may be localised on the nerve terminals of dopaminergic neurones in the striatum and thus locally regulate dopamine release, a clear demonstration of such a mechanism is lacking and a number of indirect sites of action are possible. We have taken advantage of a simplified preparation in which cultured rat ventral tegmental area dopaminergic neurones establish nerve terminals that co-release glutamate to determine whether neurotensin can act at presynaptic sites. We recorded glutamate-mediated synaptic currents that were generated by dopaminergic nerve terminals as an index of presynaptic function. The neurotensin receptor agonist NT(8-13) caused an inward current and an enhancement of the firing rate of dopaminergic neurones together with an increase in the frequency of spontaneous glutamate receptor-mediated excitatory postsynaptic currents (EPSCs). Incompatible with a direct excitatory action on nerve terminals, NT(8-13) failed to change the amplitude of individual action potential-evoked EPSCs or the frequency of miniature EPSCs recorded in the presence of tetrodotoxin. However, NT(8-13) reduced the ability of terminal D2 dopamine receptors to inhibit action potential-evoked EPSCs in isolated dopaminergic neurones. Taken together, our results suggest that in addition to its well-known somatodendritic excitatory effect leading to an increase in firing rate, neurotensin also acts on nerve terminals. The main effect of neurotensin on nerve terminals is not to produce a direct excitation, but rather to decrease the effectiveness of D2 receptor-mediated presynaptic inhibition.
Collapse
Affiliation(s)
- M Legault
- Départements de Pharmacologie et de Psychiatrie, Centre de Recherche en Sciences Neurologiques, Centre de Recherche Fernand Seguin, Université de Montréal, Montréal, QC, Canada
| | | | | | | |
Collapse
|
29
|
Bauco P, Rompré PP. Effects of neurotensin receptor activation on brain stimulation reward in Fischer 344 and Lewis rats. Eur J Pharmacol 2001; 432:57-61. [PMID: 11734188 DOI: 10.1016/s0014-2999(01)01466-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effects of intracerebroventricular injections of 18 nmol/10 microl of neurotensin, [D-Tyr(11)]neurotensin, or saline on operant responding for brain stimulation reward were investigated in Fischer 344 (F344) and Lewis (LEW) rats using the curve-shift paradigm. [D-Tyr(11)]neurotensin, but not neurotensin, decreased reward threshold in F344 rats while it increased thresholds in LEW rats. Both peptides suppressed maximal rates of responding; this effect was of greater magnitude and longer lasting in LEW than in F344 rats. These findings show that F344 and LEW rat strains are differentially sensitive to activation of central neurotensin receptors that modulate reward-relevant circuitry.
Collapse
Affiliation(s)
- P Bauco
- Centre de Recherche Fernand-Seguin et Département de Psychiatrie, Université de Montréal, 7331, rue Hochelaga, Quebec, H1N 3V2, Montréal, Canada.
| | | |
Collapse
|
30
|
Zahm DS, Grosu S, Williams EA, Qin S, Bérod A. Neurons of origin of the neurotensinergic plexus enmeshing the ventral tegmental area in rat: retrograde labeling and in situ hybridization combined. Neuroscience 2001; 104:841-51. [PMID: 11440814 DOI: 10.1016/s0306-4522(01)00118-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The morphological and physiological substrates that underlie the mutual regulatory interactions of neurotensin and dopamine in the rat mesotelencephalic projections and related structures remain to be fully described. A salient candidate for neurotensinergic effects on the mesotelencephalic dopamine projection is the dense plexus of neurotensin immunoreactive axons that enmeshes the ventral tegmental area and substantia nigra, but the locations of the neurons that give rise to this plexus have not been identified and its systemic context remains obscure. To address this, Fluoro-Gold and the cholera toxin beta subunit, retrogradely transported axonal tracers, were injected into the ventral tegmental area of rats and the brains were processed to demonstrate neurons that contained both retrograde tracer immunoreactivity and a probe against neurotensin/neuromedin N messenger RNA. Substantial numbers of double-labeled neurons were observed in the rostral part of the lateral septum, and in a region centered on the shared boundaries of the bed nucleus of stria terminalis, ventromedial ventral pallidum, diagonal band of Broca, lateral preoptic area and rostral lateral hypothalamus. A few double-labeled neurons were also observed in the dorsal raphe nucleus and adjacent periaqueductal gray. Despite the administration of haloperidol and D-amphetamine to elicit and enhance neurotensin/neuromedin N messenger RNA expression in striatum, including the nucleus accumbens and olfactory tubercle, no double-labeled neurons were observed there. These results identify a novel brain substrate for control of midbrain dopamine levels, which affect reward mechanisms and motivation.
Collapse
Affiliation(s)
- D S Zahm
- Department of Anatomy and Neurobiology, St Louis University School of Medicine, MO 63104, USA.
| | | | | | | | | |
Collapse
|
31
|
Trudeau LE. Neurotensin regulates intracellular calcium in ventral tegmental area astrocytes: evidence for the involvement of multiple receptors. Neuroscience 2000; 97:293-302. [PMID: 10799761 DOI: 10.1016/s0306-4522(99)00597-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent evidence suggests that some types of neurotensin receptors may be expressed by astrocytes. In order to explore the function of neurotensin receptors in astrocytes, the effect of a neurotensin receptor agonist, neurotensin(8-13), on intracellular Ca(2+) dynamics in mixed neuronal/glial cultures prepared from rat ventral tegmental area was examined. It was found that neurotensin(8-13) induces a long-lasting rise in intracellular Ca(2+) concentration in a subset of glial fibrilary acidic protein-positive glial cells. This response displays extensive desensitization and appears to implicate both intracellular and extracellular Ca(2+) sources. In the absence of extracellular Ca(2+), neurotensin(8-13) evokes only a short-lasting rise in intracellular Ca(2+). The neurotensin-evoked intracellular Ca(2+) accumulation is blocked by the phospholipase C inhibitor U73122 and by thapsigargin, suggesting that it is initiated by release of Ca(2+) from an inositol triphosphate-dependent store. The Ca(2+)-mobilizing action of neurotensin(8-13) in astrocytes is dependent on at least two receptors, because the response is blocked in part only by SR48692, a type 1 neurotensin receptor antagonist, and is blocked completely by SR142948A, a novel neurotensin receptor antagonist. The finding that the type 2 neurotensin receptor agonist levocabastine fails to mimic or alter the effects of neurotensin(8-13) on intracellular Ca(2+) makes it unlikely that the type 2 neurotensin receptor is involved. In summary, these results show that functional neurotensin receptors are present in cultured ventral tegmental area astrocytes and that their activation induces a highly desensitizing rise in intracellular Ca(2+). The pharmacological profile of this response suggests that a type 1 neurotensin receptor is involved but that another, possibly novel, non-type 2 neurotensin receptor is also implicated. If present in vivo, such signalling could be involved in some of the physiological actions of neurotensin.
Collapse
Affiliation(s)
- L E Trudeau
- Départements de Pharmacologie et de Psychiatrie, Centre de Recherche en Sciences Neurologiques, Centre de Recherche Fernand Seguin, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Canada.
| |
Collapse
|
32
|
Maes M, Lin AH, Bonaccorso S, Goossens F, Van Gastel A, Pioli R, Delmeire L, Scharpé S. Higher serum prolyl endopeptidase activity in patients with post-traumatic stress disorder. J Affect Disord 1999; 53:27-34. [PMID: 10363664 DOI: 10.1016/s0165-0327(98)00086-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND It is reported that psychiatric disorders, such as depression and schizophrenia, are associated with changes in serum activity of prolyl endopeptidase (EC 3.4.21.26), a cytosolic endopeptidase, which cleaves peptide bonds on the carboxylside of proline in proteins of relatively small molecular mass. AIMS AND METHODS The aims of the present study were to examine serum PEP activity in patients with post-traumatic stress disorder (PTSD) versus healthy volunteers. PEP activity has been determined by a fluorimetric assay. RESULTS Serum PEP activity was significantly higher in patients with PTSD than in normal volunteers. Serum PEP activity was significantly higher in patients with PTSD and concurrent major depression than in patients with PTSD without major depression. In PTSD patients, there were no significant correlations between serum PEP activity and severity of PTSD symptoms. CONCLUSIONS The results show that PTSD and, in particular, PTSD with concurrent major depression is associated with increased activity of PEP. RELEVANCE these results may be of importance for the (i) neuroendocrine pathophysiology of PTSD since PEP degrades neuropeptides, such as arginine vasopressin (AVP) and thyrotropin releasing hormone (TRH); and (ii) etiology of PTSD, since PEP degrades behaviorally active neuropeptides, such as AVP, TRH, oxytocin, neurotensin and substance P, which play a key role in positive reinforcement, social interactions, emotions and stress responsivity.
Collapse
Affiliation(s)
- M Maes
- Clinical Research Center for Mental Health, Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zahm DS, Williams ES, Krause JE, Welch MA, Grosu DS. Distinct and interactive effects of d-amphetamine and haloperidol on levels of neurotensin and its mRNA in subterritories in the dorsal and ventral striatum of the rat. J Comp Neurol 1998; 400:487-503. [PMID: 9786410 DOI: 10.1002/(sici)1096-9861(19981102)400:4<487::aid-cne4>3.0.co;2-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Striatal tissue concentrations of neurotensin, expression of neurotensin/neuromedin N (NT/N) mRNA, and numbers of neurotensin-immunoreactive neurons are increased by d-amphetamine (amph), which stimulates dopamine release in the striatum, and haloperidol (hal), a dopamine receptor antagonist with high affinity for D2-like receptors. The possibility that the effects of these drugs involve distinct subpopulations of striatal neurons was addressed in this study, in which the relative numbers and distributions of striatal neuron profiles containing neurotensin immunoreactivity and/or NT/N mRNA were compared following administrations of hal, amph, hal and amph co-administered, and vehicle. Fourteen striatal subterritories in caudate-putamen, nucleus accumbens, and olfactory tubercle were evaluated. Amph produced increases in the expression of neurotensin preferentially in the ventromedial and caudodorsal subterritories of the caudate-putamen, the rostrobasal cell cluster and lateral shell of the nucleus accumbens, and the olfactory tubercle. Haloperidol produced increased neurotensin expression in much of dorsal and ventral striatum, most prominently in the rostral, dorsomedial and ventrolateral quadrants of the caudate-putamen, and in the rostrobasal cell cluster, rostral pole, medial and lateral shell of the nucleus accumbens and the olfactory tubercle. The numbers of neurons responding to amph and hal in all subterritories following co-administration of the two drugs were significantly less than the summed numbers responding individually to amph and hal. Furthermore, in the subterritories where immunohistochemically detectable responses elicited by amph exceeded those produced by hal, co-administration of the two drugs resulted in responses comparable to those elicited by hal given alone. It is suggested that some of the reported anti-dopaminergic behavioral effects of basal ganglia neurotensin may be attenuated in conditions of reduced dopamine neurotransmission.
Collapse
Affiliation(s)
- D S Zahm
- Department of Anatomy and Neurobiology, St. Louis University School of Medicine, Missouri 63104, USA.
| | | | | | | | | |
Collapse
|
34
|
Gehle VM, Erwin VG. Common Quantitative Trait Loci for Alcohol-Related Behaviors and CNS Neurotensin Measures: Voluntary Ethanol Consumption. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03666.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Grupp LA, Harding S. Neurotensin attenuates the reduction in alcohol drinking produced by angiotensin II. Psychopharmacology (Berl) 1996; 125:57-64. [PMID: 8724449 DOI: 10.1007/bf02247393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neurotensin enhances some of the behavioral effects of alcohol including motor impairment, narcosis, hypothermia and also interacts with some of the physiological actions of angiotensin (ANG) II including aldosterone release and increased blood pressure. ANG II injections also produce a dose-dependent antagonist reversible reduction in alcohol drinking. The present study is the first to examine the interaction between neurotensin and angiotensin in the behavioral context of oral alcohol self-administration. Adult male Wistar rats acquired alcohol drinking (6% w/v) using the limited access procedure which makes alcohol available for 40 min every day. When intake stabilized ANG II (400 micrograms/kg per day) or vehicle were administered subcutaneously (SC) just prior to alcohol availability but only the group receiving ANG II showed a marked reduction in alcohol intake. Following this the groups were pretreated sc with either vehicle or ascending doses of neurotensin (5, 10, 20 micrograms/kg) followed by either ANG II or vehicle. Control groups received either two vehicle injections or vehicle and neurotensin injection. Neurotensin alone did not affect alcohol intake at any of the doses tested but did attenuate, in a dose-dependent fashion, the reduction in alcohol intake produced by ANG II. These results demonstrate neurotensin's ability to alter the behavioral effect of ANG II on alcohol intake.
Collapse
Affiliation(s)
- L A Grupp
- Biobehavioral Research Department, Addiction Research Foundation of Ontario, Toronto, Canada
| | | |
Collapse
|
36
|
Allen GV, Cheung RT, Cechetto DF. Neurochemical changes following occlusion of the middle cerebral artery in rats. Neuroscience 1995; 68:1037-50. [PMID: 8544980 DOI: 10.1016/0306-4522(95)00198-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have developed a stroke model involving middle cerebral artery occlusion in the rat which elicits changes in cardiac and autonomic variables that are similar to those observed clinically. It is likely that these neurogenic autonomic responses are mediated by changes in neurotransmitter systems subsequent to the stroke. This possibility was investigated by examining changes in immunohistochemical staining for tyrosine hydroxylase, neuropeptide Y, leu-enkephalin, neurotoxins and dynorphin following middle cerebral artery occlusion in the rat. Computerized image analysis was used to provide semi-quantitative measurements of the changes. The ischemic region was centered primarily in the insular cortex. The results indicate that there are significant increases in immunostaining for tyrosine hydroxylase and neuropeptide Y in the insular cortex within the peri-infarct region. Neuropeptide Y staining was also significantly increased in the basolateral nucleus of the amygdala, ipsilateral to the middle cerebral artery occlusion, which did not appear to be included in the infarct. Leu-enkephalin, neurotensin and dynorphin staining was significantly elevated in the central nucleus of the amygdala ipsilateral to the occlusion of the middle cerebral artery. These neurochemical changes are discussed as possible mechanisms mediating the cardiac and autonomic consequences of stroke or as part of a process to provide neuro-protection following focal cerebral ischemia.
Collapse
Affiliation(s)
- G V Allen
- Robarts Research Institute, Department of Stroke and Aging, London, Ontario, Canada
| | | | | |
Collapse
|
37
|
Rompré PP, Gratton A. Mesencephalic microinjections of neurotensin-(1-13) and its C-terminal fragment, neurotensin-(8-13), potentiate brain stimulation reward. Brain Res 1993; 616:154-62. [PMID: 8358607 DOI: 10.1016/0006-8993(93)90204-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Using the curve shift method, we assessed the effects of ventromedial mesencephalic tegmental (VMT) microinjections of an equimolar concentration of neurotensin-(1-13) (NT-(1-13)) and of its C-terminal fragment, neurotensin-(8-13) (NT-(8-13)), on operant responding for rewarding electrical stimulation of the caudal mesencephalic central gray. The effects of NT-(1-13) and NT-(8-13) on brain stimulation reward (BSR) were also compared to those of systemically administered quinpirole (0.1 and 0.2 mg/kg, s.c.), a direct dopamine agonist, and GBR-12909 (10 and 20 mg/kg, i.p.), a selective dopamine uptake blocker. At the concentration injected, NT-(8-13) was as effective as NT-(1-13) at facilitating BSR, producing significant leftward shifts of the function relating the rate of responding to the stimulation frequency (R/F function); neither form of the peptide was effective when injected in regions dorsal to the VMT. Similarly, GBR-12909 produced a parallel leftward shift of the R/F function, but, unlike NT-(1-13), also significantly increased the asymptotic rates of responding. In contrast, the high dose of quinpirole produced non-parallel leftward shifts of the R/F function and suppressed the asymptote. The similarity between the effects of neurotensin and GBR-12909 on one hand, and the differences between those of neurotensin and quinpirole on the other, suggest that activation VMT neurotensin receptors potentiate BSR by enhancing increases in dopamine neurotransmission that are contingent upon operant responding or rewarding brain stimulation, or both.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P P Rompré
- CSBN, Psychology Department, Concordia University, Montréal, Que., Canada
| | | |
Collapse
|
38
|
Ferrer JM, Sabater R, Saez JA. Neurotensin participates in self-stimulation of the medial prefrontal cortex in the rat. Eur J Pharmacol 1993; 231:39-45. [PMID: 8444280 DOI: 10.1016/0014-2999(93)90681-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of intracerebral microinjections of neurotensin and xenopsin on self-stimulation of the medial prefrontal cortex of the rat were studied. Unilateral microinjections into the medial prefrontal cortex of neurotensin at doses of 0.625, 1.25, 2.5, 5 and 10 nmol produced a dose-related decrease of self-stimulation in the ipsilateral medial prefrontal cortex. Self-stimulation of the contralateral medial prefrontal contex, used as control, was not affected by the microinjections. Similar results were found with the neurotension-like octapeptide, xenopsin. Unilateral microinjections of xenoposin into the medial prefrontal cortex, at doses of 1.8, 3.6, 7.2 and 14.4 nmol produced a dose-related decrease of self-stimulation of the ipsilateral medial prefrontal cortex. Self-stimulation of the contralateral medial prefrontal cortex was not affected. These results suggest that neurotensin is part of the neurochemical substrate of self-stimulation in this cortical area.
Collapse
Affiliation(s)
- J M Ferrer
- Department of Physiology, School of Medicine, University of Granada, Spain
| | | | | |
Collapse
|
39
|
Kalivas PW. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1993; 18:75-113. [PMID: 8096779 DOI: 10.1016/0165-0173(93)90008-n] [Citation(s) in RCA: 571] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Over the last 10 years there has been important progress towards understanding how neurotransmitters regulate dopaminergic output. Reasonable estimates can be made of the synaptic arrangement of afferents to dopamine and non-dopamine cells in the ventral tegmental area (VTA). These models are derived from correlative findings using a variety of techniques. In addition to improved lesioning and pathway-tracing techniques, the capacity to measure mRNA in situ allows the localization of transmitters and receptors to neurons and/or axon terminals in the VTA. The application of intracellular electrophysiology to VTA tissue slices has permitted great strides towards understanding the influence of transmitters on dopamine cell function, as well as towards elucidating relative synaptic organization. Finally, the advent of in vivo dialysis has verified the effects of transmitters on dopamine and gamma-aminobutyric acid transmission in the VTA. Although reasonable estimates can be made of a single transmitter's actions under largely pharmacological conditions, our knowledge of how transmitters work in concert in the VTA to regulate the functional state of dopamine cells is only just emerging. The fact that individual transmitters can have seemingly opposite effects on dopaminergic function demonstrates that the actions of neurotransmitters in the VTA are, to some extent, state-dependent. Thus, different transmitters perform similar functions or the same transmitter may perform opposing functions when environmental circumstances are altered. Understanding the dynamic range of a transmitter's action and how this couples in concert with other transmitters to modulate dopamine neurons in the VTA is essential to defining the role of dopamine cells in the etiology and maintenance of neuropsychiatric disorders. Further, it will permit a more rational exploration of drugs possessing utility in treating disorders involving dopamine transmission.
Collapse
Affiliation(s)
- P W Kalivas
- Alcohol and Drug Abuse Program, Washington State University, Pullman 99164-6530
| |
Collapse
|
40
|
Rompré PP, Gratton A. A comparison of the effects of mesencephalic injections of neurotensin(1-13) and neuromedin N on brain electrical self-stimulation. Peptides 1992; 13:713-9. [PMID: 1437713 DOI: 10.1016/0196-9781(92)90177-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuromedin N (NM-N), a hexapeptide that shares a four amino acid C-terminal homology with the tridecapeptide, neurotensin (NT), has been suggested as a potential neurotransmitter or neuromodulator that could interact with the NT-sensitive receptors. In this experiment, we compared the effects of an equimolar concentration of NM-N and NT(1-13) injected in the ventral tegmental area (VTA) on brain electrical self-stimulation (SS), a behavior previously shown to be potentiated by VTA injections of NT(1-13). Rats implanted with a stimulating electrode in the mesencephalic central gray and a guide cannula in the VTA were trained to lever press to obtain rewarding electrical stimulations. Functions relating the rate of lever pressing to the stimulation frequency were determined, on separate daily tests, before and after the injection of 3 nmol of NM-N, NT(1-13), or an equal volume of saline vehicle. At this concentration, both NM-N and NT(1-13) produced a significant facilitation of SS when compared to saline vehicle, an effect that was not seen when the peptides were injected outside the VTA. The facilitation of SS by NM-N, however, was much weaker and of a shorter duration than the one produced by NT(1-13). The shorter time course and the weaker behavioral effect of NM-N compared to NT(1-13) are consistent with its lower potency at the NT receptor and its faster rate of enzymatic degradation in the VTA, and suggest that NM-N potentiated the reward-relevant neural signal by acting on mesencephalic NT receptors.
Collapse
Affiliation(s)
- P P Rompré
- Centre de Biomédecine de l'Hôpital du Sacré-Coeur, Université de Montréal, Québec, Canada
| | | |
Collapse
|