1
|
Steinbusch HWM, Dolatkhah MA, Hopkins DA. Anatomical and neurochemical organization of the serotonergic system in the mammalian brain and in particular the involvement of the dorsal raphe nucleus in relation to neurological diseases. PROGRESS IN BRAIN RESEARCH 2021; 261:41-81. [PMID: 33785137 DOI: 10.1016/bs.pbr.2021.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The brainstem is a neglected brain area in neurodegenerative diseases, including Alzheimer's and Parkinson's disease, frontotemporal lobar degeneration and autonomic dysfunction. In Depression, several observations have been made in relation to changes in one particular the Dorsal Raphe Nucleus (DRN) which also points toward as key area in various age-related and neurodevelopmental diseases. The DRN is further thought to be related to stress regulated processes and cognitive events. It is involved in neurodegeneration, e.g., amyloid plaques, neurofibrillary tangles, and impaired synaptic transmission in Alzheimer's disease as shown in our autopsy findings. The DRN is a phylogenetically old brain area, with projections that reach out to a large number of regions and nuclei of the central nervous system, particularly in the forebrain. These ascending projections contain multiple neurotransmitters. One of the main reasons for the past and current interest in the DRN is its involvement in depression, and its main transmitter serotonin. The DRN also points toward the increased importance and focus of the brainstem as key area in various age-related and neurodevelopmental diseases. This review describes the morphology, ascending projections and the complex neurotransmitter nature of the DRN, stressing its role as a key research target into the neural bases of depression.
Collapse
Affiliation(s)
- Harry W M Steinbusch
- Department of Cellular Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology-DGIST, Daegu, South Korea.
| | | | - David A Hopkins
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
2
|
Abstract
Neurons that synthesize and release 5-hydroxytryptamine (5-HT; serotonin) express a core set of genes that establish and maintain this neurotransmitter phenotype and distinguish these neurons from other brain cells. Beyond a shared 5-HTergic phenotype, these neurons display divergent cellular properties in relation to anatomy, morphology, hodology, electrophysiology and gene expression, including differential expression of molecules supporting co-transmission of additional neurotransmitters. This diversity suggests that functionally heterogeneous subtypes of 5-HT neurons exist, but linking subsets of these neurons to particular functions has been technically challenging. We discuss recent data from molecular genetic, genomic and functional methods that, when coupled with classical findings, yield a reframing of the 5-HT neuronal system as a conglomeration of diverse subsystems with potential to inspire novel, more targeted therapies for clinically distinct 5-HT-related disorders.
Collapse
|
3
|
Nazzi S, Maddaloni G, Pratelli M, Pasqualetti M. Fluoxetine Induces Morphological Rearrangements of Serotonergic Fibers in the Hippocampus. ACS Chem Neurosci 2019; 10:3218-3224. [PMID: 31243951 DOI: 10.1021/acschemneuro.8b00655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Serotonin (5-HT)-releasing fibers show substantial structural plasticity in response to genetically induced changes in 5-HT content. However, whether 5-HT fibers appear malleable also following clinically relevant variations in 5-HT levels that may occur throughout an individual's life has not been investigated. Here, using confocal imaging and 3D modeling analysis in Tph2GFP knock-in mice, we show that chronic administration of the antidepressant fluoxetine dramatically affects the morphology of 5-HT fibers innervating the dorsal and ventral hippocampus resulting in a reduced density of fibers. Importantly, GFP fluorescence levels appeared unaffected in the somata of both dorsal and median raphe 5-HT neurons, arguing against potential fluoxetine-mediated down-regulation of the Tph2 promoter driving GFP expression in the Tph2GFP mouse model. In keeping with this notion, mice bearing the pan-serotonergic driver Pet1-Cre partnered with a Cre-responsive tdTomato allele also showed similar morphological alterations in hippocampal 5-HT circuitry following chronic fluoxetine treatment. Moreover 5-HT fibers innervating the cortex showed proper density and no overt morphological disorganization, indicating that the reported fluoxetine-induced rearrangements were hippocampus specific. On the whole, these data suggest that 5-HT fibers are shaped in response to subtle changes of 5-HT homeostasis and may provide a structural basis by which antidepressants exert their therapeutic effect.
Collapse
Affiliation(s)
- Serena Nazzi
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, 56127 Pisa, Italy
| | - Giacomo Maddaloni
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, 56127 Pisa, Italy
| | - Marta Pratelli
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, 56127 Pisa, Italy
| | - Massimo Pasqualetti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, 56127 Pisa, Italy
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, 38068 Rovereto, Italy
| |
Collapse
|
4
|
Perrin FE, Noristani HN. Serotonergic mechanisms in spinal cord injury. Exp Neurol 2019; 318:174-191. [PMID: 31085200 DOI: 10.1016/j.expneurol.2019.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a tragic event causing irreversible losses of sensory, motor, and autonomic functions, that may also be associated with chronic neuropathic pain. Serotonin (5-HT) neurotransmission in the spinal cord is critical for modulating sensory, motor, and autonomic functions. Following SCI, 5-HT axons caudal to the lesion site degenerate, and the degree of axonal degeneration positively correlates with lesion severity. Rostral to the lesion, 5-HT axons sprout, irrespective of the severity of the injury. Unlike callosal fibers and cholinergic projections, 5-HT axons are more resistant to an inhibitory milieu and undergo active sprouting and regeneration after central nervous system (CNS) traumatism. Numerous studies suggest that a chronic increase in serotonergic neurotransmission promotes 5-HT axon sprouting in the intact CNS. Moreover, recent studies in invertebrates suggest that 5-HT has a pro-regenerative role in injured axons. Here we present a brief description of 5-HT discovery, 5-HT innervation of the CNS, and physiological functions of 5-HT in the spinal cord, including its role in controlling bladder function. We then present a comprehensive overview of changes in serotonergic axons after CNS damage, and discuss their plasticity upon altered 5-HT neurotransmitter levels. Subsequently, we provide an in-depth review of therapeutic approaches targeting 5-HT neurotransmission, as well as other pre-clinical strategies to promote an increase in re-growth of 5-HT axons, and their functional consequences in SCI animal models. Finally, we highlight recent findings signifying the direct role of 5-HT in axon regeneration and suggest strategies to further promote robust long-distance re-growth of 5-HT axons across the lesion site and eventually achieve functional recovery following SCI.
Collapse
Affiliation(s)
- Florence Evelyne Perrin
- University of Montpellier, Montpellier, F-34095 France; INSERM, U1198, Montpellier, F-34095 France; EPHE, Paris, F-75014 France
| | - Harun Najib Noristani
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
5
|
Maddaloni G, Bertero A, Pratelli M, Barsotti N, Boonstra A, Giorgi A, Migliarini S, Pasqualetti M. Development of Serotonergic Fibers in the Post-Natal Mouse Brain. Front Cell Neurosci 2017; 11:202. [PMID: 28769763 PMCID: PMC5509955 DOI: 10.3389/fncel.2017.00202] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/27/2017] [Indexed: 11/13/2022] Open
Abstract
Serotonin (5-HT)-synthetizing neurons, which are confined in the raphe nuclei of the rhombencephalon, provide a pervasive innervation of the central nervous system (CNS) and are involved in the modulation of a plethora of functions in both developing and adult brain. Classical studies have described the post-natal development of serotonergic axons as a linear process of terminal field innervation. However, technical limitations have hampered a fine morphological characterization. With the advent of genetic mouse models, the possibility to label specific neuronal populations allowed the rigorous measurement of their axonal morphological features as well as their developmental dynamics. Here, we used the Tph2GFP knock-in mouse line, in which GFP expression allows punctual identification of serotonergic neurons and axons, for confocal microscope imaging and we performed 3-dimensional reconstruction in order to morphologically characterize the development of serotonergic fibers in specified brain targets from birth to adulthood. Our analysis highlighted region-specific developmental patterns of serotonergic fiber density ranging from a linear and progressive colonization of the target (Caudate/Putamen, Basolateral Amygdala, Geniculate Nucleus and Substantia Nigra) to a transient increase in fiber density (medial Prefrontal Cortex, Globus Pallidus, Somatosensory Cortex and Hippocampus) occurring with a region-specific timing. Despite a common pattern of early post-natal morphological maturation in which a progressive rearrangement from a dot-shaped to a regular and smooth fiber morphology was observed, starting from post-natal day 28 serotonergic fibers acquire the region specific morphological features present in the adult. In conclusion, we provided novel, target-specific insights on the morphology and temporal dynamics of the developing serotonergic fibers.
Collapse
Affiliation(s)
- Giacomo Maddaloni
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy
| | - Alice Bertero
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy.,Center for Neuroscience and Cognitive Systems, Istituto Italiano di Technologia, University of TrentoRovereto, Italy
| | - Marta Pratelli
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy
| | - Noemi Barsotti
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy
| | - Annemarie Boonstra
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy
| | - Andrea Giorgi
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy.,Center for Neuroscience and Cognitive Systems, Istituto Italiano di Technologia, University of TrentoRovereto, Italy
| | - Sara Migliarini
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy.,Center for Neuroscience and Cognitive Systems, Istituto Italiano di Technologia, University of TrentoRovereto, Italy
| |
Collapse
|
6
|
Chandler DJ, Lamperski CS, Waterhouse BD. Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex. Brain Res 2013; 1522:38-58. [PMID: 23665053 DOI: 10.1016/j.brainres.2013.04.057] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 12/21/2022]
Abstract
The prefrontal cortex (PFC) is implicated in a variety of cognitive and executive functions and is composed of several distinct networks, including anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). These regions serve dissociable cognitive functions, and are heavily innervated by acetylcholine, dopamine, serotonin and norepinephrine systems. In this study, fluorescently labeled retrograde tracers were injected into the ACC, mPFC, and OFC, and labeled cells were identified in the nucleus basalis (NB), ventral tegmental area (VTA), dorsal raphe nucleus (DRN) and locus coeruleus (LC). DRN and LC showed similar distributions of retrogradely labeled neurons such that most were single labeled and the largest population projected to mPFC. VTA showed a slightly greater proportion of double and triple labeled neurons, with the largest population projecting to OFC. NB, on the other hand, showed mostly double and triple labeled neurons projecting to multiple subregions. Therefore, subsets of VTA, DRN and LC neurons may be capable of modulating individual prefrontal subregions independently, whereas NB cells may exert a more unified influence on the three areas simultaneously. These findings emphasize the unique aspects of the cholinergic and monoaminergic projections to functionally and anatomically distinct subregions of PFC.
Collapse
Affiliation(s)
- Daniel J Chandler
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19128, United States
| | | | | |
Collapse
|
7
|
Asan E, Steinke M, Lesch KP. Serotonergic innervation of the amygdala: targets, receptors, and implications for stress and anxiety. Histochem Cell Biol 2013; 139:785-813. [DOI: 10.1007/s00418-013-1081-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2013] [Indexed: 01/09/2023]
|
8
|
Lillesaar C. The serotonergic system in fish. J Chem Neuroanat 2011; 41:294-308. [PMID: 21635948 DOI: 10.1016/j.jchemneu.2011.05.009] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/07/2011] [Accepted: 05/16/2011] [Indexed: 01/20/2023]
Abstract
Neurons using serotonin (5-HT) as neurotransmitter and/or modulator have been identified in the central nervous system in representatives from all vertebrate clades, including jawless, cartilaginous and ray-finned fishes. The aim of this review is to summarize our current knowledge about the anatomical organization of the central serotonergic system in fishes. Furthermore, selected key functions of 5-HT will be described. The main focus will be the adult brain of teleosts, in particular zebrafish, which is increasingly used as a model organism. It is used to answer not only genetic and developmental biology questions, but also issues concerning physiology, behavior and the underlying neuronal networks. The many evolutionary conserved features of zebrafish combined with the ever increasing number of genetic tools and its practical advantages promise great possibilities to increase our understanding of the serotonergic system. Further, comparative studies including several vertebrate species will provide us with interesting insights into the evolution of this important neurotransmitter system.
Collapse
Affiliation(s)
- Christina Lillesaar
- Zebrafish Neurogenetics Group, Laboratory of Neurobiology and Development (NED), Institute of Neurobiology Albert Fessard, Gif-sur-Yvette, France.
| |
Collapse
|
9
|
Weaver KJ, Paul IA, Lin RCS, Simpson KL. Neonatal exposure to citalopram selectively alters the expression of the serotonin transporter in the hippocampus: dose-dependent effects. Anat Rec (Hoboken) 2011; 293:1920-32. [PMID: 20830689 DOI: 10.1002/ar.21245] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Infants born to mothers taking selective serotonin reuptake inhibitors (SSRIs) late in pregnancy have been reported to exhibit signs of antidepressant withdrawal. Such evidence suggests that these drugs access the fetal brain in utero at biologically significant levels. Recent studies in rodents have revealed that early exposure to antidepressants can lead to long lasting abnormalities in adult behaviors, and result in robust decreases in the expression of a major serotonin synthetic enzyme (tryptophan hydroxylase) along the raphe midline. In the present investigation, we injected rat pups with citalopram (CTM: 5 mg/kg, 10 mg/kg, and 20 mg/kg) from postnatal Days 8-21, and examined serotonin transporter (SERT) labeling in the hippocampus, ventrobasal thalamic complex, and caudate-putamen when the subjects reached adulthood. Our data support the idea, that forebrain targets in receipt of innervation from the raphe midline are particularly vulnerable to the effects of CTM. SERT-immunoreactive fiber density was preferentially decreased throughout all sectors of the hippocampal formation, whereas the subcortical structures, each supplied by more lateral and rostral aspects of the raphe complex, respectively, were not significantly affected. Reductions in SERT staining were also found to be dose-dependent. These findings suggest that SSRIs may not only interfere with the establishment of chemically balanced circuits in the neonate but also impose selective impairment on higher cortical function and cognitive processes via more circumscribed (i.e., regionally specific) deficits in 5-HT action.
Collapse
Affiliation(s)
- Kristin J Weaver
- Department of Anatomy, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | | |
Collapse
|
10
|
Lu Y, Simpson KL, Weaver KJ, Lin RCS. Coexpression of serotonin and nitric oxide in the raphe complex: cortical versus subcortical circuit. Anat Rec (Hoboken) 2011; 293:1954-65. [PMID: 20734426 DOI: 10.1002/ar.21222] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several lines of evidence have implicated a direct reciprocal interaction between serotonin and nitric oxide (NO). The goal of this investigation was, therefore, to examine the coexpression of tryptophan hydroxylase (TPH; the rate limiting enzyme for the synthesis of serotonin) and neuronal NO synthase (nNOS) in the ascending cortical projecting raphe nuclei (B6-B9 subgroups), when compared with the descending spinal cord projecting raphe nuclei (B1-B3 subgroups). Our data demonstrated that: (1) a significant number of raphe-cortical projecting neurons was identified not only in the midline subgroup of dorsal raphe (B6, 7) but also in the median raphe (B8), as well as in the supralemniscal nucleus (B9); (2) serotonergic cortical projecting neurons from these three raphe nuclei exhibited a high (>80%) percentage of coexpression with nNOS immunoreactivity; (3) similarly, serotonin transporter immunoreactive fibers in the medial prefrontal cortex were also double-labeled with nNOS immunoreactivity; (4) in contrast, the descending spinal cord projecting raphe nuclei revealed only TPH but not nNOS immunoreactivity. Our present findings suggest the existence of a direct interaction between serotonin and NO in the ascending cortical projecting raphe system. In contrast, a different strategy appears to operate the descending spinal cord projecting raphe system.
Collapse
Affiliation(s)
- Yuefeng Lu
- Department of Biology, Tougaloo College, Tougaloo, Mississippi, USA
| | | | | | | |
Collapse
|
11
|
Demarquay G, Lothe A, Royet JP, Costes N, Mick G, Mauguière F, Ryvlin P. Brainstem changes in 5-HT1A receptor availability during migraine attack. Cephalalgia 2010; 31:84-94. [PMID: 21036859 DOI: 10.1177/0333102410385581] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Among serotonin receptors, 5-HT(1A) receptors are implicated in the regulation of central serotoninergic tone and could be involved in the abnormal brain 5-HT turnover suspected in migraineurs. The aim of this study was to investigate 5-HT(1A) receptors' availability during migraine attacks. METHODS Ten patients suffering from odor-triggered migraine attacks and 10 control subjects were investigated using positron emission tomography (PET) and [(18)F]MPPF PET tracer, a selective 5-HT(1A) antagonist. All subjects underwent calibrated olfactory stimulations prior to the PET study. RESULTS Four patients developed a migraine attack during the PET study. In these patients, statistical parametrical mapping and region of interest analyses showed an increased [(18)F]MPPF binding potential (BP(ND)) in the pontine raphe when compared to headache-free migraineurs and control subjects. This ictal change was confirmed at the individual level in each of the four affected patients. In comparison with the headache-free migraineurs, patients with a migraine attack also showed significantly increased [(18)F]MPPF BP(ND) in the left orbitofrontal cortex, precentral gyrus and temporal pole. No significant change in [(18)F]MPPF BP(ND) was observed between headache-free migraineurs and controls. CONCLUSIONS Our results emphasize the role of 5HT(1A) receptors in the pontine raphe nuclei during the early stage of migraine attacks.
Collapse
Affiliation(s)
- G Demarquay
- Service de Neurologie, Hôpital de la Croix-Rousse France, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
MacGillivray L, Lagrou LM, Reynolds KB, Rosebush PI, Mazurek MF. Role of serotonin transporter inhibition in the regulation of tryptophan hydroxylase in brainstem raphe nuclei: time course and regional specificity. Neuroscience 2010; 171:407-20. [PMID: 20868730 DOI: 10.1016/j.neuroscience.2010.08.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/17/2010] [Accepted: 08/23/2010] [Indexed: 01/17/2023]
Abstract
Drugs that selectively inhibit the serotonin transporter (SERT) are widely prescribed for treatment of depression and a range of anxiety disorders. We studied the time course of changes in tryptophan hydroxylase (TPH) in four raphe nuclei after initiation of two different SERT inhibitors, citalopram and fluoxetine. In the first experiment, groups of Sprague-Dawley rats received daily meals of rice pudding either alone (n=9) or mixed with citalopram 5 mg/kg/day (n=27). Rats were sacrificed after 24 h, 7 days or 28 days of treatment. Sections of dorsal raphe nucleus (DRN), median raphe nucleus (MRN), raphe magnus nucleus (RMN) and caudal linear nucleus (CLN) were processed for TPH immunohistochemistry. Citalopram induced a significant reduction in DRN TPH-positive cell counts at 24 h (41%), 7 days (38%) and 28 days (52%). Similar reductions in TPH-positive cell counts were also observed at each timepoint in the MRN and in the RMN. In the MRN, citalopram resulted in significant reductions at 24 h (26%), 7 days (16%) and 28 days (23%). In the RMN, citalopram induced significant reductions of TPH-positive cell counts at 24 h (45%), 7 days (34%) and 28 days (43%). By contrast, no significant differences between control and treatment groups were observed in the CLN at any of the time points that we studied. To investigate whether these changes would occur with other SERT inhibitors, we conducted a second experiment, this time with a 28-day course of fluoxetine. As was observed with citalopram, fluoxetine induced significant reductions of TPH cell counts in the DRN (39%), MRN (38%) and RMN (41%), with no significant differences in the CLN. These results indicate that SERT inhibition can alter the regulation of TPH, the rate limiting enzyme for serotonin biosynthesis. This persistent and regionally specific downregulation of serotonin biosynthesis may account for some of the clinical withdrawal symptoms associated with drugs that inhibit SERT.
Collapse
Affiliation(s)
- L MacGillivray
- Department of Medicine-Neurology, McMaster University Medical Centre, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada.
| | | | | | | | | |
Collapse
|
13
|
Kesic S, Kalauzi A, Radulovacki M, Carley DW, Saponjic J. Coupling changes in cortical and pontine sigma and theta frequency oscillations following monoaminergic lesions in rat. Sleep Breath 2010; 15:35-47. [PMID: 20135235 DOI: 10.1007/s11325-010-0327-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 01/08/2010] [Indexed: 11/26/2022]
Abstract
PURPOSE Sigma and theta frequency electroencephalogram (EEG) oscillations exhibit substantial and well-recognized shifts with transitions across sleep and wake states. We aimed in this study to test the changes in coupling between these characteristic oscillations of non-rapid-eye-movement (NREM)/rapid-eye-movement (REM) sleep within and between cortical and pontine EEGs following monoaminergic lesion, by using the Pearson's product-moment correlation coefficients. METHODS Experiments were performed in 14 adult, male Sprague Dawley rats chronically instrumented for sleep recording. We lesioned the dorsal raphe nucleus axon terminals in four rats using PCA neurotoxin (p-chloroamphetamine; Sigma-Aldrich, MO) administered as two intraperitoneal (IP) injections (6 mg/kg) 24 h apart. Lesioning of locus coeruleus axon terminals was performed in five rats using DSP-4 neurotoxin (N-2-chloroethyl-N-ethyl-2-bromobenzilamine; Sigma-Aldrich, MO) in a single IP dose of 50 mg/kg. RESULTS & CONCLUSIONS Our previous study [Saponjic et al., Physiol Behav 90:1-10, 2007] demonstrated that these systemically induced monoaminergic lesions failed to produce significant changes in sleep/wake distribution from control conditions. The present study, by using spectral analysis and by examining the Pearson's correlation coefficients and their approximate probability density (APD) distribution profiles in control and lesion condition, demonstrates significant augmentation of the sigma/theta coupling strength, an inversion of cortical sigma/theta coupling direction and emergence of an additional sigma/theta coupling "mode" specific to the post-lesion state only within the cortex. By using the Pearson's correlation coefficients and their APD profiles, instead of classical sleep/wake distribution analysis, as a measure of direction and strength of sigma/theta coupling within and between cortex and pons, we were able to uncover the impact of a tonically decreased level of brain monoamines as altered strength and mode of coupling between sigma and theta oscillations. Specifically, a new mode of sigma/theta coupling emerged following lesion, which was specific to NREM sleep, suggests that loss of monoaminergic signaling interferes with NREM sleep consolidation. Our results also indicate an importance of monoamines in control of the sleep spindle and theta rhythm generators.
Collapse
Affiliation(s)
- Srdjan Kesic
- Department of Neurobiology, Institute for Biological Research-Sinisa Stankovic, University of Belgrade, Despot Stefan Blvd. 142, 11 000, Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
14
|
Hill RA, Murray SS, Halley PG, Binder MD, Martin SJ, van den Buuse M. Brain-derived neurotrophic factor expression is increased in the hippocampus of 5-HT2C receptor knockout mice. Hippocampus 2010; 21:434-45. [DOI: 10.1002/hipo.20759] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Nayyar T, Bubser M, Ferguson MC, Neely MD, Shawn Goodwin J, Montine TJ, Deutch AY, Ansah TA. Cortical serotonin and norepinephrine denervation in parkinsonism: preferential loss of the beaded serotonin innervation. Eur J Neurosci 2010; 30:207-16. [PMID: 19659923 DOI: 10.1111/j.1460-9568.2009.06806.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Parkinson's Disease (PD) is marked by prominent motor symptoms that reflect striatal dopamine insufficiency. However, non-motor symptoms, including depression, are common in PD. It has been suggested that these changes reflect pathological involvement of non-dopaminergic systems. We examined regional changes in serotonin (5-HT) and norepinephrine (NE) systems in mice treated with two different 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment paradigms, at survival times of 3 or 16 weeks after the last MPTP injection. MPTP caused a decrease in striatal dopamine concentration, the magnitude of which depended on the treatment regimen and survival interval after MPTP treatment. There was significant involvement of other subcortical areas receiving a dopamine innervation, but no consistent changes in 5-HT or NE levels in subcortical sites. In contrast, we observed an enduring decrease in 5-HT and NE concentrations in both the somatosensory cortex and medial prefrontal cortex (PFC). Immunohistochemical studies also revealed a decrease in the density of PFC NE and 5-HT axons. The decrease in the cortical serotonergic innervation preferentially involved the thick beaded but not smooth fine 5-HT axons. Similar changes in the 5-HT innervation of post-mortem samples of the PFC from idiopathic PD cases were seen. Our findings point to a major loss of the 5-HT and NE innervations of the cortex in MPTP-induced parkinsonism, and suggest that loss of the beaded cortical 5-HT innervation is associated with a predisposition to the development of depression in PD.
Collapse
Affiliation(s)
- Tultul Nayyar
- Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lillesaar C, Stigloher C, Tannhäuser B, Wullimann MF, Bally-Cuif L. Axonal projections originating from raphe serotonergic neurons in the developing and adult zebrafish, Danio rerio, using transgenics to visualize raphe-specific pet1 expression. J Comp Neurol 2009; 512:158-82. [PMID: 19003874 DOI: 10.1002/cne.21887] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Serotonin is a major central nervous modulator of physiology and behavior and plays fundamental roles during development and plasticity of the vertebrate central nervous system (CNS). Understanding the developmental control and functions of serotonergic neurons is therefore an important task. In all vertebrates, prominent serotonergic neurons are found in the superior and inferior raphe nuclei in the hindbrain innervating most CNS regions. In addition, all vertebrates except for mammals harbor other serotonergic centers, including several populations in the diencephalon. This, in combination with the intricate and wide distribution of serotonergic fibers, makes it difficult to sort out serotonergic innervation originating from the raphe from that of other serotonergic cell populations. To resolve this issue, we isolated the regulatory elements of the zebrafish raphe-specific gene pet1 and used them to drive expression of an eGFP transgene in the raphe population of serotonergic neurons. With this approach together with retrograde tracing we 1) describe in detail the development, anatomical organization, and projection pattern of zebrafish pet1-positive neurons compared with their mammalian counterparts, 2) identify a new serotonergic population in the ventrolateral zebrafish hindbrain, and 3) reveal some extent of functional subdivisions within the zebrafish superior raphe complex. Together, our results reveal for the first time the specific innervation pattern of the zebrafish raphe and, thus, provide a new model and various tools to investigate further the role of raphe serotonergic neurons in vertebrates.
Collapse
Affiliation(s)
- Christina Lillesaar
- HelmholtzZentrum München, German Research Center for Environmental Health, Department of Zebrafish Neurogenetics, Institute of Developmental Genetics, D-85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
17
|
Decrease in REM latency and changes in sleep quality parallel serotonergic damage and recovery after MDMA: a longitudinal study over 180 days. Int J Neuropsychopharmacol 2008; 11:795-809. [PMID: 18261250 DOI: 10.1017/s1461145708008535] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The recreational drug ecstasy [3,4-methylenedioxymethamphetamine (MDMA)], has been found to selectively damage brain serotonin neurons in experimental animals, and probably in human MDMA users, but detailed morphometric analyses and parallel functional measures during damage and recovery are missing. Since there is evidence that serotonin regulates sleep, we have compared serotonergic markers parallel with detailed analysis of sleep patterns at three time-points within 180 d after a single dose of 15 mg/kg MDMA in male Dark Agouti rats. At 7 d and 21 d after MDMA treatment, significant(30-40%), widespread reductions in serotonin transporter (5-HTT) density were detected in the cerebral cortex, hippocampus, most parts of the hypothalamus, and some of the brainstem nuclei. With the exception of the hippocampus, general recovery was observed in the brain 180 d after treatment. Transient increases followed by decreases were detected in 5-HTT mRNA expression of dorsal and median raphe nuclei at 7 d and 21 d after the treatment. Significant reductions in rapid eye movement (REM) sleep latency, increases in delta power spectra in non-rapid eye movement sleep and increased fragmentation of sleep were also detected, but all these alterations disappeared by the 180th day. The present data provide evidence for long-term, albeit, except for the hippocampus, transient changes in the terminal and cellular regions of the serotonergic system after this drug. Reduced REM latency and increased sleep fragmentation are the most characteristic alterations of sleep consistently described in depression using EEG sleep polygraphy.
Collapse
|
18
|
Lothe A, Merlet I, Demarquay G, Costes N, Ryvlin P, Mauguière F. Interictal brain 5-HT1A receptors binding in migraine without aura: a 18F-MPPF-PET study. Cephalalgia 2008; 28:1282-91. [PMID: 18727636 DOI: 10.1111/j.1468-2982.2008.01677.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study we aimed to assess the brain distribution of 5-HT(1A) receptors in migraine patients without aura. Ten female migraine patients and 24 female healthy volunteers underwent magnetic resonance imaging and positron emission tomography using a radioligand antagonist of 5-HT(1A) receptors [4-(2'-methoxyphenyl)-1-[2'-(N-2-pirydynyl)-p-fluorobenzamido]-ethylpiperazine ((18)F-MPPF)]. A simplified reference tissue model was used to generate parametric images of 5-HT(1A) receptor binding potential (BP) values. Statistical Parametrical Mapping (SPM) analysis showed increased MPPF BP in posterior cortical areas and hippocampi bilaterally in patients compared with controls. Region of interest (ROI) analysis showed a non-significant trend in favour of a BP increase patients in cortical regions identified by the SPM analysis except in hippocampi, left parietal areas and raphe nuclei. During the interictal period of migraine patients without aura, the increase of MPPF BP in posterior cortical and limbic areas could reflect an increase in receptor density or a decrease of endogenous serotonin, which could explain their altered cortical excitability.
Collapse
Affiliation(s)
- A Lothe
- Université de Lyon, Lyon, Inserm, U821, Bron, Institut Fédératif des Neurosciences de Lyon, France
| | | | | | | | | | | |
Collapse
|
19
|
Gobbi M, Funicello M, Gerstbrein K, Holy M, Moya PR, Sotomayor R, Forray MI, Gysling K, Paluzzi S, Bonanno G, Reyes-Parada M, Sitte HH, Mennini T. N,N-dimethyl-thioamphetamine and methyl-thioamphetamine, two non-neurotoxic substrates of 5-HT transporters, have scant in vitro efficacy for the induction of transporter-mediated 5-HT release and currents. J Neurochem 2008; 105:1770-80. [PMID: 18248615 DOI: 10.1111/j.1471-4159.2008.05272.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We studied two non-neurotoxic amphetamine derivatives (methyl-thioamphetamine, MTA and N,N-dimethylMTA, DMMTA) interacting with serotonin (5-HT) transporters (SERTs) with affinities comparable to that of p-Cl-amphetamine (pCA). The rank order for their maximal effects in inducing both [(3)H]5-HT release from rat brain synaptosomes or hSERT-expressing HEK-293 cells, and currents in hSERT-expressing oocytes, was pCA >> MTA > or = DMMTA. A correlation between drug-induced release and currents is also strengthened by the similar bell shape of the dose-response curves. Release experiments indicated that MTA and DMMTA are SERT substrates although MTA is taken up by HEK-293 cells with a V(max) 40% lower than pCA. The weak effects of MTA and DMMTA in vitro might therefore be due to their properties as 'partial substrates' on the mechanisms, other than translocation, responsible for currents and/or release. After either local or systemic in vivo administration, MTA and DMMTA release 5-HT in a manner comparable to pCA. These findings confirm that the neurotoxic properties of some amphetamine derivatives are independent of their 5-HT-releasing activity in vivo. It is worth noting that only those amphetamine derivatives with high efficiency in inducing 5-HT release and currents in vitro have neurotoxic properties.
Collapse
Affiliation(s)
- Marco Gobbi
- Istituto di Ricerche Farmacologiche "Mario Negri", Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kanarik M, Matrov D, Kõiv K, Eller M, Tõnissaar M, Harro J. Changes in regional long-term oxidative metabolism induced by partial serotonergic denervation and chronic variable stress in rat brain. Neurochem Int 2008; 52:432-7. [PMID: 17884257 DOI: 10.1016/j.neuint.2007.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 08/05/2007] [Accepted: 08/07/2007] [Indexed: 11/26/2022]
Abstract
Stressful experiences and genetic predisposition have both independent and interactive contributions to the development of depression. The serotonergic system is involved in the development of depression, and administration of neurotoxins that specifically compromise its function leads to symptoms of affective disorders. In order to find out which brain regions are most affected by stress, partial serotonergic denervation and their combination, chronic variable stress (CVS) was applied for 3 week. Serotonergic denervation was elicited by parachloroampetamine (PCA, 2mg/kg), and cytochrome oxidase histochemistry was used to characterize the long-term levels of neuronal oxidative energy metabolism. PCA pretreatment blocked the increase in oxidative activity in chronically stressed rats in medial preoptic area, cortical and medial amygdala. PCA raised oxidative activity compared to control animals in substantia nigra and ventrolateral division of laterodorsal thalamus. CVS reduced the oxidative activity induced by PCA in suprachiasmatic hypothalamus, anteroventral thalamus, hippocampal CA3 region and cortical amygdala. In the dorsal part of the anterior olfactory nucleus chronic stress blocked the decrease in oxidative activity evoked by PCA. Conclusively, partial serotonergic denervation with PCA and chronic variable stress both had independent effects on long-term energy metabolism in several rat brain structures, tending to increase it. However, partial serotonergic denervation by parachloroampetamine and chronic variable stress had in many brain regions an interactive effect on energy metabolism, each factor reducing the effect of the other, which could reflect the weakening of adaptive mechanisms.
Collapse
Affiliation(s)
- Margus Kanarik
- Department of Psychology, Centre of Behavioural and Health Sciences, University of Tartu, Tiigi 78, 50410 Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
21
|
Michelsen KA, Schmitz C, Steinbusch HWM. The dorsal raphe nucleus—From silver stainings to a role in depression. ACTA ACUST UNITED AC 2007; 55:329-42. [PMID: 17316819 DOI: 10.1016/j.brainresrev.2007.01.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/09/2007] [Accepted: 01/10/2007] [Indexed: 11/29/2022]
Abstract
Over a hundred years ago, Santiago Ramón y Cajal used a new staining method developed by Camillo Golgi to visualize, among many other structures, what we today call the dorsal raphe nucleus (DRN) of the midbrain. Over the years, the DRN has emerged as a multifunctional and multitransmitter nucleus, which modulates or influences many CNS processes. It is a phylogenetically old brain area, whose projections reach out to a large number of regions and nuclei of the CNS, particularly in the forebrain. Several DRN-related discoveries are tightly connected with important events in the history of neuroscience, for example the invention of new histological methods, the discovery of new neurotransmitter systems and the link between neurotransmitter function and mood disorders. One of the main reasons for the wide current interest in the DRN is the nucleus' involvement in depression. This involvement is particularly attributable to the main transmitter of the DRN, serotonin. Starting with a historical perspective, this essay describes the morphology, ascending projections and multitransmitter nature of the DRN, and stresses its role as a key target for depression research.
Collapse
Affiliation(s)
- Kimmo A Michelsen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|
22
|
Balázsa T, Bíró J, Gullai N, Ledent C, Sperlágh B. CB1-cannabinoid receptors are involved in the modulation of non-synaptic [3H]serotonin release from the rat hippocampus. Neurochem Int 2007; 52:95-102. [PMID: 17719142 DOI: 10.1016/j.neuint.2007.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 07/04/2007] [Accepted: 07/06/2007] [Indexed: 10/23/2022]
Abstract
In the present study we investigated whether serotonin release in the hippocampus is subject to regulation via cannabinoid receptors. Both rat and mouse hippocampal slices were preincubated with [3H]serotonin ([3H]5-HT) and superfused with medium containing serotonin reuptake inhibitor citalopram hydrobromide (300 nM). The cannabinoid receptor agonist R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate (WIN55,212-2, 1 microM) did not affect either the resting or the electrically evoked [3H]5-HT release. In the presence of the ionotropic glutamate receptor antagonists D(-)-2-amino-5-phosphonopentanoic acid (AP-5, 50 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione-disodium (CNQX, 10 microM) the evoked [3H]5-HT release was decreased significantly. Similar findings were obtained when CNQX (10 microM) was applied alone with WIN55,212-2. This effect was abolished by the selective cannabinoid receptor subtype 1 (CB1) antagonists N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716, 1 microM) and 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide trifluoroacetate salt (AM251, 1 microM). Similarly to that observed in rats, WIN55,212-2 (1 microM) decreased the evoked [3H]5-HT efflux in wild-type mice (CB1+/+). The inhibitory effect of WIN55,212-2 (1 microM) was completely absent in hippocampal slices derived from mice genetically deficient in CB1 cannabinoid receptors (CB1-/-). Relatively selective degeneration of fine serotonergic axons by the neurotoxin parachloramphetamine (PCA) reduced significantly the tritium uptake and the evoked [3H]5-HT release. In addition, PCA, eliminated the effect of WIN55,212-2 (1 microM) on the stimulation-evoked [3H]5-HT efflux. In contrast to the PCA-treated animals, WIN55,212-2 (1 microM) reduced the [3H]5-HT efflux in the saline-treated group. Our data suggest that a subpopulation of non-synaptic serotonergic afferents express CB1 receptors and activation of these CB1 receptors leads to a decrease in 5-HT release.
Collapse
Affiliation(s)
- Tamás Balázsa
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, Budapest 1083, Hungary.
| | | | | | | | | |
Collapse
|
23
|
Saponjic J, Radulovacki M, Carley DW. Monoaminergic system lesions increase post-sigh respiratory pattern disturbance during sleep in rats. Physiol Behav 2007; 90:1-10. [PMID: 16989875 DOI: 10.1016/j.physbeh.2006.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 08/02/2006] [Accepted: 08/15/2006] [Indexed: 11/29/2022]
Abstract
Monoamines are important regulators of behavioral state and respiratory pattern, and the impact of monoaminergic control during sleep is of particular interest for the stability of breathing regulation. The aim of this study was to test the effects of systemically induced chemical lesions to noradrenergic and serotonergic efferent systems, on the expression of sleep-wake states, pontine wave activity, and sleep-related respiratory pattern and its variability. In chronically instrumented male adult Sprague-Dawley rats we lesioned noradrenergic terminal axonal branches by a single intraperitoneal dose of DSP-4 (N-(2-chloroethyl)-N-ethyl-2-brombenzilamine; 50 mg/kg, i.p.), and serotonergic axonal terminals by two intraperitoneal doses, 24 h apart, of PCA (p-chloroamphetamine; 6 mg/kg, i.p.). In each animal, we recorded sleep, pontine waves (P-waves) and breathing at baseline, following sham injection, and every week for 5 weeks following injection of either systemic neurotoxin. Distinct responses were observed to the two lesions. DSP-4 lesions were associated with a trend toward increased NREM sleep (p < 0.06), decreased wakefulness (p < 0.05) and increased respiratory tidal volume during NREM (p = 0.0002) and REM (p = 0.0001) sleep with respect to baseline. None of these effects, however, were observed during the first 14 days after injection. No significant changes were observed in the frequency of apneas or sighs, nor in the coupling between these two, at any time after DSP-4 injection. Conversely, selective serotonergic lesion by PCA produced no change in the baseline respiratory frequency or tidal volume during sleep or wakefulness, nor was the expression of Wake, NREM or REM sleep affected. Instead, PCA injection resulted in a sustained increase in the frequency and duration of post-sigh apneas (PS) during NREM sleep (p = 0.002). This reflected increased coupling between sighs and apneas, because neither the frequency nor the amplitude of spontaneous sighs was altered by PCA.
Collapse
Affiliation(s)
- J Saponjic
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
24
|
Luellen BA, Szapacs ME, Materese CK, Andrews AM. The neurotoxin 2′-NH2-MPTP degenerates serotonin axons and evokes increases in hippocampal BDNF. Neuropharmacology 2006; 50:297-308. [PMID: 16288930 DOI: 10.1016/j.neuropharm.2005.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 09/03/2005] [Accepted: 09/05/2005] [Indexed: 11/15/2022]
Abstract
1-Methyl-4-(2'-aminophenyl)-1,2,3,6-tetrahydropyridine (2'-NH2-MPTP) causes long-term depletions in cortical and hippocampal serotonin (5-HT) and norepinephrine (NE) that are accompanied by acute elevations in glial fibrillary acidic protein (GFAP) and argyrophilia. To further investigate the hypothesis that these changes are reflective of serotonergic and noradrenergic axonal degeneration, 2'-NH2-MPTP was administered to mice and innervation densities were determined immunocytochemically. Regional responses of the neurotrophin, brain-derived neurotrophic factor (BDNF), to putative damage were also assessed. Three days after 2'-NH2-MPTP, 5-HT axons exhibited a beaded, tortuous appearance indicative of ongoing degeneration. At 21 days, numbers of serotonin axons were significantly decreased, with the greatest axonal losses occurring in cortex and hippocampus. Serotonin axons in the amygdala were contrastingly spared long-term damage, as were 5-HT and NE cell bodies in the brain stem. BDNF protein levels were selectively increased in the hippocampus 3 days post-dose and returned to normal 21 days later. These results, in conjunction with previous findings, demonstrate that 2'-NH2-MPTP causes degeneration of serotonergic axons innervating the cortex and hippocampus on par with depletions in neurotransmitter levels. Moreover, damage to the hippocampus, a brain region important for learning and memory, and the modulation of anxiety and stress responsiveness, results in a transitory increase in BDNF.
Collapse
Affiliation(s)
- Beth A Luellen
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
25
|
Miczek KA, Faccidomo S, De Almeida RMM, Bannai M, Fish EW, Debold JF. Escalated Aggressive Behavior: New Pharmacotherapeutic Approaches and Opportunities. Ann N Y Acad Sci 2006; 1036:336-55. [PMID: 15817748 DOI: 10.1196/annals.1330.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Psychopharmacologic studies of aggressive behavior in animals under controlled laboratory conditions have been instrumental in developing and evaluating specific and effective novel drug treatments that reduce aggressive behavior. An initial contribution of this research is to create experimental conditions that enable the display of aggressive and defensive acts and postures in species that engage in either dominance or territorial or maternal aggression. Quantitative ethological analyses allow the precise delineation of the sequential organization of aggressive bursts, providing a benchmark for assessing excessive or pathological forms of aggressive behavior. A second contribution of preclinical research is the development of experimental models of escalated forms of aggressive behavior, such as focusing on genetic predispositions or social provocations and frustrative experiences. A critical role of preclinical research is in the pharmacological and neurochemical analysis of aggressive behavior; for example, a host of undesirable side effects prompted a shift from classic dopaminergic neuroleptic compounds to the more recently developed atypical neuroleptics with effective and more specific anti-aggressive effects. The long-established role of brain serotonin in impulsive and escalated forms of aggressive behavior continues to be a focus of preclinical studies. New evidence differentiates dynamic state changes in corticolimbic serotonergic neurons during the termination of aggressive behavior from the deficient-serotonin trait in violence-prone individuals. It can be anticipated that currently developed tools for targeting the genes that code for specific subtypes of serotonin receptors will offer new therapeutic options for reducing aggressive behavior, and the 5-HT(1B) receptor appears to be a promising target. The modulation of GABA and GABA(A) receptors by 5-HT in corticolimbic neurons promises to be particularly relevant for specific forms of escalated aggressive behavior such as alcohol-heightened aggression.
Collapse
Affiliation(s)
- Klaus A Miczek
- Departments of Psychology, Tufts University, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Hensler JG. Serotonergic modulation of the limbic system. Neurosci Biobehav Rev 2006; 30:203-14. [PMID: 16157378 DOI: 10.1016/j.neubiorev.2005.06.007] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/20/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
The limbic system is composed of cortical as well as subcortical structures, which are intimately interconnected. The resulting macrostructure is responsible for the generation and expression of motivational and affective states. Especially high levels of serotonin are found in limbic forebrain structures. Serotonin projections to these structures, which arise from serotonergic cell body groups in the midbrain, form a dense plexus of axonal processes. In many areas of the limbic system, serotonergic neurotransmission can best be described as paracrine or volume transmission, and thus serotonin is believed to play a neuromodulatory role in the brain. Serotonergic projections to limbic structures, arising primarily from the dorsal and median raphe nuclei, compose two distinct serotonergic systems differing in their topographic organization, electrophysiological characteristics, morphology, as well as sensitivity to neurotoxins and perhaps psychoactive or therapeutic agents. These differences may be extremely important in understanding the role of these two serotonergic systems in normal brain function and in mental illness. Central serotonergic neurons or receptors are targets for a variety of therapeutic agents used in the treatment of disorders of the limbic system.
Collapse
Affiliation(s)
- Julie G Hensler
- Department of Pharmacology, MC 7764, University of Texas Health Science Center-San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
27
|
Grider MH, Mamounas LA, Le W, Shine HD. In situ expression of brain-derived neurotrophic factor or neurotrophin-3 promotes sprouting of cortical serotonergic axons following a neurotoxic lesion. J Neurosci Res 2005; 82:404-12. [PMID: 16206279 DOI: 10.1002/jnr.20635] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurotrophins promote sprouting and elongation of central nervous system (CNS) axons following injury. Consequently, it has been suggested that neurotrophins could be used to repair the CNS by inducing axonal sprouting from nearby intact axons, thereby compensating for the loss of recently injured axons. We tested whether long-term overexpression of neurotrophins in the rat cortex would induce sprouting of cortical serotonergic axons following a neurotoxic injury. After a single subcutaneous injection of para-chloroamphetamine (PCA; 9 mg/ml) that lesions the majority of serotonergic axons in the rat cortex, we injected adenoviral vectors containing cDNAs for brain-derived neurotrophic factor (Adv.BDNF), neurotrophin-3 (Adv.NT-3), or nerve growth factor (Adv.NGF) into the rat frontal cortex. Nine days later, we measured significant increases in the concentration of the respective neurotrophins surrounding the vector injection sites, as measured by ELISA. Immunohistochemical localization of serotonin revealed a fourfold increase in the density of serotonergic fibers surrounding the injection sites of Adv.BDNF and Adv.NT-3, corresponding to a 50% increase in cortical serotonin concentration, compared with a control vector containing the cDNA for enhanced green fluorescent protein (Adv.EGFP). In contrast, there was no difference in serotonergic fiber density or cortical serotonin concentration surrounding the injection of Adv.NGF compared with Adv.EGFP. These data demonstrate that localized overexpression of BDNF or NT-3, but not NGF, is sufficient to promote sprouting of serotonergic axons in the cortex following an experimental neurotoxic injury.
Collapse
Affiliation(s)
- M H Grider
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, and NINDS, NIH, Bethesda, MD, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The serotonergic (5HT) system plays a key role in modulating behaviors, such as appetite and anxiety and has been implicated in many human disorders of mood and mind. Recent studies have begun to identify the signaling molecules and transcriptional cascades governing 5HT neuron development in the hindbrain. Already at early stages, local differences in requirements of 5HT neuron development have become apparent. These studies point toward cryptic heterogeneity amongst 5HT neurons and suggest that 5HT neuron determination and differentiation may be more flexible and less absolute biologic processes than might have been expected. Ultimately, the intrinsic heterogeneity and environmental sensitivity of 5HT neurons may help explain the variability observed in some human behavioral disorders, such as autism spectrum disorder, and the less predictable behavioral consequences of fetal alcohol syndrome.
Collapse
Affiliation(s)
- S P Cordes
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Department of Medical and Molecular Genetics and Microbiology, University of Toronto, ON, Canada.
| |
Collapse
|
29
|
Bjarkam CR, Sørensen JC, Geneser FA. Distribution and morphology of serotonin-immunoreactive axons in the retrohippocampal areas of the New Zealand white rabbit. ACTA ACUST UNITED AC 2005; 210:199-207. [PMID: 16170538 DOI: 10.1007/s00429-005-0004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2005] [Indexed: 12/19/2022]
Abstract
This study provides a detailed light microscopic description of the morphology and distribution of serotonin-immunoreactive axons in the paleocortical retrohippocampal areas, viz. the subiculum, presubiculum, parasubiculum and entorhinal area, and the adjoining neocortical perirhinal and retrosplenial cortices of the New Zealand white rabbit. Serotonergic axons could be segregated into three different fiber types named fine fibers, beaded fibers and stem-axons. Fine fibers were evenly distributed thin axons with small fusiform/granular varicosities. Beaded fibers were thin axons with large varicosities, predominantly located in the retrohippocampal supragranular layers, where they often formed pericellular arrays. Stem-axons were thick straight, nonvaricose axons seen in the white matter of psalterium dorsale, alveus and the plexiform layer. The paleocortical retrohippocampal areas had a dense supragranular innervation with numerous tortuous fine and beaded fibers, intermingled in conglomerates with conspicuous varicosities forming pericellular arrays. In contrast, the neocortical area 17 and the lateral part of the perirhinal cortex (area 36) were innervated by evenly distributed fine fibers with a moderate number of small varicosities and few ramifications, whereas, the retrosplenial cortex (areas 29e, 29ab and 29cd), and the medial part of the perirhinal cortex (area 35) displayed an intermediate innervation pattern, probably reflecting the transitional nature of these areas being located between the paleo- and the neocortex. The described dualistic innervation pattern may functionally enable the serotonergic system to exert a strong influence on the supragranular layers of the retrohippocampal areas and thus on the neural input entering these areas from the perirhinal and neighboring polymodal association neocortices, whereas the innervation pattern in the adjoining neocortical areas points towards a more diffuse and general modulation of neural activity herein.
Collapse
Affiliation(s)
- Carsten R Bjarkam
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
30
|
De Silva DJ, French SJ, Cheung NY, Swinson AK, Bendotti C, Rattray M. Rat brain serotonin neurones that express neuronal nitric oxide synthase have increased sensitivity to the substituted amphetamine serotonin toxins 3,4-methylenedioxymethamphetamine and p-chloroamphetamine. Neuroscience 2005; 134:1363-75. [PMID: 16054768 DOI: 10.1016/j.neuroscience.2005.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 03/11/2005] [Accepted: 05/11/2005] [Indexed: 11/27/2022]
Abstract
Substituted amphetamines such as p-chloroamphetamine and the abused drug methylenedioxymethamphetamine cause selective destruction of serotonin axons in rats, by unknown mechanisms. Since some serotonin neurones also express neuronal nitric oxide synthase, which has been implicated in neurotoxicity, the present study was undertaken to determine whether nitric oxide synthase expressing serotonin neurones are selectively vulnerable to methylenedioxymethamphetamine or p-chloroamphetamine. Using double-labeling immunocytochemistry and double in situ hybridization for nitric oxide synthase and the serotonin transporter, it was confirmed that about two thirds of serotonergic cell bodies in the dorsal raphé nucleus expressed nitric oxide synthase, however few if any serotonin transporter immunoreactive axons in striatum expressed nitric oxide synthase at detectable levels. Methylenedioxymethamphetamine (30 mg/kg) or p-chloroamphetamine (2 x 10 mg/kg) was administered to Sprague-Dawley rats, and 7 days after drug administration there were modest decreases in the levels of serotonin transporter protein in frontal cortex, and striatum using Western blotting, even though axonal loss could be clearly seen by immunostaining. p-Chloroamphetamine or methylenedioxymethamphetamine administration did not alter the level of nitric oxide synthase in striatum or frontal cortex, determined by Western blotting. Analysis of serotonin neuronal cell bodies 7 days after p-chloroamphetamine treatment, revealed a net down-regulation of serotonin transporter mRNA levels, and a profound change in expression of nitric oxide synthase, with 33% of serotonin transporter mRNA positive cells containing nitric oxide synthase mRNA, compared with 65% in control animals. Altogether these results support the hypothesis that serotonin neurones which express nitric oxide synthase are most vulnerable to substituted amphetamine toxicity, supporting the concept that the selective vulnerability of serotonin neurones has a molecular basis.
Collapse
Affiliation(s)
- D J De Silva
- Wolfson Centre for Age-Related Diseases, School of Biomedical Sciences, King's College London, Guy's Hospital Campus, UK
| | | | | | | | | | | |
Collapse
|
31
|
Häidkind R, Eller M, Kask A, Harro M, Rinken A, Oreland L, Harro J. Increased behavioural activity of rats in forced swimming test after partial denervation of serotonergic system by parachloroamphetamine treatment. Neurochem Int 2004; 45:721-32. [PMID: 15234115 DOI: 10.1016/j.neuint.2004.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 02/20/2004] [Accepted: 02/20/2004] [Indexed: 10/26/2022]
Abstract
The present study aimed at characterizing the effect of partial 5-HT denervation by parachloroamphetamine (PCA), a 5-HT selective neurotoxin, on forced swimming behaviour and monoamine levels in several rat brain regions. PCA was administered intraperitoneally in two independent experiments in doses of 2, 4 and 6 mg/kg and in doses 1, 2, 4 mg/kg, respectively. PCA (2 mg/kg) reduced immobility in the forced swimming test in the Experiment 1 and according to Experiment 2 this is explained by increased swimming time. Dose-dependent reductions in 5-HT and 5-HIAA levels were found in all brain regions studied, and the maximal effects were of a similar magnitude. In septum, the effect of PCA took more time to develop. The effects of the lowest dose of PCA suggest that the neurotoxin affects not only the dorsal raphe projection areas but also the fine axons which arise from the median raphe. alpha2-Adrenoceptors and beta-adrenoceptors in cerebral cortex were not affected by the PCA treatment. Binding affinity of the 5-HT(1A) receptors was higher after all doses of PCA. On the second exposure to the forced swimming the time spent in swimming was found to be negatively and the time spent in immobile posture positively correlated with serotonin turnover in frontal cortex. The time spent in struggling on the second exposure to test was found to be negatively correlated with KD of beta-adrenoceptor binding in cerebral cortex. These data suggest that partial 5-HT denervation with low doses of PCA, which elicits a specific pattern of neurodegeneration, results in an increased behavioural activity, and that the traditional interpretation of the measures in forced swimming test, despite of the test's predictive power in revealing antidepressants acting on monoaminergic systems, is not adequate for studies on the neurochemical basis of depression.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Biogenic Monoamines/metabolism
- Brain Chemistry/drug effects
- Denervation
- Depression/psychology
- Dopamine/metabolism
- Dose-Response Relationship, Drug
- Hydroxyindoleacetic Acid/metabolism
- Male
- Norepinephrine/metabolism
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Serotonin/metabolism
- Serotonin/physiology
- Serotonin Agents/toxicity
- Swimming/psychology
- p-Chloroamphetamine/toxicity
Collapse
Affiliation(s)
- Riina Häidkind
- Department of Psychology, University of Tartu, Tiigi 78, 50410 Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
32
|
Szumlinski KK, Frys KA, Kalivas PW. Dissociable roles for the dorsal and median raphé in the facilitatory effect of 5-HT1A receptor stimulation upon cocaine-induced locomotion and sensitization. Neuropsychopharmacology 2004; 29:1675-87. [PMID: 15127081 DOI: 10.1038/sj.npp.1300473] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A distinct role for serotonin transmission from the dorsal and median raphé nuclei (DRN and MRN, respectively) was identified in regulating the behavioral and neurochemical effects of acute and repeated cocaine administration. Serotonin 1A (5-hydroxytryptophan (5-HT)1A) receptors were stimulated by intraraphé microinjection of 8-hydroxy-2-(di-n-propylamino)tetralin (DPAT; 5 or 10 microg) and behavior, as well as extracellular neurotransmitter content in the nucleus accumbens was measured. Pretreatment of the DRN with DPAT caused a sensitization-like potentiation of acute cocaine-induced motor activity and an elevation in extracellular dopamine and glutamate. In contrast, DPAT microinjection into the MRN did not alter acute cocaine-induced motor activity or extracellular levels of dopamine or glutamate. Acutely, DPAT microinjection into either raphé nucleus reduced the basal and acute cocaine-stimulated levels of extracellular serotonin. Pretreatment with DPAT before systemic cocaine administration was continued for 5 days, and 3 weeks after the last injection, all rats were administered a cocaine challenge injection. The sensitized behavioral and neurochemical response produced by repeated cocaine in control subjects was unaffected by the intra-DRN administration of DPAT. However, in animals administered DPAT into the MRN, both the sensitized motor response and the increase in glutamate were augmented, while the sensitized serotonin response was blocked, without altering dopamine sensitization. These data show a differential role for 5-HT1A receptors in the DRN and MRN in the acute and sensitized effects of cocaine. While the DRN is involved in the acute effects of cocaine, neuroadaptations in the MRN may regulate the long-term consequences of repeated cocaine exposure.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
33
|
Abstract
The raphe nuclei are distributed near the midline of the brainstem along its entire rostro-caudal extension. The serotonergic neurons are their main neuronal components, although a proportion of them lie in subdivisions of the lateral reticular formation. They develop from mesopontine and medullary primordia, and the resulting grouping into rostral and caudal clusters is maintained into adulthood, and is reflected in the connectivity. Thus, the mesencephalon and rostral pons, neurons within the rostral raphe complex (caudal linear, dorsal raphe, and median raphe nuclei) project primarily to the forebrain. By contrast, in the caudal pons and medulla oblongata, neurons within the caudal raphe complex (raphe magnus, raphe obscurus, raphe pallidus nuclei and parts of the adjacent lateral reticular formation) project to the brainstem nuclei and to the spinal cord. The median raphe and dorsal raphe nuclei provide parallel and overlapping projections to many forebrain structures with axon fibers exhibiting distinct structural and functional characteristics. The caudal group of the serotonergic system projects to the brainstem, and, by three parallel projections, to the dorsal, intermediate and ventral columns in the spinal cord. The serotonergic axons arborize over large areas comprising functionally diverse targets. Some projections form classical chemical synapses while many do not, thus contributing to the so-called paracrine or volume transmission. The serotonergic projections participate in the regulation of different functional (motor, somatosensory, limbic) systems; and have been associated with a wide range of neuropsychiatric and neurological disorders. Finally, recent experimental data support the role of serotonin in modulating brain development, such that a dysfunction in serotonergic transmission during early life could lead to long lasting structural and functional alterations.
Collapse
Affiliation(s)
- Jean-Pierre Hornung
- Institut de biologie cellulaire et de morphologie, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
34
|
Itzhak Y, Achat-Mendes CN, Ali SF, Anderson KL. Long-lasting behavioral sensitization to psychostimulants following p-chloroamphetamine-induced neurotoxicity in mice. Neuropharmacology 2004; 46:74-84. [PMID: 14654099 DOI: 10.1016/s0028-3908(03)00316-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amphetamine analogs such as p-chloroamphetamine (PCA) cause serotonergic and dopaminergic neurotoxicity. The behavioral consequences and the responsiveness to psychostimulants following the neurotoxic insult are unclear. The present study was undertaken to investigate the outcome of neurotoxic and non-neurotoxic PCA pre-treatments on the sensitivity of Swiss Webster mice to the psychomotor stimulating effects of PCA, 3,4-methylenedioxymethamphetamine (MDMA) and cocaine. PCA (15 mg/kg x 2; i.p.) caused 37-70% depletion of dopaminergic and serotonergic markers in mouse brain. Saline and PCA (15 mg/kg x 2) mice were challenged on days 5, 12, 40 and 74 with one of the following drugs: PCA (5 mg/kg), MDMA (10 mg/kg) and cocaine (20 mg/kg). The PCA pre-exposed mice showed marked locomotor sensitization from days 5-74 to all three drugs tested. The time course of the sensitized response coincided with the time course of the neurotoxic insult as determined by reduced densities of striatal dopamine transporter and frontal cortex serotonin transporter binding sites. A single injection of PCA (5 mg/kg) caused neither neurotoxicity nor sensitization to the locomotor stimulating effects of PCA, MDMA and cocaine. Repeated administration of a low non-neurotoxic dose of PCA (5 mg/kg/day; 6 days) caused a transient locomotor sensitization to PCA that dissipated after one month. Results of the present study suggest that PCA-induced serotonergic and dopaminergic neurotoxicity coincides with long-lasting locomotor sensitization to psychostimulants. These findings may be relevant to the psychopathology of amphetamines-induced neurotoxicity.
Collapse
Affiliation(s)
- Yossef Itzhak
- Department of Psychiatry and Behavioral Sciences (R-629), University of Miami School of Medicine, Miami, FL 33136,
| | | | | | | |
Collapse
|
35
|
Beck SG, Pan YZ, Akanwa AC, Kirby LG. Median and dorsal raphe neurons are not electrophysiologically identical. J Neurophysiol 2003; 91:994-1005. [PMID: 14573555 PMCID: PMC2830647 DOI: 10.1152/jn.00744.2003] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dorsal (DR) and median raphe (MR) nuclei contain 5-hydroxytryptamine (serotonin, 5-HT) cell bodies that give rise to the majority of the ascending 5-HT projections to the forebrain limbic areas that control emotional behavior. In the past, the electrophysiological identification of neurochemically identified 5-HT neurons has been limited. Recent technical developments have made it possible to re-examine the electrophysiological characteristics of identified 5-HT- and non-5-HT-containing neurons. Visualized whole cell electrophysiological techniques in combination with fluorescence immunohistochemistry for 5-HT were used. In the DR, both 5-HT- and non-5-HT-containing neurons exhibited similar characteristics that have historically been attributed to putative 5-HT neurons. In contrast, in the MR, the 5-HT-and non-5-HT-containing neurons had very different characteristics. Interestingly, the MR 5-HT-containing neurons had a shorter time constant and larger afterhyperpolarization (AHP) amplitude than DR 5-HT-containing neurons. The 5-HT(1A) receptor-mediated response was also measured. The efficacy of the response elicited by 5-HT(1A) receptor activation was greater in 5-HT-containing neurons in the DR than the MR, whereas the potency was similar, implicating greater autoinhibition in the DR. Non-5-HT-containing neurons in the DR were responsive to 5-HT(1A) receptor activation, whereas the non-5-HT-containing neurons in the MR were not. These differences in the cellular characteristics and 5-HT(1A) receptor-mediated responses between the MR and DR neurons may be extremely important in understanding the role of these two 5-HT circuits in normal physiological processes and in the etiology and treatment of pathophysiological states.
Collapse
Affiliation(s)
- Sheryl G Beck
- Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania 19104-4318, USA.
| | | | | | | |
Collapse
|
36
|
Garcia C, Chen MJ, Garza AA, Cotman CW, Russo-Neustadt A. The influence of specific noradrenergic and serotonergic lesions on the expression of hippocampal brain-derived neurotrophic factor transcripts following voluntary physical activity. Neuroscience 2003; 119:721-32. [PMID: 12809693 DOI: 10.1016/s0306-4522(03)00192-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previous studies have shown that hippocampal brain-derived neurotrophic factor (BDNF) mRNA levels are significantly increased in rats allowed free access to exercise wheels and/or administered antidepressant medications. Enhancement of BDNF may be crucial for the clinical effect of antidepressant interventions. Since increased function of the noradrenergic and/or serotonergic systems is thought to be an important initial mechanism of antidepressant medications, we sought to test the hypothesis that noradrenergic or serotonergic function is essential for the increased BDNF transcription occurring with exercise. In addition, individual transcript variants of BDNF were examined, as evidence exists they are differentially regulated by discrete interventions, and are expressed in distinct sub-regions of the hippocampus. The neurotransmitter system-specific neurotoxins p-chloroamphetamine (serotonergic) and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (noradrenergic) were administered to rats prior to commencing voluntary wheel-running activity. In situ hybridization experiments revealed an absence of exercise-induced full-length BDNF mRNA elevations in the hippocampi of noradrenergic-lesioned rats. In addition, the striking elevation of the exon I transcript in the dentate gyrus was removed with this noradrenergic lesion. In contrast, other transcript variants (exons II and III) were elevated in several hippocampal regions as a result of this lesion. In serotonin-lesioned rats, the significant increases in full-length BDNF, exon I and exon II mRNA levels were sustained without alteration (with the exception of exon IV in the cornus ammonis subregion 4, CA4). Overall, these results indicate that an intact noradrenergic system may be crucial for the observed ability of exercise to enhance full-length and exon I hippocampal BDNF mRNA expression. In addition, these results suggest that the promoter linked to exon I may provide a major regulatory point for BDNF mRNA expression in the dentate gyrus. Elevations of other exons, such as II and III, may require the activation of separate neurotransmitter systems and intracellular pathways.
Collapse
Affiliation(s)
- C Garcia
- Department of Biological Sciences, California State University, 5151 State University Drive, 90032, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
37
|
Bjarkam CR, Sørensen JC, Geneser FA. Distribution and morphology of serotonin-immunoreactive axons in the hippocampal region of the New Zealand white rabbit. I. Area dentata and hippocampus. Hippocampus 2003; 13:21-37. [PMID: 12625454 DOI: 10.1002/hipo.10042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study provides a detailed light microscopic description of the morphology and distribution of immunohistochemically stained serotonergic axons in the hippocampal region of the New Zealand white rabbit. The serotonergic axons were segregated morphologically into three types: beaded fibers, fine fibers, and stem-axons, respectively. Beaded fibers were thin serotonergic axons with large varicosities, whereas thin axons with small fusiform or granular varicosities were called fine fibers. Finally, thick straight non-varicose axons were called stem-axons. Beaded fibers often formed large conglomerates with numerous boutons (pericellular arrays) in close apposition to the cell-rich layers in the hippocampal region, e.g., the granular and hilar cell layers of the dentate area and the pyramidal cell layer ventrally in CA3. The pericellular arrays in these layers were often encountered in relation to small calbindin-D2BK-positive cells, as shown by immunohistochemical double staining for serotonin and calbindin-D28K. The beaded and fine serotonergic fibers displayed a specific innervation pattern in the hippocampal region and were encountered predominantly within the terminal field of the perforant path, e.g., the stratum moleculare hippocampi and the outer two-thirds of the dentate molecular layer. These fibers were also frequently seen in the deep part of the stratum oriens and the alveus, forming a dense plexus in relation to large multipolar calbindin-D28K-positive cells and their basal extensions. Stem-axons were primarily seen in the fimbria and alveus. This innervation pattern was present throughout the entire hippocampal formation, but there were considerable septotemporal differences in the density of the serotonergic innervation. A high density of innervation prevailed in the ventral/temporal part of the hippocampal formation, whereas the dorsal/septal part received only a moderate to weak serotonergic innervation. These results suggest that the serotonergic system could modulate the internal hippocampal circuitry by way of its innervation in the terminal field of the perforant path, the hilus fasciae dentatae, and ventrally in the zone closely apposed to the mossy fiber layer and the pyramidal cells of CA3. This modulation could be of a dual nature, mediated directly by single serotonergic fibers traversing the hippocampal layers or indirectly by the pericellular arrays and their close relation to the calbindin-D28K-positive cells. The marked septotemporal differences in innervation density point toward a difference between the ventral and dorsal parts of the hippocampal formation with respect to serotonergic function and need for serotonergic modulation.
Collapse
Affiliation(s)
- Carsten R Bjarkam
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, Denmark.
| | | | | |
Collapse
|
38
|
Larm JA, Shen PJ, Gundlach AL. Differential galanin receptor-1 and galanin expression by 5-HT neurons in dorsal raphé nucleus of rat and mouse: evidence for species-dependent modulation of serotonin transmission. Eur J Neurosci 2003; 17:481-93. [PMID: 12581166 DOI: 10.1046/j.1460-9568.2003.02471.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Galanin and galanin receptors are widely expressed by neurons in rat brain that either synthesize/release and/or are responsive to, classical transmitters such as gamma-aminobutyric acid, acetylcholine, noradrenaline, histamine, dopamine and serotonin (5-hydroxytryptamine, 5-HT). The dorsal raphé nucleus (DRN) contains approximately 50% of the 5-HT neurons in the rat brain and a high percentage of these cells coexpress galanin and are responsive to exogenous galanin in vitro. However, the precise identity of the galanin receptor(s) present on these 5-HT neurons has not been previously established. Thus, the current study used a polyclonal antibody for the galanin receptor-1 (GalR1) to examine the possible expression of this receptor within the DRN of the rat and for comparative purposes also in the mouse. In the rat, intense GalR1-immunoreactivity (IR) was detected in a substantial population of 5-HT-immunoreactive neurons in the DRN, with prominent receptor immunostaining associated with soma and proximal dendrites. GalR1-IR was also observed in many cells within the adjacent median raphé nucleus. In mouse DRN, neurons exhibited similar levels and distribution of 5-HT-IR to that in the rat, but GalR1-IR was undetectable. Consistent with this, galanin and GalR1 mRNA were also undetectable in mouse DRN by in situ hybridization histochemistry, despite the detection of GalR1 mRNA (and GalR1-IR) in adjacent cells in the periaqueductal grey and other midbrain areas. 5-HT neuron activity in the DRN is primarily regulated via 5-HT1A autoreceptors, via inhibition of adenylate cyclase and activation of inward-rectifying K+ channels. Notably, the GalR1 receptor subtype signals via identical mechanisms and our findings establish that galanin modulates 5-HT neuron activity in the DRN of the rat via GalR1 (auto)receptors. However, these studies also identify important species differences in the relationship between midbrain galanin and 5-HT systems, which should prompt further investigations in relation to comparative human neurochemistry and which have implications for studies of animal models of relevant neurological conditions such as stress, anxiety and depression.
Collapse
Affiliation(s)
- Jari A Larm
- Howard Florey Institute of Experimental Physiology and Medicine, Austin & Repatriation Medical Centre, The University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
39
|
Gobbi M, Moia M, Pirona L, Ceglia I, Reyes-Parada M, Scorza C, Mennini T. p-Methylthioamphetamine and 1-(m-chlorophenyl)piperazine, two non-neurotoxic 5-HT releasers in vivo, differ from neurotoxic amphetamine derivatives in their mode of action at 5-HT nerve endings in vitro. J Neurochem 2002; 82:1435-43. [PMID: 12354291 DOI: 10.1046/j.1471-4159.2002.01073.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanism underlying the serotoninergic neurotoxicity of some amphetamine derivatives, such as p-chloroamphetamine (pCA) and 3,4-methylenedioxymethamphetamine (MDMA), is still debated. Their main acute effect, serotonin (5-HT) release from nerve endings, involves their interaction with 5-HT transporters (SERTs), as substrates. Although this interaction is required for the neurotoxic effects, 5-HT release alone may not be sufficient to induce long-term 5-HT deficits. Some non-neurotoxic compounds, including p-methylthioamphetamine (MTA) and 1-(m-chlorophenyl)piperazine (mCPP), have 5-HT releasing properties in vivo and in brain slices comparable to that of neurotoxic amphetamine derivatives. We measured 5-HT release in superfused rat brain synaptosomes preloaded with [3H]5-HT, a model that distinguishes a releasing effect from reuptake inhibition. MTA and mCPP induced much lower release than pCA and MDMA. The striking difference between our findings in synaptosomes and those obtained in vivo or in brain slices is probably related to a different compartmentalisation of 5-HT in the different experimental models. Studies in synaptosomes, where the vesicular storage of 5-HT is predominant, could therefore bring to light differences between neurotoxic and non-neurotoxic 5-HT releasing agents which cannot be appreciated in other experimental models and might be useful to identify the mechanisms responsible for the neurotoxicity induced by amphetamine derivatives.
Collapse
Affiliation(s)
- M Gobbi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Garcia G, Tagliaferro P, Bortolozzi A, Madariaga MJ, Brusco A, Evangelista de Duffard AM, Duffard R, Saavedra JP. Morphological study of 5-HT neurons and astroglial cells on brain of adult rats perinatal or chronically exposed to 2,4-dichlorophenoxyacetic acid. Neurotoxicology 2001; 22:733-41. [PMID: 11829407 DOI: 10.1016/s0161-813x(01)00059-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
2,4-D is a chlorophenoxyherbicide used worldwide. We have studied the morphological alterations of 5-HT neurons and glial cells in the mesencephalic nuclei of adult rats exposed to 2,4-D both perinatally (during pregnancy and lactation) and chronically (during pregnancy, lactation and after weaning) with quantitative methods. Pregnant rats were daily exposed to 70 mg/kg of 2,4-D from gestation day (GD) 16 to post-natal day (PND) 23 through diet. After weaning, pups were assigned to one of two sub-groups: T1 (fed with untreated diet until PND 90) and T2 (maintained with 2,4-D diet until PND 90). Brain sections were immunocytochemically stained using polyclonal anti-5-HT, anti-GFAP and anti-S-100 protein antibodies as cells markers. 2,4-D exposure during pregnancy and lactancy (T1 group) produced an increase in 5-HT neuronal area and immunoreactivity (IR) in the mesencephalic nuclei studied. However, with the chronical 2,4-D exposure (T2 group) only the 5-HT neuronal area from the dorsal raphe nucleus (DRN) was increased, suggesting an adaptable response of 5-HT neurons in median raphe nucleus (MRN). The presence of reactive astrocytes in mesencephalic nuclei and in hippocampus were also different for the two 2,4-D exposure designs, showing the existence of a correspondence between neuronal changes and astrogliosis. Results support evidences that 2,4-D alters the serotoninergic system and that 5-HT neurons of each mesencephalic nuclei show different responses to the 2,4-D exposure designs which are parallel to astrogliosis.
Collapse
Affiliation(s)
- G Garcia
- Experimental Toxicology Laboratory, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Santa Fe, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Frost DO, Cadet JL. Effects of methamphetamine-induced neurotoxicity on the development of neural circuitry: a hypothesis. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 34:103-18. [PMID: 11113502 DOI: 10.1016/s0165-0173(00)00042-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure of the developing brain to methamphetamine has well-studied biochemical and behavioral consequences. We review: (1) the effects of methamphetamine on mature serotonergic and dopaminergic pathways; (2) the mechanisms of methamphetamine neurotoxicity and (3) the role of serotonergic and dopaminergic signaling in sculpting developing neural circuitry. Consideration of these data suggest the types of neural circuit alterations that may result from exposure of the developing brain to methamphetamine and that may underlie functional defects.
Collapse
Affiliation(s)
- D O Frost
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, MD 21201, USA.
| | | |
Collapse
|
42
|
Ramos AJ, Tagliaferro P, López EM, Pecci Saavedra J, Brusco A. Neuroglial interactions in a model of para-chlorophenylalanine-induced serotonin depletion. Brain Res 2000; 883:1-14. [PMID: 11063982 DOI: 10.1016/s0006-8993(00)02862-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serotonin (5HT) is involved in the development and plasticity of the CNS through the release of S-100beta, a glial trophic factor which stabilizes synapses and neuronal cytoskeleton and promotes neuronal development. S-100beta is released from glial cells after activation of glial 5HT(1A) receptors. We present in this paper the effects upon neurons and glia of a 5HT depletion induced by 14 days of treatment with para-chlorophenylalanine (PCPA) in adult rats. S-100beta, 5HT, 5HT-transporter (5HT-T) and neurofilaments (Nf-200 and Nf-68) expressions were studied by immunohistochemistry and image analysis in striatum, hippocampus, parietal and frontal cortex. Immediately after ending PCPA treatment we found increased intracellular S-100beta immunoreactivity in glial cells, reduced 5HT immunolabelling, reduced density of 5HT-T, Nf-200 and Nf-68 fibers and morphological alterations in neuronal cytoskeleton. One week after PCPA treatment S-100beta immunoreactivity decreased towards control levels, 5HT was normalized in dorsal raphe nucleus, but not in innervation areas; 5HT-T, Nf-200 and Nf-68 fiber densities increased but some neuronal cytoskeletal alterations were still present in striatum. Two weeks after PCPA treatment S-100beta had returned to control levels in most studied regions; 5HT immunoreactivity was normalized, meanwhile 5HT-T, Nf-200 and Nf-68 fiber densities increased reaching values over the control level. We propose that S-100beta could be accumulated in glial cells during the 5HT depletion period, to be released once 5HT levels have recovered. Neuronal cytoskeletal alterations and reduced fiber density may be the expression of decreased extracellular availability of S-100beta. Conversely, increased 5HT-T, Nf-200 and Nf-68 expressions, once S-100beta is normalized, may be the biological response to the growth factor release.
Collapse
Affiliation(s)
- A J Ramos
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 (1121), Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
43
|
García-Osta A, Frechilla D, Del Río J. Effect of p-chloroamphetamine on 5-HT1A and 5-HT7 serotonin receptor expression in rat brain. J Neurochem 2000; 74:1790-7. [PMID: 10800921 DOI: 10.1046/j.1471-4159.2000.0741790.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to investigate if p-chloroamphetamine (PCA), which is neurotoxic to serotonin (5-HT) nerve terminals, was able to induce, like 3,4-methylenedioxymethamphetamine, a region-specific regulation of 5-HT1A receptor mRNA expression. The effect of PCA on the expression of 5-HT7 receptors, which share some pharmacological properties with 5-HT1A receptors, was comparatively studied. PCA (2 x 5 mg/kg) produced a lasting depletion of 5-HT content in the rat frontal cortex and hippocampus. In the hippocampus, the maximal 5-HT depletion was found on day 21 (-70%), whereas in the cortex, the highest 5-HT depletion was found on day 14 (-73%), with a partial but significant recovery on day 21. At the latter time point, 5-HT1A receptor mRNA expression was increased by 80% in the cortex and decreased by 50% in the hippocampus. The 5-HT1A receptor mRNA expression was also enhanced after exposure to PCA of rat cortical but not of hippocampal primary cultures. In regard to 5-HT7 receptor mRNA expression, the most remarkable change after PCA was the great increase (+200%) in the brain-stem. Binding studies to 5-HT1A receptors matched the changes in receptor mRNA expression. Gel shift assays revealed enhanced nuclear protein binding to the KB sequence with use of cortical but not hippocampal extracts of PCA-treated rats. Overall, the data show region-specific changes in 5-HT receptor-type expression that may not be entirely dependent on the neurotoxic effect of PCA on 5-HT terminals.
Collapse
Affiliation(s)
- A García-Osta
- Department of Pharmacology, University of Navarra Medical School, Pamplona, Spain
| | | | | |
Collapse
|
44
|
Frechilla D, Insausti R, Ruiz-Golvano P, García-Osta A, Rubio MP, Almendral JM, Del Río J. Implanted BDNF-producing fibroblasts prevent neurotoxin-induced serotonergic denervation in the rat striatum. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:306-14. [PMID: 10762706 DOI: 10.1016/s0169-328x(00)00012-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Degeneration of serotonergic fibers in the rat striatum was produced by local administration of the serotonergic neurotoxin 5, 7-dihydroxytryptamine (5,7-DHT) or the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)), which is also toxic to serotonergic neurons. One week before neurotoxin administration, fibroblasts engineered to express the human BDNF gene were grafted into the mesencephalon, dorsal to the substantia nigra. Rats implanted with fibroblasts expressing the LacZ gene were used as controls, as well as sham-operated animals (not injected with any neurotoxin). After a survival period of 1 week, the serotonergic innervation of the striatum was assessed by measuring serotonin (5-HT) content and by immunohistochemical detection of 5-HT positive fibers. BDNF-producing cells prevented the striatal 5-HT loss induced by local administration of either 5,7-DHT or MPP(+), as well as the striatal dopamine (DA) loss induced by the latter neurotoxin. Grafting of fibroblasts carrying the BDNF or the Lac-Z gene did not modify striatal 5-HT or DA content in sham-operated animals. In 5, 7-DHT-lesioned rats, implanted or not with control Lac-Z fibroblasts, a striking reduction in the density of 5-HT immunoreactive fibers was observed. By contrast, the density of 5-HT fibers was similar in rats implanted with BDNF-producing fibroblasts as compared to sham-operated controls. The protective effect of BDNF on the damage to serotonergic terminals induced by the two neurotoxins suggests the interest of this neurotrophin in the treatment of behavioral disorders associated to neurodegenerative diseases.
Collapse
Affiliation(s)
- D Frechilla
- Department of Pharmacology, University of Navarra Medical School, c/ Irunlarrea 1, 31008-, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhou FC, Sari Y, Zhang JK. Expression of serotonin transporter protein in developing rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 119:33-45. [PMID: 10648870 DOI: 10.1016/s0165-3806(99)00152-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Serotonin transporter (5-HTT), a transmembrane protein, has been shown in adult brain to be distributed not only on synaptic terminals but to a great extent on axons as well. Here we report the ontogeny of 5-HTT and its relationship with serotonin (5-HT) neurons using established 5-HTT and 5-HT antibodies. Both 5-HTT- and 5-HT-immunostaining (-im) appear in 5-HT neurons at embryonic day 12 (E12) in rostral raphe nuclei (RRN). Soon after appearing, 5-HTT-im is highly expressed on axons, similar to adult expression. However, in contrast to adult, 5-HTT-im also outlines the soma-dendrites. Rich 5-HTT-im appears along the entire length of projecting axons, extending to the growth tip. In the next 2 days, intensive 5-HTT-im axons from RRN travel a course preferentially in the floor plate and later, the medial forebrain bundle trajectory. A group of new 5-HT-im neurons and 5-HTT-im axons appear at E13 in caudal raphe nuclei. At E16-18, taking the exact trajectory course of 5-HT axons, 5-HTT-im axons reach ganglionic eminence, olfactory bulb, and cortex and disperse into many brain regions in E18-20. No 5-HTT-im cell bodies were seen in nigral, locus ceruleus, or hypothalamus. However, the transient expression of 5-HTT on non-serotonergic system was seen in cortical and striatal neuroepithelia at E12 and sensory thalamic pathways at P0-P10. Prominent 5-HTT-im fibers in thalamocortical bundles project from sensory thalamic nuclei through reticular nucleus, internal capsule bundle and form barrels in somatosensory cortices. No 5-HTT-im was seen in glia-like cells using currently available antibody. These observations indicate that 5-HTT is: (a) associated preferentially with 5-HT neurons in brainstem, (b) temporally co-expressed with 5-HT in 5-HT neurons, (c) expressed on axons prior to synaptical sites at target neurons, which strongly indicates a volumic (extrasynaptic) transmission, (d) expressed in non-5-HT neurons within a specific window, which may affect the development of the systems "borrowing" the 5-HT. The early appearance of 5-HTT may also endow functionality as well as vulnerabilities of 5-HT, sensory thalamic, and cortical neurons to 5-HTT targeting drugs during pregnancy and after birth.
Collapse
Affiliation(s)
- F C Zhou
- Department of Anatomy, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
46
|
Grimaldi B, Fillion G. 5-HT-moduline controls serotonergic activity: implication in neuroimmune reciprocal regulation mechanisms. Prog Neurobiol 2000; 60:1-12. [PMID: 10622374 DOI: 10.1016/s0301-0082(98)00074-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The serotonergic neurotransmission is known as a neuromodulatory system exerting its activity in the central nervous system (CNS) as well as at the periphery. The anatomical and morphological organization of the system based on a marked centralization of the cellular bodies and the large, almost ubiquitary, presence of axonal projections of the neurons is in good agreement with this modulatory role. Furthermore, a very high number of varicosities located along the axonal branches are capable of releasing serotonin (5-HT). The amine stimulates a number of different specific receptor types which allows 5-HT to exert different activities on its various cellular targets. Among these receptors, the 5-HT1B subtypes play a particular role as they are autoreceptors located on 5-HT neurons terminals and heteroreceptors located on non-serotonergic terminals where they control the release of the neurotransmitter. 5-HT-moduline, an endogenous tetrapeptide, regulates the efficacy of these 5-HT1B receptors, hence, is able to control the serotonergic activity in a synchronous manner for the various varicosities from a single neuron and thus may favour the differential effect of that neuron on distinct cerebral functions. Accordingly, the peptide allows the 'fine tuning' of the cerebral activity by the serotonergic system to elaborate the response given by the brain to a particular stimulus, that is, stress situations. At the periphery, the serotonergic system also appears to possess a regulatory activity via 5-HT1B receptors. In particular, the receptors located on immunocompetent cells control their activity and are themselves regulated by 5-HT-moduline likely originating from adrenal medulla and released after acute stress. The serotonergic system appears to play a major role in the reciprocal signalling existing between the neuronal and the immune system. The participation of 5-HT-moduline is likely in physiological functions as well as in pathological disorders affecting central and peripheral activities.
Collapse
Affiliation(s)
- B Grimaldi
- Unité de Pharmacologie neuroimmunoendocrinienne, Institut Pasteur, Paris, France.
| | | |
Collapse
|
47
|
Tao-Cheng JH, Zhou FC. Differential polarization of serotonin transporters in axons versus soma-dendrites: an immunogold electron microscopy study. Neuroscience 1999; 94:821-30. [PMID: 10579573 DOI: 10.1016/s0306-4522(99)00373-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In spite of the conventional belief that neurotransmitter uptake occurs at the synapses, we demonstrated previously that serotonin transporters and the high-affinity uptake of serotonin were not confined to the terminals but rather occurred throughout the axons [Zhou F. C. et al. (1998) Brain Res. 805, 241-254]. In the present study, the detailed distribution of serotonin transporters over various parts of the neuron was illustrated and analysed morphometrically using a pre-embedding immunogold method with a characterized serotonin transporter antibody at the electron microscopic level. Our findings reveal a highly polarized distribution of serotonin transporters between axons and soma-dendrites in two aspects. (1) On the plasma membrane, serotonin transporter-immunogold is extremely low on soma-dendrites and synaptic junctions, but consistently dense along the axons and perisynaptic area. (2) In contrast, serotonin transporter labeling in the cytoplasm is concentrated in soma and dendrites, particularly on the membranes of rough endoplasmic reticulum, Golgi complexes and tubulovesicular structures, but low in the axoplasm. The extensive distribution of serotonin transporter along the axolemma suggests a broad range of uptake sites beyond synaptic junctions, and is consistent with the notion that the major mode of transmission for serotonin neurons is through volume (extrasynaptic) transmission. The highly polarized distribution also indicates that the major serotonin uptake sites are on axons and not on soma-dendrites.
Collapse
|
48
|
Morin LP, Meyer-Bernstein EL. The ascending serotonergic system in the hamster: comparison with projections of the dorsal and median raphe nuclei. Neuroscience 1999; 91:81-105. [PMID: 10336062 DOI: 10.1016/s0306-4522(98)00585-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ascending serotonergic projections are derived largely from the midbrain median and dorsal raphe nuclei, and contribute to the regulation of many behavioral and physiological systems. Serotonergic innervation of the hamster circadian system has been shown to be substantially different from earlier results obtained with other methods and species. The present study was conducted to determine whether similar differences are observed in other brain regions. Ascending projections from the hamster dorsal or median raphe were identified using an anterograde tracer, Phaseolus vulgans leucoagglutinin, injected by iontophoresis into each nucleus. Brains were processed for tracer immunoreactivity, and drawings were made of the median raphe and dorsal raphe efferent projection patterns. The efferents were also compared to the distribution of normal serotonergic innervation of the hamster midbrain and forebrain. The results show widespread, overlapping projection patterns from both the median and dorsal raphe, with innervation generally greater from the dorsal raphe. In several brain regions, including parts of the pretectum, lateral geniculate and basal forebrain, nuclei are innervated by the dorsal, but not the median, raphe. The hypothalamic suprachiasmatic nucleus is the only site innervated exclusively by the median and not by the dorsal raphe. The pattern of normal serotonin fiber and terminal distribution is generally more robust than would be inferred from the anterograde tracer material. However, there is good qualitative similarity between the two sets of data. The oculomotor nucleus and the medial habenula are unusual to the extent that each has a moderately dense serotonin terminal plexus, although neither receives innervation from the median or dorsal raphe. In contrast, the centrolateral thalamic nucleus and lateral habenula have little serotonergic innervation, but receive substantial other neural input from the raphe nuclei. The normal serotonergic innervation of the hamster brain is similar to that in the rat, although there are exceptions. The anterograde tracing of ascending median or dorsal raphe projections reveals a high, but imperfect, degree of correspondence with the serotonin innervation data, and with data from rats derived from immunohistochemical and autoradiographic tract-tracing techniques.
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry, Stony Brook University, NY 11794, USA
| | | |
Collapse
|
49
|
Gulyás AI, Acsády L, Freund TF. Structural basis of the cholinergic and serotonergic modulation of GABAergic neurons in the hippocampus. Neurochem Int 1999; 34:359-72. [PMID: 10397363 DOI: 10.1016/s0197-0186(99)00041-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ascending subcortical pathways effectively modulate hippocampal information processing. Two components, the cholinergic and serotonergic pathways have been demonstrated to play an important role in the generation of behaviour-dependent hippocampal EEG patterns. Several findings suggest that the above projections influence the activity of hippocampal interneurons. Here we review the available data from physiological, pharmacological and receptor localization experiments, drawing attention to the crucial role of interneurons in the transfer and amplification of subcortical effects on cortical information processing. We hypothesize that, by exerting diverse actions on different subsets of interneurons, the cholinergic and serotonergic systems might change the balance of somatic and dendritic inhibition, and consequently change the integrative properties of hippocampal principal cells.
Collapse
Affiliation(s)
- A I Gulyás
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
| | | | | |
Collapse
|
50
|
Rattray M, Michael GJ, Lee J, Wotherspoon G, Bendotti C, Priestley JV. Intraregional variation in expression of serotonin transporter messenger RNA by 5-hydroxytryptamine neurons. Neuroscience 1999; 88:169-83. [PMID: 10051198 DOI: 10.1016/s0306-4522(98)00231-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The distribution of the messenger RNA encoding the 5-hydroxytryptamine transporter was investigated in rat brain. 5-Hydroxytryptamine transporter messenger RNA was found exclusively in the B1-B9 cell groups containing the cell bodies of 5-hydroxytryptamine neurons. Combined in situ hybridization and 5-hydroxytryptamine immunocytochemistry demonstrated 5-hydroxytryptamine transporter gene expression in the majority of and exclusively in 5-hydroxytryptamine neurons. Cells differed in their levels of expression of 5-hydroxytryptamine transporter messenger RNA and 5-hydroxytryptamine immunofluorescence, but with a tight correlation between the two parameters. Image analysis of cells from B7, the dorsal raphe nucleus, and B8, the median raphe nucleus, revealed significant differences between groups in the mean cellular level of 5-hydroxytryptamine transporter gene expression. Cells in the ventromedial subdivision of B7 displayed higher levels of expression than cells in B8 or cells in the lateral wings of B7. There was also heterogeneity in the distribution of the cellular levels of expression for two other genes expressed by 5-hydroxytryptamine neurons: l-aromatic amino acid decarboxylase messenger RNA and tryptophan hydroxylase messenger RNA. However, the relative levels of expression of these two genes within the four regions studied differed from that of 5-hydroxytryptamine transporter messenger RNA. These results indicate intraregional differences between 5-hydroxytryptamine neurons with respect to 5-hydroxytryptamine transporter messenger RNA levels. Such differences may account for the differential sensitivity of 5-hydroxytryptamine neurons to cytotoxins.
Collapse
Affiliation(s)
- M Rattray
- Division of Biochemistry and Molecular Biology, UMDS, Guy's Hospital, London, UK
| | | | | | | | | | | |
Collapse
|