1
|
Huang Y, Jia M, Yang X, Han H, Hou G, Bi L, Yang Y, Zhang R, Zhao X, Peng C, Ouyang X. Annexin A2: The Diversity of Pathological Effects in Tumorigenesis and Immune Response. Int J Cancer 2022; 151:497-509. [PMID: 35474212 DOI: 10.1002/ijc.34048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/11/2022]
Abstract
Annexin A2 (ANXA2) is widely used as a marker in a variety of tumors. By regulating multiple signal pathways, ANXA2 promotes the epithelial-mesenchymal transition, which can cause tumorigenesis and accelerate thymus degeneration. The elevated ANXA2 heterotetramer facilitates the production of plasmin, which participates in pathophysiologic processes such as tumor cell invasion and metastasis, bleeding diseases, angiogenesis, inducing the expression of inflammatory factors. In addition, the ANXA2 on the cell membrane mediates immune response via its interaction with surface proteins of pathogens, C1q, toll-like receptor 2, anti-dsDNA antibodies and immunoglobulins. Nuclear ANXA2 plays a role as part of a primer recognition protein complex that enhances DNA synthesis and cells proliferation by acting on the G1-S phase of the cell. ANXA2 reduction leads to the inhibition of invasion and metastasis in multiple tumor cells, bleeding complications in acute promyelocytic leukemia, retinal angiogenesis, autoimmunity response and tumor drug resistance. In this review, we provide an update on the pathological effects of ANXA2 in both tumorigenesis and the immune response. We highlight ANXA2 as a critical protein in numerous malignancies and the immune host response.
Collapse
Affiliation(s)
- Yanjie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Mengzhen Jia
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Hongyan Han
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Bi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Yueli Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Ruoqi Zhang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, Ct, USA
| |
Collapse
|
2
|
Hernández-Domínguez EE, Vargas-Ortiz E, Bojórquez-Velázquez E, Barrera-Pacheco A, Santos-Díaz MS, Camarena-Rangel NG, Barba de la Rosa AP. Molecular characterization and in vitro interaction analysis of Op14-3-3 μ protein from Opuntia ficus-indica: identification of a new client protein from shikimate pathway. J Proteomics 2019; 198:151-162. [PMID: 30677553 DOI: 10.1016/j.jprot.2019.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 01/01/2023]
Abstract
In plants, 14-3-3 proteins are important modulators of protein-protein interactions in response to environmental stresses. The aim of the present work was to characterize one Opuntia ficus-indica 14-3-3 and get information about its client proteins. To achieve this goal, O. ficus-indica 14-3-3 cDNA, named as Op14-3-3 μ, was amplified by 3'-RACE methodology. Op14-3-3 μ contains an Open Reading Frame of 786 bp encoding a 261 amino acids protein. Op14-3-3 μ cDNA was cloned into a bacterial expression system and recombinant protein was purified. Differential Scanning Fluorimetry, Dynamic Light Scattering, and Ion Mobility-Mass Spectrometry were used for Op14-3-3 μ protein characterization, and Affinity-Purification-Mass Spectrometry analysis approach was used to obtain information about their potential client proteins. Pyrophosphate-fructose 6-phosphate 1-phosphotransferase, ribulose bisphosphate carboxylase large subunit, and vacuolar-type H+-ATPase were identified. Interestingly chorismate mutase p-prephenate dehydratase was also identified. Op14-3-3 μ down-regulation was observed in Opuntia calluses when they were induced with Jasmonic Acid, while increased accumulation of Op14-3-3 μ protein was observed. The putative interaction of 14-3-3 μ with chorismate mutase, which have not been reported before, suggest that Op14-3-3 μ could be an important regulator of metabolites biosynthesis and responses to stress in Opuntia spp. SIGNIFICANCE: Opuntia species are important crops in arid and semiarid areas worldwide, but despite its relevance, little information about their tolerance mechanism to cope with harsh environmental conditions is reported. 14-3-3 proteins have gained attention due to its participation as protein-protein regulators and have been linked with primary metabolism and hormones responses. Here we present the characterization of the first Opuntia ficus-indica 14-3-3 (Op14-3-3) protein using affinity purification-mass spectrometry (AP-MS) strategy. Op14-3-3 has high homology with other 14-3-3 from Caryophyllales. A novel Op14-3-3 client protein has been identified; the chorismate mutase p-prephenate dehydratase, key enzyme that links the primary with secondary metabolism. The present results open new questions about the Opuntia spp. pathways mechanisms in response to environmental stress and the importance of 14-3-3 proteins in betalains biosynthesis.
Collapse
Affiliation(s)
- Eric E Hernández-Domínguez
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
| | - Erandi Vargas-Ortiz
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
| | - Esaú Bojórquez-Velázquez
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
| | - Alberto Barrera-Pacheco
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
| | - María S Santos-Díaz
- Facultad de Ciencias Químicas, UASLP, Manuel Nava 6, San Luis Potosí 78210, Mexico
| | | | - Ana P Barba de la Rosa
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico.
| |
Collapse
|
3
|
Seong JH, Jo YH, Seo GW, Park S, Park KB, Cho JH, Ko HJ, Kim CE, Patnaik BB, Jun SA, Choi YS, Kim YW, Bang IS, Lee YS, Han YS. Molecular Cloning and Effects of Tm14-3-3ζ-Silencing on Larval Survivability Against E. coli and C. albicans in Tenebrio molitor. Genes (Basel) 2018; 9:E330. [PMID: 29966317 PMCID: PMC6070784 DOI: 10.3390/genes9070330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 11/22/2022] Open
Abstract
The 14-3-3 family of proteins performs key regulatory functions in phosphorylation-dependent signaling pathways including cell survival and proliferation, apoptosis, regulation of chromatin structure and autophagy. In this study, the zeta isoform of 14-3-3 proteins (designated as Tm14-3-3ζ) was identified from the expressed sequence tags (ESTs) and RNA sequencing (RNA-Seq) database of the coleopteran pest, Tenebrio molitor. Tm14-3-3ζ messenger RNA (mRNA) is expressed at higher levels in the immune organs of the larval and adult stages of the insect and exhibit almost five-fold induction within 3 h post-infection of the larvae with Escherichia coli and Candida albicans. To investigate the biological function of Tm14-3-3ζ, a peptide-based Tm14-3-3ζ polyclonal antibody was generated in rabbit and the specificity was confirmed using Western blot analysis. Immunostaining and confocal microscopic analyses indicate that Tm14-3-3ζ is mainly expressed in the membranes of midgut epithelial cells, the nuclei of fat body and the cytosol of hemocytes. Gene silencing of Tm14-3-3ζ increases mortality of the larvae at 7 days post-infection with E. coli and C. albicans. Our findings demonstrate that 14-3-3ζ in T. molitor is essential in the host defense mechanisms against bacteria and fungi.
Collapse
Affiliation(s)
- Jeong Hwan Seong
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea.
| | - Yong Hun Jo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea.
| | - Gi Won Seo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea.
| | - Soyi Park
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea.
| | - Ki Beom Park
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea.
| | - Jun Ho Cho
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea.
| | - Hye Jin Ko
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea.
| | - Chang Eun Kim
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea.
| | - Bharat Bhusan Patnaik
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Chandrasekharpur, Bhubaneswar, Odisha, 751024, India.
| | - Sung Ah Jun
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Yong Seok Choi
- Department of Hotel Food Service and Culinary Arts, Seowon University, Cheongju, 28674, Korea.
| | - Young Wook Kim
- Korean Edible Insect Laboratory, Joong-gu, Shindang-dong, Seoul, 04598, Korea.
| | - In Seok Bang
- Department of Biological Science, Hoseo University, Asan, 31499, Korea.
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Korea.
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea.
| |
Collapse
|
4
|
Protein phosphorylation and its role in the regulation of Annexin A2 function. Biochim Biophys Acta Gen Subj 2017; 1861:2515-2529. [PMID: 28867585 DOI: 10.1016/j.bbagen.2017.08.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/17/2017] [Accepted: 08/30/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Annexin A2 (AnxA2) is a multifunctional protein involved in endocytosis, exocytosis, membrane domain organisation, actin remodelling, signal transduction, protein assembly, transcription and mRNA transport, as well as DNA replication and repair. SCOPE OF REVIEW The current knowledge of the role of phosphorylation in the functional regulation of AnxA2 is reviewed. To provide a more comprehensive treatment of this topic, we also address in depth the phosphorylation process in general and discuss its possible conformational effects. Furthermore, we discuss the apparent limitations of the methods used to investigate phosphoproteins, as exemplified by the study of AnxA2. MAJOR CONCLUSIONS AnxA2 is subjected to complex regulation by post-translational modifications affecting its cellular functions, with Ser11, Ser25 and Tyr23 representing important phosphorylation sites. Thus, Ser phosphorylation of AnxA2 is involved in the recruitment and docking of secretory granules, the regulation of its association with S100A10, and sequestration of perinuclear, translationally inactive mRNP complexes. By contrast, Tyr phosphorylation of AnxA2 regulates its role in actin dynamics and increases its association with endosomal compartments. Modification of its three main phosphorylation sites is not sufficient to discriminate between its numerous functions. Thus, fine-tuning of AnxA2 function is mediated by the joint action of several post-translational modifications. GENERAL SIGNIFICANCE AnxA2 participates in malignant cell transformation, and its overexpression and/or phosphorylation is associated with cancer progression and metastasis. Thus, tight regulation of AnxA2 function is an integral aspect of cellular homeostasis. The presence of AnxA2 in cancer cell-derived exosomes, as well as the potential regulation of exosomal AnxA2 by phosphorylation or other PTMs, are topics of great interest.
Collapse
|
5
|
Konopka-Postupolska D, Clark G. Annexins as Overlooked Regulators of Membrane Trafficking in Plant Cells. Int J Mol Sci 2017; 18:E863. [PMID: 28422051 PMCID: PMC5412444 DOI: 10.3390/ijms18040863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Annexins are an evolutionary conserved superfamily of proteins able to bind membrane phospholipids in a calcium-dependent manner. Their physiological roles are still being intensively examined and it seems that, despite their general structural similarity, individual proteins are specialized toward specific functions. However, due to their general ability to coordinate membranes in a calcium-sensitive fashion they are thought to participate in membrane flow. In this review, we present a summary of the current understanding of cellular transport in plant cells and consider the possible roles of annexins in different stages of vesicular transport.
Collapse
Affiliation(s)
- Dorota Konopka-Postupolska
- Plant Biochemistry Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Greg Clark
- Molecular, Cell, and Developmental Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
6
|
Trujillo-Ocampo A, Cázares-Raga FE, Celestino-Montes A, Cortés-Martínez L, Rodríguez MH, Hernández-Hernández FDLC. IDENTIFICATION AND EXPRESSION ANALYSIS OF TWO 14-3-3 PROTEINS IN THE MOSQUITO Aedes aegypti, AN IMPORTANT ARBOVIRUSES VECTOR. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 93:143-159. [PMID: 27592842 DOI: 10.1002/arch.21348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The 14-3-3 proteins are evolutionarily conserved acidic proteins that form a family with several isoforms in many cell types of plants and animals. In invertebrates, including dipteran and lepidopteran insects, only two isoforms have been reported. 14-3-3 proteins are scaffold molecules that form homo- or heterodimeric complexes, acting as molecular adaptors mediating phosphorylation-dependent interactions with signaling molecules involved in immunity, cell differentiation, cell cycle, proliferation, apoptosis, and cancer. Here, we describe the presence of two isoforms of 14-3-3 in the mosquito Aedes aegypti, the main vector of dengue, yellow fever, chikungunya, and zika viruses. Both isoforms have the conserved characteristics of the family: two protein signatures (PS1 and PS2), an annexin domain, three serine residues, targets for phosphorylation (positions 58, 184, and 233), necessary for their function, and nine alpha helix-forming segments. By sequence alignment and phylogenetic analysis, we found that the molecules correspond to Ɛ and ζ isoforms (Aeae14-3-3ε and Aeae14-3-3ζ). The messengers and protein products were present in all stages of the mosquito life cycle and all the tissues analyzed, with a small predominance of Aeae14-3-3ζ except in the midgut and ovaries of adult females. The 14-3-3 proteins in female midgut epithelial cells were located in the cytoplasm. Our results may provide insights to further investigate the functions of these proteins in mosquitoes.
Collapse
Affiliation(s)
- Abel Trujillo-Ocampo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Febe Elena Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Antonio Celestino-Montes
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Leticia Cortés-Martínez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Mario H Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Fidel de la Cruz Hernández-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México.
| |
Collapse
|
7
|
Ivanov AS, Ershov PV, Molnar AA, Mezentsev YV, Kaluzhskiy LA, Yablokov EO, Florinskaya AV, Gnedenko OV, Medvedev AE, Kozin SA, Mitkevich VA, Makarov AA, Gilep AA, Luschik AY, Gaidukevich IV, Usanov SA. Direct molecular fishing in molecular partners investigation in protein–protein and protein–peptide interactions. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016010052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Hoque M, Rentero C, Cairns R, Tebar F, Enrich C, Grewal T. Annexins — Scaffolds modulating PKC localization and signaling. Cell Signal 2014; 26:1213-25. [DOI: 10.1016/j.cellsig.2014.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/22/2014] [Indexed: 12/15/2022]
|
9
|
Dynamic reciprocity: the role of annexin A2 in tissue integrity. J Cell Commun Signal 2014; 8:125-33. [PMID: 24838661 DOI: 10.1007/s12079-014-0231-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/29/2014] [Indexed: 01/09/2023] Open
Abstract
Interactions between cells and the extracellular matrix are integral to tissue development, remodelling and pathogenesis. This is underlined by bi-directional flow of information signalling, referred to as dynamic reciprocity. Annexin A2 is a complex and multifunctional protein that belongs to a large family of Ca(2+)-dependent anionic phospholipid and membrane-binding proteins. It has been implicated in diverse cellular processes at the nuclear, cytoplasmic and extracellular compartments including Ca(2+)-dependent regulation of endocytosis and exocytosis, focal adhesion dynamics, transcription and translation, cell proliferation, oxidative stress and apoptosis. Most of these functions are mediated by the annexin A2-S100A10 heterotetramer (AIIt) via its ability to simultaneously interact with cytoskeletal, membrane and extracellular matrix components, thereby mediating regulatory effects of extracellular matrix adhesion on cell behaviour and vice versa. While Src kinase-mediated phosphorylation of filamentous actin-bound AIIt results in membrane-cytoskeletal remodelling events which control cell polarity, cell morphology and cell migration, AIIt at the cell surface can bind to a number of extracellular matrix proteins and catalyse the activation of serine and cysteine proteases which are important in facilitating tissue remodelling during tissue repair, neoangiogenesis and pathological situations. This review will focus on the role of annexin A2 in regulating tissue integrity through intercellular and cell-extracellular matrix interaction. Annexin A2 is differentially expressed in various tissue types as well as in many pathologies, particularly in several types of cancer. These together suggest that annexin A2 acts as a central player during dynamic reciprocity in tissue homeostasis.
Collapse
|
10
|
Annexin A2 heterotetramer: structure and function. Int J Mol Sci 2013; 14:6259-305. [PMID: 23519104 PMCID: PMC3634455 DOI: 10.3390/ijms14036259] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Annexin A2 is a pleiotropic calcium- and anionic phospholipid-binding protein that exists as a monomer and as a heterotetrameric complex with the plasminogen receptor protein, S100A10. Annexin A2 has been proposed to play a key role in many processes including exocytosis, endocytosis, membrane organization, ion channel conductance, and also to link F-actin cytoskeleton to the plasma membrane. Despite an impressive list of potential binding partners and regulatory activities, it was somewhat unexpected that the annexin A2-null mouse should show a relatively benign phenotype. Studies with the annexin A2-null mouse have suggested important functions for annexin A2 and the heterotetramer in fibrinolysis, in the regulation of the LDL receptor and in cellular redox regulation. However, the demonstration that depletion of annexin A2 causes the depletion of several other proteins including S100A10, fascin and affects the expression of at least sixty-one genes has confounded the reports of its function. In this review we will discuss the annexin A2 structure and function and its proposed physiological and pathological roles.
Collapse
|
11
|
Gutiérrez LM. New insights into the role of the cortical cytoskeleton in exocytosis from neuroendocrine cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:109-37. [PMID: 22449488 DOI: 10.1016/b978-0-12-394306-4.00009-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cortical cytoskeleton is a dense network of filamentous actin (F-actin) that participates in the events associated with secretion from neuroendocrine cells. This filamentous web traps secretory vesicles, acting as a retention system that blocks the access of vesicles to secretory sites during the resting state, and it mediates their active directional transport during stimulation. The changes in the cortical cytoskeleton that drive this functional transformation have been well documented, particularly in cultured chromaffin cells. At the biochemical level, alterations in F-actin are governed by the activity of molecular motors like myosins II and V and by other calcium-dependent proteins that influence the polymerization and cross-linking of F-actin structures. In addition to modulating vesicle transport, the F-actin cortical network and its associated motor proteins also influence the late phases of the secretory process, including membrane fusion and the release of active substances through the exocytotic fusion pore. Here, we discuss the potential interactions between the F-actin cortical web and proteins such as SNAREs during secretion. We also discuss the role of the cytoskeleton in organizing the molecular elements required to sustain regulated exocytosis, forming a molecular structure that foments the efficient release of neurotransmitters and hormones.
Collapse
Affiliation(s)
- Luis M Gutiérrez
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Alicante, Spain
| |
Collapse
|
12
|
Konopka-Postupolska D, Clark G, Hofmann A. Structure, function and membrane interactions of plant annexins: an update. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:230-41. [PMID: 21763533 DOI: 10.1016/j.plantsci.2011.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 05/08/2023]
Abstract
Knowledge accumulated over the past 15 years on plant annexins clearly indicates that this disparate group of proteins builds on the common annexin function of membrane association, but possesses divergent molecular mechanisms. Functionally, the current literature agrees on a key role of plant annexins in stress response processes such as wound healing and drought tolerance. This is contrasted by only few established details of the molecular level mechanisms that are driving these activities. In this review, we appraise the current knowledge of plant annexin molecular, functional and structural properties with a special emphasis on topics of less coverage in recent past overviews. In particular, plant annexin post-translational modification, roles in polar growth and membrane stabilisation processes are discussed.
Collapse
|
13
|
Chaithirayanon K, Grams R, Vichasri-Grams S, Hofmann A, Korge G, Viyanant V, Upatham ES, Sobhon P. Molecular and immunological characterization of encoding gene and 14-3-3 protein 1 in Fasciola gigantica. Parasitology 2006; 133:763-75. [PMID: 16938151 DOI: 10.1017/s0031182006001119] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 06/15/2006] [Accepted: 06/15/2006] [Indexed: 11/06/2022]
Abstract
A cDNA encoding Fg14-3-3 protein 1 was cloned by immunoscreening of an adult-stage Fasciola gigantica cDNA library using a rabbit antiserum against tegumental antigens of the parasite. The protein has a deduced amino acid sequence of 252 residues and a calculated molecular weight of 28.7 kDa. It shows sequence identity values between 57.6 and 58.1% to the human 14-3-3 beta, zeta, theta, and eta proteins and is in a phylogenetic cluster with the 14-3-3 protein 1 of Schistosoma spp. Nucleic acid analyses indicate that the Fg14-3-3 protein 1 is encoded by a single copy gene and that this gene is expressed as a transcript of 1250 nucleotides. In adult and 4-week-old parasites the gene's transcriptional and translational products were localized in the gut epithelium, parenchyma, tegument cells, and in the reproductive organs. An antiserum against recombinant Fg14-3-3 protein 1 detected a slightly smaller 14-3-3 protein in the parasite's excretion/secretion material and showed cross-reactivity with 14-3-3 proteins in extracts of other trematodes and mouse. Antibodies against Fg14-3-3 protein were detected in the sera of rabbits as early as 2 weeks after infection with metacercariae of F. gigantica and the antibody titre increased continuously over a 10-week observation period.
Collapse
MESH Headings
- 14-3-3 Proteins/chemistry
- 14-3-3 Proteins/genetics
- 14-3-3 Proteins/immunology
- Amino Acid Sequence
- Animals
- Antibodies, Helminth/blood
- Antibodies, Helminth/immunology
- Antigens, Helminth/chemistry
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Cloning, Molecular
- Fasciola/genetics
- Fasciola/growth & development
- Fasciola/immunology
- Fasciola/metabolism
- Fascioliasis/immunology
- Female
- Gene Library
- Male
- Mice
- Molecular Sequence Data
- Organ Specificity
- RNA, Helminth/genetics
- RNA, Helminth/isolation & purification
- RNA, Helminth/metabolism
- Rabbits
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- K Chaithirayanon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
14
|
van Hemert MJ, Deelder AM, Molenaar C, Steensma HY, van Heusden GPH. Self-association of the spindle pole body-related intermediate filament protein Fin1p and its phosphorylation-dependent interaction with 14-3-3 proteins in yeast. J Biol Chem 2003; 278:15049-55. [PMID: 12551942 DOI: 10.1074/jbc.m212495200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Fin1 protein of the yeast Saccharomyces cerevisiae forms filaments between the spindle pole bodies of dividing cells. In the two-hybrid system it binds to 14-3-3 proteins, which are highly conserved proteins involved in many cellular processes and which are capable of binding to more than 120 different proteins. Here, we describe the interaction of the Fin1 protein with the 14-3-3 proteins Bmh1p and Bmh2p in more detail. Purified Fin1p interacts with recombinant yeast 14-3-3 proteins. This interaction is strongly reduced after dephosphorylation of Fin1p. Surface plasmon resonance analysis showed that Fin1p has a higher affinity for Bmh2p than for Bmh1p (K(D) 289 versus 585 nm). Sequences in both the central and C-terminal part of Fin1p are required for the interaction with Bmh2p in the two-hybrid system. In yeast strains lacking 14-3-3 proteins Fin1 filament formation was observed, indicating that the 14-3-3 proteins are not required for this process. Fin1 also interacts with itself in the two-hybrid system. For this interaction sequences at the C terminus, containing one of two putative coiled-coil regions, are sufficient. Fin1p-Fin1p interactions were demonstrated in vivo by fluorescent resonance energy transfer between cyan fluorescent protein-labeled Fin1p and yellow fluorescent protein-labeled Fin1p.
Collapse
Affiliation(s)
- Martijn J van Hemert
- Section Yeast Genetics, Institute of Molecular Plant Sciences, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Pauly B, Stiening B, Schade M, Alexandrova O, Zoubek R, David CN, Böttger A. Molecular cloning and cellular distribution of two 14-3-3 isoforms from Hydra: 14-3-3 proteins respond to starvation and bind to phosphorylated targets. Exp Cell Res 2003; 285:15-26. [PMID: 12681283 DOI: 10.1016/s0014-4827(02)00051-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the simple metazoan Hydra a clear link between food supply and cell survival has been established. Whilst in plants 14-3-3 proteins are found to be involved in signalling cascades that regulate metabolism, in animals they have been shown to participate in cell survival pathways. In order to explore the possibility that 14-3-3 proteins in Hydra could be involved in regulating metabolism under different conditions of food supply, we have cloned two isoforms of 14-3-3 proteins. We show here that 14-3-3 proteins bind to phosphorylated targets in Hydra and form homo- and heterodimers in vitro. 14-3-3 proteins are localised in the cytoplasm of all cells and also in the nuclei of some epithelial cells. This nuclear localisation becomes more prominent during starvation. Moreover, 14-3-3 protein is present in large amounts in food granules and from this we conclude that it performs functions which are associated with metabolism and food storage in Hydra.
Collapse
Affiliation(s)
- Barbara Pauly
- Zoological Institute, Ludwig-Maximilians-University Munich, D-80333 14, Munich, Luisenstrasse, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Fujii T, Ueeda T. Stimulation of 14-3-3 protein and its isoform on histamine secretion from permeabilized rat peritoneal mast cells. Biol Pharm Bull 2002; 25:1524-7. [PMID: 12499633 DOI: 10.1248/bpb.25.1524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of the 14-3-3 protein, an adaptor protein of intracellular signal pathways, on histamine release from rat peritoneal mast cells was investigated. The exogenous 14-3-3 protein from bovine brain increased the Ca(2+)-dependent histamine release from permeabilized mast cells, but only slightly affected the non-permeabilized cells. Partial amino acid sequences showed that the bovine brain 14-3-3 protein contained 14-3-3beta, gamma and zeta isoforms, and that these recombinant isoforms were prepared. Among them, 14-3-3zeta was an active species while the 14-3-3beta and gamma were inactive for histamine release from the permeabilized mast cells. Approximately 15% of the histamine release was stimulated by 14-3-3zeta at 2.5 microM, and half-maximal stimulation occurred at 1 microM. Treatment of the mast cells with wortmannin or staurosporine completely inhibited the stimulatory effect on histamine release caused by Ca(2+) or Ca(2+)/14-3-3zeta, and genistein partially inhibited both stimulatory effects. PD 98059, however, had little effect on the histamine release. These results suggest the possibility that 14-3-3zeta is associated with signal transduction for degranulation of the mast cells.
Collapse
Affiliation(s)
- Toshihiro Fujii
- Department of Kansei Engineering, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan.
| | | |
Collapse
|
18
|
The Chediak-Higashi Protein Interacts with SNARE Complex and Signal Transduction Proteins. Mol Med 2002. [DOI: 10.1007/bf03402003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
19
|
Xia QY, Fujii H, Kusakabe T, Banno Y. Identification of three annexin IX isoforms generated by alternative splicing of the carboxyl-terminal exon in silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 32:9-14. [PMID: 11719064 DOI: 10.1016/s0965-1748(01)00074-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Annexins (ANXs) are a family of structurally related proteins with Ca(2+)-dependent phospholipid-binding properties. Here we report the cloning of three cDNAs each encoding annexin IX (ANX IX) isoforms from unfertilized eggs of the silkworm, Bombyx mori. The analysis of exon/intron structures showed that the three mRNAs, named ANX IX-A (2300bp), ANX IX-B (1884bp) and ANX IX-C (1409bp), respectively, were generated from a single gene by alternative usage of a 3'-splice site of the last exon. Thus the three isoforms have an identical sequence from amino acid residues 1 to 307 and this region shows approximately 77% identity to Drosophila melanogaster ANX IX. Only amino acid residues 308-324 (A) or 308-323 (B and C), which correspond to the C-terminal tail, are different in the three proteins. A RT-PCR analysis indicated that the three isoforms of silkworm ANX IX were specifically expressed in various larval tissues and development stages. Interestingly, the C-terminal tail in ANXs I, II and V were previously confirmed as a binding region for protein kinase C. Thus generation of the three ANX IX isoforms in the silkworm, that are different from other ANXs, may have a functional significance other than binding to Ca(2+).
Collapse
Affiliation(s)
- Q Y Xia
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, 812-8581, Fukuoka, Japan
| | | | | | | |
Collapse
|
20
|
Nakano K, Chen J, Tarr GE, Yoshida T, Flynn JM, Bitensky MW. Rethinking the role of phosducin: light-regulated binding of phosducin to 14-3-3 in rod inner segments. Proc Natl Acad Sci U S A 2001; 98:4693-8. [PMID: 11287646 PMCID: PMC31896 DOI: 10.1073/pnas.071067198] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosducin (Pd), a small protein found abundantly in photoreceptors, is widely assumed to regulate light sensitivity in the rod outer segment through interaction with the heterotrimeric G protein transducin. But, based on histochemistry and Western blot analysis, Pd is found almost entirely in the inner segment in both light and dark, most abundantly near the rod synapse. We report a second small protein, 14-3-3, in the rod with a similar distribution. By immunoprecipitation, phospho-Pd is found to interact with 14-3-3 in material from dark-adapted retina, and this interaction is markedly diminished by light, which dephosphorylates Pd. Conversely, unphosphorylated Pd binds to inner segment G protein(s) in the light. From these results and reported functions of 14-3-3, we have constructed a hypothesis for the regulation of light sensitivity at the level of rod synapse. By dissociating the Pd/14-3-3 complex, light enables both proteins to function in this role.
Collapse
Affiliation(s)
- K Nakano
- Biomedical Engineering, Boston University, 36 Cummington Street, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
21
|
Falcone DJ, Borth W, Khan KM, Hajjar KA. Plasminogen-mediated matrix invasion and degradation by macrophages is dependent on surface expression of annexin II. Blood 2001; 97:777-84. [PMID: 11157497 DOI: 10.1182/blood.v97.3.777] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic evidence demonstrates the importance of plasminogen activation in the migration of macrophages to sites of injury and inflammation, their removal of necrotic debris, and their clearance of fibrin. These studies identified the plasminogen binding protein annexin II on the surface of macrophages and determined its role in their ability to degrade and migrate through extracellular matrices. Calcium-dependent binding of annexin II to RAW264.7 macrophages was shown using flow cytometry and Western blot analysis of EGTA eluates. Ligand blots demonstrated that annexin II comigrates with one of several proteins in lysates and membranes derived from RAW264.7 macrophages that bind plasminogen. Preincubation of RAW264.7 macrophages with monoclonal anti-annexin II IgG inhibited (35%) their binding of 125I-Lys-plasminogen. Likewise, plasmin binding to human monocyte-derived macrophages and THP-1 monocytes was inhibited (50% and 35%, respectively) when cells were preincubated with anti-annexin II IgG. Inhibition of plasminogen binding to annexin II on RAW264.7 macrophages significantly impaired their ability to activate plasminogen and degrade [3H]-glucosamine-labeled extracellular matrices. The migration of THP-1 monocytes through a porous membrane, in response to monocyte chemotactic protein-1, was blocked when the membranes were coated with extracellular matrix. The addition of plasminogen to the monocytes restored their ability to migrate through the matrix-coated membrane. Preincubation of THP-1 monocytes with anti-annexin II IgG inhibited (60%) their plasminogen-dependent chemotaxis through the extracellular matrix. These studies identify annexin II as a plasminogen binding site on macrophages and indicate an important role for annexin II in their invasive and degradative phenotype.
Collapse
Affiliation(s)
- D J Falcone
- Departments of Pathology, Cell Biology, Pediatrics, and Medicine, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA.
| | | | | | | |
Collapse
|
22
|
Garin J, Diez R, Kieffer S, Dermine JF, Duclos S, Gagnon E, Sadoul R, Rondeau C, Desjardins M. The phagosome proteome: insight into phagosome functions. J Cell Biol 2001; 152:165-80. [PMID: 11149929 PMCID: PMC2193653 DOI: 10.1083/jcb.152.1.165] [Citation(s) in RCA: 550] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Phagosomes are key organelles for the innate ability of macrophages to participate in tissue remodeling, clear apoptotic cells, and restrict the spread of intracellular pathogens. To understand the functions of phagosomes, we initiated the systematic identification of their proteins. Using a proteomic approach, we identified >140 proteins associated with latex bead-containing phagosomes. Among these were hydrolases, proton pump ATPase subunits, and proteins of the fusion machinery, validating our approach. A series of unexpected proteins not previously described along the endocytic/phagocytic pathways were also identified, including the apoptotic proteins galectin3, Alix, and TRAIL, the anti-apoptotic protein 14-3-3, the lipid raft-enriched flotillin-1, the anti-microbial molecule lactadherin, and the small GTPase rab14. In addition, 24 spots from which the peptide masses could not be matched to entries in any database potentially represent new phagosomal proteins. The elaboration of a two-dimensional gel database of >160 identified spots allowed us to analyze how phagosome composition is modulated during phagolysosome biogenesis. Remarkably, during this process, hydrolases are not delivered in bulk to phagosomes, but are instead acquired sequentially. The systematic characterization of phagosome proteins provided new insights into phagosome functions and the protein or groups of proteins involved in and regulating these functions.
Collapse
Affiliation(s)
- Jérome Garin
- Laboratoire de Chimie des protéines, Commissariat a l'Energie Atomique, 38054 Grenoble, France
| | - Roberto Diez
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Quebec, Canada, H3C 3J7
| | - Sylvie Kieffer
- Laboratoire de Chimie des protéines, Commissariat a l'Energie Atomique, 38054 Grenoble, France
| | - Jean-François Dermine
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Quebec, Canada, H3C 3J7
| | - Sophie Duclos
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Quebec, Canada, H3C 3J7
| | - Etienne Gagnon
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Quebec, Canada, H3C 3J7
| | - Remy Sadoul
- Neurodégénérescence et Plasticité, Hopital A. Michallon, Centre Hospitalier Universitaire, 38043 Grenoble, France
| | - Christiane Rondeau
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Quebec, Canada, H3C 3J7
| | - Michel Desjardins
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Quebec, Canada, H3C 3J7
| |
Collapse
|
23
|
Siles-Lucas M, Nunes CP, Zaha A, Breijo M. The 14-3-3 protein is secreted by the adult worm of Echinococcus granulosus. Parasite Immunol 2000; 22:521-8. [PMID: 11012978 DOI: 10.1046/j.1365-3024.2000.00334.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 14-3-3 protein, already described in the metacestode of Echinococcus multilocularis, has been characterized in the Echinococcus granulosus adult worm. Immunolocalization studies show the presence of the 14-3-3 protein in the periphery of testes and externally associated with the apical rostellum and adjacent worm tegument. The alcian blue staining in consecutive parasite sections gave similar reactivity patterns, suggesting that the 14-3-3 protein is produced and secreted by rostellar glands. Immunoblot analysis showed the presence of the 14-3-3 protein in somatic and excretory-secretory worm products with higher and smaller apparent molecular masses, respectively, than those detected in E. multilocularis or E. granulosus metacestode tissues. Conversely, the 14-3-3 protein was not detected in metacestode secretory products. Detection of anti-E. granulosus 14-3-3 reactivity in sera of experimentally infected dogs was achieved at early stages of infection. Specific antibody titres decreased during the course of infection. The possible origin and functions of the 14-3-3 protein produced by the adult worm are discussed.
Collapse
Affiliation(s)
- M Siles-Lucas
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 9150-970 Porto Alegre, Brazil
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- H Kubista
- Department of Physiology, University College London, UK
| | | | | |
Collapse
|
25
|
Fountoulakis M, Cairns N, Lubec G. Increased levels of 14-3-3 gamma and epsilon proteins in brain of patients with Alzheimer's disease and Down syndrome. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2000; 57:323-35. [PMID: 10666687 DOI: 10.1007/978-3-7091-6380-1_23] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 14-3-3 family consists of homo- and heterodimeric proteins representing a novel type of "adaptor proteins" modulating the interaction between components of signal transduction pathways. 14-3-3 isoforms interact with phosphoserine motifs on many proteins as kinases, phosphatases, apoptosis related proteins etc. Performing protein mapping by 2D electrophoresis in human brain we identified two isoforms, 14-3-3 gamma and epsilon and decided to determine these two multifunctional proteins in several brain regions of aged patients with Alzheimer's disease (AD) and Down Syndrome (DS) with AD neuropathology in comparison with control brains. 14-3-3 gamma and 14-3-3 epsilon proteins were increased in several brain regions of AD and DS patients. These changes may contribute to the complex pathomechanisms of AD and AD in DS, evolving inevitably from the fourth decade of life. Deranged 14-3-3 isoforms gamma and epsilon may reflect impaired signaling and/or apoptosis in the brain as several kinases (protein kinase C, Ras, mitogen-activated kinase MEK) involved in signaling and apoptotic factors as bcl-2-related proteins BAD and BAG-1 are binding to 14-3-3 motifs.
Collapse
|
26
|
Van Der Hoeven PC, Van Der Wal JC, Ruurs P, Van Dijk MC, Van Blitterswijk J. 14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation. Biochem J 2000; 345 Pt 2:297-306. [PMID: 10620507 PMCID: PMC1220759 DOI: 10.1042/0264-6021:3450297] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
14-3-3 Proteins may function as adapters or scaffold in signal-transduction pathways. We found previously that protein kinase C-zeta (PKC-zeta) can phosphorylate and activate Raf-1 in a signalling complex [van Dijk, Hilkmann and van Blitterswijk (1997) Biochem. J. 325, 303-307]. We report now that PKC-zeta-Raf-1 interaction is mediated by 14-3-3 proteins in vitro and in vivo. Co-immunoprecipitation experiments in COS cells revealed that complex formation between PKC-zeta and Raf-1 is mediated strongly by the 14-3-3beta and -theta; isotypes, but not by 14-3-3zeta. Far-Western blotting revealed that 14-3-3 binds PKC-zeta directly at its regulatory domain, where a S186A mutation in a putative 14-3-3-binding domain strongly reduced the binding and the complex formation with 14-3-3beta and Raf-1. Treatment of PKC-zeta with lambda protein phosphatase also reduced its binding to 14-3-3beta in vitro. Preincubation of an immobilized Raf-1 construct with 14-3-3beta facilitated PKC-zeta binding. Together, the results suggest that 14-3-3 binds both PKC-zeta (at phospho-Ser-186) and Raf-1 in a ternary complex. Complex formation was much stronger with a kinase-inactive PKC-zeta mutant than with wild-type PKC-zeta, supporting the idea that kinase activity leads to complex dissociation. 14-3-3beta and -θ were substrates for PKC-zeta, whereas 14-3-3zeta was not. Phosphorylation of 14-3-3beta by PKC-zeta negatively regulated their physical association. 14-3-3beta with its putative PKC-zeta phosphorylation sites mutated enhanced co-precipitation between PKC-zeta and Raf-1, suggesting that phosphorylation of 14-3-3 by PKC-zeta weakens the complex in vivo. We conclude that 14-3-3 facilitates coupling of PKC-zeta to Raf-1 in an isotype-specific and phosphorylation-dependent manner. We suggest that 14-3-3 is a transient mediator of Raf-1 phosphorylation and activation by PKC-zeta.
Collapse
Affiliation(s)
- P C Van Der Hoeven
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Dorner C, Ullrich A, Häring HU, Lammers R. The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family. J Biol Chem 1999; 274:33654-60. [PMID: 10559254 DOI: 10.1074/jbc.274.47.33654] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins of the kinesin superfamily are regulated in their motor activity as well as in their ability to bind to their cargo by carboxyl-terminal associating proteins and phosphorylation. KIF1C, a recently identified member of the KIF1/Unc104 family, was shown to be involved in the retrograde vesicle transport from the Golgi-apparatus to the endoplasmic reticulum. In a yeast two-hybrid screen using the carboxyl-terminal 350 amino acids of KIF1C as a bait, we identified as binding proteins 14-3-3 beta, gamma, epsilon, and zeta. In addition, a clone encoding the carboxyl-terminal 290 amino acids of KIF1C was found, indicating a potential for KIF1C to dimerize. Subsequent transient overexpression experiments showed that KIF1C can dimerize efficiently. However, in untransfected cells, only a small portion of KIF1C was detected as a dimer. The association of 14-3-3 proteins with KIF1C could be confirmed in transient expression systems and in untransfected cells and was dependent on the phosphorylation of serine 1092 located in a consensus binding sequence for 14-3-3 ligands. Serine 1092 was a substrate for the protein kinase casein kinase II in vitro, and inhibition of casein kinase II in cells diminished the association of KIF1C with 14-3-3gamma. Our data thus suggest that KIF1C can form dimers and is associated with proteins of the 14-3-3 family.
Collapse
Affiliation(s)
- C Dorner
- Medical Clinic IV, University of Tübingen, Tübingen, 72076 Germany
| | | | | | | |
Collapse
|
28
|
Abstract
The annexins constitute a family of calcium-dependent membrane binding proteins. Recently, annexin II has been shown to accelerate the activation of the clot-dissolving protease plasmin by complexing with the plasmin precursor plasminogen and with tissue plasminogen activator. Binding of plasminogen to annexin II is inhibited by the atherogenic lipoprotein, lipoprotein(a), while binding of tissue plasminogen activator to annexin II is blocked by the thiol amino acid homocysteine. Formation of the plasminogen/tissue plasminogen activator/annexin II complex may represent a key regulatory mechanism in fibrinolytic surveillance.
Collapse
Affiliation(s)
- K A Hajjar
- Department of Pediatrics, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
29
|
Kassam G, Le BH, Choi KS, Kang HM, Fitzpatrick SL, Louie P, Waisman DM. The p11 subunit of the annexin II tetramer plays a key role in the stimulation of t-PA-dependent plasminogen activation. Biochemistry 1998; 37:16958-66. [PMID: 9836589 DOI: 10.1021/bi981713l] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Annexin II tetramer (AIIt) is an important endothelial cell surface protein receptor for plasminogen and t-PA. AIIt, a heterotetramer, is composed of two p36 subunits (called annexin II) and two p11 subunits. In this report, we have compared the ability of the isolated p36 and p11 subunits to stimulate t-PA-dependent [Glu]plasminogen activation. The fluid-phase recombinant p11 subunit stimulated the rate of t-PA-dependent activation of [Glu]plasminogen about 46-fold compared to an approximate stimulation of 2-fold by the recombinant p36 subunit and 77-fold by recombinant AIIt. The stimulation of t-PA-dependent activation of [Glu]plasminogen by the p11 subunit was Ca2+-independent and inhibited by epsilon-aminocaproic acid. [Glu]Plasminogen bound to a p11 subunit affinity column and could be eluted with epsilon-aminocaproic acid. Both AIIt and the p11 subunit protected t-PA and plasmin from inactivation by PAI-1 and alpha2-antiplasmin, respectively. A peptide to the C terminus of the p11 subunit (85-Y-F-V-V-H-M-K-Q-K-G-K-K-96) inhibited the p11-dependent stimulation of t-PA-dependent plasminogen activation. In addition, a deletion mutant of the p11 subunit, missing the last two C-terminal lysine residues, retained only about 15% of the activity of the wild-type p11 subunit. Similarly, a mutant AIIt composed of the wild-type p36 subunit and the p11 subunit deletion mutant possessed about 12% of the wild-type activity. These results, therefore, suggest that the C-terminal lysine residues of the p11 subunit bind plasminogen and participate in the stimulation of t-PA-dependent activation of plasminogen by AIIt.
Collapse
Affiliation(s)
- G Kassam
- Cancer Biology Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | |
Collapse
|
30
|
Tandon A, Tan PK, Bannykh S, Banerjee A, Balch WE. Neurotransmitter release from semi-intact synaptosomes. Methods 1998; 16:198-203. [PMID: 9790866 DOI: 10.1006/meth.1998.0667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have developed a secretion assay composed of semi-intact synaptosomes from which transmitter release is optimally evoked by micromolar Ca2+ in the presence of cytosol. Transmitter release from this preparation reconstitutes known characteristics of regulated exocytosis and is accompanied by a marked decrease in synaptic vesicles. The assay is useful in characterizing the components known to be involved in transmitter release, and should also facilitate the identification of additional factors that are important for this process.
Collapse
Affiliation(s)
- A Tandon
- Departments of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
The 14-3-3 proteins are small, cytosolic, evolutionarily conserved proteins expressed abundantly in the nervous system. Although they were discovered more than 30 yr ago, their function in the nervous system has remained enigmatic. Several recent studies have helped to clarify their biological function. Crystallographic investigations have revealed that 14-3-3 proteins exist as dimers and that they contain a specific region for binding to other proteins. The interacting proteins, in turn, contain a 14-3-3 binding motif; proteins that interact with 14-3-3 dimers include PKC and Raf, protein kinases with critical roles in neuronal signaling. These proteins are capable of activating Raf in vitro, and this role has been verified by in vivo studies in Drosophila. Most interestingly, mutations in the Drosophila 14-3-3 genes disrupt neuronal differentiation, synaptic plasticity, and behavioral plasticity, establishing a role for these proteins in the development and function of the nervous system.
Collapse
Affiliation(s)
- E M Skoulakis
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
32
|
Kassam G, Manro A, Braat CE, Louie P, Fitzpatrick SL, Waisman DM. Characterization of the heparin binding properties of annexin II tetramer. J Biol Chem 1997; 272:15093-100. [PMID: 9182528 DOI: 10.1074/jbc.272.24.15093] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this report, we have characterized the interaction of heparin with the Ca2+- and phospholipid-binding protein annexin II tetramer (AIIt). Analysis of the circular dichroism spectra demonstrated that the Ca2+-dependent binding of AIIt to heparin caused a large decrease in the alpha-helical content of AIIt from approximately 44 to 31%, a small decrease in the beta-sheet content from approximately 27 to 24%, and an increase in the unordered structure from 20 to 29%. The binding of heparin also decreased the Ca2+ concentration required for a half-maximal conformational change in AIIt from 360 to 84 microM. AIIt bound to heparin with an apparent Kd of 32 +/- 6 nM (mean +/- S.D., n = 3) and a stoichiometry of 11 +/- 0.9 mol of AIIt/mol of heparin (mean +/- S.D., n = 3). The binding of heparin to AIIt was specific as other sulfated polysaccharides did not elicit a conformational change in AIIt. A region of the p36 subunit of AIIt (Phe306-Ser313) was found to contain a Cardin-Weintraub consensus sequence for glycosaminoglycan recognition. A peptide to this region underwent a conformational change upon heparin binding. Other annexins contained the Cardin-Weintraub consensus sequence, but did not undergo a substantial conformational change upon heparin binding.
Collapse
Affiliation(s)
- G Kassam
- Cell Regulation Research Group, Department of Medical Biochemistry, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Wang W, Shakes DC. Expression patterns and transcript processing of ftt-1 and ftt-2, two C. elegans 14-3-3 homologues. J Mol Biol 1997; 268:619-30. [PMID: 9171285 DOI: 10.1006/jmbi.1997.1002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A wide diversity of biological functions have been attributed to the highly conserved and ubiquitous 14-3-3 protein family. Yet how much of this diversity is inherent in the basic structure of 14-3-3 and how much is due to isoform specific functions is not yet fully understood. Here, two Caenorhabditis elegans 14-3-3 isoforms whose protein sequences are 90% similar were found to differ significantly in both their genomic structure and expression patterns. The two genes, ftt-1 (IV) (fourteen-three-three) and ftt-2 (X), differ in both the position and sequence of their introns. Since the various intron/exon boundaries respect neither functional nor structural protein motifs, the introns appear to be relatively recent evolutionary additions. ftt-1(IV) encodes three germline enhanced transcripts, two of which are related through the differential use of alternative poly(A) addition sites. RNA in situ hybridization studies reveal high levels of ftt-1 throughout the gonad with particularly high levels in the distal arm. In contrast, ftt-2 (X) encodes a single transcript which is expressed somatically. In embryos, high levels of ftt-1 transcripts appear to be maternally supplied, whereas ftt-2 is expressed as an early zygotic transcript whose expression pattern later localizes to the posterior region of post-proliferative embryos. These expression pattern differences between ftt-1 and ftt-2 suggest that these two 14-3-3 isoforms perform distinct biological roles within the worm.
Collapse
Affiliation(s)
- W Wang
- Department of Biology, University of Houston, TX 22304-5513, USA
| | | |
Collapse
|
34
|
Graham ME, Gerke V, Burgoyne RD. Modification of annexin II expression in PC12 cell lines does not affect Ca(2+)-dependent exocytosis. Mol Biol Cell 1997; 8:431-42. [PMID: 9188096 PMCID: PMC276095 DOI: 10.1091/mbc.8.3.431] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Ca2+/phospholipid/cytoskeletal-binding protein annexin II has been proposed to play an important role in Ca(2+)-dependent exocytosis; however, the evidence for this role is inconclusive. More direct evidence obtained by manipulating annexin II levels in cells is still required. We have attempted to do this by generating stably transfected PC12 cell lines expressing proteins which elevate or lower functional annexin II levels and using these cell lines to investigate Ca(2+)-dependent exocytosis. Three cell lines were generated: one expressing an annexin II mutant which aggregates annexin II in at least a proportion of the cells, thereby removing functional protein from the cell; a mixed clonal cell line constitutively overexpressing human annexin II; and a clonal cell line capable of over-expressing annexin II in the presence of sodium butyrate. After digitonin permeabilization, Ca(2+)-dependent dopamine release from these cell lines was compared with that from control nontransfected cells, and, in addition, release was compared in induced to uninduced cells. There were no significant differences in Ca(2+)-dependent exocytosis between any of the transfected cell lines before or after induction and the control cells. In addition, nontransfected PC12 cells treated with nerve growth factor, which elevates annexin II levels severalfold, failed to increase Ca(2+)-dependent exocytosis after digitonin permeabilization, compared with control cells. We conclude that annexin II is not an important regulator of Ca(2+)-dependent exocytosis in PC12 cells.
Collapse
Affiliation(s)
- M E Graham
- Physiological Laboratory, University of Liverpool, United Kingdom
| | | | | |
Collapse
|
35
|
Meller N, Liu YC, Collins TL, Bonnefoy-Bérard N, Baier G, Isakov N, Altman A. Direct interaction between protein kinase C theta (PKC theta) and 14-3-3 tau in T cells: 14-3-3 overexpression results in inhibition of PKC theta translocation and function. Mol Cell Biol 1996; 16:5782-91. [PMID: 8816492 PMCID: PMC231579 DOI: 10.1128/mcb.16.10.5782] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recent studies have documented direct interactions between 14-3-3 proteins and several oncogene and proto-oncogene products involved in signal transduction pathways. Studies on the effects of 14-3-3 proteins on protein kinase C (PKC) activity in vitro have reported conflicting results, and previous attempts to demonstrate a direct association between PKC and 14-3-3 were unsuccessful. Here, we examined potential physical and functional interactions between PKC theta, a Ca(2+)-independent PKC enzyme which is expressed selectively in T lymphocytes, and the 14-3-3 tau isoform in vitro and in intact T cells. PKC theta and 14-3-3 tau coimmunoprecipitated from Jurkat T cells, and recombinant 14-3-3 tau interacted directly with purified PKC theta in vitro. Transient overexpression of 14-3-3 tau suppressed stimulation of the interleukin 2 (IL-2) promoter mediated by cotransfected wild-type or constitutively active PKC theta, as well as by endogenous PKC in ionomycin- and/or phorbol ester-stimulated cells. This did not represent a general inhibition of activation events, since PKC-independent (but Ca(2+)-dependent) activation of an IL-4 promoter element was not inhibited by 14-3-3 tau under similar conditions. Overexpression of wild-type 14-3-3 tau also inhibited phorbol ester-induced PKC theta translocation from the cytosol to the membrane in Jurkat cells, while a membrane-targeted form of 14-3-3 tau caused increased localization of PKC theta in the particulate fraction in unstimulated cells. Membrane-targeted 14-3-3 tau was more effective than wild-type 14-3-3 tau in suppressing PKC theta-dependent IL-2 promoter activity, suggesting that 14-3-3 tau inhibits the function of PKC theta not only by preventing its translocation to the membrane but also by associating with it. The interaction between 14-3-3 and PKC theta may represent an important general mechanism for regulating PKC-dependent signals and, more specifically, PKC theta-mediated functions during T-cell activation.
Collapse
Affiliation(s)
- N Meller
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Nishio H, Takeuchi T, Hata F, Yagasaki O. Ca(2+)-independent fusion of synaptic vesicles with phospholipase A2-treated presynaptic membranes in vitro. Biochem J 1996; 318 ( Pt 3):981-7. [PMID: 8836147 PMCID: PMC1217714 DOI: 10.1042/bj3180981] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To clarify the mechanism of exocytosis in neurotransmitter release, the fusion of synaptic vesicles with presynaptic membranes prepared from rat brain synaptosomes and concomitant acetylcholine (ACh) release induced by fusion of them were studied in vitro. Fusion of the synaptic vesicles with presynaptic membranes was measured by a fluorescence-dequenching assay with octadecyl rhodamine B. Synaptic vesicles fused with presynaptic membranes which had been pretreated with porcine phospholipase A2 (PLA2) in the presence of 20 microM Ca2+ and released ACh, whereas synaptic vesicles did not interact with non-pretreated membranes. The fusion followed by ACh release depended (i) on the activity of PLA2 during the membrane pretreatment, (ii) on the amount of pretreated membrane and (iii) on the duration of the pretreatment. The presence of Ca2+ ions during the pretreatment was essential for inducing a fusogenic activity of the membranes, but Ca2+ ions were not required for the fusion itself because the fusion experiment was carried out in the presence of 5mM EGTA without added Ca2+. The presence of quinacrine, an antagonist of PLA2, during the membrane pretreatment inhibited their fusogenic activity, suggesting the importance of activation of PLA2. Presence of albumin during the pretreatment, which is an adsorbent of free fatty acids, also inhibited the fusogenic activity. Arachidonic acid, when added during the pretreatment, potentiated the fusogenic activity of the membrane. These findings suggest that the conformational change in the presynaptic membrane phospholipids induced by PLA2 and the presence of arachidonic acid produced by PLA2 are important in the process of fusion of synaptic vesicles with the presynaptic membranes of rat brain, and that the fusion process itself is independent of Ca2+.
Collapse
Affiliation(s)
- H Nishio
- Department of Veterinary Pharmacology, College of Agriculture, Osaka Prefecture University, Sakai, Japan
| | | | | | | |
Collapse
|
37
|
Abstract
Perhaps in keeping with their enigmatic name, 14-3-3 proteins offer a seemingly bewildering array of opportunities for interaction with signal transduction pathways. In each organism there are many isoforms that can form both homo- and heterodimers, and many biochemical activities have been attributed to the 14-3-3 group. The potential for diversity-and also confusion-is high. The mammalian literature on 14-3-3 proteins provides an appropriate context to appreciate the potential roles of 14-3-3s in plant signal transduction pathways. In addition, functional and structural themes emerge when 14-3-3s are examined and compiled in ways that draw attention to their participation in protein phosphorylation and protein-protein interactions. These themes allow examination of plant 14-3-3s from two perspectives: the ways in which plant 14-3- 3s contribute to and extend ideas already described in animals, and the ways that plant 14-3-3s present unique contributions to the field. The crystal structure of an animal 14-3- 3 has been solved. When considered with the evolutionary stability of large segments of the 14-3-3 protein, the structure illuminates several aspects of 14-3-3 function. However, diversity in other regions of the 14-3-3s and their presence as multigene families offer many opportunities for cell-specific specialization of individual functions.
Collapse
Affiliation(s)
- Robert J. Ferl
- Program in Plant Molecular and Cellular Biology, Department of Horticultural Sciences, University of Florida, Box 110690, Gainesville, Florida 32611-0690
| |
Collapse
|
38
|
Wheeler-Jones CP, Learmonth MP, Martin H, Aitken A. Identification of 14-3-3 proteins in human platelets: effects of synthetic peptides on protein kinase C activation. Biochem J 1996; 315 ( Pt 1):41-7. [PMID: 8670130 PMCID: PMC1217194 DOI: 10.1042/bj3150041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The 14-3-3 proteins inhibit protein kinase C (PKC) activity in vitro and contain conserved sequences that resemble the pseudosubstrate domain of PKC and the C-terminus of the annexins. In the present study we have identified the isoforms of 14-3-3 in human platelets and used synthetic peptides derived from the regions with similarity to PKC and annexins to examine the potential role of 14-3-3 in regulating platelet activity. Immunoblotting studies with isoform-specific antisera raised against the acetylated peptides corresponding to the N-termini of 14-3-3 showed that these cells express high levels of the beta, gamma and zeta 14-3-3 isoforms. In addition, low levels of the epsilon and eta 14-3-3 isoforms were detected. In washed, saponin-permeabilized platelets incubated with [gamma-32P]ATP, thrombin- and phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation of several proteins (66, 45, and 20kDa) was inhibited by preincubation with AS peptide (KNVVGARRSSWRVISSIEQK) based on the pseudosubstrate-like region of the 14-3-3 family. A control peptide of similar size had no effect on PKC-mediated phosphorylation. PMA caused a rapid translocation of PKC activity from the cytosol to the particulate fraction of saponin-permeabilized platelets that was unaffected by either the AS peptide or a peptide derived from the annexin-like 14-3-3 domain (MKGDYYRYLAEVATGDD). These results suggest that isoforms of the 14-3-3 family may play an important physiological role as inhibitors of PKC activity in human platelets but are unlikely to be involved in controlling association of PKC with the membrane.
Collapse
Affiliation(s)
- C P Wheeler-Jones
- Vascular Biology Research Centre, Biomedical Sciences Division, King's College London, U.K
| | | | | | | |
Collapse
|
39
|
Knochel M, Kissmehl R, Wissmann JD, Momayezi M, Hentschel J, Plattner H, Burgoyne RD. Annexins in Paramecium cells. Involvement in site-specific positioning of secretory organelles. Histochem Cell Biol 1996; 105:269-81. [PMID: 9072184 DOI: 10.1007/bf01463930] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Annexins were isolated from Paramecium cell homogenates by standard ethylene glycol tetraacetic acid (EGTA) extraction and 100 000-g centrifugation. Two different antibodies (Abs) against synthetic peptides were used, Call-15 and B15, which in mammalian cells recognize a sequence of annexin II or a common sequence occurring in several annexins (except for annexin II), respectively. With anti-Call-15 Abs, western blots from EGTA extracts showed strongly reactive bands of 44.5 and 46 kDa and of higher values. Some of these bands bound to the 100 000-g pellet fraction when Ca(2+) was added. Immuno- and affinity labelling revealed selective, Ca(2+)-dependent labelling of the cell cortex, with enrichment around trichocyst docking sites (facing subplasmalemmal Ca(2+) stores). Cortical fluorescence labelling decreased in wild-type (7S) cells when trichocyst ghosts were detached after synchronous exocytosis. Similarly, cortical labelling was reduced when intact trichocysts were detached from the cell surface of non-discharge mutant cells (nd9-28 degrees C, showing identical bands on blots), which then contained numerous heavily labelled phagolysosomes. This strongly suggests annexin downregulation. All together, the dynamic labelling of cortical structures we observed strongly supports involvement of calpactin-like annexins in trichocyst docking. Anti-B15 Abs recognized a band of 51 kDa and some of higher values. These Abs selectively labelled the outlines of the cytoproct, the site of spent phagolysosome exocytosis. In conclusion, our data indicate involvement of specific sets of annexins in site-specific positioning and attachment of widely different secretory organelles at the cell surface in Paramecium cells.
Collapse
Affiliation(s)
- M Knochel
- Faculty of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
O'Sullivan AJ, Brown AM, Freeman HN, Gomperts BD. Purification and identification of FOAD-II, a cytosolic protein that regulates secretion in streptolysin-O permeabilized mast cells, as a rac/rhoGDI complex. Mol Biol Cell 1996; 7:397-408. [PMID: 8868468 PMCID: PMC275892 DOI: 10.1091/mbc.7.3.397] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mast cells permeabilized by treatment with streptolysin-O in the presence of Ca2+ and GTP-gamma-S can secrete almost 100% of their contained N-acetyl-beta-D-glucosaminidase. If these stimuli are provided to the permeabilized cells after a delay, the response is diminished and the ability of the cells to undergo secretion runs down progressively over a period of about 30 min. This is thought to be due to the loss of key proteins involved in the exocytotic mechanism. Using this effect as the basis of a biological assay, we have isolated a protein from bovine brain cytosol that retards the loss of responsiveness to stimulation by Ca2+ and GTP-gamma-S. Purification of this protein and peptide sequencing have enabled us to identify it as the small GTP-binding protein rac complexed to the guanine nucleotide exchange inhibitor rhoGDI. Both proteins are required to retard the loss of the secretory response, while purified rhoGDI applied alone accelerates the rundown.
Collapse
Affiliation(s)
- A J O'Sullivan
- Department of Physiology, University College, London, United Kingdom
| | | | | | | |
Collapse
|
41
|
Reuther GW, Pendergast AM. The roles of 14-3-3 proteins in signal transduction. VITAMINS AND HORMONES 1996; 52:149-75. [PMID: 8909160 DOI: 10.1016/s0083-6729(08)60410-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- G W Reuther
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
42
|
Abstract
The annexins are a family of proteins that bind acidic phospholipids in the presence of Ca2+. The interaction of these proteins with biological membranes has led to the suggestion that these proteins may play a role in membrane trafficking events such as exocytosis, endocytosis and cell-cell adhesion. One member of the annexin family, annexin II, has been shown to exist as a monomer, heterodimer or heterotetramer. The ability of annexin II tetramer to bridge secretory granules to plasma membrane has suggested that this protein may play a role in Ca(2+)-dependent exocytosis. Annexin II tetramer has also been demonstrated on the extracellular face of some metastatic cells where it mediates the binding of certain metastatic cells to normal cells. Annexin II tetramer is a major cellular substrate of protein kinase C and pp60src. Phosphorylation of annexin II tetramer is a negative modulator of protein function.
Collapse
Affiliation(s)
- D M Waisman
- Department of Medical Biochemistry, Faculty of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
43
|
Xiao B, Smerdon SJ, Jones DH, Dodson GG, Soneji Y, Aitken A, Gamblin SJ. Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature 1995; 376:188-91. [PMID: 7603573 DOI: 10.1038/376188a0] [Citation(s) in RCA: 347] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A broad range of organisms and tissues contain 14-3-3 proteins, which have been associated with many diverse functions including critical roles in signal transduction pathways, exocytosis and cell cycle regulation. We report here the crystal structure of the human T-cell 14-3-3 isoform (tau) dimer at 2.6 A resolution. Each monomer (Mr 28K) is composed of an unusual arrangement of nine antiparallel alpha-helices organized as two structural domains. The dimer creates a large, negatively charged channel approximately 35 A broad, 35 A wide and 20 A deep. Overall, invariant residues line the interior of this channel whereas the more variable residues are distributed on the outer surface. At the base of this channel is a 16-residue segment of 14-3-3 which has been implicated in the binding of 14-3-3 to protein kinase C.
Collapse
Affiliation(s)
- B Xiao
- Division of Protein Structure, National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Wang W, Shakes DC. Isolation and sequence analysis of a Caenorhabditis elegans cDNA which encodes a 14-3-3 homologue. Gene 1994; 147:215-8. [PMID: 7926802 DOI: 10.1016/0378-1119(94)90068-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report the cloning of the Caenorhabditis elegans homologue of a 14-3-3 protein-encoding gene which is located within the unc-22 gene cluster on chromosome IV. Sequence analysis reveals that the cDNA-encoded product is 78% identical to both the Drosophila melanogaster and bovine 14-3-3 proteins. Our cDNA hybridizes to at least three major transcripts of 1.5, 1.35 and 0.9 kb, which are all more abundant in fertile hermaphrodites than in those lacking germ cells.
Collapse
Affiliation(s)
- W Wang
- Department of Biology and Institute of Molecular Biology, University of Houston, TX 77204-5513
| | | |
Collapse
|
45
|
Watanabe M, Isobe T, Ichimura T, Kuwano R, Takahashi Y, Kondo H, Inoue Y. Molecular cloning of rat cDNAs for the zeta and theta subtypes of 14-3-3 protein and differential distributions of their mRNAs in the brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 25:113-21. [PMID: 7984035 DOI: 10.1016/0169-328x(94)90285-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We isolated from the rat brain two cDNA clones encoding the zeta and theta subtypes of the 14-3-3 protein. Both clones encoded 245 amino acid sequences, which share a high sequence homology with each other and also with other subtypes of the 14-3-3 protein. The distribution of their mRNAs was determined in the developing brain, by in situ hybridization with subtype-specific oligonucleotide probes. At embryonic day 18, the zeta and theta subtype mRNAs were expressed at high levels throughout the brain and the spinal cord. Distribution patterns of the two mRNAs were distinct in the brain at postnatal day 21. The zeta subtype mRNA was distributed widely in the brain gray matter, and high levels of the transcripts were detected in various brain regions, including the neocortex, hippocampus, caudate-putamen, thalamus, cerebellar cortex, and several brainstem nuclei. On the other hand, high signal levels of the theta subtype mRNA in the gray matter were restricted to the cerebellar cortex and the hippocampus. In addition, significant signals for the theta subtype mRNA were found over the white matter, where cell bodies of glial cells are populated. The wide gene expression of the zeta and theta subtypes suggests their fundamental and essential role in the brain function, but the degrees of functional involvement by the respective subtypes would be heterogeneous between neuron and glia, and also among neuron types.
Collapse
Affiliation(s)
- M Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Ohnishi M, Tokuda M, Masaki T, Fujimura T, Tai Y, Matsui H, Itano T, Ishida T, Takahara J, Konishi R. Changes in annexin I and II levels during the postnatal development of rat pancreatic islets. J Cell Sci 1994; 107 ( Pt 8):2117-25. [PMID: 7527053 DOI: 10.1242/jcs.107.8.2117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression patterns and the dynamic changes in content of both annexin I and annexin II in the rat pancreatic islets during postnatal development were investigated by both western blot analysis and immunohistochemistry. Immunohistochemical methods clearly demonstrated the presence of annexins I and II exclusively in pancreatic islets, while exocrine tissues were not stained by anti-annexin antibodies. Pancreatic islets were diffusely stained with no specific differences in distribution between different cell types. The expression of annexin I in pancreatic islets gradually increased with postnatal development. A developmental study of annexins I and II by western blot analysis essentially supported the results obtained by immunohistochemistry. In addition, the increasing expression of two protein tyrosine kinases, epidermal growth factor-receptor/kinase and pp60src, which phosphorylate annexin I and annexin II, respectively, and of protein kinase C, which phosphorylates both proteins, was also shown during postnatal development in rat pancreatic islets. Thus, a relationship between the expression of annexins I and II and the maturation of islet cell function is suggested.
Collapse
Affiliation(s)
- M Ohnishi
- Department of Physiology, Kagawa Medical School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Roth D, Morgan A, Martin H, Jones D, Martens GJ, Aitken A, Burgoyne RD. Characterization of 14-3-3 proteins in adrenal chromaffin cells and demonstration of isoform-specific phospholipid binding. Biochem J 1994; 301 ( Pt 1):305-10. [PMID: 8037685 PMCID: PMC1137176 DOI: 10.1042/bj3010305] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Isoform-specific antisera were used to examine which 14-3-3 isoforms were present in bovine adrenal chromaffin cells. The eta, tau and sigma isoforms were not detectable, and the epsilon isoform was present at only low levels. 14-3-3 isoforms were readily detected with antisera against the beta, gamma and zeta isoforms. The latter isoforms were found to leak from digitonin-permeabilized chromaffin cells, as expected for cytosolic proteins, but a proportion of each isoform was retained. In subcellular fractionation studies isoforms recognized by the beta and zeta antisera were found in the cytosol and Triton-insoluble cytoskeletal fractions, while the gamma isoform was found in cytosol and also in microsomal and chromaffin granule membrane fractions. The gamma 14-3-3 protein associated with granule membranes was partially removed by a high-salt/carbonate wash, and the membranes could bind further gamma from cytosol or from a purified brain 14-3-3 protein mixture. The binding of gamma 14-3-3 was not Ca(2+)-dependent, nor was it affected by phorbol ester, GTP analogues or cyclic AMP. Using pure phospholipid vesicles it was found that gamma and also epsilon 14-3-3 proteins bound directly to phospholipids. Little binding of brain beta, eta or zeta to phospholipid vesicles was detected. Brain 14-3-3 proteins were also able to aggregate phospholipid vesicles. Recombinant 14-3-3 isoforms (tau and the Xenopus protein) were able to stimulate Ca(2+)-dependent exocytosis in digitonin-permeabilized chromaffin cells. The Xenopus proteins lacks part of the extreme N-terminus, indicating that this domain is not essential for function in exocytosis.
Collapse
Affiliation(s)
- D Roth
- Physiological Laboratory, University of Liverpool, U.K
| | | | | | | | | | | | | |
Collapse
|
48
|
Roseboom PH, Weller JL, Babila T, Aitken A, Sellers LA, Moffett JR, Namboodiri MA, Klein DC. Cloning and characterization of the epsilon and zeta isoforms of the 14-3-3 proteins. DNA Cell Biol 1994; 13:629-40. [PMID: 8024705 DOI: 10.1089/dna.1994.13.629] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Two prominent proteins (30 and 33 kD) in a purified preparation of the sheep pineal gland were studied. Amino acid analysis of tryptic peptides indicated that the 33-kD protein was the epsilon isoform of the 14-3-3 family of proteins, and that the 30-kD protein was the zeta isoform. The sheep pineal gland was found to have six other 14-3-3 isoforms in addition to the epsilon and zeta, suggesting that copurification of the epsilon and zeta forms may reflect the existence of homo- or heterodimers comprised of these isoforms. To characterize 14-3-3 proteins further in the pineal gland, the full sequence of the epsilon isoform and a partial sequence of the zeta isoform were cloned from a rat pineal cDNA library and are reported here. Tissue distribution studies using Western blot analysis revealed that rat pineal and retina have levels of 14-3-3 protein similar to those found in brain, and that relatively low levels occur in other tissues. This investigation also revealed the epsilon isoform was present at high levels in the rat pineal gland early in development and decreased steadily thereafter and that 30-kD isoforms exhibited the inverse developmental pattern.
Collapse
Affiliation(s)
- P H Roseboom
- Section on Neuroendocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Raynal P, Pollard HB. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1197:63-93. [PMID: 8155692 DOI: 10.1016/0304-4157(94)90019-1] [Citation(s) in RCA: 851] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P Raynal
- Laboratory of Cell Biology and Genetics, NIH, NIDDK, Bethesda, MD 20892
| | | |
Collapse
|
50
|
Burgoyne RD, Morgan A, Roth D. Characterization of proteins that regulate calcium-dependent exocytosis in adrenal chromaffin cells. Ann N Y Acad Sci 1994; 710:333-46. [PMID: 8154759 DOI: 10.1111/j.1749-6632.1994.tb26640.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- R D Burgoyne
- Physiological Laboratory, University of Liverpool, United Kingdom
| | | | | |
Collapse
|