1
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
2
|
Iova OM, Marin GE, Lazar I, Stanescu I, Dogaru G, Nicula CA, Bulboacă AE. Nitric Oxide/Nitric Oxide Synthase System in the Pathogenesis of Neurodegenerative Disorders-An Overview. Antioxidants (Basel) 2023; 12:antiox12030753. [PMID: 36979000 PMCID: PMC10045816 DOI: 10.3390/antiox12030753] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Nitric oxide, a ubiquitous molecule found throughout the natural world, is a key molecule implicated in many central and benefic molecular pathways and has a well-established role in the function of the central nervous system, as numerous studies have previously shown. Dysregulation of its metabolism, mainly the upregulation of nitric oxide production, has been proposed as a trigger and/or aggravator for many neurological affections. Increasing evidence supports the implication of this molecule in prevalent neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, or amyotrophic lateral sclerosis. The mechanisms proposed for its neurotoxicity mainly center around the increased quantities of nitric oxide that are produced in the brain, their cause, and, most importantly, the pathological metabolic cascades created. These cascades lead to the formation of neuronal toxic substances that impair the neurons' function and structure on multiple levels. The purpose of this review is to present the main causes of increased pathological production, as well as the most important pathophysiological mechanisms triggered by nitric oxide, mechanisms that could help explain a part of the complex picture of neurodegenerative diseases and help develop targeted therapies.
Collapse
Affiliation(s)
- Olga-Maria Iova
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Gheorghe-Eduard Marin
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Izabella Lazar
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Stanescu
- Department of Neurology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Gabriela Dogaru
- Department of Physical Medicine and Rehabilitation, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Viilor Street, No. 46-50, 400347 Cluj-Napoca, Romania
| | - Cristina Ariadna Nicula
- Department of Ophthalmology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adriana Elena Bulboacă
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Cicardi ME, Marrone L, Azzouz M, Trotti D. Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis. EMBO J 2021; 40:e106389. [PMID: 33792056 PMCID: PMC8126909 DOI: 10.15252/embj.2020106389] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/18/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder whose exact causative mechanisms are still under intense investigation. Several lines of evidence suggest that the anatomical and temporal propagation of pathological protein species along the neural axis could be among the main driving mechanisms for the fast and irreversible progression of ALS pathology. Many ALS-associated proteins form intracellular aggregates as a result of their intrinsic prion-like properties and/or following impairment of the protein quality control systems. During the disease course, these mutated proteins and aberrant peptides are released in the extracellular milieu as soluble or aggregated forms through a variety of mechanisms. Internalization by recipient cells may seed further aggregation and amplify existing proteostatic imbalances, thus triggering a vicious cycle that propagates pathology in vulnerable cells, such as motor neurons and other susceptible neuronal subtypes. Here, we provide an in-depth review of ALS pathology with a particular focus on the disease mechanisms of seeding and transmission of the most common ALS-associated proteins, including SOD1, FUS, TDP-43, and C9orf72-linked dipeptide repeats. For each of these proteins, we report historical, biochemical, and pathological evidence of their behaviors in ALS. We further discuss the possibility to harness pathological proteins as biomarkers and reflect on the implications of these findings for future research.
Collapse
Affiliation(s)
- Maria Elena Cicardi
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Lara Marrone
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Mimoun Azzouz
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Davide Trotti
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
4
|
Lee JH, Liu JW, Lin SZ, Harn HJ, Chiou TW. Advances in Patient-Specific Induced Pluripotent Stem Cells Shed Light on Drug Discovery for Amyotrophic Lateral Sclerosis. Cell Transplant 2018; 27:1301-1312. [PMID: 30033758 PMCID: PMC6168987 DOI: 10.1177/0963689718785154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs), which are generated through reprogramming adult somatic cells by expressing specific transcription factors, can differentiate into derivatives of the three embryonic germ layers and accelerate rapid advances in stem cell research. Neurological diseases such as amyotrophic lateral sclerosis (ALS) have benefited enormously from iPSC technology. This approach can be particularly important for creating iPSCs from patients with familial or sporadic forms of ALS. Motor neurons differentiated from the ALS-patient-derived iPSC can help to determine the relationship between cellular phenotype and genotype. Patient-derived iPSCs facilitate the development of new drugs and/or drug screening for ALS treatment and allow the exploration of the possible mechanism of ALS disease. In this article, we reviewed ALS-patient-specific iPSCs with various genetic mutations, progress in drug development for ALS disease, functional assays showing the differentiation of iPSCs into mature motor neurons, and promising biomarkers in ALS patients for the evaluation of drug candidates.
Collapse
Affiliation(s)
- Jui-Hao Lee
- 1 Everfront Biotech Inc., New Taipei City, Taiwan, Republic of China.,2 Department of Life Science and Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien, Taiwan, Republic of China
| | - Jen-Wei Liu
- 1 Everfront Biotech Inc., New Taipei City, Taiwan, Republic of China.,2 Department of Life Science and Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien, Taiwan, Republic of China
| | - Shinn-Zong Lin
- 3 Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China.,4 Department of Neurosurgery, Tzu Chi University, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Horng-Jyh Harn
- 3 Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China.,5 Department of Pathology, Tzu Chi University, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Tzyy-Wen Chiou
- 2 Department of Life Science and Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien, Taiwan, Republic of China
| |
Collapse
|
5
|
Tompa DR, Kadhirvel S. Molecular dynamics of a far positioned SOD1 mutant V14M reveals pathogenic misfolding behavior. J Biomol Struct Dyn 2017; 36:4085-4098. [PMID: 29157189 DOI: 10.1080/07391102.2017.1407675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human superoxide dismutase (Cu/Zn SOD1) is a homodimeric enzyme. Mutations in Cu/Zn SOD1 causes a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. Though a majority of the mutations are point substitutions, there are a few changes that result in amino acid deletions or truncations of the polypeptide. These pathogenic mutations are scattered throughout the three-dimensional structure of the dimeric enzyme, which creates a puzzling pattern to investigate the molecular determinants of fALS. The most common hypothesis proposed that the misfolding of SOD1 mutants are primarily triggered by decreased affinity for metal ions. However, this hypothesis is challenging, as a significant number of disease-causing mutations are located far away from the metal-binding site and dimer interface. So in the present study, we have investigated the influence of such a far positioned pathogenic mutation, V14M, in altering the stability and folding of the Cu/Zn SOD1. Though the location of Val14 is far positioned, it has a vital role in the stability of SOD1 by preserving its hydrophobic cluster at one end of the β barrel domain. We have performed MD simulations of the V14M mutant for 80 ns timescale. The results reveal the fact that irrespective of its location, V14M mutation triggers a conformational change that is more similar to that of the metal-deficient holo form and could resemble an intermediate state in the folding reaction which results in protein misfolding and aggregation.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- a Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613 401 , India
| | - Saraboji Kadhirvel
- a Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613 401 , India
| |
Collapse
|
6
|
Grad LI, Cashman NR. Prion-like activity of Cu/Zn superoxide dismutase: implications for amyotrophic lateral sclerosis. Prion 2015; 8:33-41. [PMID: 24394345 DOI: 10.4161/pri.27602] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases belong to a larger group of protein misfolding disorders, known as proteinopathies. There is increasing experimental evidence implicating prion-like mechanisms in many common neurodegenerative disorders, including Alzheimer disease, Parkinson disease, the tauopathies, and amyotrophic lateral sclerosis (ALS), all of which feature the aberrant misfolding and aggregation of specific proteins. The prion paradigm provides a mechanism by which a mutant or wild-type protein can dominate pathogenesis through the initiation of self-propagating protein misfolding. ALS, a lethal disease characterized by progressive degeneration of motor neurons is understood as a classical proteinopathy; the disease is typified by the formation of inclusions consisting of aggregated protein within and around motor neurons that can contribute to neurotoxicity. It is well established that misfolded/oxidized SOD1 protein is highly toxic to motor neurons and plays a prominent role in the pathology of ALS. Recent work has identified propagated protein misfolding properties in both mutant and wild-type SOD1, which may provide the molecular basis for the clinically observed contiguous spread of the disease through the neuroaxis. In this review we examine the current state of knowledge regarding the prion-like properties of SOD1 and comment on its proposed mechanisms of intercellular transmission.
Collapse
|
7
|
Grad LI, Fernando SM, Cashman NR. From molecule to molecule and cell to cell: prion-like mechanisms in amyotrophic lateral sclerosis. Neurobiol Dis 2015; 77:257-65. [PMID: 25701498 DOI: 10.1016/j.nbd.2015.02.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 08/13/2014] [Accepted: 02/09/2015] [Indexed: 12/12/2022] Open
Abstract
Prions, self-proliferating infectious agents consisting of misfolded protein, are most often associated with aggressive neurodegenerative diseases in animals and humans. Akin to the contiguous spread of a living pathogen, the prion paradigm provides a mechanism by which a mutant or wild-type misfolded protein can dominate pathogenesis through self-propagating protein misfolding, and subsequently spread from region to region through the central nervous system. The prion diseases, along with more common neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and the tauopathies belong to a larger group of protein misfolding disorders termed proteinopathies that feature aberrant misfolding and aggregation of specific proteins. Amyotrophic lateral sclerosis (ALS), a lethal disease characterized by progressive degeneration of motor neurons is currently understood as a classical proteinopathy; the disease is typified by the formation of inclusions consisting of aggregated protein within motor neurons that contribute to neurotoxicity. It is well established that misfolded/aggregated proteins such as SOD1 and TDP-43 contribute to the toxicity of motor neurons and play a prominent role in the pathology of ALS. Recent work has identified propagated protein misfolding properties in both mutant and wild-type SOD1, and to a lesser extent TDP-43, which may provide the molecular basis for the clinically observed contiguous spread of the disease through the neuroaxis. In this review we examine the current state of knowledge regarding the prion-like properties of proteins associated with ALS pathology as well as their possible mechanisms of transmission.
Collapse
Affiliation(s)
- Leslie I Grad
- Department of Medicine (Neurology), Brain Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver BC, Canada, V6T 2B5
| | - Sarah M Fernando
- Department of Medicine (Neurology), Brain Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver BC, Canada, V6T 2B5
| | - Neil R Cashman
- Department of Medicine (Neurology), Brain Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver BC, Canada, V6T 2B5.
| |
Collapse
|
8
|
Estrogen modulates β2-adrenoceptor-induced cell-mediated and inflammatory immune responses through ER-α involving distinct intracellular signaling pathways, antioxidant enzymes, and nitric oxide. Cell Immunol 2014; 292:1-8. [DOI: 10.1016/j.cellimm.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/06/2014] [Indexed: 11/16/2022]
|
9
|
Casci I, Pandey UB. A fruitful endeavor: modeling ALS in the fruit fly. Brain Res 2014; 1607:47-74. [PMID: 25289585 DOI: 10.1016/j.brainres.2014.09.064] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 12/11/2022]
Abstract
For over a century Drosophila melanogaster, commonly known as the fruit fly, has been instrumental in genetics research and disease modeling. In more recent years, it has been a powerful tool for modeling and studying neurodegenerative diseases, including the devastating and fatal amyotrophic lateral sclerosis (ALS). The success of this model organism in ALS research comes from the availability of tools to manipulate gene/protein expression in a number of desired cell-types, and the subsequent recapitulation of cellular and molecular phenotypic features of the disease. Several Drosophila models have now been developed for studying the roles of ALS-associated genes in disease pathogenesis that allowed us to understand the molecular pathways that lead to motor neuron degeneration in ALS patients. Our primary goal in this review is to highlight the lessons we have learned using Drosophila models pertaining to ALS research. This article is part of a Special Issue entitled ALS complex pathogenesis.
Collapse
Affiliation(s)
- Ian Casci
- Department of Pediatrics, Child Neurology and Neurobiology, Children׳s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA; Human Genetics Graduate Program, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Child Neurology and Neurobiology, Children׳s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.
| |
Collapse
|
10
|
Three isozymes of peptidylarginine deiminase in the chicken: molecular cloning, characterization, and tissue distribution. Comp Biochem Physiol B Biochem Mol Biol 2013; 167:65-73. [PMID: 24161753 DOI: 10.1016/j.cbpb.2013.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/09/2013] [Accepted: 10/16/2013] [Indexed: 11/22/2022]
Abstract
Peptidylarginine deiminase (PAD; EC 3.5.3.15) is a post-translational modification enzyme that catalyzes the conversion of protein-bound arginine to citrulline (deimination) in a calcium ion dependent manner. Although PADI genes are widely conserved among vertebrates, their function in the chicken is poorly understood. Here, we cloned and sequenced three chicken PADI cDNAs and analyzed the expression of their proteins in various tissues. Immunoblotting analysis showed that chicken PAD1 and PAD3 were present in cells of several central neuron system tissues including the retina; the chicken PAD2 protein was not detected in any tissue. We expressed recombinant chicken PADs in insect cells and characterized their enzymatic properties. The chicken PAD1 and PAD3 recombinant proteins required calcium ions as an essential cofactor for their catalytic activity. The two recombinant proteins showed similar substrate specificities toward synthetic arginine derivatives. By contrast to them, chicken PAD2 did not show any activity. We found that one of the conserved active centers in mammalian PADs had been altered in chicken PAD2; we prepared a reverse mutant but we did not detect an activity. We conclude that chicken PAD1 and PAD3 might play specific roles in the nervous system, but that chicken PAD2 might not be functional under normal physiological conditions.
Collapse
|
11
|
Bonilha VL, Shadrach KG, Rayborn ME, Li Y, Pauer GJT, Hagstrom SA, Bhattacharya SK, Hollyfield JG. Retinal deimination and PAD2 levels in retinas from donors with age-related macular degeneration (AMD). Exp Eye Res 2013; 111:71-8. [PMID: 23562679 DOI: 10.1016/j.exer.2013.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/17/2022]
Abstract
Deimination is a form of protein posttranslational modification carried out by the peptidyl arginine deiminases (PADs) enzymes. PAD2 is the principal deiminase expressed in the retina. Elevated levels of PAD2 and protein deimination are present in a number of human neurological diseases, with or without ocular manifestation. To define the association of deimination with the pathogenesis of age-related macular degeneration (AMD), we studied protein deimination and PAD2 levels in retinas of AMD donor eyes compared to age-matched non-AMD retinas. Eyes from non-AMD and AMD donors were fixed in 4% paraformaldehyde and 0.5% glutaraldehyde in phosphate buffer. Retina and retinal pigment epithelium (RPE) from donor eyes were processed for immunohistochemical detection and western blotting using antibodies to PAD2 and citrulline residues. The ganglion cell, inner plexiform, inner nuclear and outer nuclear layers were labeled by both PAD2 and citrulline antibodies. Changes in the localization of deiminated residues and PAD2 were evident as the retinal layers were remodeled coincident with photoreceptor degeneration in AMD retinas. Immunodetection of either PAD2 or citrulline residues could not be evaluated in the RPE layer due to the high autofluorescence levels in this layer. Interestingly, higher deimination immunoreactivity was detected in AMD retinal lysates. However, no significant changes in PAD2 were detected in the AMD and non-AMD retinas and RPE lysates. Our observations show increased levels of protein deimination but not PAD2 in AMD retinas and RPE, suggesting a reduced rate of turnover of deiminated proteins in these AMD retinas.
Collapse
Affiliation(s)
- Vera L Bonilha
- Department of Ophthalmology, The Cole Eye Institute(i31), Cleveland Clinic Lerner College of Medicine, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Nitric oxide-mediated oxidative damage and the progressive demise of motor neurons in ALS. Neurotox Res 2012; 22:251-64. [PMID: 22488161 DOI: 10.1007/s12640-012-9322-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/15/2012] [Accepted: 03/24/2012] [Indexed: 10/28/2022]
Abstract
Oxidative damage is a common and early feature of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and other neurodegenerative disorders. Dr. Mark Smith and his colleagues have built the case for oxidative stress being a primary progenitor rather than a secondary end-stage epiphenomenon of neurodegeneration. They proposed that reactive oxygen species contribute to the "age-related cascade of neurodegeneration," whereby accumulative oxidative damage with age promotes other characteristic pathological changes in afflicted brain regions, including protein aggregation, metabolic deficiencies, and inflammation. Nitric oxide (NO) likely plays a critical role in this age-related cascade. NO is a major signaling molecule produced in the central nervous system to modulate neurological activity through stimulating cyclic GMP synthesis. However, the same physiological concentrations of NO, relevant in cellular signaling, may also initiate and amplify oxidative damage by diffusion-limited reactions with superoxide (O(2)(•-)) to produce peroxynitrite (ONOO(-)). This is perhaps best illustrated in ALS where physiological levels of NO promote survival of motor neurons, but the same concentrations can stimulate motor neuron apoptosis and glial cell activation under pathological conditions. While these changes represent a complex mechanism involving multiple cell types in the pathogenesis of ALS, they also reveal general processes underlying neurodegeneration.
Collapse
|
14
|
Proctor EA, Ding F, Dokholyan NV. Structural and thermodynamic effects of post-translational modifications in mutant and wild type Cu, Zn superoxide dismutase. J Mol Biol 2011; 408:555-67. [PMID: 21396374 PMCID: PMC3082150 DOI: 10.1016/j.jmb.2011.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Aggregation of Cu,Zn superoxide dismutase (SOD1) is implicated in amyotrophic lateral sclerosis. Glutathionylation and phosphorylation of SOD1 is omnipresent in the human body, even in healthy individuals, and has been shown to increase SOD1 dimer dissociation, which is the first step on the pathway toward SOD1 aggregation. We found that post-translational modification of SOD1, especially glutathionylation, promotes dimer dissociation. We discovered an intermediate state in the pathway to dissociation, a conformational change that involves a "loosening" of the β-barrels and a loss or shift of dimer interface interactions. In modified SOD1, this intermediate state is stabilized as compared to unmodified SOD1. The presence of post-translational modifications could explain the environmental factors involved in the speed of disease progression. Because post-translational modifications such as glutathionylation are often induced by oxidative stress, post-translational modification of SOD1 could be a factor in the occurrence of sporadic cases of amyotrophic lateral sclerosis, which represent 90% of all cases of the disease.
Collapse
Affiliation(s)
- Elizabeth A. Proctor
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Feng Ding
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
- Center for Computational and Systems Biology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Nikolay V. Dokholyan
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
- Center for Computational and Systems Biology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
15
|
Guest WC, Silverman JM, Pokrishevsky E, O'Neill MA, Grad LI, Cashman NR. Generalization of the prion hypothesis to other neurodegenerative diseases: an imperfect fit. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:1433-1459. [PMID: 22043906 DOI: 10.1080/15287394.2011.618967] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein misfolding diseases have been classically understood as diffuse errors in protein folding, with misfolded protein arising autonomously throughout a tissue due to a pathologic stressor. The field of prion science has provided an alternative mechanism whereby a seed of pathologically misfolded protein, arising exogenously or through a rare endogenous structural fluctuation, yields a template to catalyze misfolding of the native protein. The misfolded protein may then spread intercellularly to communicate the misfold to adjacent areas and ultimately infect a whole tissue. Mounting evidence implicates a prion-like process in the propagation of several neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and the tauopathies. However, the parallels between the events observed in these conditions and those in prion disease are often incomplete. The aim of this review was to examine the current state of knowledge concerning the mechanisms of protein misfolding and aggregation for neurodegeneration-associated proteins. In addition, possible methods of intercellular spread are described that focus on the hypothesis that released microvesicles function as misfolded protein delivery vehicles, and the therapeutic options enabled by viewing these diseases from the prion perspective.
Collapse
Affiliation(s)
- Will C Guest
- Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Kawamoto Y, Ito H, Kobayashi Y, Suzuki Y, Akiguchi I, Fujimura H, Sakoda S, Kusaka H, Hirano A, Takahashi R. HtrA2/Omi-immunoreactive intraneuronal inclusions in the anterior horn of patients with sporadic and Cu/Zn superoxide dismutase (SOD1) mutant amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 2010; 36:331-44. [PMID: 20202124 DOI: 10.1111/j.1365-2990.2010.01075.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS HtrA2/Omi is a mitochondrial serine protease that promotes the apoptotic processes, but the relationship between HtrA2/Omi and amyotrophic lateral sclerosis (ALS) is still unknown. The purpose of the present study was to determine whether abnormal expression of HtrA2/Omi occurs in patients with ALS. METHODS We prepared autopsied spinal cord tissues from 7 control subjects, 11 patients with sporadic ALS (SALS) and 4 patients with Cu/Zn superoxide dismutase (SOD1)-related familial ALS (FALS). We then performed immunohistochemical studies on HtrA2/Omi using formalin-fixed, paraffin-embedded sections from all of the cases. RESULTS In the control subjects, the anterior horn cells were mildly to moderately immunostained with HtrA2/Omi. In the patients with SALS, strong HtrA2/Omi immunoreactivity was found in some skein-like inclusions and round hyaline inclusions as well as many spheroids, but Bunina bodies were immunonegative for HtrA2/Omi. In the patients with SOD1-related FALS, Lewy body-like hyaline inclusions were observed in three cases and conglomerate inclusions were observed in the remaining case, and both types of inclusions were intensely immunopositive for HtrA2/Omi. CONCLUSIONS These results suggest that abnormal accumulations of HtrA2/Omi may occur in several types of motor neuronal inclusions in the anterior horn from SALS and SOD1-linked FALS cases, and that HtrA2/Omi may be associated with the pathogenesis of both types of ALS.
Collapse
Affiliation(s)
- Y Kawamoto
- Department of Neurology, Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Deimination is a posttranslational modification and refers to the conversion of protein bound arginine into citrulline. In the retina, deimination is predominantly catalyzed by Peptidylarginine deiminase type 2 (PAD2). PAD2 expression and deimination are found in many different retinal layers: choroid, retinal pigment epithelium (RPE), photoreceptors, inner plexiform layer, inner nuclear layer, and retinal ganglion cell (RGC) layer. Although decreased retinal deimination and PAD2 expression have been found during normal aging, elevated PAD2 expression and deimination have been observed in age-related neurodegenerative diseases. The role of deimination in normal physiology and in late-onset and progressive ocular or retinal degenerative diseases, such as glaucoma and experimental autoimmune encephalomyelitis remains to be elucidated.
Collapse
|
18
|
Bhattacharya SK, Bhat MB, Takahara H. Modulation of Peptidyl Arginine Deiminase 2 and Implication for Neurodegeneration. Curr Eye Res 2009; 31:1063-71. [PMID: 17169845 DOI: 10.1080/02713680600991437] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To demonstrate that elevated pressure increases the peptidyl arginine deiminase 2 (PAD2) expression in cultured astrocytes in vitro that can be modulated by pharmacological agents modulating intracellular calcium. METHODS Isolated rat brain astrocytes were subjected to pressure treatment. Western and immunohistochemical analyses detected PAD2 protein expression. Calcium measurements were achieved employing fluorescence-based microscopic imaging and quantification system. Experiments were repeated with human optic nerve head-derived astrocytes. RESULTS PAD2 has recently been shown to be associated with glaucomatous optic nerve. Astrocytes subjected to pressure (25-100 mmHg) show elevated level of PAD2, increased intracellular calcium, and concomitant citrullination but not significant cell death. PAD2 expression in response to elevated pressure may play a role in glaucomatous neurodegeneration. Pressure-treated astrocytes were also subjected to thapsigargin (50-250 nM) treatment, but it is unclear whether this had any further effect in increasing PAD2 expression. Conversely, treatment with calcium chelating agent BAPTA-AM (50-250 nM) results in decreased intracellular calcium concentration and PAD2. CONCLUSIONS These results suggest calcium modulation could be exploited as therapeutic strategy to modulate pressure-induced PAD2 expression and citrullination.
Collapse
|
19
|
Perrot R, Berges R, Bocquet A, Eyer J. Review of the Multiple Aspects of Neurofilament Functions, and their Possible Contribution to Neurodegeneration. Mol Neurobiol 2008; 38:27-65. [DOI: 10.1007/s12035-008-8033-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/14/2008] [Indexed: 10/21/2022]
|
20
|
Bhattacharya SK, Sinicrope B, Rayborn ME, Hollyfield JG, Bonilha VL. Age-related reduction in retinal deimination levels in the F344BN rat. Aging Cell 2008; 7:441-4. [PMID: 18248664 DOI: 10.1111/j.1474-9726.2008.00376.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Increased deimination and peptidyl arginine deiminase type 2 (PAD2) expression has been observed in age-related neurodegenerative diseases without discrimination between their aging and disease component. Here, we describe reduced levels of deimination commensurate with reduced protein, mRNA and activity of peptidylarginine deiminase type 2 in the retina, optic nerve and plasma of aged rats when compared to young rats. The decrease was significant in the ganglion cell layer, inner plexiform layer and inner nuclear layer. Because our observations suggest reduced deimination is a consequence of aging, we conclude that increased deimination must be a consequence of disease. Our findings are important to understand late-onset and progressive diseases such as glaucoma, pseudoexfoliation syndrome, age-related macular degeneration and Oguchi's disease.
Collapse
Affiliation(s)
- Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, 1638 NW 10th Avenue, 706, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | |
Collapse
|
21
|
Motil J, Dubey M, Chan WKH, Shea TB. Inhibition of dynein but not kinesin induces aberrant focal accumulation of neurofilaments within axonal neurites. Brain Res 2007; 1164:125-31. [PMID: 17640622 DOI: 10.1016/j.brainres.2006.09.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 09/29/2006] [Accepted: 09/30/2006] [Indexed: 01/25/2023]
Abstract
Studies from several laboratories indicate that the microtubule motors kinesin and dynein respectively participate in anterograde and retrograde axonal transport of neurofilaments. Inhibition of dynein function by transfection with a construct expressing dynamitin or intracellular delivery of anti-dynein antibodies accelerates anterograde transport, which has been interpreted to indicate that the opposing action of both motors mediates the normal distribution of neurofilaments along axons. Herein, we demonstrate that, while expression of relatively low levels of exogenous dynamitin indeed accelerated anterograde neurofilament transport along axonal neurites in culture, expression of progressively increasing levels of dynamitin induced focal accumulation of neurofilaments within axonal neurites and eventually caused neurite retraction. Inhibition of kinesin inhibited anterograde transport, but did not induce similar focal accumulations. These findings are consistent with studies indicating that perturbations in dynein activity can contribute to the aberrant accumulations of neurofilaments that accompany ALS/motor neuron disease.
Collapse
Affiliation(s)
- Jennifer Motil
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | | | | | | |
Collapse
|
22
|
Abstract
The dynamics of axonal transport are often colloquially described using highway traffic as a model system. Examination of the physics of traffic patterns, with emphasis on traffic jams and accidents, provides unique and perhaps counterintuitive insight into the aberrant accumulation of neurofilaments that accompanies amyotrophic lateral sclerosis/motor neuron disease.
Collapse
Affiliation(s)
- Thomas B Shea
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | | |
Collapse
|
23
|
Ince PG, Wharton SB. Chapter 5 Cytopathology of the motor neuron. HANDBOOK OF CLINICAL NEUROLOGY 2007; 82:89-119. [PMID: 18808890 DOI: 10.1016/s0072-9752(07)80008-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
24
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
25
|
García-Ruiz I, Rodríguez-Juan C, Díaz-Sanjuan T, del Hoyo P, Colina F, Muñoz-Yagüe T, Solís-Herruzo JA. Uric acid and anti-TNF antibody improve mitochondrial dysfunction in ob/ob mice. Hepatology 2006; 44:581-91. [PMID: 16941682 DOI: 10.1002/hep.21313] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The mechanisms responsible for low mitochondrial respiratory chain (MRC) activity in the liver of patients with nonalcoholic steatohepatitis are unknown. In this study, we examined the cause of this dysfunction in ob/ob mice. Forty-six mice were distributed in six groups: group I: C57BL/6J mice; group II: C57BL/6J Lep(-/-) mice (ob/ob); group III, ob/ob mice treated with manganese [III] tetrakis (5,10,15,20 benzoic acid) porphyrin (MnTBAP); group IV, ob/ob mice treated with IgG1 immunoglobulin; group V, ob/ob mice treated with anti-TNF antibody; group VI: ob/ob mice treated with uric acid. In liver tissue, we measured MRC activity, fatty acid beta-oxidation, tumor necrosis factor (TNF), inducible nitric oxide synthase (iNOS), 3-tyrosine-nitrated proteins, 3-tyrosine-nitrated mitochondrial proteins, including cytochrome c and ND4 subunit of complex I. MRC activity was decreased in ob/ob mice. TNF levels, iNOS protein expression, and tyrosine nitrated proteins were markedly increased in the liver of ob/ob mice. In these animals, mitochondrial proteins were markedly tyrosine nitrated, particularly the ND4 subunit of complex I and cytochrome c. Treatment of these animals with uric acid, a peroxynitrite scavenger, anti-TNF antibody, or MnTBAP decreased tyrosine nitrated proteins, improved the activity of MRC complexes, and led to a marked regression of hepatic steatosis and inflammation. In conclusion, MRC dysfunction and liver lesions found in ob/ob mice are likely to reflect the tyrosine nitration of mitochondrial proteins by peroxynitrite or a peroxynitrite-derivate radical. Increased hepatic TNF and iNOS expression might enhance peroxynitrite formation and inhibition of MRC complexes.
Collapse
Affiliation(s)
- Inmaculada García-Ruiz
- Research Center, Department of Gastroenterology, Hospital Universitario 12 de Octubre, Avd. Córdoba, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Strong MJ. Amyotrophic lateral sclerosis: contemporary concepts in etiopathogenesis and pharmacotherapy. Expert Opin Investig Drugs 2006; 13:1593-614. [PMID: 15566317 DOI: 10.1517/13543784.13.12.1593] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Among the neurodegenerative diseases associated with ageing, amyotrophic lateral sclerosis (ALS) remains the most devastating. The disease inexorably progresses, the vast majority of pharmacotherapies have failed to modify the disease course, death ensues on average within 5 years of symptom onset and increasing numbers of individuals are afflicted with the disease. However, significant advances in our understanding of the natural history of ALS and of the fundamental nature of the biological defect underlying motor neuron degeneration have been gained, providing hope for the development of novel pharmacotherapies for ALS. Among these is the recognition that ALS is a biologically heterogeneous disorder in which genetics, environment and ageing all interrelate. The observation of clinical heterogeneity, with initial clinical manifestations serving as predictors of survivorship, is of considerable importance in designing therapeutic trials. The presence of frontotemporal dysfunction in a subset of patients has led to increased interest in the relationship between ALS and the degenerative tauopathies. Ultimately, the degenerating motor neurons do not die alone. The contribution of both microglia and astrocytes to the degenerative process are increasingly recognised. Understanding how these processes interrelate has become critical to understanding the pharmacotherapy of ALS and in the design of clinical trials. This review will highlight recent epidemiological and neurochemical advances in our understanding of ALS, and place them into the context of understanding the development of novel treatment avenues for this devastating disease.
Collapse
Affiliation(s)
- Michael J Strong
- Department of Clinical Neurological Sciences, University of Western Ontario, The Robarts Research Institute, London, Canada.
| |
Collapse
|
27
|
Reiter TA, Demple B. Carbon monoxide mediates protection against nitric oxide toxicity in HeLa cells. Free Radic Biol Med 2005; 39:1075-88. [PMID: 16198234 DOI: 10.1016/j.freeradbiomed.2005.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 05/19/2005] [Accepted: 05/19/2005] [Indexed: 01/08/2023]
Abstract
Nitric oxide (NO) mediates cell signaling at low (nanomolar) concentrations, but can be cytotoxic at higher concentrations. Heme oxygenase-1 (HO-1), implicated in a role in NO resistance, might confer its protective effect through the direct products biliverdin and CO or the secondary product bilirubin. We have therefore tested whether biliverdin, bilirubin, or CO can provide resistance to NO toxicity. HeLa cells treated with bilirubin or biliverdin (up to 25 microM) had unchanged survival of an NO challenge (1 mM spermine-NONOate or 2 mM DEA-NO), although they displayed increased resistance to H2O2 (350 microM). In contrast, prior exposure to CO (up to 100 ppm) increased NO resistance. An interval between CO exposure and NO resistance was required for the increased NO resistance. Because the CO-activated NO resistance was also blocked by the transcription inhibitor actinomycin D, inducible gene expression seems critical for the cytoprotection elicited by CO. Experiments in the presence of HO and guanylate cyclase inhibitors indicated that HO activity and cGMP signaling are not essential for the CO-protective effect. Last, inhibition of p38 MAPK activation fully blocked the CO-protective effect, indicating the involvement of this signaling pathway(s) in the CO response.
Collapse
Affiliation(s)
- Tiffany A Reiter
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue 1-512, Boston, MA 02115, USA
| | | |
Collapse
|
28
|
Josephs KA, Uchikado H, McComb RD, Bashir R, Wszolek Z, Swanson J, Matsumoto J, Shaw G, Dickson DW. Extending the clinicopathological spectrum of neurofilament inclusion disease. Acta Neuropathol 2005; 109:427-32. [PMID: 15754170 DOI: 10.1007/s00401-004-0974-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 12/07/2004] [Accepted: 12/07/2004] [Indexed: 11/24/2022]
Abstract
We describe features of a patient that broadens the clinical and pathological spectrum of neurofilament inclusion disease (NFID). The patient was a 52-year-old man with a 5--6 year history of progressive, asymmetrical spastic weakness of the upper and lower extremities; L-DOPA-unresponsive parkinsonism; and SPECT evidence of asymmetrical frontoparietal and basal ganglia hypoperfusion. The brain had marked frontoparietal parasagittal cortical atrophy, including the motor cortex, with histopathological evidence of neurofilament- and alpha-internexin-immunoreactive neuronal inclusions. The corticospinal tract had degeneration, but there was minimal lower motor neuron pathology. There was also severe neuronal loss and gliosis in the posterolateral putamen and the substantia nigra, mimicking multiple system atrophy; however, glial cytoplasmic inclusions were not detected with alpha-synuclein immunohistochemistry. This case extends the clinical and pathological spectrum of NFID to include cases with predominant parkinsonian and pyramidal features.
Collapse
Affiliation(s)
- Keith A Josephs
- Department of Neurology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Save MP, Shetty VP, Shetty KT, Antia NH. Alterations in neurofilament protein(s) in human leprous nerves: morphology, immunohistochemistry and Western immunoblot correlative study. Neuropathol Appl Neurobiol 2005; 30:635-50. [PMID: 15541004 DOI: 10.1111/j.1365-2990.2004.00578.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a specific antibody (SMI 31), the state of phosphorylation of high and medium molecular weight neurofilaments (NF-H and NF-M) was studied in 22 leprous and four nonleprous human peripheral nerves by means of immunohistochemistry, sodium dodecyl sulfate-poly acrylamide gel electrophoresis (SDS-PAGE) and Western immunoblot (WB). The results thus obtained were compared with morphological changes in the respective nerves studied through light and electron microscopy. Many of the leprous nerves showing minimal pathology revealed lack of or weak staining with SMI 31, denoting dephosphorylation. Remyelinated fibres stained intensely with SMI 31 antibody. The WB analysis of Triton X-100 insoluble cytoskeletal preparation showed absence of regular SMI 31 reactive bands corresponding to 200 and 150 kDa molecular weight (NF-H and NF-M, respectively) in 10 nerves. Three of the 10 nerves revealed presence of NF protein bands in SDS-PAGE but not in WB. Presence of additional protein band (following NF-M) was seen in four nerves. Two nerves revealed NF-H band but not NF-M band and one nerve showed trace positivity. In the remaining five nerves presence of all the three NF bands was seen. Thus, 77.3% (17/22) of human leprous nerves studied showed abnormal phosphorylation of NF protein(s). The ultrastructural study showed abnormal compaction and arraying of NF at the periphery of the axons in the fibres with altered axon to myelin thickness ratio (atrophied fibres) as well as at the Schmidt-Lantermann (S-L) cleft region. Such NF changes were more pronounced in the severely atrophied axons suggesting a direct correlation. The observed well-spaced NF in the remyelinated fibres under ultrastructural study was in keeping with both intense SMI 31 staining and presence of NF triplet bands seen in WBs in four of leprous nerves that showed a large number of regenerating fibres suggesting reversal of changes with regeneration. Findings in the present study suggest that atrophy, that is, the reduction in axonal calibre and paranodal demyelination, seen in leprous nerves may result from dephosphorylation of NF-H and NF-M proteins.
Collapse
Affiliation(s)
- M P Save
- The Foundation for Medical Research, Thadani Marg, Worli, Mumbai, India
| | | | | | | |
Collapse
|
30
|
Peluffo H, Shacka JJ, Ricart K, Bisig CG, Martìnez-Palma L, Pritsch O, Kamaid A, Eiserich JP, Crow JP, Barbeito L, Estèvez AG. Induction of motor neuron apoptosis by free 3-nitro-L-tyrosine. J Neurochem 2004; 89:602-12. [PMID: 15086517 DOI: 10.1046/j.1471-4159.2004.02363.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peroxynitrite-dependent tyrosine nitration has been postulated to be involved in motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Evidence supporting this supposition includes the appearance of both free and protein-linked 3-nitro-l-tyrosine (nitrotyrosine) in both sporadic and familial ALS, as well as of increased free nitrotyrosine levels in the spinal cord of transgenic mice expressing ALS-linked superoxide dismutase mutants at symptom onset. Here we demonstrate that incubation with clinically relevant concentrations of nitrotyrosine induced apoptosis in motor neurons cultured with trophic factors. Nitrotyrosine was bound to proteins, but it was not incorporated into alpha-tubulin, as previously demonstrated for other cell types. Neither inhibition of nitric oxide production nor scavenging of superoxide and peroxynitrite prevented increases in cell nitrotyrosine immunoreactivity or motor neuron death, suggesting that these effects are not due to the endogenous formation of reactive nitrogen species. In contrast, some populations of astrocytes incorporated nitrotyrosine into alpha-tubulin, but free nitrotyrosine had no effect on the viability and phenotype of astrocytes in culture, as evaluated by glial fibrillary acidic protein immunoreactivity, cell growth and morphology. Co-culture of motor neurons on astrocyte monolayers delayed, but did not prevent, nitrotyrosine-induced motor neuron death. These results suggest that free nitrotyrosine may play a role in the induction of motor neuron apoptosis in ALS.
Collapse
Affiliation(s)
- Hugo Peluffo
- Departmentos de Histologia y Embriologìa, Facultdad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schön T, Hernández-Pando R, Baquera-Heredia J, Negesse Y, Becerril-Villanueva LE, Eon-Contreras JCL, Sundqvist T, Britton S. Nitrotyrosine localization to dermal nerves in borderline leprosy. Br J Dermatol 2004; 150:570-4. [PMID: 15030344 DOI: 10.1046/j.1365-2133.2004.05764.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nerve damage is a common and disabling feature of leprosy, with unclear aetiology. It has been reported that the peroxidizing agents of myelin lipids-nitric oxide (NO) and peroxynitrite-are produced in leprosy skin lesions. OBJECTIVES To investigate the localization of nitrotyrosine (NT)-a local end-product of peroxynitrite-in leprosy lesions where dermal nerves are affected by a granulomatous reaction. METHODS We investigated by immunohistochemistry and immunoelectron microscopy the localization of the inducible NO synthase (iNOS) and NT in biopsies exhibiting dermal nerves from patients with untreated leprosy. RESULTS There were abundant NT-positive and iNOS-positive macrophages in the borderline leprosy granulomas infiltrating peripheral nerves identified by light microscopy, S-100 and neurofilament immunostaining. Immunoelectron microscopy showed NT reactivity in neurofilament aggregates and in the cell wall of Mycobacterium leprae. CONCLUSIONS Our results suggest that NO and peroxynitrite could be involved in the nerve damage following borderline leprosy.
Collapse
Affiliation(s)
- T Schön
- Department of Medical Microbiology, Faculty of Health Sciences, 581 85 Linköping, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Martyshkin DV, Mirov SB, Zhuang YX, Crow JP, Ermilov V, Beckman JS. Fluorescence assay for monitoring Zn-deficient superoxide dismutase in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2003; 59:3165-3175. [PMID: 14583292 DOI: 10.1016/s1386-1425(03)00135-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A method has been developed for selective detection of the zinc-deficient form of Cu, Zn superoxide dismutase (SOD1) in vitro. Zinc-deficient SOD1 mutants have been implicated in the death of motor neurons leading in amyotrophic lateral sclerosis (ALS or Lou Gerhig's disease). Thus, this method may have applicability for detecting zinc-deficient SOD1 mutants in human ALS patients samples as well as in a transgenic mouse model of ALS and in cultured motor neurons. We determined previously that structural analogs of 1,10 phenanthroline, which react specifically with Cu(I), react with the active Cu(I) of SOD1 when zinc is absent, but not when zinc is also bound, as evidenced by the fact that the reaction is inhibited by pretreatment of the enzyme with zinc. We report herein that bathocuproine, or its water-soluble derivative bathocuproine disulfonate, react with zinc-deficient SOD1 to form a complex which fluoresces at 734 nm when excited at 482 nm. Fluorescent intensity is concentration dependent, thus we propose to use fluorescent confocal microscopy to measure intracellular levels of zinc-deficient SOD1 in situ.
Collapse
Affiliation(s)
- D V Martyshkin
- Department of Physics, University of Alabama at Birmingham, 1300 University Boulevard., Campbell Hall 310, Birmingham, AL 35294-1170, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Bigio EH, Lipton AM, White CL, Dickson DW, Hirano A. Frontotemporal and motor neurone degeneration with neurofilament inclusion bodies: additional evidence for overlap between FTD and ALS. Neuropathol Appl Neurobiol 2003; 29:239-53. [PMID: 12787321 DOI: 10.1046/j.1365-2990.2003.00466.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present the case of a patient who had clinical frontal lobe dementia without apparent motor neurone disease (MND), with pathologic findings not typical of any single currently classified frontotemporal degeneration (FTD). At autopsy, the brain had frontal and temporal atrophy with neuronal loss, gliosis, and superficial spongiosis, typical of all FTDs. There were at least three different morphologic types of intracytoplasmic neuronal inclusions in a variety of brain and brainstem regions, including the hippocampal dentate gyrus and pyramidal neurones, the neocortex (in particular, the motor cortex), basal ganglia, thalamus, subthalamic nucleus, basis pontis, and inferior olivary nuclei. Inclusions had the morphologies of Pick-like bodies, pleomorphic inclusions, and hyaline conglomerate (HC)-like inclusions. None of these were positive with tau immunostains. Pick-like bodies in the dentate gyrus were labelled with ubiquitin. The pleomorphic inclusions in the neocortex and dentate gyrus and the HC-like inclusions in the motor and parietal cortex were strongly positive with immunostains for neurofilament. We discuss the differential diagnosis and compare this case with those disorders to which it is most similar. In particular, we compare the unique neurofilament-positive inclusions to the inclusions of FTD-MND, to Pick bodies, and to the basophilic and HC inclusions that are occasionally seen in amytrophic lateral sclerosis (ALS). Although FTD-MND may be found in ALS, the findings in this case may have additional implications for a link between FTD and ALS.
Collapse
Affiliation(s)
- E H Bigio
- Department of Pathology, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Once thought to be a single pathological disease state, amyotrophic lateral sclerosis (ALS) is now recognized to be the limited phenotypic expression of a complex, heterogeneous group of biological processes, resulting in an unrelenting loss of motor neurons. On average, individuals affected with the disease live <5 years. In this article, the complex nature of the pathogenesis of ALS, including features of age dependency, environmental associations, and genetics, is reviewed. Once held to be uncommon, it is now clear that ALS is associated with a frontotemporal dementia and that this process may reflect disturbances in the microtubule-associated tau protein metabolism. The motor neuron ultimately succumbs in a state where significant disruptions in neurofilament metabolism, mitochondrial function, and management of oxidative stress exist. The microenvironment of the neuron becomes a complex milieu in which high levels of glutamate provide a source of chronic excitatory neurotoxicity, and the contributions of activated microglial cells lead to further cascades of motor neuron death, perhaps serving to propagate the disease once established. The final process of motor neuron death encompasses many features of apoptosis, but it is clear that this alone cannot account for all features of motor neuron loss and that aspects of a necrosis-apoptosis continuum are at play. Designing pharmacological strategies to mitigate against this process thus becomes an increasingly complex issue, which is reviewed in this article.
Collapse
Affiliation(s)
- Michael J Strong
- Department of Clinical Neurological Sciences, Robarts Research Institute, Room 7OF 10, University Campus, London Health Sciences Centre, University of Western Ontario, 339 Windermere Road, London, Ontario, Canada N6A 5A5.
| |
Collapse
|
35
|
Fernyhough P, Schmidt RE. Neurofilaments in diabetic neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 50:115-44. [PMID: 12198808 DOI: 10.1016/s0074-7742(02)50075-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review discusses the role of abnormal neurofilament (NF) expression, processing, and structure as an etiological factor in diabetic neuropathy. Diabetic sensory and autonomic neuropathy in humans is associated with a spectrum of structural changes in peripheral nerve that includes axonal degeneration, paranodal demyelination, and loss of myelinated fibers-- the latter is probably the result of a dying-back of distal axons. NF filaments are composed of three subunit proteins, NFL, NFM, and NFH, and are major constituents of the axonal cylinder. It is clear that any abnormality in synthesis, delivery, or processing of these critical proteins could lead to severe impairments in axon structure and function. This article describes mechanisms of synthesis, phosphorylation, and delivery of NF and discusses how these processes may be abnormal in diabetics. The pathological alterations in the ganglion and preipheral nerve that occur in sensory and autonomic neuropath will be outlined and related to possible abnormal processing of NF. A major focus is the role or aberrant NF phosphorylation and its possible involvement in the imparied delivery of NF to the distal axon. Identification of stress-activated protein kinases (SAPKs) as NF kinases is discussed in detail and it is proposed that hyperglycemia-induced activation of SAPKs may be a primary etiological event in diabetic neuropathy.
Collapse
Affiliation(s)
- Paul Fernyhough
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
36
|
Chapter 2 Pathology of Motor Neuron Disorders. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1877-3419(09)70103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
37
|
Kim SH, Henkel JS, Beers DR, Sengun IS, Simpson EP, Goodman JC, Engelhardt JI, Siklós L, Appel SH. PARP expression is increased in astrocytes but decreased in motor neurons in the spinal cord of sporadic ALS patients. J Neuropathol Exp Neurol 2003; 62:88-103. [PMID: 12528821 DOI: 10.1093/jnen/62.1.88] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evidence for increased oxidative stress and DNA damage in amyotrophic lateral sclerosis (ALS) prompted studies to determine if the expression of poly(ADP-ribose) polymerase (PARP) is increased in ALS. Using Western analyses of postmortem tissue, we demonstrated that PARP-immunoreactivity (PARP-IR) was increased 3-fold in spinal cord tissues of sporadic ALS (sALS) patients compared with non-neurological disease controls. Despite the increased PARP-IR, PARP mRNA expression was not increased significantly. Immunohistochemical analyses revealed PARP-IR was increased in both white and gray matter of sALS spinal cord. While PARP-IR was predominantly seen in astrocytes, large motor neurons displayed reduced staining compared with controls. This result contrasts sharply to the staining of Alzheimer and MPTP-induced Parkinson diseased tissue, where poly(ADP-ribose) (PAR)-IR was seen mostly in neurons, with little astrocytic staining. PARP-IR was increased in the pellet fraction of sALS homogenates compared with control homogenates, representing potential PARP binding to chromatin or membranes and suggesting a possible mechanism of PARP stabilization. The present results demonstrate glial alterations in sALS spinal cord tissue and support the role of glial alterations in sALS pathogenesis. Additionally, these results demonstrate differences in sALS spinal motor neurons and astrocytes compared to brain neurons and astrocytes in Alzheimer disease and MPTP-induced Parkinson disease despite the presence of markers for oxidative stress in all 3 diseases.
Collapse
Affiliation(s)
- Seung H Kim
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 2002; 33:337-49. [PMID: 12126755 DOI: 10.1016/s0891-5849(02)00905-x] [Citation(s) in RCA: 1463] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Superoxide dismutases are an ubiquitous family of enzymes that function to efficiently catalyze the dismutation of superoxide anions. Three unique and highly compartmentalized mammalian superoxide dismutases have been biochemically and molecularly characterized to date. SOD1, or CuZn-SOD (EC 1.15.1.1), was the first enzyme to be characterized and is a copper and zinc-containing homodimer that is found almost exclusively in intracellular cytoplasmic spaces. SOD2, or Mn-SOD (EC 1.15.1.1), exists as a tetramer and is initially synthesized containing a leader peptide, which targets this manganese-containing enzyme exclusively to the mitochondrial spaces. SOD3, or EC-SOD (EC 1.15.1.1), is the most recently characterized SOD, exists as a copper and zinc-containing tetramer, and is synthesized containing a signal peptide that directs this enzyme exclusively to extracellular spaces. What role(s) these SODs play in both normal and disease states is only slowly beginning to be understood. A molecular understanding of each of these genes has proven useful toward the deciphering of their biological roles. For example, a variety of single amino acid mutations in SOD1 have been linked to familial amyotrophic lateral sclerosis. Knocking out the SOD2 gene in mice results in a lethal cardiomyopathy. A single amino acid mutation in human SOD3 is associated with 10 to 30-fold increases in serum SOD3 levels. As more information is obtained, further insights will be gained.
Collapse
Affiliation(s)
- Igor N Zelko
- Division of Pulmonary and Critical Care, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
39
|
Estévez AG, Kamaid A, Thompson JA, Cornwell TL, Radi R, Barbeito L, Beckman JS. Cyclic guanosine 5' monophosphate (GMP) prevents expression of neuronal nitric oxide synthase and apoptosis in motor neurons deprived of trophic factors in rats. Neurosci Lett 2002; 326:201-5. [PMID: 12095656 DOI: 10.1016/s0304-3940(02)00341-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Deprivation of trophic factors induces expression of neuronal nitric oxide synthase (NOS) and nitric oxide production in cultured motor neurons, leading to apoptosis. Motor neuron apoptosis requires the simultaneous production of nitric oxide and superoxide and is associated with increased nitrotyrosine immunoreactivity. Nitric oxide also stimulates cyclic guanosine 5' monophosphate (cGMP) synthesis, which enhances the survival of motor neurons treated with brain derived trophic factor (BDNF). Here we report that cGMP analogs blocked neuronal NOS induction, nitrotyrosine accumulation, and prevented apoptosis for up to 3 day of motor neurons deprived of trophic factors. Low concentrations of exogenous nitric oxide (<100 nM), which are not toxic for BDNF-treated cultures, reversed the protective effect of cGMP. These results suggest that elevation of cGMP could decrease nitric oxide production, and thereby preventing motor neuron apoptosis.
Collapse
Affiliation(s)
- Alvaro G Estévez
- Department of Physiology and Biophysics, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 850, Birmingham, AL 35294-0005, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abudara V, Alvarez AF, Chase MH, Morales FR. Nitric oxide as an anterograde neurotransmitter in the trigeminal motor pool. J Neurophysiol 2002; 88:497-506. [PMID: 12091571 DOI: 10.1152/jn.2002.88.1.497] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrate the presence of nitric oxide synthase containing fibers within the guinea pig trigeminal motor nucleus and describe the effects of nitric oxide (NO) on trigeminal motoneurons. Using immunohistochemical techniques, we observed nitrergic fibers displaying varicosities and giving rise to bouton-like structures in apposition to retrogradely labeled motoneuron processes, most of which were dendrites. NO-donors evoked a membrane depolarization (mean 7.5 mV) and a decrease in rheobase (mean 38%). These substances also evoked an apparent increase in an hyperpolarization-activated cationic current (I(H)). These changes were not accompanied by any modification of the motoneurons' input resistance or time constant. The effects were suppressed by blocking the cytosolic guanlyate cyclase. A membrane-permeant cyclic guanosine 3,5'-monophosphate (cGMP) analogue mimicked the effects of NO. There was a considerable increase in synaptic activity following NO-donors or db-cGMP application. Tetrodotoxin supressed the increase in synaptic activity evoked by NO-donors. The histological and electrophysiological evidence, taken together, indicates the existence of a nitrergic system able to modulate trigeminal motoneurons under yet unknown physiological conditions.
Collapse
Affiliation(s)
- Verónica Abudara
- Departamento de Fisiología, Facultad de Medicina, Montevideo-Uruguay 11800
| | | | | | | |
Collapse
|
41
|
Kikuchi S, Shinpo K, Niino M, Tsuji S, Iwabuchi K, Onoé K, Tashiro K. Prostaglandin E1 protects cultured spinal neurons against the effects of nitric oxide toxicity. Neuropharmacology 2002; 42:714-23. [PMID: 11985830 DOI: 10.1016/s0028-3908(02)00020-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of prostaglandin (PG) E(1) on NO neurotoxicity were examined using rat cultured spinal neurons. Rat cultured spinal neurons exposed to the NO donor, 2,2'-(hydroxynitrosohydrazono) bis-ethanamine (NOC18), showed neurotoxic effects that were accompanied by apoptotic nuclear change, free radical generation, a reduction in glutathione, and mitochondrial dysfunction. PGE(1), at concentrations of 1-100 nM, protected cultured spinal neurons from NO toxicity by reversing the oxidative and pro-apoptotic properties elicited by NOC18 exposure. The administration of PGE(1) increased the intracellular cyclic AMP (cAMP) levels in cultured spinal neurons. In addition, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis confirmed the existence of EP4, a cAMP-elevating PGE receptor, in cultured spinal neurons. The protective effects of PGE(1) against NO neurotoxicity was partially blocked by an inhibitor of MEK [the mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) kinase], suggesting that the MAPK/ERK pathway may play a significant role in the activity of PGE(1). PGE(1) up-regulated the expression of the anti-apoptotic protein, Bcl-2, as determined by Western blot analysis. PGE(1) also induced the expression of thioredoxin in cultured spinal neurons. Our data indicate that PGE(1) exerts a protective action against NO neurotoxicity in cultured spinal neurons, and suggests a therapeutic potential of PGE(1) against spinal cord disease, such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- S Kikuchi
- Department of Neurology, Hokkaido University School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Pehar M, Martínez-Palma L, Peluffo H, Kamaid A, Cassina P, Barbeito L. Peroxynitrite-induced cytotoxicity in cultured astrocytes is associated with morphological changes and increased nitrotyrosine immunoreactivity. Neurotox Res 2002; 4:87-93. [PMID: 12829407 DOI: 10.1080/10298420290015818] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We have established a cell culture model of spinal cord astrocytes to study the cytotoxicity of peroxynitrite. Nitric oxide (NO) has been implicated as a key contributor to neurotoxicity. NO reacts with superoxide to generate peroxynitrite, a strong oxidant and nitrating agent with deleterious cytotoxic and pro-apoptotic effects. Peroxynitrite and nitrotyrosine are formed in damaged motor neurons in amyotrophic lateral sclerosis (ALS), which are surrounded by reactive astrocytes. To determine the effects of extracellular addition of peroxynitrite, purified astrocyte monolayers prepared from neonatal rat spinal cords were exposed to peroxynitrite (0.25-0.75 mM) for 5 min and further incubated in culture medium for 24-72h. Peroxynitrite exposure did not result in apparent cell loss or damage of the monolayer. However, a substantial number of cells adopted reactive features, with long processes displaying intense immunoreactivity to glial fibrillary acidic protein (GFAP). Western blot analysis performed 24h after peroxynitrite treatment showed that GFAP levels were not modified by the oxidant. There were no changes in cell viability parameters in astrocyte cultures after peroxyintrite, indicating that astrocytes are more resistant to the oxidant than other cell types. Peroxynitrite reacts with protein-bound tyrosine residues to form nitrotyrosine. We observed a modest to strong nitrotyrosine immunoreactivity in astrocytes 24h following peroxynitrite exposure. There was a remarkable association between nitrotyrosine and high-intensity GFAP immunoreactivity in astrocytes bearing long processes. These results suggest that peroxynitrite induces a characteristic long-lasting reactive astrocytic phenotype and provide new insight into understanding the origin of reactive astrocytes occurring in ALS.
Collapse
Affiliation(s)
- Mariana Pehar
- Neurobiologia Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | | | | | | | | | | |
Collapse
|
43
|
Rothe F, Possel H, Wolf G. Nitric oxide affects the phosphorylation state of microtubule-associated protein 2 (MAP-2) and neurofilament: an immunocytochemical study in the brain of rats and neuronal nitric oxide synthase (nNOS)-knockouts. Nitric Oxide 2002; 6:9-17. [PMID: 11829530 DOI: 10.1006/niox.2001.0390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alterations in function and specific cellular location of cytoskeletal elements are characterized by changes in their phosphorylation state. On this background we studied immunocytochemically the distribution pattern of neurofilament (NF) in its phosphorylated (P-NF) and nonphosphorylated (NP-NF) form and of microtubule-associated protein-2 (MAP-2) in the rat and mouse brain. Neurons that are strongly positive for neuronal nitric oxide synthase (nNOS)-immunoreactivity (IR) showed, interestingly, neither P-NF- nor MAP-2-IR. In contrast, nNOS-negative neuronal cell elements exhibited an intense IR and specific location for both antigens throughout the brain. As a model we chose the dorsolateral tegmental nucleus (LDT) of knockout (nNOS(-/-)) mice in which the main splice isoform nNOSalpha is lacking, but a low nNOS-activity persists, apparently due to the splice isoforms nNOSbeta and gamma. The principal neurons of such nNOS(-/-)-mice, which are equivalent to the nNOS-containing neurons in the LDT of wild-type mice exhibited a decreased nitrotyrosine-IR and an increased phosphotyrosine-IR if compared to those of wild-type mice. The same neurons failed to show NF-IR and MAP-2-IR, though. When the residual nNOS activity in nNOS(-/-)-mice was inhibited by treatment with N-omega-nitro-L-arginine methyl ester (L-NAME) the principal neurons displayed a moderate MAP-2 and NF-staining. NO and NO-derived oxygen species are suggested to modulate the balance between the activities of kinases and phosphatases, thus changing phosphorylation levels for NF, MAP-2, and, possibly, other proteins in neurons and adjacent cell elements.
Collapse
Affiliation(s)
- Fritz Rothe
- Institute of Medical Neurobiology, University of Magdeburg, D-39120 Magdeburg, Germany.
| | | | | |
Collapse
|
44
|
Abstract
The increasing complexity of the pathways implicated in the pathogenesis of familial amyotrophic lateral sclerosis (ALS) has stimulated intensive research in many directions. Genetic analysis of familial ALS has yielded six loci and one disease gene (SOD1), initially suggesting a role for free radicals in the disease process, although the mechanisms through which the mutant exerts toxicity and results in selective motor neuron death remain uncertain. Numerous studies have focused on structural elements of the affected cell, emphasizing the role of neurofilaments and peripherin and their functional disruption in disease. Other topics examined include cellular homeostasis of copper and calcium, particularly in the context of oxidative stress and the processes of protein aggregation, glutamate excitotoxicity, and apoptosis. It has become evident that there is considerable interplay between these mechanisms and, as the role of each is established, a common picture may emerge, enabling the development of more targeted therapies. This study discusses the main areas of investigation and reviews the findings.
Collapse
Affiliation(s)
- Collette K Hand
- Centre for Research in Neuroscience, McGill University, and Montréal General Hospital Research Institute (L7-224), 1650 Cedar Avenue, Montréal, Quebec H3G 1A4, Canada
| | | |
Collapse
|
45
|
Touil T, Deloire-Grassin MS, Vital C, Petry KG, Brochet B. In vivo damage of CNS myelin and axons induced by peroxynitrite. Neuroreport 2001; 12:3637-44. [PMID: 11733726 DOI: 10.1097/00001756-200111160-00052] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In multiple sclerosis (MS) the mechanisms of injury caused by peroxynitrite remain uncertain. To study histological, ultra structural and molecular alterations caused by peroxynitrite in brain, the peroxynitrite donor 3-morpholinosydnonimine was injected in rat corpus callosum. Peroxynitrite induces strong primary axonal damage with characteristics of primary acute axonopathy, together with severe myelin alteration, myelin vacuolation and demyelination, and nitrotyrosine formation as confirmed by detection of nitrosated target proteins. Administration of the peroxynitrite scavenger uric acid inhibited these effects. In vivo, peroxynitrite leads to a disorganisation of myelin and to axonal damage presenting some similarities to the formation of MS lesions. Understanding the action of peroxynitrite in this process will open new therapeutic strategies by specific inhibition of peroxynitrite formation and action.
Collapse
Affiliation(s)
- T Touil
- Neurobiologie des Affections de la Myéline, EA2966, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
46
|
Strong MJ. Progress in clinical neurosciences: the evidence for ALS as a multisystems disorder of limited phenotypic expression. Can J Neurol Sci 2001; 28:283-98. [PMID: 11766772 DOI: 10.1017/s0317167100001505] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Traditionally, amyotrophic lateral sclerosis (ALS) is considered to be a unique neurodegeneration disorder in which motor neurons are selectively vulnerable to a single disease process. Our current understanding of ALS, however, suggests that this is far too limited an approach. While motor neuron degeneration remains the central component to this process, there is considerable phenotypic variability including broad ranges in survivorship and the presence or absence of cognitive impairment. The number of familial variants of ALS for which unique genetic linkage has been identified is increasing, attesting further to the biological heterogeneity of the disorder. At the cellular level, derangements in cytoskeletal protein and glutamate metabolism, mitochondrial function, and in glial interactions are clearly evident. When considered in this fashion, ALS can be justifiably considered a disorder of multiple biological processes sharing in common the degeneration of motor neurons.
Collapse
Affiliation(s)
- M J Strong
- Department of Clinical Neurological Sciences, The University of Western Ontario, London, Canada
| |
Collapse
|
47
|
Beckman JS, Estévez AG, Crow JP, Barbeito L. Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci 2001. [DOI: 10.1016/s0166-2236(01)00004-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Beckman JS, Estévez AG, Crow JP, Barbeito L. Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci 2001; 24:S15-20. [PMID: 11881740 DOI: 10.1016/s0166-2236(00)01981-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal disease that is characterized by the relentless death of motoneurons. Mutations to Cu-Zn superoxide dismutase (SOD), though occurring in just 2-3% of individuals with ALS, remain the only proven cause of the disease. These mutations structurally weaken SOD, which indirectly decreases its affinity for Zn. Zn-deficient SOD induces apoptosis in motoneurons through a mechanism involving peroxynitrite. Importantly, Zn-deficient wild-type SOD is just as toxic as Zn-deficient ALS mutant SOD, suggesting that the loss of Zn from wild-type SOD could be involved in the other 98% of cases of ALS. Zn-deficient SOD could therefore be an important therapeutic target in all forms of ALS.
Collapse
Affiliation(s)
- J S Beckman
- Linus Pauling Institute, and Dept of Biochemistry and Biophysics, Oregon State University, Corvallis 97331, USA.
| | | | | | | |
Collapse
|
49
|
Johnson MA, Macdonald TL, Mannick JB, Conaway MR, Gaston B. Accelerated s-nitrosothiol breakdown by amyotrophic lateral sclerosis mutant copper,zinc-superoxide dismutase. J Biol Chem 2001; 276:39872-8. [PMID: 11518706 DOI: 10.1074/jbc.m102781200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in copper,zinc-superoxide dismutase (SOD) have been implicated in familial amyotrophic lateral sclerosis (FALS). We have investigated the breakdown of S-nitrosothiols by wild-type (WT) SOD and two common FALS mutants, alanine-4 valine (A4V) SOD and glycine-37 arginine (G37R) SOD. In the presence of glutathione, A4V SOD and G37R SOD catalyzed S-nitrosoglutathione breakdown three times more efficiently than WT SOD. Indeed, A4V SOD catabolized GSNO more efficiently than WT SOD throughout the physiological range of GSH concentrations. Moreover, a variety of additional S-nitrosothiols were catabolized more readily by A4V SOD than by WT SOD. Initial rate data for fully reduced WT SOD and A4V SOD, and data using ascorbic acid as the reductant, suggest that FALS mutations in SOD may influence the efficiency of reduction of the copper center by glutathione. We have identified a potentially toxic gain of function of two common FALS mutations that may contribute to neurodegeneration in FALS.
Collapse
Affiliation(s)
- M A Johnson
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | | | |
Collapse
|
50
|
Manabe Y, Wang JM, Murakami T, Warita H, Hayashi T, Shoji M, Abe K. Expressions of nitrotyrosine and TUNEL immunoreactivities in cultured rat spinal cord neurons after exposure to glutamate, nitric oxide, or peroxynitrite. J Neurosci Res 2001; 65:371-7. [PMID: 11536319 DOI: 10.1002/jnr.1163] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although excitotoxic and oxidative stress play important roles in spinal neuron death, the exact mechanism is not fully understood. We examined cell damage of primary culture of 11-day-old rat spinal cord by addition of glutamate, nitric oxide (NO) or peroxynitrite (PN) with detection of nitrotyrosine (NT) or terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL). With addition of glutamate, NOC18 (a slow NO releaser) or PN, immunoreactivity for NT became stronger in the cytoplasm of large motor neurons in the ventral horn at 6 to 48 hr and positive in the axons of the ventral horn at 24 to 48 hr. TUNEL positive nuclei were found in spinal large motor neurons from 24 hr, and the positive cell number greatly increased at 48 hr in contrast to the vehicle. Pretreatment of cultures with alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate receptor antagonist, NO-suppressing agent, and antioxidant protected the immunoreactivity for NT or TUNEL. The present results suggest that both excitotoxic and oxidative stress play an important role in the upregulation of NT nitration and the apoptotic pathway in cultured rat spinal neurons.
Collapse
Affiliation(s)
- Y Manabe
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University Medical School, Okayama, Japan.
| | | | | | | | | | | | | |
Collapse
|