1
|
Ferraro TN, DeChiara JR, Chen R, Chen Y, Doyle GA, Buono RJ. Modulation of mu-opioid receptor function alters electroshock seizure responses in mice. Neuropharmacology 2025; 272:110427. [PMID: 40122226 DOI: 10.1016/j.neuropharm.2025.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
We studied the effects of mu-opioid receptor (MOR) modulation on seizure responses to electroshock stimulation in C57BL/6J (B6) and DBA/2J (D2) mice of both sexes. Using a genetic approach, we show that B6 and D2 mice with a constitutive deletion of the MOR gene Oprm1 have a significantly reduced maximal electroconvulsive shock (ECS) seizure threshold. Using a pharmacological approach, we show that morphine treatment (25 mg pellet, s.c.) significantly reduces expression of maximal ECS seizures in both wild type strains, and conversely, that naltrexone treatment (1-10 mg/kg, s.c.) increases maximal ECS seizure susceptibility, more so in B6 mice than in D2. Unexpectedly, we observe that higher doses of naltrexone (100-500 mg/kg, i.p.) elicit generalized seizures, with D2 mice displaying significantly greater susceptibility than B6. Together, results suggest that decreasing MOR function increases ECS seizure susceptibility in mice, whereas increasing MOR function decreases ECS seizure susceptibility. The greater sensitivity of D2 mice to the direct proconvulsant effect of high dose naltrexone is consistent with the relative response of this strain to other chemoconvulsants and suggests that endogenous opioids play a role in mediating the previously reported robust difference in seizure susceptibility between D2 and B6 mice. On the other hand, our finding that naltrexone intensifies ECS seizures more in B6 mice than D2 underscores the complex nature of seizure susceptibility and the interaction between opioids and seizures. We conclude that further refinement of approaches to modulate neuronal signaling linked to the effect of the MOR on electroshock seizure responses may provide clues for development of new anti-epilepsy treatments.
Collapse
MESH Headings
- Animals
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/deficiency
- Seizures/etiology
- Seizures/metabolism
- Seizures/genetics
- Seizures/physiopathology
- Seizures/drug therapy
- Mice
- Electroshock/adverse effects
- Male
- Mice, Inbred C57BL
- Naltrexone/pharmacology
- Female
- Mice, Inbred DBA
- Narcotic Antagonists/pharmacology
- Morphine/pharmacology
- Dose-Response Relationship, Drug
- Mice, Knockout
- Analgesics, Opioid/pharmacology
- Species Specificity
Collapse
Affiliation(s)
- Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA.
| | - James R DeChiara
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Ruoyu Chen
- Moorestown High School, Moorestown, NJ, 08057, USA
| | - Yong Chen
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, 08028, USA
| | - Glenn A Doyle
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Russell J Buono
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| |
Collapse
|
2
|
Birring SS, Dicpinigaitis PV, Maher TM, Mazzone SB, Page CP, Hawi A, Sciascia T, Morice AH. Kappa and Mu Opioid Receptors in Chronic Cough: Current Evidence and Future Treatment. Lung 2025; 203:62. [PMID: 40358749 PMCID: PMC12075272 DOI: 10.1007/s00408-025-00812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
Chronic cough is a significant burden on patient quality of life and is associated with poor health outcomes. Chronic cough may be a result of neural hypersensitivity due to changes in both the peripheral and the central nervous systems, although the exact mechanisms underlying its pathogenesis are not completely understood. Opioid receptors, specifically kappa and mu, are potential therapeutic targets in the management of chronic cough because they play a pivotal role in both the peripheral and the central neural pathways implicated in the act of coughing. Morphine, a mu opioid receptor agonist, is an effective cough modulator; however, mu receptor agonists are part of a drug class that can induce respiratory depression and euphoria, with strong reinforcing properties that may lead to excessive use and abuse. Drugs with a dual-acting mechanism of kappa receptor agonism and mu receptor antagonism may be effective in the management of chronic cough without the potential for abuse. This review summarizes the current understanding of the mechanisms of cough hypersensitivity, the role of the kappa and mu receptors in the neurophysiology of cough, and the clinical potential of targeting these receptors as a novel way of managing chronic cough.
Collapse
MESH Headings
- Humans
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Cough/drug therapy
- Cough/physiopathology
- Cough/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Chronic Disease
- Animals
- Antitussive Agents/therapeutic use
- Analgesics, Opioid/therapeutic use
- Chronic Cough
Collapse
Affiliation(s)
- Surinder S Birring
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, King's College London, London, UK
| | | | - Toby M Maher
- University of Southern California, Los Angeles, CA, USA
| | - Stuart B Mazzone
- Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Clive P Page
- University of Melbourne, Melbourne, VIC, Australia
| | - Amale Hawi
- Trevi Therapeutics, Inc, New Haven, CT, USA
| | | | - Alyn H Morice
- Respiratory Medicine, Hull York Medical School, Castle Hill Hospital, Castle Rd, E Yorkshire, Cottingham, HU16 5JQ, UK.
| |
Collapse
|
3
|
Hovhannisyan V, Berkati AK, Simonneaux M, Gabel F, Andry V, Goumon Y. Sex differences in the antinociceptive effect of codeine and its peripheral but not central metabolism in adult mice. Neuropharmacology 2025; 264:110228. [PMID: 39577763 DOI: 10.1016/j.neuropharm.2024.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Codeine is a natural opiate extracted from opium poppy (Papaver somniferum) and used to alleviate mild to moderate pain. The analgesic effect of this molecule results from its metabolism into morphine which is an agonist of the mu opioid receptor. Morphine's major metabolite morphine-3-glucuronide induces both thermal and mechanical hypersensitivies while codeine-6-glucuronide has been proposed to be antinociceptive. However, sex differences in codeine antinociceptive effect and pharmacokinetics were barely studied. To this purpose, we injected male and female mice with codeine (2.5, 5, 10, 20 and 40 mg/kg) and thermal hypersensitivity was assessed 30 min after injection using the Tail Immersion Test. Moreover, both peripheral and central metabolism of codeine were evaluated respectively in the blood or pain-related brain structures in the central nervous system. The amounts of codeine and its metabolites were quantified using the isotopic dilution method by liquid chromatography coupled to a mass spectrometer. Our results show that codeine induces a greater antinociceptive effect in males than females mice independently of the estrous cycle. Moreover, major sex differences were found in the peripheral metabolism of this molecule, with higher amounts of pronociceptive morphine-3-glucuronide and less antinociceptive codeine-6-glucuronide in females than in males. Concerning the central metabolism of codeine, we did not find significant sex differences in pain-related brain structures. Collectively, these findings support a greater codeine antinociceptive effect in males than females in mice. These sex differences could be influenced by a higher peripheral metabolism of this molecule in female mice rather than central metabolism.
Collapse
Affiliation(s)
- Volodya Hovhannisyan
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Abdel-Karim Berkati
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Marine Simonneaux
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Florian Gabel
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Virginie Andry
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Centre National de la Recherche Scientifique and University of Strasbourg, SMPMS-INCI, Mass Spectrometry Facilities of the Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Yannick Goumon
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Centre National de la Recherche Scientifique and University of Strasbourg, SMPMS-INCI, Mass Spectrometry Facilities of the Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
4
|
Simera M, Berikova D, Hovengen OJ, Laheye M, Veternik M, Martvon L, Kotmanova Z, Cibulkova L, Poliacek I. Role of the pontine respiratory group in the suppression of cough by codeine in cats. Respir Physiol Neurobiol 2024; 330:104326. [PMID: 39209015 DOI: 10.1016/j.resp.2024.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Codeine was microinjected into the area of the Kölliker-Fuse nucleus and the adjacent lateral parabrachial nucleus, within the pontine respiratory group in 8 anesthetized cats. Electromyograms (EMGs) of the diaphragm (DIA) and abdominal muscles (ABD), esophageal pressures (EP), and blood pressure were recorded and analyzed during mechanically induced tracheobronchial cough. Unilateral microinjections of 3.3 mM codeine (3 injections, each 37 ± 1.2 nl) had no significant effect on the cough number. However, the amplitudes of the cough ABD EMG, expiratory EP and, to a lesser extent, DIA EMG were significantly reduced. There were no significant changes in the temporal parameters of the cough. Control microinjections of artificial cerebrospinal fluid in 6 cats did not show a significant effect on cough data compared to those after codeine microinjections. Codeine-sensitive neurons in the rostral dorsolateral pons contribute to controlling cough motor output, likely through the central pattern generator of cough.
Collapse
Affiliation(s)
- Michal Simera
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Denisa Berikova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia.
| | - Ole-Jacob Hovengen
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Marek Laheye
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Marcel Veternik
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Lukas Martvon
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Zuzana Kotmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Lucia Cibulkova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| |
Collapse
|
5
|
Li Z, Dang Q, Wang P, Zhao F, Huang J, Wang C, Liu X, Min W. Food-Derived Peptides: Beneficial CNS Effects and Cross-BBB Transmission Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20453-20478. [PMID: 38085598 DOI: 10.1021/acs.jafc.3c06518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Food-derived peptides, as dietary supplements, have significant effects on promoting brain health and relieving central nervous system (CNS) diseases. However, the blood-brain barrier (BBB) greatly limits their in-brain bioavailability. Thus, overcoming the BBB to target the CNS is a major challenge for bioactive peptides in the prevention and treatment of CNS diseases. This review discusses improvement in the neuroprotective function of food-derived active peptides in CNS diseases, as well as the source of BBB penetrating peptides (BBB-shuttles) and the mechanism of transmembrane transport. Notably, this review also discusses various peptide modification methods to overcome the low permeability and stability of the BBB. Lipification, glycosylation, introduction of disulfide bonds, and cyclization are effective strategies for improving the penetration efficiency of peptides through the BBB. This review provides a new prospective for improving their neuroprotective function and developing treatments to delay or even prevent CNS diseases.
Collapse
Affiliation(s)
- Zehui Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P.R. China
| | - Qiao Dang
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P.R. China
| | - Peng Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
| | - Fanrui Zhao
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Chongchong Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Xingquan Liu
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| |
Collapse
|
6
|
Lyngstad G, Skjelbred P, Swanson DM, Skoglund LA. Analgesic effect of oral paracetamol 1000 mg/ibuprofen 400 mg, paracetamol 1000 mg/codeine 60 mg, paracetamol 1000 mg/ibuprofen 400 mg/codeine 60 mg, or placebo on acute postoperative pain: a single-dose, randomized, and double-blind study. Eur J Clin Pharmacol 2023; 79:1131-1141. [PMID: 37349498 PMCID: PMC10361915 DOI: 10.1007/s00228-023-03525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
PURPOSE Combining analgesics with different mechanisms of action may increase the analgesic efficacy. The multidimensional pharmacodynamic profiles of ibuprofen 400 mg/paracetamol 1000 mg, ibuprofen 400 mg/paracetamol 1000 mg/codeine 60 mg, and paracetamol 1000 mg/codeine 60 mg and placebo were compared. METHODS A randomized, double-blind, placebo-controlled, parallel-group, single-centre, outpatient, and single-dose study used 200 patients of both sexes and homogenous ethnicity after third molar surgery (mean age 24 years, range 19-30 years). Primary outcome was sum pain intensity over 6 h (SPI). Secondary outcomes were time to analgesic onset, duration of analgesia, time to rescue drug intake, number of patients taking rescue drug, sum pain intensity difference (SPID), maximum pain intensity difference, time to maximum pain intensity difference, number needed to treat, prevent remedication and harm values, adverse effects, and patient-reported outcome measure (PROM). RESULTS Analgesia following ibuprofen and paracetamol combination with or without codeine was comparable. Both were better than paracetamol combined with codeine. Secondary variables supported this finding. Post hoc analysis of SPI and SPID revealed a sex/drug interaction trend in the codeine-containing groups where females experienced less analgesia. PROM showed a significant sex/drug interaction in the paracetamol and codeine group, but not in the other codeine-containing group. Especially females reported known and mild side effects in the codeine-containing groups. CONCLUSION Codeine added to ibuprofen/paracetamol does not seem to add analgesia in a sex-mixed study population. Sex may be a confounding factor when testing weak opioid analgesics such as codeine. PROM seems to be more sensitive than traditional outcome measures. TRIAL REGISTRATION ClinicalTrials.gov June 2009 NCT00921700.
Collapse
Affiliation(s)
- Gaute Lyngstad
- Section of Dental Pharmacology and Pharmacotherapy, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Blindern, P. O. Box 1119, N-0317, Oslo, Norway.
| | - Per Skjelbred
- Department of Maxillofacial Surgery, Oslo University Hospital, P. O. Box 4950 Nydalen, N-0424, Oslo, Norway
| | - David Michael Swanson
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Blindern, P.O. Box 1122, N-0317, Oslo, Norway
| | - Lasse Ansgar Skoglund
- Section of Dental Pharmacology and Pharmacotherapy, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Blindern, P. O. Box 1119, N-0317, Oslo, Norway
- Department of Maxillofacial Surgery, Oslo University Hospital, P. O. Box 4950 Nydalen, N-0424, Oslo, Norway
| |
Collapse
|
7
|
Milella MS, D'Ottavio G, De Pirro S, Barra M, Caprioli D, Badiani A. Heroin and its metabolites: relevance to heroin use disorder. Transl Psychiatry 2023; 13:120. [PMID: 37031205 PMCID: PMC10082801 DOI: 10.1038/s41398-023-02406-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/10/2023] Open
Abstract
Heroin is an opioid agonist commonly abused for its rewarding effects. Since its synthesis at the end of the nineteenth century, its popularity as a recreational drug has ebbed and flowed. In the last three decades, heroin use has increased again, and yet the pharmacology of heroin is still poorly understood. After entering the body, heroin is rapidly deacetylated to 6-monoacetylmorphine (6-MAM), which is then deacetylated to morphine. Thus, drug addiction literature has long settled on the notion that heroin is little more than a pro-drug. In contrast to these former views, we will argue for a more complex interplay among heroin and its active metabolites: 6-MAM, morphine, and morphine-6-glucuronide (M6G). In particular, we propose that the complex temporal pattern of heroin effects results from the sequential, only partially overlapping, actions not only of 6-MAM, morphine, and M6G, but also of heroin per se, which, therefore, should not be seen as a mere brain-delivery system for its active metabolites. We will first review the literature concerning the pharmacokinetics and pharmacodynamics of heroin and its metabolites, then examine their neural and behavioral effects, and finally discuss the possible implications of these data for a better understanding of opioid reward and heroin addiction. By so doing we hope to highlight research topics to be investigated by future clinical and pre-clinical studies.
Collapse
Affiliation(s)
- Michele Stanislaw Milella
- Toxicology Unit, Policlinico Umberto I University Hospital, Rome, Italy.
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| | - Ginevra D'Ottavio
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Silvana De Pirro
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Norwegian Centre for Addiction Research (SERAF), Faculty of Medicine, University of Oslo, Oslo, Norway
- Sussex Addiction and Intervention Centre (SARIC), School of Psychology, University of Sussex, Brighton, UK
| | | | - Daniele Caprioli
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Aldo Badiani
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
- Sussex Addiction and Intervention Centre (SARIC), School of Psychology, University of Sussex, Brighton, UK.
- Fondazione Villa Maraini, Rome, Italy.
| |
Collapse
|
8
|
The chronological evolution of fluorescent GPCR probes for bioimaging. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Non-Peptide Opioids Differ in Effects on Mu-Opioid (MOP) and Serotonin 1A (5-HT 1A) Receptors Heterodimerization and Cellular Effectors (Ca 2+, ERK1/2 and p38) Activation. Molecules 2022; 27:molecules27072350. [PMID: 35408749 PMCID: PMC9000251 DOI: 10.3390/molecules27072350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022] Open
Abstract
The importance of the dynamic interplay between the opioid and the serotonin neuromodulatory systems in chronic pain is well recognized. In this study, we investigated whether these two signalling pathways can be integrated at the single-cell level via direct interactions between the mu-opioid (MOP) and the serotonin 1A (5-HT1A) receptors. Using fluorescence cross-correlation spectroscopy (FCCS), a quantitative method with single-molecule sensitivity, we characterized in live cells MOP and 5-HT1A interactions and the effects of prolonged (18 h) exposure to selected non-peptide opioids: morphine, codeine, oxycodone and fentanyl, on the extent of these interactions. The results indicate that in the plasma membrane, MOP and 5-HT1A receptors form heterodimers that are characterized with an apparent dissociation constant Kdapp = (440 ± 70) nM). Prolonged exposure to all non-peptide opioids tested facilitated MOP and 5-HT1A heterodimerization and stabilized the heterodimer complexes, albeit to a different extent: Kd, Fentanylapp = (80 ± 70) nM), Kd,Morphineapp = (200 ± 70) nM, Kd, Codeineapp = (100 ± 70) nM and Kd, Oxycodoneapp = (200 ± 70) nM. The non-peptide opioids differed also in the extent to which they affected the mitogen-activated protein kinases (MAPKs) p38 and the extracellular signal-regulated kinase (Erk1/2), with morphine, codeine and fentanyl activating both pathways, whereas oxycodone activated p38 but not ERK1/2. Acute stimulation with different non-peptide opioids differently affected the intracellular Ca2+ levels and signalling dynamics. Hypothetically, targeting MOP−5-HT1A heterodimer formation could become a new strategy to counteract opioid induced hyperalgesia and help to preserve the analgesic effects of opioids in chronic pain.
Collapse
|
10
|
Hyporesponsivity to mu-opioid receptor agonism in the Wistar-Kyoto rat model of altered nociceptive responding associated with negative affective state. Pain 2021; 162:405-420. [PMID: 32826755 DOI: 10.1097/j.pain.0000000000002039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/03/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Chronic pain is often comorbid with anxiety and depression, altering the level of perceived pain, which negatively affects therapeutic outcomes. The role of the endogenous mu-opioid receptor (MOP) system in pain-negative affect interactions and the influence of genetic background thereon are poorly understood. The inbred Wistar-Kyoto (WKY) rat, which mimics aspects of anxiety and depression, displays increased sensitivity (hyperalgesia) to noxious stimuli, compared with Sprague-Dawley (SD) rats. Here, we report that WKY rats are hyporesponsive to the antinociceptive effects of systemically administered MOP agonist morphine in the hot plate and formalin tests, compared with SD counterparts. Equivalent plasma morphine levels in the 2 rat strains suggested that these differences in morphine sensitivity were unlikely to be due to strain-related differences in morphine pharmacokinetics. Although MOP expression in the ventrolateral periaqueductal gray (vlPAG) did not differ between WKY and SD rats, the vlPAG was identified as a key locus for the hyporesponsivity to MOP agonism in WKY rats in the formalin test. Moreover, morphine-induced effects on c-Fos (a marker of neuronal activity) in regions downstream of the vlPAG, namely, the rostral ventromedial medulla and lumbar spinal dorsal horn, were blunted in the WKY rats. Together, these findings suggest that a deficit in the MOP-induced recruitment of the descending inhibitory pain pathway may underlie hyperalgesia to noxious inflammatory pain in the WKY rat strain genetically predisposed to negative affect.
Collapse
|
11
|
Taylor C, Crosby I, Yip V, Maguire P, Pirmohamed M, Turner RM. A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes (Basel) 2020; 11:E1295. [PMID: 33143137 PMCID: PMC7692531 DOI: 10.3390/genes11111295] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is a critical pharmacogene involved in the metabolism of ~20% of commonly used drugs across a broad spectrum of medical disciplines including psychiatry, pain management, oncology and cardiology. Nevertheless, CYP2D6 is highly polymorphic with single-nucleotide polymorphisms, small insertions/deletions and larger structural variants including multiplications, deletions, tandem arrangements, and hybridisations with non-functional CYP2D7 pseudogenes. The frequency of these variants differs across populations, and they significantly influence the drug-metabolising enzymatic function of CYP2D6. Importantly, altered CYP2D6 function has been associated with both adverse drug reactions and reduced drug efficacy, and there is growing recognition of the clinical and economic burdens associated with suboptimal drug utilisation. To date, pharmacogenomic clinical guidelines for at least 48 CYP2D6-substrate drugs have been developed by prominent pharmacogenomics societies, which contain therapeutic recommendations based on CYP2D6-predicted categories of metaboliser phenotype. Novel algorithms to interpret CYP2D6 function from sequencing data that consider structural variants, and machine learning approaches to characterise the functional impact of novel variants, are being developed. However, CYP2D6 genotyping is yet to be implemented broadly into clinical practice, and so further effort and initiatives are required to overcome the implementation challenges and deliver the potential benefits to the bedside.
Collapse
Affiliation(s)
- Christopher Taylor
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
- MC Diagnostics, St Asaph Business Park, Saint Asaph LL17 0LJ, UK; (I.C.); (P.M.)
| | - Ian Crosby
- MC Diagnostics, St Asaph Business Park, Saint Asaph LL17 0LJ, UK; (I.C.); (P.M.)
| | - Vincent Yip
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
| | - Peter Maguire
- MC Diagnostics, St Asaph Business Park, Saint Asaph LL17 0LJ, UK; (I.C.); (P.M.)
| | - Munir Pirmohamed
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
| | - Richard M. Turner
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
| |
Collapse
|
12
|
Juang J, Cordoba M, Ciaramella A, Xiao M, Goldfarb J, Bayter JE, Macias AA. Incidence of airway complications associated with deep extubation in adults. BMC Anesthesiol 2020; 20:274. [PMID: 33121440 PMCID: PMC7597053 DOI: 10.1186/s12871-020-01191-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022] Open
Abstract
Background Endotracheal extubation is the most crucial step during emergence from general anesthesia and is usually carried out when patients are awake with return of airway reflexes. Alternatively, extubations can also be accomplished while patients are deeply anesthetized, a technique known as “deep extubation”, in order to provide a “smooth” emergence from anesthesia. Deep extubation is seldomly performed in adults, even in appropriate circumstances, likely due to concerns for potential respiratory complications and limited research supporting its safety. It is in this context that we designed our prospective study to understand the factors that contribute to the success or failure of deep extubation in adults. Methods In this prospective observational study, 300 patients, age ≥ 18, American Society of Anesthesiologists Physical Status (ASA PS) Classification I - III, who underwent head-and-neck and ocular surgeries. Patients’ demographic, comorbidity, airway assessment, O2 saturation, end tidal CO2 levels, time to exit OR, time to eye opening, and respiratory complications after deep extubation in the OR were analyzed. Results Forty (13%) out of 300 patients had at least one complication in the OR, as defined by persistent coughing, desaturation SpO2 < 90% for longer than 10s, laryngospasm, stridor, bronchospasm and reintubation. When comparing the complication group to the no complication group, the patients in the complication group had significantly higher BMI (30 vs 26), lower O2 saturation pre and post extubation, and longer time from end of surgery to out of OR (p < 0.05). Conclusions The complication rate during deep extubation in adults was relatively low compared to published reports in the literature and all easily reversible. BMI is possibly an important determinant in the success of deep extubation.
Collapse
Affiliation(s)
- Jeremy Juang
- Department of Anesthesiology, Massachusetts Eye and Ear, 243 Charles St, Boston, MA, 02114, USA. .,Harvard Medical School, Boston, MA, 20114, USA.
| | - Martha Cordoba
- Department of Anesthesiology, Massachusetts Eye and Ear, 243 Charles St, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 20114, USA
| | - Alex Ciaramella
- Department of Anesthesiology, Massachusetts Eye and Ear, 243 Charles St, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 20114, USA
| | - Mark Xiao
- Department of Anesthesiology, Massachusetts Eye and Ear, 243 Charles St, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 20114, USA
| | - Jeremy Goldfarb
- Department of Anesthesiology, Massachusetts Eye and Ear, 243 Charles St, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 20114, USA
| | - Jorge Enrique Bayter
- Clinica El Pinar, Km 2 Anillo vial Floridablanca - Girón, Ecoparque Empresarial Natura Torre 2 piso 1 y 2, Piedecuesta, Colombia
| | - Alvaro Andres Macias
- Department of Anesthesiology, Massachusetts Eye and Ear, 243 Charles St, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 20114, USA
| |
Collapse
|
13
|
Dozio V, Daali Y, Desmeules J, Sanchez JC. Deep proteomics and phosphoproteomics reveal novel biological pathways perturbed by morphine, morphine-3-glucuronide and morphine-6-glucuronide in human astrocytes. J Neurosci Res 2020; 100:220-236. [PMID: 32954564 DOI: 10.1002/jnr.24731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/06/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023]
Abstract
Tolerance and hyperalgesia associated with chronic exposure to morphine are major limitations in the clinical management of chronic pain. At a cellular level, neuronal signaling can in part account for these undesired side effects, but unknown mechanisms mediated by central nervous system glial cells are likely also involved. Here we applied data-independent acquisition mass spectrometry to perform a deep proteome and phosphoproteome analysis of how human astrocytes responds to opioid stimulation. We unveil time- and dose-dependent effects induced by morphine and its major active metabolites morphine-3-glucuronide (M3G) and morphine-6-glucuronide that converging on activation of mitogen-activated protein kinase and mammalian target of rapamycin signaling pathways. We also find that especially longer exposure to M3G leads to significant dysregulation of biological pathways linked to extracellular matrix organization, antigen presentation, cell adhesion, and glutamate homeostasis, which are crucial for neuron- and leukocyte-astrocyte interactions.
Collapse
Affiliation(s)
- Vito Dozio
- Department of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Youssef Daali
- Swiss Centre for Applied Human Toxicology, Basel, Switzerland.,Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Emergency Medicine and Intensive Cares, Geneva University Hospitals, Geneva, Switzerland
| | - Jules Desmeules
- Swiss Centre for Applied Human Toxicology, Basel, Switzerland.,Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Emergency Medicine and Intensive Cares, Geneva University Hospitals, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Department of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| |
Collapse
|
14
|
Opioid receptors beyond pain control: The role in cancer pathology and the debated importance of their pharmacological modulation. Pharmacol Res 2020; 159:104938. [DOI: 10.1016/j.phrs.2020.104938] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/24/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022]
|
15
|
Nikbakhsh R, Nikbakhsh R, Radmard M, Tafazolimoghadam A, Haj-Mirzaian A, Pirri F, Noormohammady P, Sabouri M, Shababi N, Ziai SA, Dehpour AR. The possible role of nitric oxide in anti-convulsant effects of Naltrindole in seizure-induced by social isolation stress in male mice. Biomed Pharmacother 2020; 129:110453. [DOI: 10.1016/j.biopha.2020.110453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023] Open
|
16
|
Pharmacological Aspects of Over-the-Counter Opioid Drugs Misuse. Molecules 2020; 25:molecules25173905. [PMID: 32867117 PMCID: PMC7504308 DOI: 10.3390/molecules25173905] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Several over-the-counter (OTC) drugs are known to be misused. Among them are opioids such as codeine, dihydrocodeine, and loperamide. This work elucidates their pharmacology, interactions, safety profiles, and how pharmacology is being manipulated to misuse these common medications, with the aim to expand on the subject outlined by the authors focusing on abuse prevention and prevalence rates. The reviewed literature was identified in several online databases through searches conducted with phrases created by combining the international non-proprietary names of the drugs with terms related to drug misuse. The results show that OTC opioids are misused as an alternative for illicit narcotics, or prescription-only opioids. The potency of codeine and loperamide is strongly dependent on the individual enzymatic activity of CYP2D6 and CYP3A4, as well as P-glycoprotein function. Codeine can also be utilized as a substrate for clandestine syntheses of more potent drugs of abuse, namely desomorphine (“Krokodil”), and morphine. The dangerous methods used to prepare these substances can result in poisoning from toxic chemicals and impurities originating from the synthesis procedure. OTC opioids are generally safe when consumed in accordance with medical guidelines. However, the intake of supratherapeutic amounts of these substances may reveal surprising traits of common medications.
Collapse
|
17
|
Krüll J, Fehler SK, Hofmann L, Nebel N, Maschauer S, Prante O, Gmeiner P, Lanig H, Hübner H, Heinrich MR. Synthesis, Radiosynthesis and Biological Evaluation of Buprenorphine-Derived Phenylazocarboxamides as Novel μ-Opioid Receptor Ligands. ChemMedChem 2020; 15:1175-1186. [PMID: 32378310 PMCID: PMC7383964 DOI: 10.1002/cmdc.202000180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 12/12/2022]
Abstract
Targeted structural modifications have led to a novel type of buprenorphine-derived opioid receptor ligand displaying an improved selectivity profile for the μ-OR subtype. On this basis, it is shown that phenylazocarboxamides may serve as useful bioisosteric replacements for the widely occurring cinnamide units, without loss of OR binding affinity or subtype selectivity. This study further includes functional experiments pointing to weak partial agonist properties of the novel μ-OR ligands, as well as docking and metabolism experiments. Finally, the unique bifunctional character of phenylazocarboxylates, herein serving as precursors for the azocarboxamide subunit, was exploited to demonstrate the accessibility of an 18 F-fluorinated analogue.
Collapse
Affiliation(s)
- Jasmin Krüll
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Stefanie K. Fehler
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Laura Hofmann
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Natascha Nebel
- Department of Nuclear MedicineMolecular Imaging and RadiochemistryFriedrich-Alexander-Universität Erlangen-NürnbergSchwabachanlage 1291054ErlangenGermany
| | - Simone Maschauer
- Department of Nuclear MedicineMolecular Imaging and RadiochemistryFriedrich-Alexander-Universität Erlangen-NürnbergSchwabachanlage 1291054ErlangenGermany
| | - Olaf Prante
- Department of Nuclear MedicineMolecular Imaging and RadiochemistryFriedrich-Alexander-Universität Erlangen-NürnbergSchwabachanlage 1291054ErlangenGermany
| | - Peter Gmeiner
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Harald Lanig
- Central Institute for Scientific Computing (ZISC)Friedrich-Alexander-Universität Erlangen-NürnbergMartensstr. 5a91058ErlangenGermany
| | - Harald Hübner
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Markus R. Heinrich
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
18
|
Drakopoulos A, Decker M. Development and Biological Applications of Fluorescent Opioid Ligands. Chempluschem 2020; 85:1354-1364. [DOI: 10.1002/cplu.202000212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/30/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Antonios Drakopoulos
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of Würzburg 97074 Würzburg Germany
| | - Michael Decker
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of Würzburg 97074 Würzburg Germany
| |
Collapse
|
19
|
Hassanien SH, Bassman JR, Perrien Naccarato CM, Twarozynski JJ, Traynor JR, Iula DM, Anand JP. In vitro pharmacology of fentanyl analogs at the human mu opioid receptor and their spectroscopic analysis. Drug Test Anal 2020; 12:1212-1221. [PMID: 32415719 DOI: 10.1002/dta.2822] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
Opioids are widely misused and account for almost half of overdose deaths in the United States. The cost in terms of lives, health care, and lost productivity is significant and has been declared a national crisis. Fentanyl is a highly potent mu opioid receptor (MOR) agonist and plays a significant role in the current opioid epidemic; fentanyl and its analogs (fentalogs) are increasingly becoming one of the biggest dangers in the opioid crisis. The availability of fentalogs in the illicit market is thought to play a significant role in the recent increase in opioid-related deaths. Although there is both rodent homolog in vivo and in vitro data for some fentalogs, prior to this publication very little was known about the pharmacology of many of these illicit compounds at the human MOR (hMOR). Using gas chromatography-mass spectrometry, nuclear magnetic resonance spectroscopy, and in vitro assays, this study describes the spectral and pharmacological properties of 34 fentalogs. The reported spectra and chemical data will allow for easy identification of novel fentalogs in unknown or mixed samples. Taken together these data are useful for law enforcement and clinical workers as they will aid in the identification of fentalogs in unknown samples and can potentially be used to predict physiological effects after exposure.
Collapse
Affiliation(s)
| | | | | | | | - John R Traynor
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan.,Edward F. Domino Research Center, University of Michigan, Ann Arbor, Michigan
| | | | - Jessica P Anand
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan.,Edward F. Domino Research Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
20
|
Comparisons of In Vivo and In Vitro Opioid Effects of Newly Synthesized 14-Methoxycodeine-6- O-sulfate and Codeine-6- O-sulfate. Molecules 2020; 25:molecules25061370. [PMID: 32192229 PMCID: PMC7144380 DOI: 10.3390/molecules25061370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/13/2022] Open
Abstract
The present work represents the in vitro (potency, affinity, efficacy) and in vivo (antinociception, constipation) opioid pharmacology of the novel compound 14-methoxycodeine-6-O-sulfate (14-OMeC6SU), compared to the reference compounds codeine-6-O-sulfate (C6SU), codeine and morphine. Based on in vitro tests (mouse and rat vas deferens, receptor binding and [35S]GTPγS activation assays), 14-OMeC6SU has µ-opioid receptor-mediated activity, displaying higher affinity, potency and efficacy than the parent compounds. In rats, 14-OMeC6SU showed stronger antinociceptive effect in the tail-flick assay than codeine and was equipotent to morphine, whereas C6SU was less efficacious after subcutaneous (s.c.) administration. Following intracerebroventricular injection, 14-OMeC6SU was more potent than morphine. In the Complete Freund’s Adjuvant-induced inflammatory hyperalgesia, 14-OMeC6SU and C6SU in s.c. doses up to 6.1 and 13.2 µmol/kg, respectively, showed peripheral antihyperalgesic effect, because co-administered naloxone methiodide, a peripherally acting opioid receptor antagonist antagonized the measured antihyperalgesia. In addition, s.c. C6SU showed less pronounced inhibitory effect on the gastrointestinal transit than 14-OMeC6SU, codeine and morphine. This study provides first evidence that 14-OMeC6SU is more effective than codeine or C6SU in vitro and in vivo. Furthermore, despite C6SU peripheral antihyperalgesic effects with less gastrointestinal side effects the superiority of 14-OMeC6SU was obvious throughout the present study.
Collapse
|
21
|
Morphine-3-glucuronide causes antinociceptive cross-tolerance to morphine and increases spinal substance P expression. Eur J Pharmacol 2020; 875:173021. [PMID: 32112778 DOI: 10.1016/j.ejphar.2020.173021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 01/03/2023]
Abstract
Morphine-3-glucuronide (M3G), the main metabolite of morphine, has been implicated in the development of tolerance and of opioid-induced hyperalgesia, both limiting the analgesic use of morphine. We evaluated the acute and chronic effects of M3G and morphine as well as development of antinociceptive cross-tolerance between morphine and M3G after intrathecal administration and assessed the expression of pain-associated neurotransmitter substance P in the spinal cord. Sprague-Dawley rats received intrathecal M3G or morphine twice daily for 6 days. Nociception and tactile allodynia were measured with von Frey filaments after acute and chronic treatments. Substance P levels in the dorsal horn of the spinal cord were determined by immunohistochemistry after 4-day treatments. Acute morphine caused antinociception as expected, whereas acute M3G caused tactile allodynia, as did both chronic M3G and morphine. Chronic M3G also induced antinociceptive cross-tolerance to morphine. M3G and morphine increased substance P levels similarly in the nociceptive laminae of the spinal cord. This study shows that chronic intrathecal M3G sensitises animals to mechanical stimulation and elevates substance P levels in the nociceptive laminae of the spinal cord. Chronic M3G also induces antinociceptive cross-tolerance to morphine. Thus, chronic M3G exposure might contribute to morphine-induced tolerance and opioid-induced hyperalgesia.
Collapse
|
22
|
Mirra A, Birras J, Diez Bernal S, Spadavecchia C. Morphine plasmatic concentration in a pregnant mare and its foal after long term epidural administration. BMC Vet Res 2020; 16:19. [PMID: 31959188 PMCID: PMC6971975 DOI: 10.1186/s12917-020-2242-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/10/2020] [Indexed: 12/05/2022] Open
Abstract
Background Epidural administration of morphine has been shown to be an effective analgesic strategy in horses; however, the possible occurrence of side effects limits its usage. In order to decrease their frequency, it is important to target the minimal effective plasma concentration and avoid overdosing. As to date species-specific pharmacokinetics data are not available for epidural morphine, the dosing regimen is usually established on the basis of clinical reports and personal experience. In certain physiological conditions, like gestation, the outcome of an empirical dosing scheme can be unpredictable. The aim of this case report is to describe the pharmacological profile of morphine and its metabolites after prolonged epidural administration in a pregnant mare and her foal. Case presentation A 20 years old pregnant mare was presented to our hospital because of severe lameness, 2 months before delivery. Following an ineffective systemic pain treatment, an epidural catheter was inserted and morphine administered (initial dose 0.1 mg/kg every 8 h). Due to its efficacy in controlling pain, it was continued until end of gestation. Plasmatic concentration of morphine and its metabolites were assessed in the mare 6 weeks after starting the treatment, and in both the mare and foal during the first days after delivery. Plasmatic values similar to those previously reported in the literature following morphine short term administration through various routes and not accompanied by side effects were found in the mare, except during an excitatory period. Moreover, no evidence of dangerous drug accumulation or significant milk passage was noticed in the foal. Mild reduction of feces production with no signs of colic and two self-limiting episodes of excitement occurred during treatment in the mare. No side effects occurred during gestation and first phases of life in the foal. Conclusion Prolonged epidural administration of morphine in a pregnant mare allowed good pain control in absence of clinically relevant side effects, in both the mare and her foal. Sudden increase in morphine plasmatic concentration can occur and side effects appear; careful treatment to the lowest effective dose and continuous monitoring of the clinical condition of the treated horse should be performed.
Collapse
Affiliation(s)
- Alessandro Mirra
- Department of Clinical Veterinary Medicine, Anaesthesiology and Pain Therapy Section, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012, Bern, Switzerland.
| | - Jasmin Birras
- Swiss Institute for Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Bern, Switzerland
| | - Sabina Diez Bernal
- Department of Clinical Veterinary Medicine, Anaesthesiology and Pain Therapy Section, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012, Bern, Switzerland
| | - Claudia Spadavecchia
- Department of Clinical Veterinary Medicine, Anaesthesiology and Pain Therapy Section, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012, Bern, Switzerland
| |
Collapse
|
23
|
Abstract
Pharmacogenetics is a key component of precision medicine. Genetic variation in drug metabolism enzymes can lead to variable exposure to drugs and metabolites, potentially leading to inefficacy and drug toxicity. Although the evidence for pharmacogenetic associations in children is not as extensive as for adults, there are several drugs across diverse therapeutic areas with robust pediatric data indicating important, and relatively common, drug-gene interactions. Guidelines to assist gene-based dose optimization are available for codeine, thiopurine drugs, selective serotonin reuptake inhibitors, atomoxetine, tacrolimus, and voriconazole. For each of these drugs, there is an opportunity to clinically implement precision medicine approaches with children for whom genetic test results are known or are obtained at the time of prescribing. For many more drugs that are commonly used in pediatric patients, additional investigation is needed to determine the genetic factors influencing appropriate dose.
Collapse
Affiliation(s)
- Laura B Ramsey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
- Divisions of Research in Patient Services and Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Jacob T Brown
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota College of Pharmacy, Duluth, Minnesota 55812, USA
| | - Susan I Vear
- Department of Hematology & Oncology, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, and Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Sara L Van Driest
- Departments of Pediatrics and Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA;
| |
Collapse
|
24
|
Metabolism and metabolomics of opiates: A long way of forensic implications to unravel. J Forensic Leg Med 2019; 61:128-140. [DOI: 10.1016/j.jflm.2018.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022]
|
25
|
Yang L, Brooks AF, Makaravage KJ, Zhang H, Sanford MS, Scott PJH, Shao X. Radiosynthesis of [ 11C]LY2795050 for Preclinical and Clinical PET Imaging Using Cu(II)-Mediated Cyanation. ACS Med Chem Lett 2018; 9:1274-1279. [PMID: 30613339 DOI: 10.1021/acsmedchemlett.8b00460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/13/2018] [Indexed: 01/05/2023] Open
Abstract
Copper-mediated 11C-cyanation reactions have enabled the synthesis of PET radiotracers from a range of readily available precursors and avoid the need to use more toxic Pd catalysts. In this work we adapt our recently developed 11C-cyanation of arylpinacolboronate (BPin) esters for the cGMP synthesis of [11C]LY2795050, a selective antagonist radiotracer for the kappa opioid receptor (KOR). [11C]LY2795050 was synthesized in 6 ± 1% noncorrected radiochemical yield (based on [11C]HCN, n = 3) using an automated synthesis module. Quality control testing confirmed the suitability of doses for preclinical and clinical PET imaging (radiochemical purity >99%; specific activity >900 mCi/μmol; residual Cu < 0.1 μg/mL). PET imaging was conducted in rodent and nonhuman primates, showing good brain uptake of [11C]LY2795050 and the expected distribution of KOR. Analogous imaging with [11C]carfentanil (a selective mu opioid receptor (MOR) radiotracer) revealed the anticipated regional differences in MOR and KOR distribution in the primate brain.
Collapse
Affiliation(s)
- Lingyun Yang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Allen F. Brooks
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katarina J. Makaravage
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
26
|
Devereaux AL, Mercer SL, Cunningham CW. DARK Classics in Chemical Neuroscience: Morphine. ACS Chem Neurosci 2018; 9:2395-2407. [PMID: 29757600 DOI: 10.1021/acschemneuro.8b00150] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
As the major psychoactive agent in opium and direct precursor for heroin, morphine is a historically critical molecule in chemical neuroscience. A structurally complex phenanthrene alkaloid produced by Papaver somniferum, morphine has fascinated chemists seeking to disentangle pharmacologically beneficial analgesic effects from addiction, tolerance, and dependence liabilities. In this review, we will detail the history of morphine, from the first extraction and isolation by Sertürner in 1804 to the illicit use of morphine and proliferation of opioid use and abuse disorders currently ravaging the United States. Morphine is a molecule of great cultural relevance, as the agent that single-handedly transformed our understanding of pharmacognosy, receptor dynamics, and substance abuse and dependence disorders.
Collapse
Affiliation(s)
- Andrea L. Devereaux
- Department of Pharmaceutical Sciences, School of Pharmacy, Concordia University Wisconsin, Mequon, Wisconsin 53097, United States
| | - Susan L. Mercer
- Department of Pharmaceutical Sciences, College of Pharmacy, Lipscomb University, Nashville, Tennessee 37204, United States
| | - Christopher W. Cunningham
- Department of Pharmaceutical Sciences, School of Pharmacy, Concordia University Wisconsin, Mequon, Wisconsin 53097, United States
| |
Collapse
|
27
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vollmer G, Wallace H, Benford D, Calò G, Dahan A, Dusemund B, Mulder P, Németh-Zámboriné É, Arcella D, Baert K, Cascio C, Levorato S, Schutte M, Vleminckx C. Update of the Scientific Opinion on opium alkaloids in poppy seeds. EFSA J 2018; 16:e05243. [PMID: 32625895 PMCID: PMC7009406 DOI: 10.2903/j.efsa.2018.5243] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Poppy seeds are obtained from the opium poppy (Papaver somniferum L.). They are used as food and to produce edible oil. The opium poppy plant contains narcotic alkaloids such as morphine and codeine. Poppy seeds do not contain the opium alkaloids, but can become contaminated with alkaloids as a result of pest damage and during harvesting. The European Commission asked EFSA to provide an update of the Scientific Opinion on opium alkaloids in poppy seeds. The assessment is based on data on morphine, codeine, thebaine, oripavine, noscapine and papaverine in poppy seed samples. The CONTAM Panel confirms the acute reference dose (ARfD) of 10 μg morphine/kg body weight (bw) and concluded that the concentration of codeine in the poppy seed samples should be taken into account by converting codeine to morphine equivalents, using a factor of 0.2. The ARfD is therefore a group ARfD for morphine and codeine, expressed in morphine equivalents. Mean and high levels of dietary exposure to morphine equivalents from poppy seeds considered to have high levels of opium alkaloids (i.e. poppy seeds from varieties primarily grown for pharmaceutical use) exceed the ARfD in most age groups. For poppy seeds considered to have relatively low concentrations of opium alkaloids (i.e. primarily varieties for food use), some exceedance of the ARfD is also seen at high levels of dietary exposure in most surveys. For noscapine and papaverine, the available data do not allow making a hazard characterisation. However, comparison of the dietary exposure to the recommended therapeutical doses does not suggest a health concern for these alkaloids. For thebaine and oripavine, no risk characterisation was done due to insufficient data. However, for thebaine, limited evidence indicates a higher acute lethality than for morphine and the estimated exposure could present a health risk.
Collapse
|
28
|
Lucchetti J, Marzo CM, Passoni A, Moro F, di Clemente A, Bagnati R, Cervo L, Gobbi M. Brain disposition, metabolism and behavioral effects of the synthetic opioid AH-7921 in rats. Neuropharmacology 2018; 133:51-62. [DOI: 10.1016/j.neuropharm.2018.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 11/15/2022]
|
29
|
Ahonen TJ, Rinne M, Grutschreiber P, Mätlik K, Airavaara M, Schaarschmidt D, Lang H, Reiss D, Xhaard H, Gaveriaux-Ruff C, Yli-Kauhaluoma J, Moreira VM. Synthesis of 7β-hydroxy-8-ketone opioid derivatives with antagonist activity at mu- and delta-opioid receptors. Eur J Med Chem 2018; 151:495-507. [DOI: 10.1016/j.ejmech.2018.02.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/31/2018] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
|
30
|
Opioids: Modulators of angiogenesis in wound healing and cancer. Oncotarget 2018; 8:25783-25796. [PMID: 28445930 PMCID: PMC5421968 DOI: 10.18632/oncotarget.15419] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/07/2017] [Indexed: 12/12/2022] Open
Abstract
Opioids are potent drugs that are widely used to control wound or cancer pain. Increasing evidence suggest that opioids mediate clinically relevant effects that go beyond their classical role as analgesics. Of note, opioids appear to modulate angiogenesis - a process that is critical in wound healing and cancer progression. In this review, we focus on pro- and anti-angiogenic facets of opioids that arise from the activation of individual opioid receptors and the usage of individual concentrations or application routes. We overview the still incompletely elucidated mechanisms of these angiogenic opioid actions. Moreover, we describe plausible opioids effects, which - although not primarily studied in the context of vessel formation - may be related to the opioid-driven processes of angiogenesis. Finally we discuss the use of opioids as an innovative therapeutic avenue for the treatment of chronic wounds and cancer.
Collapse
|
31
|
Sader S, Anant K, Wu C. To probe interaction of morphine and IBNtxA with 7TM and 6TM variants of the human μ-opioid receptor using all-atom molecular dynamics simulations with an explicit membrane. Phys Chem Chem Phys 2018; 20:1724-1741. [PMID: 29265141 DOI: 10.1039/c7cp06745c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IBNtxA, a morphine derivative, is 10-fold more potent and has a better safety profile than morphine. Animal studies indicate that the analgesic effect of IBNtxA appears to be mediated by the activation of truncated splice variants (6TM) of the Mu opioid receptor (MOR-1) where transmembrane helix 1 (TM1) is removed. Interestingly, morphine is unable to activate 6TM variants. To date, a high resolution structure of 6TM variants is missing, and the interaction of 6TM variants with IBNtxA and morphine remains elusive. In this study we used homology modeling, docking and molecular dynamics (MD) simulations to study a representative 6TM variant (G1) and a full-length 7TM variant of human MOR-1 in complex with IBNtxA and morphine respectively. The structural models of human G1 and 7TM were obtained by homology modeling using the X-ray solved crystal structure of the active mouse 7TM bound to an agonist BU72 (PDB id: ) as the template. Our 6000 ns MD data show that either TM1 truncation (i.e. from 7TM to 6TM) or ligand modification (i.e. from morphine to IBNtxA) alone causes the loss of key morphine-7TM interactions that are well-known to be required for MOR-1 activation. Receptor disruptions are mainly located at TMs 2, 3, 6 and 7 in comparison with the active crystal complex. However, when both perturbations occur in the 6TM-IBNtxA complex, the key ligand-receptor interactions and the receptor conformation are recovered to resemble those in the active 7TM-morphine complex. Our molecular switch analysis further explains well why morphine is not able to activate 6TM variants. The close resemblance between 6TM-IBTtxA and 7TM in complex with PZM21, a G-protein biased 7TM agonist, suggests the possible biased agonism of IBNtxA on G1, which is consistent with its reduced side effects.
Collapse
Affiliation(s)
- Safaa Sader
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA.
| | | | | |
Collapse
|
32
|
Roeckel LA, Utard V, Reiss D, Mouheiche J, Maurin H, Robé A, Audouard E, Wood JN, Goumon Y, Simonin F, Gaveriaux-Ruff C. Morphine-induced hyperalgesia involves mu opioid receptors and the metabolite morphine-3-glucuronide. Sci Rep 2017; 7:10406. [PMID: 28871199 PMCID: PMC5583172 DOI: 10.1038/s41598-017-11120-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
Opiates are potent analgesics but their clinical use is limited by side effects including analgesic tolerance and opioid-induced hyperalgesia (OIH). The Opiates produce analgesia and other adverse effects through activation of the mu opioid receptor (MOR) encoded by the Oprm1 gene. However, MOR and morphine metabolism involvement in OIH have been little explored. Hence, we examined MOR contribution to OIH by comparing morphine-induced hyperalgesia in wild type (WT) and MOR knockout (KO) mice. We found that repeated morphine administration led to analgesic tolerance and hyperalgesia in WT mice but not in MOR KO mice. The absence of OIH in MOR KO mice was found in both sexes, in two KO global mutant lines, and for mechanical, heat and cold pain modalities. In addition, the morphine metabolite morphine-3beta-D-glucuronide (M3G) elicited hyperalgesia in WT but not in MOR KO animals, as well as in both MOR flox and MOR-Nav1.8 sensory neuron conditional KO mice. M3G displayed significant binding to MOR and G-protein activation when using membranes from MOR-transfected cells or WT mice but not from MOR KO mice. Collectively our results show that MOR is involved in hyperalgesia induced by chronic morphine and its metabolite M3G.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Valérie Utard
- Université de Strasbourg, Illkirch, France.,Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Illkirch, France
| | - David Reiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Jinane Mouheiche
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Hervé Maurin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Anne Robé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Emilie Audouard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - John N Wood
- Molecular Nociception group, Wolson Institute for Biomedical Research, University College London, WCIE 6BT, London, UK
| | - Yannick Goumon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Frédéric Simonin
- Université de Strasbourg, Illkirch, France.,Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Illkirch, France
| | - Claire Gaveriaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.
| |
Collapse
|
33
|
Ma Y, Fu Y, Khojasteh SC, Dalvie D, Zhang D. Glucuronides as Potential Anionic Substrates of Human Cytochrome P450 2C8 (CYP2C8). J Med Chem 2017; 60:8691-8705. [DOI: 10.1021/acs.jmedchem.7b00510] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | - Deepak Dalvie
- Celgene Corporation, 10300 Campus
Point Drive, San Diego California 92121, United States
| | | |
Collapse
|
34
|
Allosteric modulation model of the mu opioid receptor by herkinorin, a potent not alkaloidal agonist. J Comput Aided Mol Des 2017; 31:467-482. [PMID: 28364251 DOI: 10.1007/s10822-017-0016-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/10/2017] [Indexed: 10/19/2022]
Abstract
Modulation of opioid receptors is the primary choice for pain management and structural information studies have gained new horizons with the recently available X-ray crystal structures. Herkinorin is one of the most remarkable salvinorin A derivative with high affinity for the mu opioid receptor, moderate selectivity and lack of nitrogen atoms on its structure. Surprisingly, binding models for herkinorin are lacking. In this work, we explore binding models of herkinorin using automated docking, molecular dynamics simulations, free energy calculations and available experimental information. Our herkinorin D-ICM-1 binding model predicted a binding free energy of -11.52 ± 1.14 kcal mol-1 by alchemical free energy estimations, which is close to the experimental values -10.91 ± 0.2 and -10.80 ± 0.05 kcal mol-1 and is in agreement with experimental structural information. Specifically, D-ICM-1 molecular dynamics simulations showed a water-mediated interaction between D-ICM-1 and the amino acid H2976.52, this interaction coincides with the co-crystallized ligands. Another relevant interaction, with N1272.63, allowed to rationalize herkinorin's selectivity to mu over delta opioid receptors. Our suggested binding model for herkinorin is in agreement with this and additional experimental data. The most remarkable observation derived from our D-ICM-1 model is that herkinorin reaches an allosteric sodium ion binding site near N1503.35. Key interactions in that region appear relevant for the lack of β-arrestin recruitment by herkinorin. This interaction is key for downstream signaling pathways involved in the development of side effects, such as tolerance. Future SAR studies and medicinal chemistry efforts will benefit from the structural information presented in this work.
Collapse
|
35
|
Patel JN, Villadolid J. Cancer Drug Delivery. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Advancements in cancer drug delivery have led to the development of personalized oncology care through molecularly-driven targeted therapies. Understanding molecular and cellular mechanisms which drive tumor progression and resistance is critical in managing new treatment strategies which have shifted from empiric to biomarker-directed therapy selection. Biomarker-directed therapies have improved clinical outcomes in multiple malignancies as monotherapy and in combination with other treatment modalities, however the changing scope of treatment options presents new opportunities and challenges for research. Furthermore, pharmacogenetics may provide a rationale method of personalizing anticancer drug dosing and supportive care management for oncology patients. This chapter reviews biomarker classifications and pharmacogenetics in anticancer therapy and supportive care. Examples of biomarker-directed therapies and clinical assays, in addition to future directions of molecular profiling in oncology therapy management are discussed.
Collapse
|
36
|
Frost J, Løkken TN, Helland A, Nordrum IS, Slørdal L. Post-mortem levels and tissue distribution of codeine, codeine-6-glucuronide, norcodeine, morphine and morphine glucuronides in a series of codeine-related deaths. Forensic Sci Int 2016; 262:128-37. [DOI: 10.1016/j.forsciint.2016.02.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 11/29/2022]
|
37
|
Schembri LS, Stoddart LA, Briddon SJ, Kellam B, Canals M, Graham B, Scammells PJ. Synthesis, Biological Evaluation, and Utility of Fluorescent Ligands Targeting the μ-Opioid Receptor. J Med Chem 2015; 58:9754-67. [DOI: 10.1021/acs.jmedchem.5b01664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Leigh A. Stoddart
- Cell
Signaling Research Group, School of Life Sciences, Queen’s
Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Stephen J. Briddon
- Cell
Signaling Research Group, School of Life Sciences, Queen’s
Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Barrie Kellam
- School
of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, U.K
| | | | | | | |
Collapse
|
38
|
Kim MK, Baek CW, Kang H, Choi GJ, Park YH, Yang SY, Shin HY, Jung YH, Woo YC. Comparison of emergence after deep extubation using desflurane or desflurane with remifentanil in patients undergoing general anesthesia: a randomized trial. J Clin Anesth 2015; 28:19-25. [PMID: 26796609 DOI: 10.1016/j.jclinane.2015.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/21/2015] [Accepted: 08/10/2015] [Indexed: 11/24/2022]
Abstract
STUDY OBJECTIVE To compare recovery times and respiratory complications during emergence after deep extubation using either desflurane alone or a lower concentration of desflurane with remifentanil. DESIGN Prospective randomized double-blind clinical trial. SETTING Intraoperative. PATIENTS A total of 62 patients between the ages of 20 and 60 years with American Society of Anesthesiologists class I or II and who underwent low- to intermediate-risk surgery of 2- to 4-hour duration were enrolled. INTERVENTIONS Randomly assigned either 1.5 minimum alveolar concentration desflurane (group D; n = 31) or 1.0 minimum alveolar concentration of desflurane and 1.0 ng/mL effect-site concentration of remifentanil (group DR; n = 31). MEASUREMENTS Recovery times, from the time of extubation to the time when the patients could breathe without assistance, were awake enough to maintain the airway independently, and exited the recovery room, as well as respiratory complications were compared between the groups. MAIN RESULTS Recovery times were significantly reduced in the group DR (P < .001). The incidence of respiratory complications was also lower in group DR than in group D (48% vs 3.8%; P < .001). CONCLUSIONS The combined use of remifentanil while lowering the concentration of desflurane improves recovery profiles during emergence after deep extubation.
Collapse
Affiliation(s)
- Min Kyong Kim
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 156-755, Republic of Korea
| | - Chong Wha Baek
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 156-755, Republic of Korea.
| | - Hyun Kang
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 156-755, Republic of Korea
| | - Geun Joo Choi
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 156-755, Republic of Korea
| | - Yong Hee Park
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 156-755, Republic of Korea
| | - So Young Yang
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 156-755, Republic of Korea
| | - Hwa Yong Shin
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 156-755, Republic of Korea
| | - Yong Hun Jung
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 156-755, Republic of Korea
| | - Young Cheol Woo
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul 156-755, Republic of Korea
| |
Collapse
|
39
|
Convertino M, Samoshkin A, Viet CT, Gauthier J, Li Fraine SP, Sharif-Naeini R, Schmidt BL, Maixner W, Diatchenko L, Dokholyan NV. Differential Regulation of 6- and 7-Transmembrane Helix Variants of μ-Opioid Receptor in Response to Morphine Stimulation. PLoS One 2015; 10:e0142826. [PMID: 26554831 PMCID: PMC4640872 DOI: 10.1371/journal.pone.0142826] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/27/2015] [Indexed: 11/18/2022] Open
Abstract
The pharmacological effect of opioids originates, at the cellular level, by their interaction with the μ-opioid receptor (mOR) resulting in the regulation of voltage-gated Ca2+ channels and inwardly rectifying K+ channels that ultimately modulate the synaptic transmission. Recently, an alternative six trans-membrane helix isoform of mOR, (6TM-mOR) has been identified, but its function and signaling are still largely unknown. Here, we present the structural and functional mechanisms of 6TM-mOR signaling activity upon binding to morphine. Our data suggest that despite the similarity of binding modes of the alternative 6TM-mOR and the dominant seven trans-membrane helix variant (7TM-mOR), the interaction with morphine generates different dynamic responses in the two receptors, thus, promoting the activation of different mOR-specific signaling pathways. We characterize a series of 6TM-mOR-specific cellular responses, and observed that they are significantly different from those for 7TM-mOR. Morphine stimulation of 6TM-mOR does not promote a cellular cAMP response, while it increases the intracellular Ca2+ concentration and reduces the cellular K+ conductance. Our findings indicate that 6TM-mOR has a unique contribution to the cellular opioid responses. Therefore, it should be considered as a relevant target for the development of novel pharmacological tools and medical protocols involving the use of opioids.
Collapse
Affiliation(s)
- Marino Convertino
- Biochemistry and Biophysics Department, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, United States of America, 27599
| | - Alexander Samoshkin
- Alan Edwards Centre for Research on Pain, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec, Canada, H3A 0G1
| | - Chi T Viet
- Bluestone Center for Clinic Research, New York University, New York, NY, United States of America, 10010
| | - Josee Gauthier
- Center for Pain Research and Innovation, University of North Carolina, 385 S. Columbia Street, Chapel Hill, NC, United States of America, 27599
| | - Steven P Li Fraine
- Department of Physiology and Cell Information Systems, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 0B1
| | - Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 0B1
| | - Brian L Schmidt
- Bluestone Center for Clinic Research, New York University, New York, NY, United States of America, 10010
| | - William Maixner
- Center for Pain Research and Innovation, University of North Carolina, 385 S. Columbia Street, Chapel Hill, NC, United States of America, 27599
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec, Canada, H3A 0G1
| | - Nikolay V Dokholyan
- Biochemistry and Biophysics Department, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, United States of America, 27599.,Center for Pain Research and Innovation, University of North Carolina, 385 S. Columbia Street, Chapel Hill, NC, United States of America, 27599
| |
Collapse
|
40
|
Polat R, Peker K, Baran I, Bumin Aydın G, Topçu Gülöksüz Ç, Dönmez A. Comparison between dexmedetomidine and remifentanil infusion in emergence agitation during recovery after nasal surgery: A randomized double-blind trial. Anaesthesist 2015; 64:740-6. [PMID: 26329913 DOI: 10.1007/s00101-015-0077-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/12/2015] [Accepted: 07/15/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Postoperative emergency agitation (EA) is a common problem. Dexmedetomidine and remifentanil may be used to prevent this problem. Our primary aim was to compare dexmedetomidine, remifentanil, and placebo with respect to their effectiveness in preventing postoperative EA. MATERIAL AND METHODS Ninety patients undergoing nasal surgery were randomized into three groups. The dexmedetomidine group (group D, n = 30) received dexmedetomidine infusion at a rate of 0.4 μg kg(-1 ) h(-1); the remifentanil group (group R, n = 30) received remifentanil infusion at a rate of 0.05 μg kg(-1) min(-1) from induction of anesthesia until extubation; and the control group (group S, n = 30) received a volume-matched normal saline infusion as a placebo. Propofol (1.5-2 mg kg(-1)) and fentanyl (1 μg kg(-1)) were used to initiate anesthesia, and desflurane was used to maintain anesthesia. The incidence of agitation, hemodynamic parameters, and recovery characteristics were evaluated during emergence. RESULTS The incidence of EA was significantly higher in group S (46.7%) compared with groups R and D (3.3 and 20%, respectively; p < 0.001). The lowest incidence of EA was detected in group R (p = 0.046). Residual sedation in the post-anesthesia care unit (PACU) was similar in all groups (p = 0.947). The incidence of nausea or vomiting was significantly lower in group D than in groups R and S (p = 0.043). Administration of analgesics in the PACU was higher in group R than in groups S and D (p = 0.015). CONCLUSION Anesthetic maintenance with either remifentanil or dexmedetomidine infusion until extubation provided a more smooth and hemodynamically stable emergence, without complications after nasal surgery. While remifentanil was superior to dexmedetomidine with regard to avoiding EA, dexmedetomidine was more effective than remifentanil regarding vomiting and pain.
Collapse
Affiliation(s)
- R Polat
- Ministry of Health, Department of Anesthesiology Diskapi, Diskapi Yildirim Beyazit Research and Training Hospital, Ankara, Turkey.
| | - K Peker
- Ministry of Health, Department of Anesthesiology Diskapi, Diskapi Yildirim Beyazit Research and Training Hospital, Ankara, Turkey
| | - I Baran
- Ministry of Health, Department of Anesthesiology Diskapi, Diskapi Yildirim Beyazit Research and Training Hospital, Ankara, Turkey
| | - G Bumin Aydın
- Ministry of Health, Department of Anesthesiology Diskapi, Diskapi Yildirim Beyazit Research and Training Hospital, Ankara, Turkey
| | - Ç Topçu Gülöksüz
- Fen Faculty Statistics Department, Bartin University, Bartin, Turkey
| | - A Dönmez
- Ministry of Health, Department of Anesthesiology Diskapi, Diskapi Yildirim Beyazit Research and Training Hospital, Ankara, Turkey
| |
Collapse
|
41
|
Hernandez-Leon A, Fernández-Guasti A, González-Trujano M. Rutin antinociception involves opioidergic mechanism and descending modulation of ventrolateral periaqueductal grey matter in rats. Eur J Pain 2015; 20:274-83. [DOI: 10.1002/ejp.720] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 11/07/2022]
Affiliation(s)
- A. Hernandez-Leon
- Departamento de Farmacobiología; Centro de Investigación y de Estudios Avanzados-Sede Sur; Mexico
- Laboratorio de Neurofarmacología de Productos Naturales de la Dirección de Investigaciones en Neurociencias; Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz; Mexico
| | - A. Fernández-Guasti
- Departamento de Farmacobiología; Centro de Investigación y de Estudios Avanzados-Sede Sur; Mexico
| | - M.E. González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales de la Dirección de Investigaciones en Neurociencias; Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz; Mexico
| |
Collapse
|
42
|
Frost J, Løkken TN, Brede WR, Hegstad S, Nordrum IS, Slørdal L. A validated method for simultaneous determination of codeine, codeine-6-glucuronide, norcodeine, morphine, morphine-3-glucuronide and morphine-6-glucuronide in post-mortem blood, vitreous fluid, muscle, fat and brain tissue by LC-MS. J Anal Toxicol 2015; 39:203-12. [PMID: 25556373 DOI: 10.1093/jat/bku145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The toxicodynamics and, to a lesser degree, toxicokinetics of the widely used opiate codeine remain a matter of controversy. To address this issue, analytical methods capable of providing reliable quantification of codeine metabolites alongside codeine concentrations are required. This article presents a validated method for simultaneous determination of codeine, codeine metabolites codeine-6-glucuronide (C6G), norcodeine and morphine, and morphine metabolites morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) in post-mortem whole blood, vitreous fluid, muscle, fat and brain tissue by high-performance liquid chromatography mass spectrometry. Samples were prepared by solid-phase extraction. The validated ranges were 1.5-300 ng/mL for codeine, norcodeine and morphine, and 23-4,600 ng/mL for C6G, M3G and M6G, with exceptions for norcodeine in muscle (3-300 ng/mL), morphine in muscle, fat and brain (3-300 ng/mL) and M6G in fat (46-4,600 ng/mL). Within-run and between-run accuracy (88.1-114.1%) and precision (CV 0.6-12.7%), matrix effects (CV 0.3-13.5%) and recovery (57.8-94.1%) were validated at two concentration levels; 3 and 150 ng/mL for codeine, norcodeine and morphine, and 46 and 2,300 ng/mL for C6G, M3G and M6G. Freeze-thaw and long-term stability (6 months at -80°C) was assessed, showing no significant changes in analyte concentrations (-12 to +8%). The method was applied in two authentic forensic autopsy cases implicating codeine in both therapeutic and presumably lethal concentration levels.
Collapse
Affiliation(s)
- Joachim Frost
- Department of Laboratory Medicine, Children's and Womens's Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway Department of Clinical Pharmacology, St. Olav University Hospital, NO-7006 Trondheim, Norway
| | - Trine N Løkken
- Department of Laboratory Medicine, Children's and Womens's Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Wenche R Brede
- Department of Clinical Pharmacology, St. Olav University Hospital, NO-7006 Trondheim, Norway
| | - Solfrid Hegstad
- Department of Clinical Pharmacology, St. Olav University Hospital, NO-7006 Trondheim, Norway
| | - Ivar S Nordrum
- Department of Laboratory Medicine, Children's and Womens's Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway Department of Pathology and Medical Genetics, St. Olav University Hospital, Trondheim, Norway
| | - Lars Slørdal
- Department of Laboratory Medicine, Children's and Womens's Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway Department of Clinical Pharmacology, St. Olav University Hospital, NO-7006 Trondheim, Norway
| |
Collapse
|
43
|
Abstract
Minimizing toxicity while maximizing efficacy is a common goal in the treatment of any condition but its importance is underscored in the discipline of oncology because of the serious nature of many chemotherapeutic toxicities and the risk of cancer recurrence or disease progression. The challenge of achieving an optimal therapeutic index is especially augmented in the elderly population because of age-related metabolism changes and interacting concurrent medications. Additional factors, such as germline mutations in drug-metabolizing enzymes and other pharmacogenomic alterations, may have more pronounced effects in elderly patients, given their predisposition to altered pharmacokinetics and pharmacodynamics with resulting increased risk of toxicity. Examples of the possible interplay of these factors will be discussed using tamoxifen, paclitaxel, codeine, and fluorouracil as starting points. Limited participation of the elderly in many cancer trials, especially trials assessing drug exposure, makes much knowledge on the interaction of these patient and environmental factors speculative in nature but presents an opportunity for future research to achieve better optimization of chemotherapeutic agents in the elderly.
Collapse
|
44
|
Klimas R, Mikus G. Morphine-6-glucuronide is responsible for the analgesic effect after morphine administration: a quantitative review of morphine, morphine-6-glucuronide, and morphine-3-glucuronide. Br J Anaesth 2014; 113:935-44. [DOI: 10.1093/bja/aeu186] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Goldfeld DA, Murphy R, Kim B, Wang L, Beuming T, Abel R, Friesner RA. Docking and free energy perturbation studies of ligand binding in the kappa opioid receptor. J Phys Chem B 2014; 119:824-35. [PMID: 25395044 DOI: 10.1021/jp5053612] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kappa opioid receptor (KOR) is an important target for pain and depression therapeutics that lack harmful and addictive qualities of existing medications. We present a model for the binding of morphinan ligands and JDTic to the JDTic/KOR crystal structure based on an atomic level description of the water structure within its active site. The model contains two key interaction motifs that are supported by experimental evidence. The first is the formation of a salt bridge between the ligand and Asp 138(3.32) in transmembrane domain (TM) 3. The second is the stabilization by the ligand of two high energy, isolated, and ice-like waters near TM5 and TM6. This model is incorporated via energetic terms into a new empirical scoring function, WScore, designed to assess interactions between ligands and localized water in a binding site. Pairing WScore with the docking program Glide discriminates known active KOR ligands from large sets of decoy molecules much better than Glide's older generation scoring functions, SP and XP. We also use rigorous free energy perturbation calculations to provide evidence for the proposed mechanism of interaction between ligands and KOR. The molecular description of ligand binding in KOR should provide a good starting point for future drug discovery efforts for this receptor.
Collapse
Affiliation(s)
- Dahlia A Goldfeld
- Department of Chemistry, Columbia University , 3000 Broadway, MC 3110, New York, New York 10027, United States
| | | | | | | | | | | | | |
Collapse
|
46
|
Dahan A, Wolk O, Zur M, Amidon GL, Abrahamsson B, Cristofoletti R, Groot D, Kopp S, Langguth P, Polli JE, Shah VP, Dressman JB. Biowaiver Monographs for Immediate-Release Solid Oral Dosage Forms: Codeine Phosphate. J Pharm Sci 2014; 103:1592-600. [DOI: 10.1002/jps.23977] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/23/2014] [Accepted: 03/31/2014] [Indexed: 02/06/2023]
|
47
|
Brosnahan AJ, Jones BJ, Dvorak CM, Brown DR. Morphine attenuates apically-directed cytokine secretion from intestinal epithelial cells in response to enteric pathogens. Pathogens 2014; 3:249-57. [PMID: 25437799 PMCID: PMC4243445 DOI: 10.3390/pathogens3020249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 01/19/2023] Open
Abstract
Epithelial cells represent the first line of host immune defense at mucosal surfaces. Although opioids appear to increase host susceptibility to infection, no studies have examined opioid effects on epithelial immune functions. We tested the hypothesis that morphine alters vectorial cytokine secretion from intestinal epithelial cell (IPEC-J2) monolayers in response to enteropathogens. Both entero-adherent Escherichia coli O157:H7 and entero-invasive Salmonella enterica serovar Typhimurium increased apically-directed IL-6 secretion and bi-directional IL-8 secretion from epithelial monolayers, but only IL-6 secretion evoked by E. coli was reduced by morphine acting through a naloxone-sensitive mechanism. Moreover, the respective type 4 and 5 Toll-like receptor agonists, lipopolysaccharide and flagellin, increased IL-8 secretion from monolayers, which was also attenuated by morphine pretreatment. These results suggest that morphine decreases cytokine secretion and potentially phagocyte migration and activation directed towards the mucosal surface; actions that could increase host susceptibility to some enteric infections.
Collapse
Affiliation(s)
- Amanda J Brosnahan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1988 Fitch Avenue, Saint Paul, MN 55108-6010, USA.
| | - Bryan J Jones
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1988 Fitch Avenue, Saint Paul, MN 55108-6010, USA.
| | - Cheryl M Dvorak
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1988 Fitch Avenue, Saint Paul, MN 55108-6010, USA.
| | - David R Brown
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1988 Fitch Avenue, Saint Paul, MN 55108-6010, USA.
| |
Collapse
|
48
|
Pivaloylcodeine, a new codeine derivative, for the inhibition of morphine glucuronidation. An in vitro study in the rat. Bioorg Med Chem 2013; 21:7955-63. [DOI: 10.1016/j.bmc.2013.09.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 02/04/2023]
|
49
|
Freet CS, Wheeler RA, Leuenberger E, Mosblech NAS, Grigson PS. Fischer rats are more sensitive than Lewis rats to the suppressive effects of morphine and the aversive kappa-opioid agonist spiradoline. Behav Neurosci 2013; 127:763-70. [PMID: 24128363 PMCID: PMC3973147 DOI: 10.1037/a0033943] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Data have suggested that rats avoid intake of an otherwise palatable saccharin cue when paired with a drug of abuse, at least, in part, because the value of the taste cue pales in anticipation of the availability of the highly rewarding drug. Earlier support for this hypothesis was provided by the finding that, relative to the less sensitive Fischer rats, Lewis rats exhibit greater avoidance of a saccharin cue when paired with a rewarding sucrose or cocaine unconditioned stimulus (US), but not when paired with the aversive agent, lithium chloride. More recent data, however, have shown that Fischer rats actually exhibit greater, not less, avoidance of the same saccharin cue when morphine serves as the US. Therefore, Experiment 1 evaluated morphine-induced suppression of intake of the taste cue in Lewis and Fischer rats when the morphine US was administered subcutaneously, rather than intraperitoneally. Experiment 2 examined the effect of strain on the suppression of intake of the saccharin cue when paired with spiradoline, a selective kappa-opioid receptor agonist. The results confirmed that Fischer rats are more responsive to the suppressive effects of morphine than Lewis rats, and that Fischer rats also exhibit greater avoidance of the saccharin cue when paired with spiradoline, despite the fact that spiradoline is devoid of reinforcing properties. Taken together, the data suggest that the facilitated morphine-induced suppression observed in Fischer rats, compared with Lewis rats, may reflect an increased sensitivity to the aversive, kappa-mediated properties of opiates.
Collapse
Affiliation(s)
- Christopher S Freet
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine
| | | | | | | | | |
Collapse
|
50
|
Morphine is a substrate of the organic cation transporter OCT1 and polymorphisms in OCT1 gene affect morphine pharmacokinetics after codeine administration. Biochem Pharmacol 2013; 86:666-78. [PMID: 23835420 DOI: 10.1016/j.bcp.2013.06.019] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 01/22/2023]
Abstract
We investigated whether morphine and its pro-drug codeine are substrates of the highly genetically polymorphic organic cation transporter OCT1 and whether OCT1 polymorphisms may affect morphine and codeine pharmacokinetics in humans. Morphine showed low transporter-independent membrane permeability (0.5 × 10⁻⁶ cm/s). Morphine uptake was increased up to 4-fold in HEK293 cells overexpressing human OCT1. The increase was concentration-dependent and followed Michaelis-Menten kinetics (KM = 3.4 μM, VMAX = 27 pmol/min/mg protein). OCT1-mediated morphine uptake was abolished by common loss-of-function polymorphisms in the OCT1 gene and was strongly inhibited by drug-drug interactions with irinotecan, verapamil and ondansetron. Morphine uptake in primary human hepatocytes was strongly reduced by MPP⁺, an inhibitor of organic cation transporters, and morphine was not a substrate of OCT3, the other organic cation transporter expressed in human hepatocytes. In concordance with the in vitro data, morphine plasma concentrations in healthy volunteers were significantly dependent on OCT1 polymorphisms. After codeine administration, the mean AUC of morphine was 56% higher in carriers of loss-of-function OCT1 polymorphisms compared to non-carriers (P = 0.005). The difference remained significant after adjustment for CYP2D6 genotype (P = 0.03). Codeine itself had high transporter-independent membrane permeability (8.2 × 10⁻⁶ cm/s). Codeine uptake in HEK293 cells was not affected by OCT1 overexpression and OCT1 polymorphisms did not affect codeine AUCs. In conclusion, OCT1 plays an important role in the hepatocellular uptake of morphine. Carriers of loss-of-function OCT1 polymorphisms may be at higher risk of adverse effects after codeine administration, especially if they are also ultra-rapid CYP2D6 metabolizers.
Collapse
|