1
|
Coate KC, Ramnanan CJ, Smith M, Winnick JJ, Kraft G, Irimia-Dominguez J, Farmer B, Donahue EP, Roach PJ, Cherrington AD, Edgerton DS. Integration of metabolic flux with hepatic glucagon signaling and gene expression profiles in the conscious dog. Am J Physiol Endocrinol Metab 2024; 326:E428-E442. [PMID: 38324258 PMCID: PMC11193521 DOI: 10.1152/ajpendo.00316.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Glucagon rapidly and profoundly stimulates hepatic glucose production (HGP), but for reasons that are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course of glucagon-mediated molecular events and their relevance to metabolic flux in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a sixfold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group, glucose remained at basal, whereas in the other, glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) and largely sustained increase in hepatic cAMP over 4 h, a continued elevation in glucose-6-phosphate (G6P), and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis increased rapidly, peaking at 15 min due to activation of the cAMP/PKA pathway, then slowly returned to baseline over the next 3 h in line with allosteric inhibition by glucose and G6P. Glucagon's stimulatory effect on HGP was sustained relative to the hyperglycemic control group due to continued PKA activation. Hepatic gluconeogenic flux did not increase due to the lack of glucagon's effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, as well as downregulation of genes involved in extracellular matrix assembly and development.NEW & NOTEWORTHY Glucagon rapidly stimulates hepatic glucose production, but these effects are transient. This study links the molecular and metabolic flux changes that occur in the liver over time in response to a rise in glucagon, demonstrating the strength of the dog as a translational model to couple findings in small animals and humans. In addition, this study clarifies why the rapid effects of glucagon on liver glycogen metabolism are not sustained.
Collapse
Affiliation(s)
- Katie C Coate
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Christopher J Ramnanan
- Department of Innovation in Medical Education, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Marta Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jason J Winnick
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jose Irimia-Dominguez
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute, Duarte, California, United States
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - E Patrick Donahue
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Coate KC, Ramnanan CJ, Smith M, Winnick JJ, Kraft G, Irimia JM, Farmer B, Donahue P, Roach PJ, Cherrington AD, Edgerton DS. Integration of metabolic flux with hepatic glucagon signaling and gene expression profiles in the conscious dog. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559999. [PMID: 37808670 PMCID: PMC10557670 DOI: 10.1101/2023.09.28.559999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Glucagon rapidly and profoundly simulates hepatic glucose production (HGP), but for reasons which are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course and relevance (to metabolic flux) of glucagon mediated molecular events in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a 6-fold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group glucose remained at basal while in the other glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) but only partially sustained increase in hepatic cAMP over 4h, a continued elevation in G6P, and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis and HGP increased rapidly, peaking at 30 min, then returned to baseline over the next 3h (although glucagons stimulatory effect on HGP was sustained relative to the hyperglycemic control group). Hepatic gluconeogenic flux did not increase due to lack of glucagon effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, and downregulation of genes involved in extracellular matrix assembly and development.
Collapse
|
3
|
He X, Zhong X, Fang Y, Hu Z, Chen Z, Wang Y, Huang H, Zhao S, Li D, Wei P. AF9 sustains glycolysis in colorectal cancer via H3K9ac-mediated PCK2 and FBP1 transcription. Clin Transl Med 2023; 13:e1352. [PMID: 37565737 PMCID: PMC10413954 DOI: 10.1002/ctm2.1352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The tumourigenesis of various cancers is influenced by epigenetic deregulation. Among 591 epigenetic regulator factors (ERFs) examined, AF9 showed significant inhibition of malignancy in colorectal cancer (CRC) based on our wound healing assays. However, the precise role of AF9 in CRC remains to be explored. METHODS To investigate the function of AF9 in CRC, we utilised small interfering RNAs (siRNAs) to knock down the expression of 591 ERFs. Subsequently, we performed wound healing assays to evaluate cell proliferation and migration. In vitro and in vivo assays were conducted to elucidate the potential impact of AF9 in CRC. Clinical samples were analysed to assess the association between AF9 expression and CRC prognosis. Additionally, an Azoxymethane-Dextran Sodium Sulfate (AOM/DSS) induced CRC AF9IEC-/- mouse model was employed to confirm the role of AF9 in CRC. To identify the target gene of AF9, RNA-seq and coimmunoprecipitation analyses were performed. Furthermore, bioinformatics prediction was applied to identify potential miRNAs that target AF9. RESULTS Among the 591 ERFs examined, AF9 exhibited downregulation in CRC and showed a positive correlation with prolonged survival in CRC patients. In vitro and in vivo assays proved that depletion of AF9 could promote cell proliferation, migration as well as glycolysis. Specifically, knockout of MLLT3 (AF9) in intestinal epithelial cells significantly increased tumour formation induced by AOM/DSS. We also identified miR-145 could target 3'untranslated region of AF9 to suppress AF9 expression. Loss of AF9 led to decreased expression of gluconeogenic genes, including phosphoenolpyruvate carboxykinase 2 (PCK2) and fructose 1,6-bisphosphatase 1 (FBP1), subsequently promoting glucose consumption and tumourigenesis. CONCLUSIONS AF9 is essential for the upregulation of PCK2 and FBP1, and the disruption of the miR-145/AF9 axis may serve as a potential target for the development of CRC therapeutics.
Collapse
Affiliation(s)
- Xuefeng He
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Xinyang Zhong
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Yi Fang
- Emergency DepartmentShanghai Tenth People's HospitalShanghaiChina
| | - Zijuan Hu
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Zhiyu Chen
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yaxian Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Huixia Huang
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Senlin Zhao
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Dawei Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Ping Wei
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| |
Collapse
|
4
|
Khiatah B, Frugoli A, Carlson D. The Clinical Caveat for Treating Persistent Hypokalemia in Diabetic Ketoacidosis. Cureus 2023; 15:e42272. [PMID: 37605707 PMCID: PMC10440153 DOI: 10.7759/cureus.42272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
The medical community seeks to provide evidence-based guidelines for treating any disease to ensure optimal care delivery. Occasionally, a patient's unique physiology does not respond to guideline-driven treatments and requires experienced clinical personalization for treatment. Failure of clinicians to recognize patient outliers and augment care can delay treatment, provide substandard care, and potentially threaten a patient's life. This paper describes a clinical caveat for treating profound or persistent hypokalemia in patients with DKA (diabetic ketoacidosis).
Collapse
Affiliation(s)
- Bashar Khiatah
- Internal Medicine, Overlake Medical Center, Bellevue, USA
| | - Amanda Frugoli
- Pacific Inpatient Physicians, Community Memorial Hospital, Ventura, USA
- Graduate Medical Education, Community Memorial Hospital, Ventura, USA
| | - Deborah Carlson
- Graduate Medical Education, Community Memorial Hospital, Ventura, USA
- Internal Medicine, Community Memorial Hospital, Ventura, USA
| |
Collapse
|
5
|
Holeček M. Roles of malate and aspartate in gluconeogenesis in various physiological and pathological states. Metabolism 2023:155614. [PMID: 37286128 DOI: 10.1016/j.metabol.2023.155614] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Gluconeogenesis, a pathway for glucose synthesis from non-carbohydrate substances, begins with the synthesis of oxaloacetate (OA) from pyruvate and intermediates of citric acid cycle in hepatocyte mitochondria. The traditional view is that OA does not cross the mitochondrial membrane and must be shuttled to the cytosol, where most enzymes involved in gluconeogenesis are compartmentalized, in the form of malate. Thus, the possibility of transporting OA in the form of aspartate has been ignored. In the article is shown that malate supply to the cytosol increases only when fatty acid oxidation in the liver is activated, such as during starvation or untreated diabetes. Alternatively, aspartate synthesized from OA by mitochondrial aspartate aminotransferase (AST) is transported to the cytosol in exchange for glutamate via the aspartate-glutamate carrier 2 (AGC2). If the main substrate for gluconeogenesis is an amino acid, aspartate is converted to OA via urea cycle, therefore, ammonia detoxification and gluconeogenesis are simultaneously activated. If the main substrate is lactate, OA is synthesized by cytosolic AST, glutamate is transported to the mitochondria through AGC2, and nitrogen is not lost. It is concluded that, compared to malate, aspartate is a more suitable form of OA transport from the mitochondria for gluconeogenesis.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic.
| |
Collapse
|
6
|
Liu Y, Dantas E, Ferrer M, Liu Y, Comjean A, Davidson EE, Hu Y, Goncalves MD, Janowitz T, Perrimon N. Tumor Cytokine-Induced Hepatic Gluconeogenesis Contributes to Cancer Cachexia: Insights from Full Body Single Nuclei Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540823. [PMID: 37292804 PMCID: PMC10245574 DOI: 10.1101/2023.05.15.540823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A primary cause of death in cancer patients is cachexia, a wasting syndrome attributed to tumor-induced metabolic dysregulation. Despite the major impact of cachexia on the treatment, quality of life, and survival of cancer patients, relatively little is known about the underlying pathogenic mechanisms. Hyperglycemia detected in glucose tolerance test is one of the earliest metabolic abnormalities observed in cancer patients; however, the pathogenesis by which tumors influence blood sugar levels remains poorly understood. Here, utilizing a Drosophila model, we demonstrate that the tumor secreted interleukin-like cytokine Upd3 induces fat body expression of Pepck1 and Pdk, two key regulatory enzymes of gluconeogenesis, contributing to hyperglycemia. Our data further indicate a conserved regulation of these genes by IL-6/JAK-STAT signaling in mouse models. Importantly, in both fly and mouse cancer cachexia models, elevated gluconeogenesis gene levels are associated with poor prognosis. Altogether, our study uncovers a conserved role of Upd3/IL-6/JAK-STAT signaling in inducing tumor-associated hyperglycemia, which provides insights into the pathogenesis of IL-6 signaling in cancer cachexia.
Collapse
Affiliation(s)
- Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Ezequiel Dantas
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724 USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Emma E. Davidson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724 USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Marcus D. Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724 USA
- Northwell Health Cancer Institute, Northwell Health, New Hyde Park, New York, NY 11042 USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
7
|
Bradley AP, Roehl AS, McGrath R, Smith J, Hackney KJ. Popliteal Blood Flow With Lower-Extremity Injury Mobility Devices. FOOT & ANKLE ORTHOPAEDICS 2022; 7:24730114221142784. [PMID: 36533090 PMCID: PMC9749042 DOI: 10.1177/24730114221142784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Ambulation devices may differ in their utility, muscle activation patterns, and how they affect regional blood flow. This study aimed to evaluate popliteal blood flow and vessel dimensions in response to ambulation with a hands-free crutch (HFC), axillary crutches (AC), a medical kneeling scooter (MKS), and regular walking in healthy adults. METHODS HFC, AC, MKS, and regular walking were completed in a random order by 40 adults aged 18-45 years. Participants ambulated at a comfortable pace for 10 minutes with each device. At baseline and immediately following each trial, a trained operator used diagnostic ultrasonography to capture popliteal vein and artery dimensional and flow characteristics. RESULTS Significant increases were observed from baseline (0.65 ± 0.23 cm) in venous diameter following walking (0.71 ± 0.21 cm, P = .012) and MKS (0.73 ± 0.21 cm, P = .003). Venous blood flow was also significantly different between conditions (P = .009) but was only greater following walking (124 ± 79 mL/min) compared to MKS (90 ± 64 mL/min, P = .021). No differences were observed in arterial dimensions between ambulation conditions. Significant increases were found in arterial blood flow from baseline (107 ± 69 mL/min) following walking (184 ± 97 mL/min, P < .001) and HFC (163 ± 86 mL/min, P < .001). Arterial blood flow following walking was greater than AC (132 ± 72 mL/min, P = .016) and MKS (128 ± 74 mL/min, P = .003). CONCLUSION We found an average decrease in venous time-averaged mean velocity between walking and use of the MKS, but no such decrease with either HFCs or use of ACs in this healthy experimental cohort. LEVEL OF EVIDENCE Level III, diagnostic comparative study.
Collapse
Affiliation(s)
- Adam P. Bradley
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND, USA
| | - Alexis S. Roehl
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND, USA
| | - Ryan McGrath
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND, USA
| | - Joseph Smith
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND, USA
| | - Kyle J. Hackney
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
8
|
Paulusma CC, Lamers W, Broer S, van de Graaf SFJ. Amino acid metabolism, transport and signalling in the liver revisited. Biochem Pharmacol 2022; 201:115074. [PMID: 35568239 DOI: 10.1016/j.bcp.2022.115074] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
The liver controls the systemic exposure of amino acids entering via the gastro-intestinal tract. For most amino acids except branched chain amino acids, hepatic uptake is very efficient. This implies that the liver orchestrates amino acid metabolism and also controls systemic amino acid exposure. Although many amino acid transporters have been identified, cloned and investigated with respect to substrate specificity, transport mechanism, and zonal distribution, which of these players are involved in hepatocellular amino acid transport remains unclear. Here, we aim to provide a review of current insight into the molecular machinery of hepatic amino acid transport. Furthermore, we place this information in a comprehensive overview of amino acid transport, signalling and metabolism.
Collapse
Affiliation(s)
- Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Wouter Lamers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Stefan Broer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Research School of Biology, Australian National University, Canberra, Australia
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Dugan CW, Maloney SK, Abramoff KJ, Panag SS, Davis EA, Jones TW, Fournier PA. Effects of Simulated High Altitude on Blood Glucose Levels During Exercise in Individuals With Type 1 Diabetes. J Clin Endocrinol Metab 2022; 107:1375-1382. [PMID: 34935935 DOI: 10.1210/clinem/dgab881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Current exercise guidelines for individuals with type 1 diabetes (T1D) do not consider the impact that high altitude may have on blood glucose levels (BGL) during exercise. OBJECTIVE To investigate the effect of acute hypoxia (simulated high altitude) on BGL and carbohydrate oxidation rates during moderate intensity exercise in individuals with T1D. METHODS Using a counterbalanced, repeated measures study design, 7 individuals with T1D completed 2 exercise sessions; normoxia and hypoxia (~4200 m simulated altitude). Participants cycled for 60 min on an ergometer at 45% of their sea-level V̇O2peak, and then recovered for 60 min. Before, during, and after exercise, blood samples were taken to measure glucose, lactate, and insulin levels. Respiratory gases were collected to measure carbohydrate oxidation rates. RESULTS Early during exercise (<30 min), there was no fall in BGL in either condition. After 1 h of exercise and during recovery, BGL were significantly lower under the hypoxic condition compared to both pre-exercise levels (P = 0.008) and the normoxic condition (P = 0.027). Exercise in both conditions resulted in a significant rise in carbohydrate oxidation rates, which returned to baseline levels postexercise. Before, during, and after exercise, carbohydrate oxidation rates were higher under the hypoxic compared with the normoxic condition (P < 0.001). CONCLUSIONS The greater decline in BGL during and after exercise performed under acute hypoxia suggests that exercise during acute exposure to high altitude may increase the risk of hypoglycemia in individuals with T1D. Future guidelines may have to consider the impact altitude has on exercise-mediated hypoglycemia.
Collapse
Affiliation(s)
- Cory W Dugan
- Department of Sport Science, Exercise and Health, School of Human Sciences, The University of Western Australia, Crawley, Australia
| | - Shane K Maloney
- Department of Sport Science, Exercise and Health, School of Human Sciences, The University of Western Australia, Crawley, Australia
| | - Kristina J Abramoff
- Department of Sport Science, Exercise and Health, School of Human Sciences, The University of Western Australia, Crawley, Australia
| | - Sohan S Panag
- Department of Sport Science, Exercise and Health, School of Human Sciences, The University of Western Australia, Crawley, Australia
| | - Elizabeth A Davis
- Childrens Diabetes Centre, Telethon Kids Institute, Nedlands, Australia
| | - Timothy W Jones
- Childrens Diabetes Centre, Telethon Kids Institute, Nedlands, Australia
| | - Paul A Fournier
- Department of Sport Science, Exercise and Health, School of Human Sciences, The University of Western Australia, Crawley, Australia
- Childrens Diabetes Centre, Telethon Kids Institute, Nedlands, Australia
| |
Collapse
|
10
|
Eti NA, Flor S, Iqbal K, Scott RL, Klenov VE, Gibson-Corley KN, Soares MJ, Ludewig G, Robertson LW. PCB126 induced toxic actions on liver energy metabolism is mediated by AhR in rats. Toxicology 2022; 466:153054. [PMID: 34848246 PMCID: PMC8748418 DOI: 10.1016/j.tox.2021.153054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in the regulation of biological responses to more planar aromatic hydrocarbons, like TCDD. We previously described the sequence of events following exposure of male rats to a dioxin-like polychlorinated biphenyl (PCB) congener, 3,3',4,4',5-pentachlorobiphenyl (PCB126), that binds avidly to the AhR and causes various types of toxicity including metabolic syndrome, fatty liver, and disruption of energy homeostasis. The purpose of this study was, to investigate the role of AhR to mediate those toxic manifestations following sub-acute exposure to PCB126 and to examine possible sex differences in effects. For this goal, we created an AhR knockout (AhR-KO) model using CRISPR/Cas9. Comparison was made to the wild type (WT) male and female Holtzman Sprague Dawley rats. Rats were injected with a single IP dose of corn oil vehicle or 5 μmol/kg PCB126 in corn oil and necropsied after 28 days. PCB126 caused significant weight loss, reduced relative thymus weights, and increased relative liver weights in WT male and female rats, but not in AhR-KO rats. Similarly, significant pathologic changes were visible which included necrosis and regeneration in female rats, micro- and macro-vesicular hepatocellular vacuolation in males, and a paucity of glycogen in livers of both sexes in WT rats only. Hypoglycemia and lower IGF1, and reduced serum non-esterified fatty acids (NEFAs) were found in serum of both sexes of WT rats, low serum cholesterol levels only in the females, and no changes in AhR-KO rats. The expression of genes encoding enzymes related to xenobiotic metabolism (e.g. CYP1A1), gluconeogenesis, glycogenolysis, and fatty acid oxidation were unaffected in the AhR-KO rats following PCB126 exposure as opposed to WT rats where expression was significantly upregulated (PPARα, females only) or downregulated suggesting a disrupted energy homeostasis. Interestingly, Acox2, Hmgcs, G6Pase and Pc were affected in both sexes, the gluconeogenesis and glucose transporter genes Pck1, Glut2, Sds, and Crem only in male WT-PCB rats. These results show the essential role of the AhR in glycogenolysis, gluconeogenesis, and fatty acid oxidation, i.e. in the regulation of energy production and homeostasis, but also demonstrate a significant difference in the effects of PCB126 in males verses females, suggesting higher vulnerability of glucose homeostasis in males and more changes in fatty acid/lipid homeostasis in females. These differences in effects, which may apply to more/all AhR agonists, should be further analyzed to identify health risks to specific groups of highly exposed human populations.
Collapse
Affiliation(s)
- Nazmin Akter Eti
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States
| | - Susanne Flor
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States
| | - Khursheed Iqbal
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Regan L Scott
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Violet E Klenov
- Department of Ob/Gyn, University of Iowa, Iowa City, IA, United States
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Michael J Soares
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
11
|
Halama A, Suhre K. Advancing Cancer Treatment by Targeting Glutamine Metabolism-A Roadmap. Cancers (Basel) 2022; 14:553. [PMID: 35158820 PMCID: PMC8833671 DOI: 10.3390/cancers14030553] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Tumor growth and metastasis strongly depend on adapted cell metabolism. Cancer cells adjust their metabolic program to their specific energy needs and in response to an often challenging tumor microenvironment. Glutamine metabolism is one of the metabolic pathways that can be successfully targeted in cancer treatment. The dependence of many hematological and solid tumors on glutamine is associated with mitochondrial glutaminase (GLS) activity that enables channeling of glutamine into the tricarboxylic acid (TCA) cycle, generation of ATP and NADPH, and regulation of glutathione homeostasis and reactive oxygen species (ROS). Small molecules that target glutamine metabolism through inhibition of GLS therefore simultaneously limit energy availability and increase oxidative stress. However, some cancers can reprogram their metabolism to evade this metabolic trap. Therefore, the effectiveness of treatment strategies that rely solely on glutamine inhibition is limited. In this review, we discuss the metabolic and molecular pathways that are linked to dysregulated glutamine metabolism in multiple cancer types. We further summarize and review current clinical trials of glutaminolysis inhibition in cancer patients. Finally, we put into perspective strategies that deploy a combined treatment targeting glutamine metabolism along with other molecular or metabolic pathways and discuss their potential for clinical applications.
Collapse
Affiliation(s)
- Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| |
Collapse
|
12
|
Ron I, Lerner RK, Rathaus M, Livne R, Ron S, Barhod E, Hemi R, Tirosh A, Strauss T, Ofir K, Goldstein I, Pessach IM, Tirosh A. The adipokine FABP4 is a key regulator of neonatal glucose homeostasis. JCI Insight 2021; 6:138288. [PMID: 34676825 PMCID: PMC8564897 DOI: 10.1172/jci.insight.138288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/08/2021] [Indexed: 12/03/2022] Open
Abstract
During pregnancy, fetal glucose production is suppressed, with rapid activation immediately postpartum. Fatty acid–binding protein 4 (FABP4) was recently demonstrated as a regulator of hepatic glucose production and systemic metabolism in animal models. Here, we studied the role of FABP4 in regulating neonatal glucose hemostasis. Serum samples were collected from pregnant women with normoglycemia or gestational diabetes at term, from the umbilical circulation, and from the newborns within 6 hours of life. The level of FABP4 was higher in the fetal versus maternal circulation, with a further rise in neonates after birth of approximately 3-fold. Neonatal FABP4 inversely correlated with blood glucose, with an approximately 10-fold increase of FABP4 in hypoglycemic neonates. When studied in mice, blood glucose of 12-hour-old WT, Fabp4–/+, and Fabp4–/– littermate mice was 59 ± 13 mg/dL, 50 ± 11 mg/dL, and 43 ± 11 mg/dL, respectively. Similar to our observations in humans, FABP4 levels in WT mouse neonates were approximately 8-fold higher compared with those in adult mice. RNA sequencing of the neonatal liver suggested altered expression of multiple glucagon-regulated pathways in Fabp4–/– mice. Indeed, Fabp4–/– liver glycogen was inappropriately intact, despite a marked hypoglycemia, with rapid restoration of normoglycemia upon injection of recombinant FABP4. Our data suggest an important biological role for the adipokine FABP4 in the orchestrated regulation of postnatal glucose metabolism.
Collapse
Affiliation(s)
- Idit Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel
| | - Reut Kassif Lerner
- Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel HaShomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran Rathaus
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel
| | - Rinat Livne
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel
| | - Sophie Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Amit Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Endocrine Cancer Genomics Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Tzipora Strauss
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neonatology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel HaShomer, Israel
| | - Keren Ofir
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Sheba Medical Center, Tel HaShomer, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Itai M Pessach
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pediatric Intensive Care, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel HaShomer, Israel
| | - Amir Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Tel HaShomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Acute Administration of Exogenous Lactate Increases Carbohydrate Metabolism during Exercise in Mice. Metabolites 2021; 11:metabo11080553. [PMID: 34436494 PMCID: PMC8402126 DOI: 10.3390/metabo11080553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
In this study, we investigated the effects of exogenous lactate administration before exercise on energy substrate utilization during exercise. Mice were divided into exercise control (EX) and exercise with lactate intake (EXLA) groups; saline/lactate was administered 30 min before exercise. Respiratory gas was measured during moderate intensity treadmill exercise (30 min). Immediately after exercise, blood, liver, and skeletal muscle samples were collected and mRNA levels of energy metabolism-related and metabolic factors were analyzed. At 16–30 min of exercise, the respiratory exchange ratio (p = 0.045) and carbohydrate oxidation level (p = 0.014) were significantly higher in the EXLA than in the EX group. Immediately after exercise, the muscle and liver glycogen content and blood glucose level of the EXLA group were lower than those of the EX group. In addition, muscle mRNA levels of HK2 (hexokinase 2; p = 0.009), a carbohydrate oxidation-related factor, were higher in the EXLA than in the EX group, whereas the expression of PDK4 (pyruvate dehydrogenase kinase 4; p = 0.001), CS (citrate synthase; p = 0.045), and CD36 (cluster of differentiation 36; p = 0.002), factors related to oxidative metabolism, was higher in the EX than in the EXLA group. These results suggest that lactate can be used in various research fields to promote carbohydrate metabolism.
Collapse
|
14
|
Yi SJ, Xiong YW, Zhu HL, Dai LM, Cao XL, Liu WB, Shi XT, Zhou GX, Liu AY, Zhao LL, Zhang C, Gao L, Xu DX, Wang H. Environmental cadmium exposure during pregnancy causes diabetes-like phenotypes in mouse offspring: Association with oxidative stress in the fetal liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146006. [PMID: 33677283 DOI: 10.1016/j.scitotenv.2021.146006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd), a noxious heavy metal, is widespread in the living environment. Gestational exposure to Cd at environmental dose has been shown to cause fetal growth restriction (FGR). However, the long-term effects and the mechanisms underlying environmental Cd exposure on glucose metabolism in offspring remain unclear. Here, we established a murine model to study the impacts of gestational exposure to environmental Cd on glucose metabolism at different life stages of offspring. Results demonstrated that the offspring mice developed hyperglycemia in puberty and impaired glucose tolerance in adulthood following maternal Cd exposure during gestation. Further mechanistic investigation showed that Cd exposure upregulated the expression of key proteins in hepatic gluconeogenesis, including p-CREB, PGC-1α and G6PC, in pubertal and adult offspring. In addition, we demonstrated that Cd exposure during pregnancy markedly elevated the level of oxidative stress-related proteins, including NOX2, NOX4 and HO-1, in the fetal liver. The effects of gestational exposure to N-acetylcysteine (NAC), a free-radical scavenging antioxidant, presented that NAC supplementation alleviated hepatic oxidative stress in fetuses, and thereby reversed hyperglycemia and glucose intolerance in mouse offspring. Collectively, our data suggested that gestational exposure to environmental Cd caused diabetes-like phenotypes via enhancing hepatic gluconeogenesis, which is associated with oxidative stress in fetal livers. This work provides new insights into the protective effects of antioxidants on fetal-originated diabetes triggered by environmental toxicants.
Collapse
Affiliation(s)
- Song-Jia Yi
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Li-Min Dai
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xue-Lin Cao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Wei-Bo Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xue-Ting Shi
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Guo-Xiang Zhou
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - A-Ying Liu
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| |
Collapse
|
15
|
Dahl HA, Johansen A, Nilsson GE, Lefevre S. The Metabolomic Response of Crucian Carp ( Carassius carassius) to Anoxia and Reoxygenation Differs between Tissues and Hints at Uncharacterized Survival Strategies. Metabolites 2021; 11:435. [PMID: 34357329 PMCID: PMC8304758 DOI: 10.3390/metabo11070435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
The anoxia-tolerant crucian carp (Carassius carassius) has been studied in detail for numerous years, with particular focus on unravelling the underlying physiological mechanisms of anoxia tolerance. However, relatively little work has been focused on what occurs beyond anoxia, and often the focus is a single organ or tissue type. In this study, we quantified more than 100 metabolites by capillary electrophoresis-mass spectrometry (CE-MS) in brain, heart, liver, and blood plasma from four experimental groups, being normoxic (control) fish, anoxia-exposed fish, and two groups that had been exposed to anoxia followed by reoxygenation for either 3 h or 24 h. The heart, which maintains cardiac output during anoxia, unexpectedly, was slower to recover compared to the brain and liver, mainly due to a slower return to control concentrations of the energy-carrying compounds ATP, GTP, and phosphocreatine. Crucian carp accumulated amino acids in most tissues, and also surprisingly high levels of succinate in all tissues investigated during anoxia. Purine catabolism was enhanced, leading to accumulation of uric acid during anoxia and increasing urea formation that continued into 24 h of reoxygenation. These tissue-specific differences in accumulation and distribution of the metabolites may indicate an intricate system of transport between tissues, opening for new avenues of investigation of possible mechanisms aimed at reducing the generation of reactive oxygen species (ROS) and resultant tissue damage during reoxygenation.
Collapse
Affiliation(s)
| | | | | | - Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0371 Oslo, Norway; (H.-A.D.); (A.J.); (G.E.N.)
| |
Collapse
|
16
|
Fat Body-Multifunctional Insect Tissue. INSECTS 2021; 12:insects12060547. [PMID: 34208190 PMCID: PMC8230813 DOI: 10.3390/insects12060547] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Efficient and proper functioning of processes within living organisms play key roles in times of climate change and strong human pressure. In insects, the most abundant group of organisms, many important changes occur within their tissues, including the fat body, which plays a key role in the development of insects. Fat body cells undergo numerous metabolic changes in basic energy compounds (i.e., lipids, carbohydrates, and proteins), enabling them to move and nourish themselves. In addition to metabolism, the fat body is involved in the development of insects by determining the time an individual becomes an adult, and creates humoral immunity via the synthesis of bactericidal proteins and polypeptides. As an important tissue that integrates all signals from the body, the processes taking place in the fat body have an impact on the functioning of the entire body. Abstract The biodiversity of useful organisms, e.g., insects, decreases due to many environmental factors and increasing anthropopressure. Multifunctional tissues, such as the fat body, are key elements in the proper functioning of invertebrate organisms and resistance factors. The fat body is the center of metabolism, integrating signals, controlling molting and metamorphosis, and synthesizing hormones that control the functioning of the whole body and the synthesis of immune system proteins. In fat body cells, lipids, carbohydrates and proteins are the substrates and products of many pathways that can be used for energy production, accumulate as reserves, and mobilize at the appropriate stage of life (diapause, metamorphosis, flight), determining the survival of an individual. The fat body is the main tissue responsible for innate and acquired humoral immunity. The tissue produces bactericidal proteins and polypeptides, i.e., lysozyme. The fat body is also important in the early stages of an insect’s life due to the production of vitellogenin, the yolk protein needed for the development of oocytes. Although a lot of information is available on its structure and biochemistry, the fat body is an interesting research topic on which much is still to be discovered.
Collapse
|
17
|
Wrzecionek M, Bandzerewicz A, Dutkowska E, Dulnik J, Denis P, Gadomska‐Gajadhur A. Poly(glycerol citrate)‐polylactide nonwovens toward tissue engineering applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Ewa Dutkowska
- Faculty of Chemistry Warsaw University of Technology Warsaw Poland
| | - Judyta Dulnik
- Laboratory of Polymers and Biomaterials Institute of Fundamental Technological Research Polish Academy of Sciences Warsaw Poland
| | - Piotr Denis
- Laboratory of Polymers and Biomaterials Institute of Fundamental Technological Research Polish Academy of Sciences Warsaw Poland
| | | |
Collapse
|
18
|
Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nat Commun 2021; 12:3208. [PMID: 34050173 PMCID: PMC8163764 DOI: 10.1038/s41467-021-23545-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Aging leads to a gradual decline in physical activity and disrupted energy homeostasis. The NAD+-dependent SIRT6 deacylase regulates aging and metabolism through mechanisms that largely remain unknown. Here, we show that SIRT6 overexpression leads to a reduction in frailty and lifespan extension in both male and female B6 mice. A combination of physiological assays, in vivo multi-omics analyses and 13C lactate tracing identified an age-dependent decline in glucose homeostasis and hepatic glucose output in wild type mice. In contrast, aged SIRT6-transgenic mice preserve hepatic glucose output and glucose homeostasis through an improvement in the utilization of two major gluconeogenic precursors, lactate and glycerol. To mediate these changes, mechanistically, SIRT6 increases hepatic gluconeogenic gene expression, de novo NAD+ synthesis, and systemically enhances glycerol release from adipose tissue. These findings show that SIRT6 optimizes energy homeostasis in old age to delay frailty and preserve healthy aging.
Collapse
|
19
|
Dimitriadis GD, Maratou E, Kountouri A, Board M, Lambadiari V. Regulation of Postabsorptive and Postprandial Glucose Metabolism by Insulin-Dependent and Insulin-Independent Mechanisms: An Integrative Approach. Nutrients 2021; 13:E159. [PMID: 33419065 PMCID: PMC7825450 DOI: 10.3390/nu13010159] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Glucose levels in blood must be constantly maintained within a tight physiological range to sustain anabolism. Insulin regulates glucose homeostasis via its effects on glucose production from the liver and kidneys and glucose disposal in peripheral tissues (mainly skeletal muscle). Blood levels of glucose are regulated simultaneously by insulin-mediated rates of glucose production from the liver (and kidneys) and removal from muscle; adipose tissue is a key partner in this scenario, providing nonesterified fatty acids (NEFA) as an alternative fuel for skeletal muscle and liver when blood glucose levels are depleted. During sleep at night, the gradual development of insulin resistance, due to growth hormone and cortisol surges, ensures that blood glucose levels will be maintained within normal levels by: (a) switching from glucose to NEFA oxidation in muscle; (b) modulating glucose production from the liver/kidneys. After meals, several mechanisms (sequence/composition of meals, gastric emptying/intestinal glucose absorption, gastrointestinal hormones, hyperglycemia mass action effects, insulin/glucagon secretion/action, de novo lipogenesis and glucose disposal) operate in concert for optimal regulation of postprandial glucose fluctuations. The contribution of the liver in postprandial glucose homeostasis is critical. The liver is preferentially used to dispose over 50% of the ingested glucose and restrict the acute increases of glucose and insulin in the bloodstream after meals, thus protecting the circulation and tissues from the adverse effects of marked hyperglycemia and hyperinsulinemia.
Collapse
Affiliation(s)
- George D. Dimitriadis
- Sector of Medicine, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Eirini Maratou
- Department of Clinical Biochemistry, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Department of Clinical Biochemistry, Medical School, “Attikon” University Hospital, Rimini 1, 12462 Chaidari, Greece
| | - Aikaterini Kountouri
- Research Institute and Diabetes Center, 2nd Department of Internal Medicine, “Attikon” University Hospital, 1 Rimini Street, 12542 Haidari, Greece; (A.K.); (V.L.)
| | - Mary Board
- St. Hilda’s College, University of Oxford, Cowley, Oxford OX4 1DY, UK;
| | - Vaia Lambadiari
- Research Institute and Diabetes Center, 2nd Department of Internal Medicine, “Attikon” University Hospital, 1 Rimini Street, 12542 Haidari, Greece; (A.K.); (V.L.)
| |
Collapse
|
20
|
Wong M, Xu G, Barboza M, Maezawa I, Jin LW, Zivkovic A, Lebrilla CB. Metabolic flux analysis of the neural cell glycocalyx reveals differential utilization of monosaccharides. Glycobiology 2020; 30:859-871. [PMID: 32337579 PMCID: PMC7581652 DOI: 10.1093/glycob/cwaa038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Saccharides in our diet are major sources of carbon for the formation of biomass such as proteins, lipids, nucleic acids and glycans. Among the dietary monosaccharides, glucose occupies a central role in metabolism, but human blood contains regulated levels of other monosaccharides as well. Their influence on metabolism and how they are utilized have not been explored thoroughly. Applying metabolic flux analysis on glycan synthesis can reveal the pathways that supply glycosylation precursors and provide a snapshot of the metabolic state of the cell. In this study, we traced the incorporation of six 13C uniformly labeled monosaccharides in the N-glycans, O-glycans and glycosphingolipids of both pluripotent and neural NTERA-2 cells. We gathered detailed isotopologue data for hundreds of glycoconjugates using mass spectrometry methods. The contributions of de novo synthesis and direct incorporation pathways for glucose, mannose, fructose, galactose, N-acetylglucosamine and fucose were determined based on their isotope incorporation. Co-feeding studies revealed that fructose incorporation is drastically decreased by the presence of glucose, while mannose and galactose were much less affected. Furthermore, increased sialylation slowed down the turnover of glycans, but fucosylation attenuated this effect. Our results demonstrated that exogenous monosaccharide utilization can vary markedly depending on the cell differentiation state and monosaccharide availability, and that the incorporation of carbons can also differ among different glycan structures. We contend that the analysis of metabolic isotope labeling of glycans can yield new insights about cell metabolism.
Collapse
Affiliation(s)
- Maurice Wong
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Gege Xu
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Mariana Barboza
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Department of Anatomy, Physiology & Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA
| | - Angela Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Department of Anatomy, Physiology & Cell Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
21
|
Abstract
Diabetic ketoacidosis (DKA) is the most common acute hyperglycaemic emergency in people with diabetes mellitus. A diagnosis of DKA is confirmed when all of the three criteria are present - 'D', either elevated blood glucose levels or a family history of diabetes mellitus; 'K', the presence of high urinary or blood ketoacids; and 'A', a high anion gap metabolic acidosis. Early diagnosis and management are paramount to improve patient outcomes. The mainstays of treatment include restoration of circulating volume, insulin therapy, electrolyte replacement and treatment of any underlying precipitating event. Without optimal treatment, DKA remains a condition with appreciable, although largely preventable, morbidity and mortality. In this Primer, we discuss the epidemiology, pathogenesis, risk factors and diagnosis of DKA and provide practical recommendations for the management of DKA in adults and children.
Collapse
Affiliation(s)
- Ketan K Dhatariya
- Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospitals NHS Foundation Trust, Colney Lane, Norwich, Norfolk, UK.,Norwich Medical School, University of East Anglia, Norfolk, UK
| | - Nicole S Glaser
- Department of Pediatrics, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - Ethel Codner
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | | |
Collapse
|
22
|
Elfiky AA, Ismail AM, Elshemey WM. Recognition of gluconeogenic enzymes; Icl1, Fbp1, and Mdh2 by Gid4 ligase: A molecular docking study. J Mol Recognit 2020; 33:e2831. [DOI: 10.1002/jmr.2831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Abdo A. Elfiky
- Biophysics Department, Faculty of ScienceCairo University Giza Egypt
- College of Applied Medical SciencesUniversity of Al‐Jouf Sakaka Saudi Arabia
| | - Alaa M. Ismail
- Biophysics Department, Faculty of ScienceCairo University Giza Egypt
| | - Wael M. Elshemey
- Biophysics Department, Faculty of ScienceCairo University Giza Egypt
- Department of Physics, Faculty of ScienceIslamic University in Madinah Medina Saudi Arabia
| |
Collapse
|
23
|
Arrestin domain-containing 3 (Arrdc3) modulates insulin action and glucose metabolism in liver. Proc Natl Acad Sci U S A 2020; 117:6733-6740. [PMID: 32156724 DOI: 10.1073/pnas.1922370117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Insulin action in the liver is critical for glucose homeostasis through regulation of glycogen synthesis and glucose output. Arrestin domain-containing 3 (Arrdc3) is a member of the α-arrestin family previously linked to human obesity. Here, we show that Arrdc3 is differentially regulated by insulin in vivo in mice undergoing euglycemic-hyperinsulinemic clamps, being highly up-regulated in liver and down-regulated in muscle and fat. Mice with liver-specific knockout (KO) of the insulin receptor (IR) have a 50% reduction in Arrdc3 messenger RNA, while, conversely, mice with liver-specific KO of Arrdc3 (L-Arrdc3 KO) have increased IR protein in plasma membrane. This leads to increased hepatic insulin sensitivity with increased phosphorylation of FOXO1, reduced expression of PEPCK, and increased glucokinase expression resulting in reduced hepatic glucose production and increased hepatic glycogen accumulation. These effects are due to interaction of ARRDC3 with IR resulting in phosphorylation of ARRDC3 on a conserved tyrosine (Y382) in the carboxyl-terminal domain. Thus, Arrdc3 is an insulin target gene, and ARRDC3 protein directly interacts with IR to serve as a feedback regulator of insulin action in control of liver metabolism.
Collapse
|
24
|
Ismail AM, Elfiky AA, Elshemey WM. Recognition of the gluconeogenic enzyme, Pck1, via the Gid4 E3 ligase: An in silico perspective. J Mol Recognit 2019; 33:e2821. [DOI: 10.1002/jmr.2821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Alaa M. Ismail
- Biophysics Department, Faculty of SciencesCairo University Giza Egypt
| | - Abdo A. Elfiky
- Biophysics Department, Faculty of SciencesCairo University Giza Egypt
- College of Applied Medical SciencesUniversity of Al‐Jouf KSA
| | - Wael M. Elshemey
- Biophysics Department, Faculty of SciencesCairo University Giza Egypt
- Department of Physics, Faculty of ScienceIslamic University in Madinah Medina KSA
| |
Collapse
|
25
|
Li L, Martin-Levilain J, Jiménez-Sánchez C, Karaca M, Foti M, Martinou JC, Maechler P. In vivo stabilization of OPA1 in hepatocytes potentiates mitochondrial respiration and gluconeogenesis in a prohibitin-dependent way. J Biol Chem 2019; 294:12581-12598. [PMID: 31285263 DOI: 10.1074/jbc.ra119.007601] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Patients with fatty liver diseases present altered mitochondrial morphology and impaired metabolic function. Mitochondrial dynamics and related cell function require the uncleaved form of the dynamin-like GTPase OPA1. Stabilization of OPA1 might then confer a protective mechanism against stress-induced tissue damages. To study the putative role of hepatic mitochondrial morphology in a sick liver, we expressed a cleavage-resistant long form of OPA1 (L-OPA1Δ) in the liver of a mouse model with mitochondrial liver dysfunction (i.e. the hepatocyte-specific prohibitin-2 knockout (Hep-Phb2-/-) mice). Liver prohibitin-2 deficiency caused excessive proteolytic cleavage of L-OPA1, mitochondrial fragmentation, and increased apoptosis. These molecular alterations were associated with lipid accumulation, abolished gluconeogenesis, and extensive liver damage. Such liver dysfunction was associated with severe hypoglycemia. In prohibitin-2 knockout mice, expression of L-OPA1Δ by in vivo adenovirus delivery restored the morphology but not the function of mitochondria in hepatocytes. In prohibitin-competent mice, elongation of liver mitochondria by expression of L-OPA1Δ resulted in excessive glucose production associated with increased mitochondrial respiration. In conclusion, mitochondrial dynamics participates in the control of hepatic glucose production.
Collapse
Affiliation(s)
- Lingzi Li
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1206 Geneva, Switzerland.,Faculty Diabetes Centre, University of Geneva Medical Centre, 1206 Geneva, Switzerland
| | - Juliette Martin-Levilain
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1206 Geneva, Switzerland.,Faculty Diabetes Centre, University of Geneva Medical Centre, 1206 Geneva, Switzerland
| | - Cecilia Jiménez-Sánchez
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1206 Geneva, Switzerland.,Faculty Diabetes Centre, University of Geneva Medical Centre, 1206 Geneva, Switzerland
| | - Melis Karaca
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1206 Geneva, Switzerland.,Faculty Diabetes Centre, University of Geneva Medical Centre, 1206 Geneva, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1206 Geneva, Switzerland.,Faculty Diabetes Centre, University of Geneva Medical Centre, 1206 Geneva, Switzerland
| | - Jean-Claude Martinou
- Cell Biology Department, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1206 Geneva, Switzerland .,Faculty Diabetes Centre, University of Geneva Medical Centre, 1206 Geneva, Switzerland
| |
Collapse
|
26
|
Growth hormone acts on liver to stimulate autophagy, support glucose production, and preserve blood glucose in chronically starved mice. Proc Natl Acad Sci U S A 2019; 116:7449-7454. [PMID: 30910968 DOI: 10.1073/pnas.1901867116] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
When mice are subjected to 60% calorie restriction for several days, they lose nearly all of their body fat. Although the animals lack energy stores, their livers produce enough glucose to maintain blood glucose at viable levels even after a 23-hour fast. This adaptation is mediated by a marked increase in plasma growth hormone (GH), which is elicited by an increase in plasma ghrelin, a GH secretagogue. In the absence of ghrelin, calorie-restricted mice develop hypoglycemia, owing to diminished glucose production. To determine the site of GH action, in the current study we used CRISPR/Cas9 and Cre recombinase technology to produce mice that lack GH receptors selectively in liver (L-Ghr -/- mice) or in adipose tissue (Fat-Ghr-/- mice). When subjected to calorie restriction and then fasted for 23 hours, the L-Ghr -/- mice, but not the Fat-Ghr-/- mice, developed hypoglycemia. The fall in blood glucose in L-Ghr-/- mice was correlated with a profound drop in hepatic triglycerides. Hypoglycemia was prevented by injection of lactate or octanoate, two sources of energy to support gluconeogenesis. Electron microscopy revealed extensive autophagy in livers of calorie-restricted control mice but not in L-Ghr -/- mice. We conclude that GH acts through its receptor in the liver to activate autophagy, preserve triglycerides, enhance gluconeogenesis, and prevent hypoglycemia in calorie-restricted mice, a model of famine.
Collapse
|
27
|
Hasenour CM, Wall ML, Ridley DE, Hughey CC, James FD, Wasserman DH, Young JD. Mass spectrometry-based microassay of (2)H and (13)C plasma glucose labeling to quantify liver metabolic fluxes in vivo. Am J Physiol Endocrinol Metab 2015; 309:E191-203. [PMID: 25991647 PMCID: PMC4504936 DOI: 10.1152/ajpendo.00003.2015] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/14/2015] [Indexed: 01/06/2023]
Abstract
Mouse models designed to examine hepatic metabolism are critical to diabetes and obesity research. Thus, a microscale method to quantitatively assess hepatic glucose and intermediary metabolism in conscious, unrestrained mice was developed. [(13)C3]propionate, [(2)H2]water, and [6,6-(2)H2]glucose isotopes were delivered intravenously in short- (9 h) and long-term-fasted (19 h) C57BL/6J mice. GC-MS and mass isotopomer distribution (MID) analysis were performed on three 40-μl arterial plasma glucose samples obtained during the euglycemic isotopic steady state. Model-based regression of hepatic glucose and citric acid cycle (CAC)-related fluxes was performed using a comprehensive isotopomer model to track carbon and hydrogen atom transitions through the network and thereby simulate the MIDs of measured fragment ions. Glucose-6-phosphate production from glycogen diminished, and endogenous glucose production was exclusively gluconeogenic with prolonged fasting. Gluconeogenic flux from phosphoenolpyruvate (PEP) remained stable, whereas that from glycerol modestly increased from short- to long-term fasting. CAC flux [i.e., citrate synthase (VCS)] was reduced with long-term fasting. Interestingly, anaplerosis and cataplerosis increased with fast duration; accordingly, pyruvate carboxylation and the conversion of oxaloacetate to PEP were severalfold higher than VCS in long-term fasted mice. This method utilizes state-of-the-art in vivo methodology and comprehensive isotopomer modeling to quantify hepatic glucose and intermediary fluxes during physiological stress in mice. The small plasma requirements permit serial sampling without stress and the affirmation of steady-state glucose kinetics. Furthermore, the approach can accommodate a broad range of modeling assumptions, isotope tracers, and measurement inputs without the need to introduce ad hoc mathematical approximations.
Collapse
Affiliation(s)
| | - Martha L Wall
- Department of Chemical and Biomolecular Engineering, and
| | | | | | - Freyja D James
- Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee
| | - Jamey D Young
- Department of Molecular Physiology and Biophysics, Department of Chemical and Biomolecular Engineering, and
| |
Collapse
|
28
|
Lu H, Yuan W, Zhou J, Chong PLG. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System. Appl Biochem Biotechnol 2015; 177:105-17. [PMID: 26170084 DOI: 10.1007/s12010-015-1731-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/22/2015] [Indexed: 11/28/2022]
Abstract
The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.
Collapse
Affiliation(s)
- Hao Lu
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | | | | | | |
Collapse
|
29
|
Lattin CR, Romero LM. Seasonal variation in glucocorticoid and mineralocorticoid receptors in metabolic tissues of the house sparrow (Passer domesticus). Gen Comp Endocrinol 2015; 214:95-102. [PMID: 24929232 DOI: 10.1016/j.ygcen.2014.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/15/2014] [Accepted: 05/30/2014] [Indexed: 11/22/2022]
Abstract
Glucocorticoid hormones like corticosterone (CORT) play essential metabolic roles at both baseline and stress-induced concentrations, and CORT titers vary seasonally in patterns occurring across many different vertebrate species. It has been hypothesized that CORT may vary seasonally due to changing energy requirements at different times of year. However, hormone effects are dependent on binding to receptors in target tissues, and receptors might also vary seasonally. CORT alters metabolism primarily through binding to two receptors, the high-affinity mineralocorticoid receptor (MR) and low-affinity glucocorticoid receptor (GR). We quantified GR and MR in metabolic tissues (liver, kidney, omental and subcutaneous fat, and gastrocnemius and pectoralis muscle) of wild-caught house sparrows (Passer domesticus) to assess these tissues' capacity to respond to CORT-mediated metabolic demands. We quantified receptors using radioligand binding assays in early and late winter, pre-egg-laying, breeding, late breeding and molt (n=12 at each stage). MR binding did not vary significantly in any tissue over the course of the year. Because MR is associated with baseline CORT effects, this suggests that changing hormone titers may primarily regulate baseline CORT effects on metabolism. Seasonal modulation of GR binding occurred in every tissue but omental fat, though peak receptor density did not coincide with peak stress-induced CORT concentrations measured previously. Because GR is associated with stress-induced CORT effects, these data demonstrate seasonal patterns in stress-induced CORT are not driven by metabolic needs alone, although at different times of year sparrows may vary which tissue types respond to increased energy demands resulting from exposure to stressors.
Collapse
|
30
|
Kuznetsov SV, Kuznetsova NN, Shpakov AO. Interconnection between parameters of motor activity and blood glucose concentration in newborn rats at starvation and under glucose load conditions. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s002209301404005x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Kim KH, Lee MS. Autophagy as a crosstalk mediator of metabolic organs in regulation of energy metabolism. Rev Endocr Metab Disord 2014; 15:11-20. [PMID: 24085381 DOI: 10.1007/s11154-013-9272-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autophagy plays an important role in the regulation of cellular homeostasis through elimination of aggregated proteins, damaged organelles, and intracellular pathogens. Autophagy also contributes to the maintenance of energy balance through degradation of energy reserves such as lipids, glycogen, and proteins in the setting of increased energy demand. Recent studies have suggested that autophagy, or its deficiency, is implicated in the pathogenesis of insulin resistance, obesity, and diabetes. These effects of autophagy or its deficiency in regulation of energy metabolism are mediated not only by cell-autonomous effects, such as direct autophagic degradation of energy stores or intracellular organelles (endoplasmic reticulum and mitochondria) but also by non-cell-autonomous effects, such as induction/suppression of secreted factors or changes of sympathetic tone. In the present review, we highlight a recent surge in the research on the autophagy in the regulation of energy homeostasis, with a focus on its role as a mediator for crosstalk between metabolic organs.
Collapse
Affiliation(s)
- Kook Hwan Kim
- Department of Medicine and Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Korea
| | | |
Collapse
|
32
|
Andrianesis V, Doupis J. The role of kidney in glucose homeostasis – SGLT2 inhibitors, a new approach in diabetes treatment. Expert Rev Clin Pharmacol 2014; 6:519-39. [DOI: 10.1586/17512433.2013.827399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
He T, Giuseppin MLF. Slow and fast dietary proteins differentially modulate postprandial metabolism. Int J Food Sci Nutr 2013; 65:386-90. [PMID: 24328398 DOI: 10.3109/09637486.2013.866639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The quality of dietary proteins is influenced by their content and composition of amino acids and bioavailability. Recent data suggest that the digestion and absorption kinetics of proteins influences the effects of protein ingestion on the metabolic processes. Slowly and fast-digested dietary proteins differentially modulate postprandial protein and glucose metabolism. This is an important factor for defining the physiological outcome and application for nutritional purposes of different dietary protein sources.
Collapse
Affiliation(s)
- Tao He
- AVEBE U.A. , Veendam , The Netherlands
| | | |
Collapse
|
34
|
Li RL, Sherbet DP, Elsbernd BL, Goldstein JL, Brown MS, Zhao TJ. Profound hypoglycemia in starved, ghrelin-deficient mice is caused by decreased gluconeogenesis and reversed by lactate or fatty acids. J Biol Chem 2012; 287:17942-50. [PMID: 22474325 DOI: 10.1074/jbc.m112.358051] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When mice are subjected to 7-day calorie restriction (40% of normal food intake), body fat disappears, but blood glucose is maintained as long as the animals produce ghrelin, an octanoylated peptide that stimulates growth hormone secretion. Mice can be rendered ghrelin-deficient by knock-out of the gene encoding either ghrelin O-acyltransferase, which attaches the required octanoate, or ghrelin itself. Calorie-restricted, fat-depleted ghrelin O-acyltransferase or ghrelin knock-out mice fail to show the normal increase in growth hormone and become profoundly hypoglycemic when fasted for 18-23 h. Glucose production in Goat(-/-) mice was reduced by 60% when compared with similarly treated WT mice. Plasma lactate and pyruvate were also low. Injection of lactate, pyruvate, alanine, or a fatty acid restored blood glucose in Goat(-/-) mice. Thus, when body fat is reduced by calorie restriction, ghrelin stimulates growth hormone secretion, which allows maintenance of glucose production, even when food intake is eliminated. In humans with anorexia nervosa or kwashiorkor, ghrelin and growth hormone are known to be elevated, just as they are in fat-depleted mice. We suggest that these two hormones prolong survival in starved humans as they do in mice.
Collapse
Affiliation(s)
- Robert Lin Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046, USA
| | | | | | | | | | | |
Collapse
|
35
|
Cornelius JM, Perfito N, Zann R, Breuner CW, Hahn TP. Physiological trade-offs in self-maintenance: plumage molt and stress physiology in birds. J Exp Biol 2011; 214:2768-77. [DOI: 10.1242/jeb.057174] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Trade-offs between self-maintenance processes can affect life-history evolution. Integument replacement and the stress response both promote self-maintenance and affect survival in vertebrates. Relationships between the two processes have been studied most extensively in birds, where hormonal stress suppression is down regulated during molt in seasonal species, suggesting a resource-based trade-off between the two processes. The only species found to differ are the rock dove and Eurasian tree sparrow, at least one of which performs a very slow molt that may reduce resource demands during feather growth, permitting investment in the stress response. To test for the presence of a molt–stress response trade-off, we measured hormonal stress responsiveness during and outside molt in two additional species with extended molts, red crossbills (Loxia curvirostra) and zebra finches (Taeniopygia guttata). We found that both species maintain hormonal stress responsiveness during molt. Further, a comparative analysis of all available species revealed a strong relationship between molt duration and degree of hormonal suppression. Though our results support trade-off hypotheses, these data can also be explained by alternative hypotheses that have not been formally addressed in the literature. We found a strong relationship between stress suppression and seasonality of breeding and evidence suggesting that the degree of suppression may be either locally adaptable or plastic and responsive to local environmental conditions. We hypothesize that environmental unpredictability favors extended molt duration, which in turn allows for maintenance of the hormonal stress response, and discuss implications of a possible trade-off for the evolution of molt schedules.
Collapse
Affiliation(s)
- Jamie M. Cornelius
- Animal Behavior Graduate Group and Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Nicole Perfito
- Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Richard Zann
- Zoology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Creagh W. Breuner
- Organismal Biology and Ecology, University of Montana, Missoula, MT 59812, USA
| | - Thomas P. Hahn
- Animal Behavior Graduate Group and Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
36
|
Abstract
According to current textbook wisdom the liver is the exclusive site of glucose production in humans in the postabsorptive state. Although animal and in vitro studies have documented that the kidney is capable of gluconeogenesis, glucose production by the human kidney has been regarded as negligible. This knowledge is based on net balance measurements across the kidney. Recent studies combining isotopic and balance techniques have demonstrated that the human kidney is involved in the regulation of glucose homeostasis by making glucose via gluconeogenesis, taking up glucose from the circulation, and by reabsorbing glucose from the glomerular filtrate. The human liver and kidneys release approximately equal amounts of glucose via gluconeogenesis in the postabsorptive state. In the postprandial state, although overall endogenous glucose release decreases substantially, renal gluconeogenesis actually increases by approximately 2-fold. Following meal ingestion, glucose utilization by the kidney increases. Increased glucose uptake into the kidney may be implicated in diabetic nephropathy. Normally each day, ∼ 180 g of glucose is filtered by the kidneys; almost all of this is reabsorbed by means of sodium glucose cotransporter 2 (SGLT2), expressed in the proximal tubules. However, the capacity of SGLT2 to reabsorb glucose from the renal tubules is finite and when plasma glucose concentrations exceed a threshold, glucose begins to appear in the urine. Renal glucose release is stimulated by epinephrine and is inhibited by insulin. Handling of glucose by the kidney is altered in type 2 diabetes mellitus (T2DM): renal gluconeogenesis and renal glucose uptake are increased in both the postabsorptive and postprandial states, and renal glucose reabsorption is also increased Since renal glucose release is almost exclusively due to gluconeogenesis, it seems that the kidney is as important gluconeogenic organ as the liver. The most important renal gluconeogenic precursors appear to be lactae glutamine and glycerol.
Collapse
Affiliation(s)
- Asimina Mitrakou
- Department of Clinical Therapeutics, Athens University Medical School, Athens, Greece.
| |
Collapse
|
37
|
Zhang H, Ding L, Fang X, Shi Z, Zhang Y, Chen H, Yan X, Dai J. Biological responses to perfluorododecanoic acid exposure in rat kidneys as determined by integrated proteomic and metabonomic studies. PLoS One 2011; 6:e20862. [PMID: 21677784 PMCID: PMC3108999 DOI: 10.1371/journal.pone.0020862] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/15/2011] [Indexed: 11/19/2022] Open
Abstract
Background Perfluorododecanoic acid (PFDoA) is a perfluorinated carboxylic chemical (PFC) that has broad applications and distribution in the environment. While many studies have focused on hepatotoxicity, immunotoxicity, and reproductive toxicity of PFCAs, few have investigated renal toxicity. Methodology/Principal Findings Here, we used comparative proteomic and metabonomic technologies to provide a global perspective on renal response to PFDoA. Male rats were exposed to 0, 0.05, 0.2, and 0.5 mg/kg/day of PFDoA for 110 days. After 2-D DIGE and MALDI TOF/TOF analysis, 79 differentially expressed proteins between the control and the PFDoA treated rats (0.2 and 0.5 mg-dosed groups) were successfully identified. These proteins were mainly involved in amino acid metabolism, the tricarboxylic acid cycle, gluconeogenesis, glycolysis, electron transport, and stress response. Nuclear magnetic resonance-based metabonomic analysis showed an increase in pyruvate, lactate, acetate, choline, and a variety of amino acids in the highest dose group. Furthermore, the profiles of free amino acids in the PFDoA treated groups were investigated quantitatively by high-coverage quantitative iTRAQ-LC MS/MS, which showed levels of sarcosine, asparagine, histidine, 1-methylhistidine, Ile, Leu, Val, Trp, Tyr, Phe, Cys, and Met increased markedly in the 0.5 mg dosed group, while homocitrulline, α-aminoadipic acid, β-alanine, and cystathionine decreased. Conclusion/Significance These observations provide evidence that disorders in glucose and amino acid metabolism may contribute to PFDoA nephrotoxicity. Additionally, α2u globulin may play an important role in protecting the kidneys from PFDoA toxicity.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lina Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xuemei Fang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhimin Shi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yating Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hebing Chen
- National Center of Biomedical Analysis, Beijing, People's Republic of China
| | - Xianzhong Yan
- National Center of Biomedical Analysis, Beijing, People's Republic of China
- * E-mail: (XY); (JD)
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (XY); (JD)
| |
Collapse
|
38
|
Olszewski KL, Llinás M. Central carbon metabolism of Plasmodium parasites. Mol Biochem Parasitol 2010; 175:95-103. [PMID: 20849882 DOI: 10.1016/j.molbiopara.2010.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 12/22/2022]
Abstract
The central role of metabolic perturbation to the pathology of malaria, the promise of antimetabolites as antimalarial drugs and a basic scientific interest in understanding this fascinating example of highly divergent microbial metabolism has spurred a major and concerted research effort towards elucidating the metabolic network of the Plasmodium parasites. Central carbon metabolism, broadly comprising the flow of carbon from nutrients into biomass, has been a particular focus due to clear and early indications that it plays an essential role in this network. Decades of painstaking efforts have significantly clarified our understanding of these pathways of carbon flux, and this foundational knowledge, coupled with the advent of advanced analytical technologies, have set the stage for the development of a holistic, network-level model of plasmodial carbon metabolism. In this review we summarize the current state of knowledge regarding central carbon metabolism and suggest future avenues of research. We focus primarily on the blood stages of Plasmodium falciparum, the most lethal of the human malaria parasites, but also integrate results from simian, avian and rodent models of malaria that were a major focus of early investigations into plasmodial metabolism.
Collapse
Affiliation(s)
- Kellen L Olszewski
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
39
|
Veldhorst MAB, Westerterp-Plantenga MS, Westerterp KR. Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am J Clin Nutr 2009; 90:519-26. [PMID: 19640952 DOI: 10.3945/ajcn.2009.27834] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND High-protein diets have been shown to increase energy expenditure (EE). OBJECTIVE The objective was to study whether a high-protein, carbohydrate-free diet (H diet) increases gluconeogenesis and whether this can explain the increase in EE. DESIGN Ten healthy men with a mean (+/-SEM) body mass index (in kg/m(2)) of 23.0 +/- 0.8 and age of 23 +/- 1 y received an isoenergetic H diet (H condition; 30%, 0%, and 70% of energy from protein, carbohydrate, and fat, respectively) or a normal-protein diet (N condition; 12%, 55%, and 33% of energy from protein, carbohydrate, and fat, respectively) for 1.5 d according to a randomized crossover design, and EE was measured in a respiration chamber. Endogenous glucose production (EGP) and fractional gluconeogenesis were measured via infusion of [6,6-(2)H(2)]glucose and ingestion of (2)H(2)O; absolute gluconeogenesis was calculated by multiplying fractional gluconeogenesis by EGP. Body glycogen stores were lowered at the start of the intervention with an exhaustive glycogen-lowering exercise test. RESULTS EGP was lower in the H condition than in the N condition (181 +/- 9 compared with 226 +/- 9 g/d; P < 0.001), whereas fractional gluconeogenesis was higher (0.95 +/- 0.04 compared with 0.64 +/- 0.03; P < 0.001) and absolute gluconeogenesis tended to be higher (171 +/- 10 compared with 145 +/- 10 g/d; P = 0.06) in the H condition than in the N condition. EE (resting metabolic rate) was greater in the H condition than in the N condition (8.46 +/- 0.23 compared with 8.12 +/- 0.31 MJ/d; P < 0.05). The increase in EE was a function of the increase in gluconeogenesis (DeltaEE = 0.007 x Deltagluconeogenesis - 0.038; r = 0.70, R(2) = 0.49, P < 0.05). The contribution of Deltagluconeogenesis to DeltaEE was 42%; the energy cost of gluconeogenesis was 33% (95% CI: 16%, 50%). CONCLUSIONS Forty-two percent of the increase in energy expenditure after the H diet was explained by the increase in gluconeogenesis. The cost of gluconeogenesis was 33% of the energy content of the produced glucose.
Collapse
Affiliation(s)
- Margriet A B Veldhorst
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Human Biology, Maastricht University Medical Centre, Netherlands.
| | | | | |
Collapse
|
40
|
Abstract
The metabolic effects of beta-adrenoceptor blocking agents during hypoglycaemia in patients prone to hypoglycaemia are of interest as diabetics are often treated with these drugs because of hypertension or angina pectoris. Compared with non-diabetics these patients also have impaired glucose compensation after hypoglycaemia, partly secondary to deficient release of glucagon. This makes the diabetics more dependent on adrenergic mechanisms to recover from low blood glucose concentrations. Non-selective beta-adrenoceptor blockade (propranolol) significantly impairs the glucose recovery rate after hypoglycaemia in insulin dependent diabetics, whereas selective beta-adrenoceptor blockade (metoprolol) does not have this side effect. The mechanism of the effect of propranolol is probably an attenuation of the gluconeogenesis secondary to deficient release of the important gluconeogenic substrates lactate and glycerol.
Collapse
|
41
|
HILL MOLLYR, STITH REXD, McCALLUM RODERICKE. Mechanism of Action of Interferon-β2/Interleukin-6 on Induction of Hepatic Liver Enzymesa. Ann N Y Acad Sci 2008. [DOI: 10.1111/j.1749-6632.1989.tb24046.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Impact of visceral adipose tissue on liver metabolism and insulin resistance. Part II: Visceral adipose tissue production and liver metabolism. DIABETES & METABOLISM 2008; 34:439-45. [PMID: 18562233 DOI: 10.1016/j.diabet.2008.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 04/06/2008] [Indexed: 12/19/2022]
Abstract
Excess visceral adipose tissue is associated with anomalies of blood glucose homoeostasis, elevation of plasma triglycerides and low levels of high-density lipoprotein cholesterol that contribute to the development of type-2 diabetes and cardiovascular syndromes. Visceral adipose tissue releases a large amount of free fatty acids and hormones/cytokines in the portal vein that are delivered to the liver. The secreted products interact with hepatocytes and various immune cells in the liver. Altered liver metabolism and determinants of insulin resistance associated with visceral adipose tissue distribution are discussed, as well as, determinants of an insulin-resistant state promoted by the increased free fatty acids and cytokines delivered by visceral adipose tissue to the liver.
Collapse
|
43
|
Serres S, Bezancon E, Franconi JM, Merle M. Brain pyruvate recycling and peripheral metabolism: an NMR analysis ex vivo of acetate and glucose metabolism in the rat. J Neurochem 2007; 101:1428-40. [PMID: 17459144 DOI: 10.1111/j.1471-4159.2006.04442.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The occurrence of pyruvate recycling in the rat brain was studied in either pentobarbital anesthetized animals or awake animals receiving a light analgesic dose of morphine, which were infused with either [1-13C]glucose + acetate or glucose + [2-13C]acetate for various periods of time. Metabolite enrichments in the brain, blood and the liver were determined from NMR analyses of tissue extracts. They indicated that: (i) Pyruvate recycling was revealed in the brain of both the anesthetized and awake animals, as well as from lactate and alanine enrichments as from glutamate isotopomer composition, but only after infusion of glucose + [2-13C]acetate. (ii) Brain glucose was labelled from [2-13C]acetate at the same level in anaesthetized and awake rats (approximately 4%). Comparing its enrichment with that of blood and liver glucose indicated that brain glucose labelling resulted from hepatic gluconeogenesis. (iii) Analysing glucose 13C-13C coupling in the brain, blood and the liver confirmed that brain glucose could be labelled in the liver through the activities of both pyruvate recycling and gluconeogenesis. (iv) The rate of appearance and the amount of brain glutamate C4-C5 coupling, a marker of pyruvate recycling when starting from [2-13C]acetate, were lower than those of brain glucose labelling from hepatic metabolism. (v) The evaluation of the contributions of glucose and acetate to glutamate metabolism revealed that more than 60% of brain glutamate was synthesized from glucose whereas only 7% was from acetate and that glutamate C4-C5 coupling was mainly due to the metabolism of glucose labelled through hepatic gluconeogenesis. All these results indicate that, under the present conditions, the pyruvate recycling observed through the labelling of brain metabolites mainly originates from peripheral metabolism.
Collapse
Affiliation(s)
- Sébastien Serres
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS-Université Victor Segalen, Bordeaux, France
| | | | | | | |
Collapse
|
44
|
Weiss MD, Donnelly WH, Rossignol C, Varoqui H, Erickson JD, Anderson KJ. Ontogeny of the neutral amino acid transporter SNAT1 in the developing rat. J Mol Histol 2007; 36:301-9. [PMID: 16200463 DOI: 10.1007/s10735-005-6061-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Accepted: 04/22/2005] [Indexed: 10/25/2022]
Abstract
System A is a highly regulated, Na+-dependent transporter that accepts neutral amino acids containing short, polar side chains. System A plays an important role during rat development as decreased pup weights are observed in dams infused during gestation with a non-metabolizable System A substrate. Given the potential importance of SNAT1 during development in the rat brain, we examined whether SNAT1 would be present at an earlier gestation during organogenesis in multiple organs by immunohistochemistry and immunoblotting. SNAT1 protein was observed in the developing lungs, intestines, kidneys, heart, pancreas, and skeletal muscle of rats at prenatal days 14, 17, 19, 21, and postnatal day 2 rats. SNAT1 protein expression decreased in the liver and intestine shortly after birth and as the rat matured. SNAT1 expression was constant throughout development in the lungs and kidney and increased in the heart from prenatal day 19 to postnatal day 2. Highest levels of expression in older animals were seen in organs undergoing rapid cell division.
Collapse
Affiliation(s)
- Michael D Weiss
- Department of Pediatrics, University of Florida, PO Box 100296, Gainesville, FL 32610-0296, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
AbstractVolatile fatty acids (VFA) are quantitatively important substrates for dairy cows and other ruminants. It has been a central dogma in the nutritional physiology of ruminants that the ruminal epithelium metabolizes a large fraction of VFA during theirabsorption and consequently a relatively small fraction of VFA is available for peripheral tissues including the mammary gland. New data on splanchnic metabolism of VFA indicate that the ruminal epithelium metabolizes none or small amounts of acetate and propionate absorbed from the rumen. However, the ruminal epithelium has a large fractional uptake of butyrate and valerate during their absorption from the rumen. The liver takes up proportionately 0·9 or more of the absorbed propionate, however multiple factors are involved in regulation of hepatic metabolism and propionate does not determine glucose availability to the cowper se. In light of the quantitative importance of VFA to the dairy cow it is important that future research attempts to bridge the gap between the biology of food degradation/digestion in the gastro-intestinal tract and availability of specific nutrients to the cow which impact intermediary metabolism and nutrient utilizationin productive tissues.
Collapse
|
46
|
Hue L. The role of futile cycles in the regulation of carbohydrate metabolism in the liver. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 52:247-331. [PMID: 6261536 DOI: 10.1002/9780470122976.ch4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Landys MM, Ramenofsky M, Wingfield JC. Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen Comp Endocrinol 2006; 148:132-49. [PMID: 16624311 DOI: 10.1016/j.ygcen.2006.02.013] [Citation(s) in RCA: 592] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 01/25/2006] [Accepted: 02/24/2006] [Indexed: 01/01/2023]
Abstract
For decades, demands associated with the predictable life-history cycle have been considered stressful and have not been distinguished from stress that occurs in association with unpredictable and life-threatening perturbations in the environment. The recent emergence of the concept of allostasis distinguishes behavioral and physiological responses to predictable routines as opposed to unpredictable perturbations, and allows for their comparison within one theoretical framework. Glucocorticosteroids (GCs) have been proposed as important mediators of allostasis, as they allow for rapid readjustment and support of behavior and physiology in response to predictable and unpredictable demands (allostatic load). Much work has already been done in defining GC action at the high concentrations that accompany life-threatening perturbations. However, less is known about the role of GCs in relation to daily and seasonal life processes. In this review, we summarize the known behavioral and physiological effects of GCs relating to the predictable life-history cycle, paying particular attention to feeding behavior, locomotor activity and energy metabolism. Although we utilize a comparative approach, emphasis is placed on birds. In addition, we briefly review effects of GCs at stress-related concentrations to test the hypothesis that different levels of GCs play specific and distinct roles in the regulation of life processes and, thus, participate in the promotion of different physiological states. We also examine the receptor types through which GC action may be mediated and suggest mechanisms whereby different GC concentrations may exert their actions. In conclusion, we argue that biological actions of GCs at "non-stress" seasonal concentrations play a critical role in the adjustment of responses that accompany predictable variability in the environment and demand more careful consideration in future studies.
Collapse
Affiliation(s)
- Meta M Landys
- Department of Biology, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo, Norway.
| | | | | |
Collapse
|
48
|
Pinheiro EC, Taddei VA, Migliorini RH, Kettelhut IC. Effect of fasting on carbohydrate metabolism in frugivorous bats (Artibeus lituratus and Artibeus jamaicensis). Comp Biochem Physiol B Biochem Mol Biol 2006; 143:279-84. [PMID: 16455278 DOI: 10.1016/j.cbpb.2005.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 10/21/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
The compensatory changes of carbohydrate metabolism induced by fasting were investigated in frugivorous bats, Artibeus lituratus and Artibeus jamaicensis. For this purpose, plasma levels of glucose and lactate, liver and muscle glycogen content, rates of liver gluconeogenesis and the activity of related enzymes were determined in male bats. After a decrease during the first 48 h of fasting, plasma glucose levels remained constant until the end of the experimental period. Plasma lactate levels, extremely high in fed bats, decreased after 48 h of fasting. Similarly, liver glycogen content, markedly high in fed animals, was reduced to low levels after 24 h without food. Muscle glycogen was also reduced in fasted bats. The expected increase in liver gluconeogenesis during fasting was observed after 48 h of fasting. The activities of liver glucose-6-phosphatase and fructose-1,6-bisphosphatase were not affected by food withdrawn. On the other hand, fasting for 24 h induced an increase in the activity of liver cytosolic phosphoenolpyruvate carboxykinase. The data indicate that liver gluconeogenesis has an important role in the glucose homeostasis in frugivorous bats during prolonged periods of food deprivation. During short periods of fasting liver glycogenolysis seems to be the main responsible for the maintenance of glycemia.
Collapse
Affiliation(s)
- Eliana C Pinheiro
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia-UnB, Brasília-DF, Brazil.
| | | | | | | |
Collapse
|
49
|
Medina JM, Tabernero A. Lactate utilization by brain cells and its role in CNS development. J Neurosci Res 2005; 79:2-10. [PMID: 15573408 DOI: 10.1002/jnr.20336] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We studied the role played by lactate as an important substrate for the brain during the perinatal period. Under these circumstances, lactate is the main substrate for brain development and is used as a source of energy and carbon skeletons. In fact, lactate is used actively by brain cells in culture. Neurons, astrocytes, and oligodendrocytes use lactate as a preferential substrate for both energy purposes and as precursor of lipids. Astrocytes use lactate and other metabolic substrates for the synthesis of oleic acid, a new neurotrophic factor. Oligodendrocytes mainly use lactate as precursor of lipids, presumably those used to synthesize myelin. Neurons use lactate as a source of energy and as precursor of lipids. During the perinatal period, neurons may use blood lactate directly to meet the need for the energy and carbon skeletons required for proliferation and differentiation. During adult life, however, the lactate used by neurons may come from astrocytes, in which lactate is the final product of glycogen breakdown. It may be concluded that lactate plays an important role in brain development.
Collapse
Affiliation(s)
- José M Medina
- Department of Biochemistry and Molecular Biology, INCYL, University of Salamanca, Plaza de los Doctores de la Reina s/n, 37007 Salamanca, Spain.
| | | |
Collapse
|
50
|
Chen L, Zhang T, Nyomba BLG. Insulin resistance of gluconeogenic pathways in neonatal rats after prenatal ethanol exposure. Am J Physiol Regul Integr Comp Physiol 2004; 286:R554-9. [PMID: 14615274 DOI: 10.1152/ajpregu.00076.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alcohol exposure during pregnancy is associated with fetal growth restriction and programs the offspring to insulin resistance later in life. The underlying mechanisms are still uncertain, but a dysregulation of gluconeogenesis and adipose hormones may be contributory. Newborn rats from dams that had been given ethanol (EtOH) or water (controls) during pregnancy were studied. Adiponectin mRNA was determined in subcutaneous fat by RT-PCR, and serum adiponectin was measured by RIA. Subsets of rats were killed before and after intraperitoneal administration of insulin, to determine, by RT-PCR, the hepatic expression of gluconeogenic enzymes and that of the transcription factor peroxisome proliferator-activated receptor-coactivator (PGC)-1, which promotes gluconeogenesis. EtOH offspring had delayed hypoglycemic response to insulin but normal adiponectin mRNA and serum levels compared with controls. The inhibitory response of the gluconeogenic enzyme phospho enol- pyruvate carboxykinase (PEPCK) and PGC-1 mRNAs to insulin was blunted in EtOH offspring compared with controls. The data suggest that intrauterine EtOH exposure causes insulin resistance of genes for PGC-1 and PEPCK early in life.
Collapse
Affiliation(s)
- Li Chen
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3A1R9
| | | | | |
Collapse
|