1
|
Santoro M, Fadda P, Klephan KJ, Hull C, Teismann P, Platt B, Riedel G. Neurochemical, histological, and behavioral profiling of the acute, sub-acute, and chronic MPTP mouse model of Parkinson's disease. J Neurochem 2023; 164:121-142. [PMID: 36184945 PMCID: PMC10098710 DOI: 10.1111/jnc.15699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 02/04/2023]
Abstract
Parkinson's disease (PD) is a heterogeneous multi-systemic disorder unique to humans characterized by motor and non-motor symptoms. Preclinical experimental models of PD present limitations and inconsistent neurochemical, histological, and behavioral readouts. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD is the most common in vivo screening platform for novel drug therapies; nonetheless, behavioral endpoints yielded amongst laboratories are often discordant and inconclusive. In this study, we characterized neurochemically, histologically, and behaviorally three different MPTP mouse models of PD to identify translational traits reminiscent of PD symptomatology. MPTP was intraperitoneally (i.p.) administered in three different regimens: (i) acute-four injections of 20 mg/kg of MPTP every 2 h; (ii) sub-acute-one daily injection of 30 mg/kg of MPTP for 5 consecutive days; and (iii) chronic-one daily injection of 4 mg/kg of MPTP for 28 consecutive days. A series of behavioral tests were conducted to assess motor and non-motor behavioral changes including anxiety, endurance, gait, motor deficits, cognitive impairment, circadian rhythm and food consumption. Impairments in balance and gait were confirmed in the chronic and acute models, respectively, with the latter showing significant correlation with lesion size. The sub-acute model, by contrast, presented with generalized hyperactivity. Both, motor and non-motor changes were identified in the acute and sub-acute regime where habituation to a novel environment was significantly reduced. Moreover, we report increased water and food intake across all three models. Overall, the acute model displayed the most severe lesion size, while across the three models striatal dopamine content (DA) did not correlate with the behavioral performance. The present study demonstrates that detection of behavioral changes following MPTP exposure is challenging and does not correlate with the dopaminergic lesion extent.
Collapse
Affiliation(s)
- Matteo Santoro
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
- Present address:
Department of Neurosurgery, School of MedicineStanford UniversityPalo AltoCaliforniaUSA
| | - Paola Fadda
- Department of NeuroscienceUniversity of CagliariCagliariItaly
| | - Katie J. Klephan
- Newcastle UniversitySchool of Biomedical, Nutritional, and Sport SciencesNewcastle upon TyneUK
- Present address:
AccuRXLondonLondonUK
| | - Claire Hull
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Peter Teismann
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Bettina Platt
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Gernot Riedel
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
2
|
AlShimemeri S, Di Luca DG, Fox SH. MPTP Parkinsonism and Implications for Understanding Parkinson's Disease. Mov Disord Clin Pract 2022; 9:42-47. [PMID: 35005064 DOI: 10.1002/mdc3.13344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Sohaila AlShimemeri
- The Edmond J. Safra Program in Parkinson Disease, Toronto Western Hospital Toronto Ontario Canada.,Krembil Brain Institute, University Health Network Toronto Ontario Canada.,Division of Neurology University of Toronto Toronto Ontario Canada.,King Saud University Riyadh Saudi Arabia
| | - Daniel G Di Luca
- The Edmond J. Safra Program in Parkinson Disease, Toronto Western Hospital Toronto Ontario Canada.,Krembil Brain Institute, University Health Network Toronto Ontario Canada.,Division of Neurology University of Toronto Toronto Ontario Canada
| | - Susan H Fox
- The Edmond J. Safra Program in Parkinson Disease, Toronto Western Hospital Toronto Ontario Canada.,Krembil Brain Institute, University Health Network Toronto Ontario Canada.,Division of Neurology University of Toronto Toronto Ontario Canada
| |
Collapse
|
3
|
Varani AP, Pedrón VT, Aon AJ, Canero EM, Balerio GN. GABA B receptors blockage modulates somatic and aversive manifestations induced by nicotine withdrawal. Biomed Pharmacother 2021; 140:111786. [PMID: 34144406 DOI: 10.1016/j.biopha.2021.111786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022] Open
Abstract
There is substantial evidence that GABAB agonist, baclofen, prevents somatic and motivational responses induced by nicotine withdrawal and may target drug cue vulnerabilities in humans. In this context, we explored different aspects associated with the possible mechanisms whereby the GABAB receptors might influence nicotine withdrawal. Male mice received nicotine (2.5 mg/kg, s.c.) 4 times daily, for 7 consecutive days. Nicotine-treated mice received the nicotinic acetylcholine receptor antagonist, mecamylamine (MEC, 2 or 3.5 mg/kg, s.c.), to precipitate the withdrawal state. A second group of dependent mice received 2-hydroxysaclofen (GABAB receptor antagonist, 1 mg/kg, s.c.) before MEC-precipitated abstinence. Somatic signs of nicotine withdrawal were measured for 30 min. Anxiogenic-like response associated to nicotine withdrawal was assessed by the elevated plus maze test. The dysphoric/aversive effect induced by nicotine withdrawal was evaluated using conditioned place aversion paradigm. Dopamine, serotonin and its metabolites concentrations were determined by HPLC in the striatum, cortex and hippocampus. Finally, α4β2 nicotinic acetylcholine receptor density was determined in several brain regions using autoradiography assays. The results showed that MEC-precipitated nicotine withdrawal induced somatic manifestations, anxiogenic-like response and dysphoric/aversive effect, and 2-hydroxysaclofen potentiated these behavioral responses. Additionally, 2-hydroxysaclofen was able to change striatal dopamine levels and α4β2 nicotinic acetylcholine receptor density, both altered by MEC-precipitated nicotine withdrawal. These findings provide important contributions to elucidate neurobiological mechanisms implicated in nicotine withdrawal. We suggest that GABAB receptor activity is necessary to control alterations induced by nicotine withdrawal, which supports the idea of targeting GABAB receptors to treat tobacco addiction in humans.
Collapse
Affiliation(s)
- A P Varani
- CONICET, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - V T Pedrón
- CONICET, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - A J Aon
- CONICET, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - E M Canero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica (FFYB), Cátedra de Farmacología, Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina; CONICET, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - G N Balerio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica (FFYB), Cátedra de Farmacología, Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina; CONICET, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina.
| |
Collapse
|
4
|
Subrahmanian N, LaVoie MJ. Is there a special relationship between complex I activity and nigral neuronal loss in Parkinson's disease? A critical reappraisal. Brain Res 2021; 1767:147434. [PMID: 33745923 PMCID: PMC9520341 DOI: 10.1016/j.brainres.2021.147434] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease manifesting both motor and non-motor symptoms. The motor features are generally ascribed to the selective loss of dopamine neurons within the substantia nigra pars compacta. While the precise etiology of PD remains elusive, multiple genetic and environmental elements have emerged as contributing factors. The discovery of MPTP-induced parkinsonism directed intense inquiry towards mitochondrial pathways, with a specific focus on mitochondrial complex I. Consisting of more than 40 subunits, complex I is the first enzyme of the electron transport chain that is required for mitochondrial ATP production. In this review, we present a critical analysis of studies assessing the prevalence and specificity of mitochondrial complex I deficiency in PD. In addition, we take the novel view of incorporating the features of genetically-defined bona fide complex I disorders and the prevalence of nigral involvement in such cases. Through this innovative bi-directional view, we consider both complex I changes in a disease of the substantia nigra and nigral changes in diseases of complex I. We assess the strength of association between nigral cell loss and complex I deficits, as well as the oft under-appreciated heterogeneity of complex I deficiency disorders and the variability of the PD data.
Collapse
Affiliation(s)
- Nitya Subrahmanian
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Matthew J LaVoie
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
5
|
Banerjee C, Roy M, Mondal R, Chakraborty J. USP14 as a Therapeutic Target Against Neurodegeneration: A Rat Brain Perspective. Front Cell Dev Biol 2020; 8:727. [PMID: 32850842 PMCID: PMC7411183 DOI: 10.3389/fcell.2020.00727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
In the recent past, many of the deubiquitinases (DUB) were found to modulate mitochondrial clearance or mitophagy and thus they are currently projected as therapeutic targets against neurodegeneration. Among these DUBs, USP14 stands at a distinctive juncture, since it can influence both proteasome complex activity and autophagy process. USP14 interference can enhance mitochondrial clearance and thus can protect Parkinsonian phenotypes in Drosophila model. However, in higher animal models of neurodegenerative disorders, evaluation of the protective role of USP14 is yet to be done. In this perspective, we pointed out a few of the major considerations that should be classified before designing experiments to evaluate the therapeutic potential of this DUB in rodent models of neurodegeneration. These are mainly: level of USP14 in the concerned brain region and how the level alters in the model system. Because USP14 mediated mitophagy is Prohibitin2 dependent, the anticipated impact of this protein in this aspect is also discussed. To illustrate our view, we show that USP14 levels increases in adult rat brain substantia nigra (SN) and cerebellum compared to the young ones. We also depict that rotenone treatment can immediately lead to increased SN specific USP14 levels. Our perception thus portrays USP14 as a therapeutic target, especially for addressing SN specific neurodegeneration in adult rat brain, but may vary with the disease model.
Collapse
Affiliation(s)
- Chayan Banerjee
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology-TRUE, Kolkata, India
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Moumita Roy
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology-TRUE, Kolkata, India
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rupsha Mondal
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology-TRUE, Kolkata, India
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Joy Chakraborty
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology-TRUE, Kolkata, India
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
6
|
Asiatic Acid Attenuated Aluminum Chloride-Induced Tau Pathology, Oxidative Stress and Apoptosis Via AKT/GSK-3β Signaling Pathway in Wistar Rats. Neurotox Res 2019; 35:955-968. [PMID: 30671870 DOI: 10.1007/s12640-019-9999-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
Asiatic acid (AA), a triterpenoid present in Centella asiatica, possesses the ability to cross blood brain barrier and received considerable attention for its neuroprotective role. We have reported the benefit of AA against aluminum chloride (AlCl3)-induced amyloid pathology, enhanced acetylcholine esterase (AChE) activity, and inflammation in Alzheimer's disease (AD) like model rats. Based on that, to find the exact mechanism of action of AA, the present study was designed to evaluate the oxidative stress, tau pathology, apoptosis, and Akt/GSK3β signaling pathway on AlCl3-induced neurotoxicity in Wistar rats. AD-like pathology was induced by oral administration of AlCl3 (100 mg/kg b.w.) for 6 weeks, which demonstrated a significant reduction in spatial memory performance, anxiety, and motor dysfunction and diminished the expression of cyclin-dependent kinase 5 (CDK 5-enzyme implicated in the phosphorylation of tau proteins), pTau, oxidative stress, and apoptosis, whereas oral ingestion of AA (75 mg/kg b.w.) for 7 weeks attenuated the above-said indices, which could be by activating Akt/GSK3β pathway. Current results suggested that AA could be able to modulate various pathological features of AD and could hold promise in AD treatment.
Collapse
|
7
|
Abstract
The identification of MPTP, a relatively simple compound which causes selective degeneration of the substantia nigra after systemic administration, has had an a significant impact on the understanding and treatment of Parkinson’s disease (PD) over the last 30 years. This article is prefaced by the intriguing “medical detective story” that lead to the discovery of the biological effects of MPTP in humans. The steps that lead to the unraveling its mechanism of action and their impact on research into pathways underlying nigrostriatal degeneration are reviewed. The impact of the animal models that have been developed utilizing MPTP is also described with a focus on the translational implications of MPTP-related research. These include use of MAO-B inhibitors aimed at neuroprotection in PD and the importance of a stable primate model for PD which was utilized to better understand the circuitry of the basal ganglia, and the identification of the subthalamic nucleus as a target for deep brain stimulation. Finally, the results of a broad range of epidemiologic studies aimed as assessing the impact of environmental factors in PD that have been inspired by MPTP are summarized, including the discovery of other neurotoxicants (rotenone and paraquat) with parkinsonogenic effects. Overall, this article attempts to describe how the discovery of this nigral neurotoxicant began, where it is currently, and what the future may hold.
Collapse
Affiliation(s)
- J. William Langston
- Correspondence to: J. William Langston, Parkinson’s Institute, Sunnyvale, CA, USA. E-mail:
| |
Collapse
|
8
|
He XJ, Uchida K, Megumi C, Tsuge N, Nakayama H. Dietary curcumin supplementation attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in C57BL mice. J Toxicol Pathol 2015; 28:197-206. [PMID: 26538809 PMCID: PMC4604129 DOI: 10.1293/tox.2015-0020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/26/2015] [Indexed: 02/02/2023] Open
Abstract
Studies in vivo and in vitro suggest that curcumin is a neuroprotective agent. Experiments were conducted to determine whether dietary supplementation with curcumin has neuroprotective effects in a mouse model of Parkinson’s disease (PD). Treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) significantly induced the loss of dopaminergic cells in the substantia nigra and deletion of dopamine in the striatum, which was attenuated by long-term (7 weeks) dietary supplementation with curcumin at a concentration of 0.5% or 2.0% (w/w). Although curcumin did not prevent the MPTP-induced apoptosis of neuroblasts in the subventricular zone (SVZ), it promoted the regeneration of neuroblasts in the anterior part of the SVZ (SVZa) at 3 days after MPTP treatment. Furthermore, curcumin enhanced the MPTP-induced activation of microglia and astrocytes in the striatum and increased the expression of glial cell line-derived neurotrophic factor (GDNF) and transforming growth factor-β1 (TGFβ1) in the striatum and SVZ. GDNF and TGFβ1 are thought to play an important role in protecting neurons from injury in the central and peripheral nervous systems. These results suggest that long-term administration of curcumin blocks the neurotoxicity of MPTP in the nigrostriatal dopaminergic system of the mouse and that the neuroprotective effect might be correlated with the increased expression of GDNF and TGFβ1. Curcumin may be effective in preventing or slowing the progression of PD.
Collapse
Affiliation(s)
- Xi-Jun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001 People's Republic of China ; Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi,Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi,Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chiaki Megumi
- Somatech Center, House Foods Corporation, 1-4 Takanodai, Yotsukaido, Chiba 284-0033, Japan
| | - Nobuaki Tsuge
- Somatech Center, House Foods Corporation, 1-4 Takanodai, Yotsukaido, Chiba 284-0033, Japan
| | - Hiroyuki Nakayama
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi,Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
9
|
Naskar A, Prabhakar V, Singh R, Dutta D, Mohanakumar KP. Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. J Pineal Res 2015; 58:262-74. [PMID: 25626558 DOI: 10.1111/jpi.12212] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/23/2015] [Indexed: 12/13/2022]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) reduces symptoms of Parkinson's disease (PD), but suffers from serious side effects on long-term use. Melatonin (10-30 mg/kg, 6 doses at 10 hr intervals) was investigated to potentiate L-DOPA therapeutic effects in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in mice. Striatal tyrosine hydroxylase (TH) immunoreactivity, TH, and phosphorylated ser 40 TH (p-TH) protein levels were assayed on 7th day. Nigral TH-positive neurons stereology was conducted on serial sections 2.8 mm from bregma rostrally to 3.74 mm caudally. MPTP caused 39% and 58% decrease, respectively, in striatal fibers and TH protein levels, but 2.5-fold increase in p-TH levels. About 35% TH neurons were lost between 360 and 600 μm from 940 μm of the entire nigra analyzed, but no neurons were lost between 250 μm rostrally and 220 μm caudally. When L-DOPA in small doses (5-8 mg/kg) failed to affect MPTP-induced akinesia or catalepsy, co-administration of melatonin with L-DOPA attenuated these behaviors. Melatonin administration significantly attenuated MPTP-induced loss in striatal TH fibers (82%), TH (62%) and p-TH protein (100%) levels, and nigral neurons (87-100%). Melatonin failed to attenuate MPTP-induced striatal dopamine depletion. L-DOPA administration (5 mg/kg, once 40 min prior to sacrifice, p.o.) in MPTP- and melatonin-treated mice caused significant increase in striatal dopamine (31%), as compared to L-DOPA and MPTP-treated mice. This was equivalent to 8 mg/kg L-DOPA administration in parkinsonian mouse. Therefore, prolonged, effective use of L-DOPA in PD with lesser side effects could be achieved by treating with 60% lower doses of L-DOPA along with melatonin.
Collapse
Affiliation(s)
- Amit Naskar
- Laboratory of Clinical & Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | | | | | | | | |
Collapse
|
10
|
Breckenridge CB, Sturgess NC, Butt M, Wolf JC, Zadory D, Beck M, Mathews JM, Tisdel MO, Minnema D, Travis KZ, Cook AR, Botham PA, Smith LL. Pharmacokinetic, neurochemical, stereological and neuropathological studies on the potential effects of paraquat in the substantia nigra pars compacta and striatum of male C57BL/6J mice. Neurotoxicology 2013; 37:1-14. [PMID: 23523781 DOI: 10.1016/j.neuro.2013.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 11/19/2022]
Abstract
The pharmacokinetics and neurotoxicity of paraquat dichloride (PQ) were assessed following once weekly administration to C57BL/6J male mice by intraperitoneal injection for 1, 2 or 3 weeks at doses of 10, 15 or 25 mg/kg/week. Approximately 0.3% of the administered dose was taken up by the brain and was slowly eliminated, with a half-life of approximately 3 weeks. PQ did not alter the concentration of dopamine (DA), homovanillic acid (HVA) or 3,4-dihydroxyphenylacetic acid (DOPAC), or increase dopamine turnover in the striatum. There was inconsistent stereological evidence of a loss of DA neurons, as identified by chromogenic or fluorescent-tagged antibodies to tyrosine hydroxylase in the substantia nigra pars compacta (SNpc). There was no evidence that PQ induced neuronal degeneration in the SNpc or degenerating neuronal processes in the striatum, as indicated by the absence of uptake of silver stain or reduced immunolabeling of tyrosine-hydroxylase-positive (TH(+)) neurons. There was no evidence of apoptotic cell death, which was evaluated using TUNEL or caspase 3 assays. Microglia (IBA-1 immunoreactivity) and astrocytes (GFAP immunoreactivity) were not activated in PQ-treated mice 4, 8, 16, 24, 48, 96 or 168 h after 1, 2 or 3 doses of PQ. In contrast, mice dosed with the positive control substance, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 10mg/kg/dose×4 doses, 2 h apart), displayed significantly reduced DA and DOPAC concentrations and increased DA turnover in the striatum 7 days after dosing. The number of TH(+) neurons in the SNpc was reduced, and there were increased numbers of degenerating neurons and neuronal processes in the SNpc and striatum. MPTP-mediated cell death was not attributed to apoptosis. MPTP activated microglia and astrocytes within 4 h of the last dose, reaching a peak within 48 h. The microglial response ended by 96 h in the SNpc, but the astrocytic response continued through 168 h in the striatum. These results bring into question previous published stereological studies that report loss of TH(+) neurons in the SNpc of PQ-treated mice. This study also suggests that even if the reduction in TH(+) neurons reported by others occurs in PQ-treated mice, this apparent phenotypic change is unaccompanied by neuronal cell death or by modification of dopamine levels in the striatum.
Collapse
|
11
|
Dodd CA, Bloomquist JR, Klein BG. Consequences of manganese administration for striatal dopamine and motor behavior in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-exposed C57BL/6 mice. Hum Exp Toxicol 2012; 32:865-80. [PMID: 23263854 DOI: 10.1177/0960327112469043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Environmental compounds may be important contributors to Parkinson's disease etiology. Epidemiological and experimental evidence for the facilitation of parkinsonism by manganese is equivocal. This work addressed methodological concerns in the few studies of manganese modulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity in C57BL/6 mice. Male, retired breeder mice received 0 or 100 mg/kg of manganese chloride (MnCl₂; subcutaneously on days 1, 4 and 7) and 0 or 20 mg/kg of MPTP (intraperitoneally on day 8) and survived up to day 15 or 22. On the day of sacrificing, horizontal (grid crossing) and vertical (rearing) open field movement, swimming, grip strength and grip fatigue were examined. Striata were analyzed for dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) using high-performance liquid chromatography. MPTP produced a main effect decrease in striatal dopamine (48.8%) and DOPAC (38.1%), but there was no main effect of MnCl₂ or MnCl₂ x MPTP interaction. However, modulatory interactions were observed between the effects of MnCl₂ and MPTP for grid crossing, rearing and grip strength. Interestingly, these interactions reduced the severity of behavioral deficits attributable to either of these compounds alone. For rearing and grip strength, the MnCl₂ x MPTP interaction was dependent upon survival time. The mechanistic nature of the MnCl₂ x MPTP interaction upon these behaviors, in the absence of such an interaction for striatal dopamine and DOPAC, remains to be clarified.
Collapse
Affiliation(s)
- C A Dodd
- Department of Biology, Fort Valley State University, Fort Valley, GA, USA
| | | | | |
Collapse
|
12
|
Mudò G, Mäkelä J, Liberto VD, Tselykh TV, Olivieri M, Piepponen P, Eriksson O, Mälkiä A, Bonomo A, Kairisalo M, Aguirre JA, Korhonen L, Belluardo N, Lindholm D. Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease. Cell Mol Life Sci 2012; 69:1153-65. [PMID: 21984601 PMCID: PMC11114858 DOI: 10.1007/s00018-011-0850-z] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/31/2011] [Accepted: 09/22/2011] [Indexed: 10/17/2022]
Abstract
Mitochondrial dysfunction and oxidative stress occur in Parkinson's disease (PD), but little is known about the molecular mechanisms controlling these events. Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a transcriptional coactivator that is a master regulator of oxidative stress and mitochondrial metabolism. We show here that transgenic mice overexpressing PGC-1α in dopaminergic neurons are resistant against cell degeneration induced by the neurotoxin MPTP. The increase in neuronal viability was accompanied by elevated levels of mitochondrial antioxidants SOD2 and Trx2 in the substantia nigra of transgenic mice. PGC-1α overexpression also protected against MPTP-induced striatal loss of dopamine, and mitochondria from PGC-1α transgenic mice showed an increased respiratory control ratio compared with wild-type animals. To modulate PGC-1α, we employed the small molecular compound, resveratrol (RSV) that protected dopaminergic neurons against the MPTP-induced cell degeneration almost to the same extent as after PGC-1α overexpression. As studied in vitro, RSV activated PGC-1α in dopaminergic SN4741 cells via the deacetylase SIRT1, and enhanced PGC-1α gene transcription with increases in SOD2 and Trx2. Taken together, the results reveal an important function of PGC-1α in dopaminergic neurons to combat oxidative stress and increase neuronal viability. RSV and other compounds acting via SIRT1/PGC-1α may prove useful as neuroprotective agents in PD and possibly in other neurological disorders.
Collapse
Affiliation(s)
- Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neuroscience, Division of Human Physiology, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Johanna Mäkelä
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, 00014 Helsinki, Finland
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neuroscience, Division of Human Physiology, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Timofey V. Tselykh
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, 00014 Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Melania Olivieri
- Department of Experimental Biomedicine and Clinical Neuroscience, Division of Human Physiology, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Petteri Piepponen
- Faculty of Pharmacy, Division of Pharmacology and Toxicology, University of Helsinki, 00014 Helsinki, Finland
| | - Ove Eriksson
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, 00014 Helsinki, Finland
- Research Program Unit, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Annika Mälkiä
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Alessandra Bonomo
- Department of Experimental Biomedicine and Clinical Neuroscience, Division of Human Physiology, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Minna Kairisalo
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Jose A. Aguirre
- Department of Human Physiology, School of Medicine, University of Malaga, 27071 Malaga, Spain
| | - Laura Korhonen
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, 00014 Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neuroscience, Division of Human Physiology, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Dan Lindholm
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, 00014 Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| |
Collapse
|
13
|
Frank T, Klinker F, Falkenburger BH, Laage R, Lühder F, Göricke B, Schneider A, Neurath H, Desel H, Liebetanz D, Bähr M, Weishaupt JH. Pegylated granulocyte colony-stimulating factor conveys long-term neuroprotection and improves functional outcome in a model of Parkinson's disease. ACTA ACUST UNITED AC 2012; 135:1914-25. [PMID: 22427327 DOI: 10.1093/brain/aws054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent proof-of-principle data showed that the haematopoietic growth factor granulocyte colony-stimulating factor (filgrastim) mediates neuroprotection in rodent models of Parkinson's disease. In preparation for future clinical trials, we performed a preclinical characterization of a pegylated derivative of granulocyte colony-stimulating factor (pegfilgrastim) in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. We determined serum and cerebrospinal fluid drug levels after subcutaneous injection. A single injection of pegfilgrastim was shown to achieve stable levels of granulocyte colony-stimulating factor in both serum and cerebrospinal fluid with substantially higher levels compared to repetitive filgrastim injections. Leucocyte blood counts were only transiently increased after repeated injections. We demonstrated substantial dose-dependent long-term neuroprotection by pegfilgrastim in both young and aged mice, using bodyweight-adjusted doses that are applicable in clinical settings. Importantly, we found evidence for the functionally relevant preservation of nigrostriatal projections by pegfilgrastim in our model of Parkinson's disease, which resulted in improved motor performance. The more stable levels of pegylated neuroprotective proteins in serum and cerebrospinal fluid may represent a general advantage in the treatment of chronic neurodegenerative diseases and the resulting longer injection intervals are likely to improve patient compliance. In summary, we found that pegylation of a neuroprotective growth factor improved its pharmacokinetic profile over its non-modified counterpart in an in vivo model of Parkinson's disease. As the clinical safety profile of pegfilgrastim is already established, these data suggest that evaluation of pegfilgrastim in further Parkinson's disease models and ultimately clinical feasibility studies are warranted.
Collapse
Affiliation(s)
- Tobias Frank
- Department of Neurology, University Medical Centre, Georg-August-University, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sager TN, Kirchhoff J, Mørk A, Van Beek J, Thirstrup K, Didriksen M, Lauridsen JB. Nest building performance following MPTP toxicity in mice. Behav Brain Res 2010; 208:444-9. [DOI: 10.1016/j.bbr.2009.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/08/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
|
15
|
Ono SI, Hirai K, Tokuda EI. Effects of pergolide mesilate on metallothionein mRNAs expression in a mouse model for Parkinson disease. Biol Pharm Bull 2010; 32:1813-7. [PMID: 19801850 DOI: 10.1248/bpb.32.1813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dopamine agonists have neuroprotective properties in addition to their original pharmacologic function. We examined the effects of pergolide mesilate (PM) on the levels of metallothionein mRNA expression and lipid peroxidation in the corpus striata of 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonian mice. Mice were administered normal saline (vehicle as a control), PM, or MPTP. A consecutive 7-d administration of MPTP via a gastric tube at a dose of 30 mg/kg significantly decreased metallothionein (MT)-I mRNA expression but did not influence MT-III mRNA expression. Lipid peroxidation, measured as the production of malondialdehyde reactive substances, did not increase after MPTP treatment. Although PM administration alone did not effect MT-I expression, an additional consecutive 7-d administration of PM (30 mug/kg) following MPTP treatment recovered the decreased MT-I level and increased MT-III expression. Lipid peroxidation was significantly suppressed. These results suggest that PM exerts an antioxidative property through the induction of MT-I and MT-III mRNAs simultaneously in response to cellular and/or tissue injury.
Collapse
Affiliation(s)
- Shin-ichi Ono
- Research Unit of Clinical Pharmacy, College of Pharmacy, Nihon University, Funabashi, Chiba274-8555, Japan.
| | | | | |
Collapse
|
16
|
Luchtman DW, Shao D, Song C. Behavior, neurotransmitters and inflammation in three regimens of the MPTP mouse model of Parkinson's disease. Physiol Behav 2009; 98:130-8. [DOI: 10.1016/j.physbeh.2009.04.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 01/19/2023]
|
17
|
He XJ, Nakayama H. Neurogenesis in Neurotoxin-induced Animal Models for Parkinson's Disease-A Review of the Current Status. J Toxicol Pathol 2009; 22:101-8. [PMID: 22271983 PMCID: PMC3246055 DOI: 10.1293/tox.22.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 01/21/2009] [Indexed: 12/17/2022] Open
Abstract
Animal models for Parkinson’s disease (PD) are essential for understanding its pathogenesis and for development and testing of new therapies. Discoveries of endogenous neurogenesis in the adult mammalian brain give new insight into the cell-based approach for treatment of neurodegenerative disorders, such as PD. Although a great deal of interest has been focused on endogenous neurogenesis in neurotoxin-induced animal models for PD, it still remains controversial whether neural stem cells migrate into the injured area and contribute to repopulation of depleted dopaminergic neurons in neurotoxin-injured adult brains. The purpose of this review is to examine the data available regarding neurogenesis in neurotoxin-induced animal models of PD. It is hoped that data from the animal investigations available in the literature will promote understanding of the neurotoxin-induced animal models for PD.
Collapse
Affiliation(s)
- Xi Jun He
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | |
Collapse
|
18
|
Di Benedetto M, Cavina C, D’Addario C, Leoni G, Candeletti S, Cox BM, Romualdi P. Alterations of N/OFQ and NOP receptor gene expression in the substantia nigra and caudate putamen of MPP+ and 6-OHDA lesioned rats. Neuropharmacology 2009; 56:761-7. [PMID: 19162046 PMCID: PMC2680584 DOI: 10.1016/j.neuropharm.2008.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 11/07/2008] [Accepted: 12/18/2008] [Indexed: 12/26/2022]
Abstract
It has been suggested that the opioid-like neuropeptide nociceptin/orphanin FQ(N/OFQ) and its receptor (NOPr) may contribute to Parkinson's disease. Based on this idea, the aim of our study was to investigate the involvement of the N/OFQ-NOPr system in an animal model of Parkinson's disease and to evaluate if this neuropeptidergic system is acting through mechanisms involving glutamate and/or GABA. We injected the neurotoxins MPP+ or 6-OHDA into the cerebral ventricles and 10 days later measured N/OFQ and NOPr gene expression in caudate putamen (CP) and substantia nigra (SN), by RT-PCR. A large reduction in N/OFQ and NOPr mRNAs was observed in the CP of rat treated with either MPP+ or 6-OHDA, MPP+ being more effective than 6-OHDA. Both the neurotoxins induced an increase in N/OFQ gene expression in the SN, but only MPP+ evoked a significant down-regulation of NOPr in this area, showing a slight trend of reduction in 6-OHDA treated rats. Moreover, a reduction in the levels of glutamic acid decarboxylase (GAD65/67), an enzyme that converts the excitatory neurotransmitter glutamate to the inhibitory neurotransmitter y-aminobutyric acid (GABA), was also observed in the SN following 6-OHDA. These data suggest that DA modulates N/OFQ-NOPr system gene expression in SN and CP, strengthening the hypothesis that this neuropeptidergic system could be implicated in the mechanisms underlying Parkinson's disease. Our data might also suggest that the GABAergic system plays a role in the regulation of nigral function, although further studies are necessary to confirm this hypothesis. In agreement with previous studies, we also support the hypothesis of a potential value for NOP receptor antagonists to attenuate symptoms related to the degeneration of nigrostriatal dopaminergic pathway.
Collapse
Affiliation(s)
- Manuela Di Benedetto
- Department of Pharmacology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Chiara Cavina
- Department of Pharmacology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Claudio D’Addario
- Department of Pharmacology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Giorgia Leoni
- Department of Pharmacology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Brian M. Cox
- Uniformed Services University of the Health Sciences, Department of Pharmacology, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Patrizia Romualdi
- Department of Pharmacology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
19
|
Martinez de Lagran M, Bortolozzi A, Millan O, Gispert JD, Gonzalez JR, Arbones ML, Artigas F, Dierssen M. Dopaminergic deficiency in mice with reduced levels of the dual-specificity tyrosine-phosphorylated and regulated kinase 1A, Dyrk1A(+/-). GENES, BRAIN, AND BEHAVIOR 2007; 6:569-78. [PMID: 17137466 DOI: 10.1111/j.1601-183x.2006.00285.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dual-specificity tyrosine-phosphorylated and regulated kinase 1A (DYRK1A) gene encodes a protein kinase known to play a critical role in neurodevelopment. Mice with one functional copy of Dyrk1A (Dyrk1A(+/-)) display a marked hypoactivity and altered gait dynamics in basal conditions and in novel environments. Dopamine (DA) is a key neurotransmitter in motor behavior and genetic deletion of certain genes directly related to the dopaminergic system has a strong impact on motor activity. We have studied the effects of reduced Dyrk1A expression on the function of the nigrostriatal dopaminergic system. To characterize the dopaminergic system in DYRK1A(+/-) mice, we have used behavioral, pharmacological, histological, neurochemical and neuroimaging (microPET) techniques in a multidisciplinary approach. Dyrk1A(+/-) mice exhibited decreased striatal DA levels, reduced number of DA neurons in the substantia nigra pars compacta, as well as altered behavioral responses to dopaminergic agents. Moreover, microdialysis experiments revealed attenuated striatal DA release and positron emission tomography scan display reduced forebrain activation when challenged with amphetamine, in Dyrk1A(+/-) compared with wild-type mice. These data indicate that Dyrk1A is essential for a proper function of nigrostriatal dopaminergic neurons and suggest that Dyrk1A(+/-) mice can be used to study the pathogenesis of motor disorders involving dopaminergic dysfunction.
Collapse
Affiliation(s)
- M Martinez de Lagran
- Genes and Disease Program, Center for Genomic Regulation, (CRG-UPF) PRBB, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Dodd CA, Ward DL, Klein BG. Basal Ganglia accumulation and motor assessment following manganese chloride exposure in the C57BL/6 mouse. Int J Toxicol 2006; 24:389-97. [PMID: 16393931 DOI: 10.1080/10915810500366500] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Equivocal clinical evidence for involvement of manganese in development of Parkinson's disease necessitates experimental studies on this issue. The aged, 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine-treated C57BL/6 mouse is one of the most common models for Parkinson's disease. However, there is little information on brain bioaccumulation of manganese, and little or no information on clinical/behavioral manifestations of manganese neurotoxicity, in this strain. Male C57BL/6 retired breeder mice were given a single subcutaneous injection of either 0, 50, or 100 mg/kg of MnCl(2) (single-dose regimen) or three injections of either of these doses over 7 days (multiple-dose regimen). Behavioral assessment was performed 24 h after final injection, followed by sacrifice, and body weight was recorded each day. There was a 105% increase in striatal manganese concentration 1 day after a single 100 mg/kg injection, and 421% and 647% increases, respectively, 1 day after multiple doses of 50 or 100 mg/kg of MnCl(2). One day after a single injection, there were respective 30.9% and 38.9% decreases in horizontal movement (grid crossing) for the 50 and 100 mg/kg doses and a 43.2% decrease for the multiple dose of 100 mg/kg. There was no significant main effect of dose level on rearing, swimming, grip strength, or grip fatigue. Unlike previous work with the C57BL/6 strain using smaller intraperitoneal doses, this study established dosing regimens that produced significant increases in basal ganglia manganese concentration reminiscent of brain increases in the CD-1 mouse following subcutaneous doses close to our lowest. A decrease in locomotor behavior, significant but not severe in this study, has been reported following manganese exposure in other mouse strains. These data, particularly the significant increase in basal ganglia manganese concentration, provide guidance for designing studies of the potential role of manganese in Parkinson's disease using the most common animal model for the disorder.
Collapse
Affiliation(s)
- Celia A Dodd
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
21
|
Hayashita-Kinoh H, Yamada M, Yokota T, Mizuno Y, Mochizuki H. Down-regulation of α-synuclein expression can rescue dopaminergic cells from cell death in the substantia nigra of Parkinson’s disease rat model. Biochem Biophys Res Commun 2006; 341:1088-95. [PMID: 16460685 DOI: 10.1016/j.bbrc.2006.01.057] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 01/10/2006] [Indexed: 11/16/2022]
Abstract
Fibrillization and aggregation of alpha-synuclein may play a critical role in neurodegenerative diseases like Parkinson's diseases. Adeno-associated virus (AAV) vector delivery of an alpha-synuclein ribozyme was tested for its silencing effect on degenerating nigrostriatal neurons in the MPP(+) model of Parkinson's disease. We designed alpha-synuclein ribozyme against human alpha-synuclein gene expression and constructed alpha-synuclein ribozymes-carrying rAAV vector (designated rAAV-SynRz). Co-transfection of rAAV-SynRz and rAAV-alpha-synuclein into HEK293 cells resulted in down-regulation of alpha-synuclein protein expression in vitro. Then, rAAV-SynRz was injected into the substantia nigra (SN) of MPP(+)-treated rats. Cell counts of TH-positive neurons in the SN revealed that rAAV-SynRz significantly protected TH-positive cells against apoptotic death, compared with those of rAAV-EGFP or no rAAV injected rats. Our results indicate that the use of rAAV-SynRz allowed the survival of higher number of TH-positive neurons in SN in the MPP(+) model. Down-regulation of alpha-synuclein expression could be potentially a suitable target for gene therapy of Parkinson's disease.
Collapse
|
22
|
STADLIN ALFREDA, LAU JOSEPHINEW, SZETO YK. A Selective Regional Response of Cultured Astrocytes to Methamphetaminea. Ann N Y Acad Sci 2006; 844:108-121. [DOI: 10.1111/j.1749-6632.1998.tb08226.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Cleren C, Calingasan NY, Chen J, Beal MF. Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. J Neurochem 2005; 94:995-1004. [PMID: 16092942 DOI: 10.1111/j.1471-4159.2005.03253.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Oxidative stress and inflammation are implicated in neurodegenerative diseases including Parkinson's disease (PD) and Huntington's disease (HD). Celastrol is a potent anti-inflammatory and antioxidant compound extracted from a perennial creeping plant belonging to the Celastraceae family. Celastrol is known to prevent the production of proinflammatory cytokines, inducible nitric oxide synthase and lipid peroxidation. Mice were treated with celastrol before and after injections of MPTP, a dopaminergic neurotoxin, which produces a model of PD. A 48% loss of dopaminergic neurons induced by MPTP in the substantia nigra pars compacta was significantly attenuated by celastrol treatment. Moreover, celastrol treatment significantly reduced the depletion in dopamine concentration induced by MPTP. Similarly, celastrol significantly decreased the striatal lesion volume induced by 3-nitropropionic acid, a neurotoxin used to model HD in rats. Celastrol induced heat shock protein 70 within dopaminergic neurons and decreased tumor necrosis factor-alpha and nuclear factor kappa B immunostainings as well as astrogliosis. Celastrol is therefore a promising neuroprotective agent for the treatment of PD and HD.
Collapse
Affiliation(s)
- Carine Cleren
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, New York, USA
| | | | | | | |
Collapse
|
24
|
Cleren C, Starkov AA, Calingasan NY, Lorenzo BJ, Chen J, Beal MF. Promethazine protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Neurobiol Dis 2005; 20:701-8. [PMID: 16126396 DOI: 10.1016/j.nbd.2005.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/26/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022] Open
Abstract
Promethazine (PMZ) is an FDA-approved antihistaminergic drug that was identified as a potentially neuroprotective compound in the NINDS screening program. PMZ accumulates in brain mitochondria in vivo and inhibits Ca2+-induced mitochondrial permeability transition pore (PTP) in rat liver mitochondria in vitro. We hypothesized that PMZ may have a protective effect in a mitochondrial toxin model of Parkinson's disease (PD). Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) sustained a significant loss of dopaminergic neurons within the SNpc that was strongly attenuated by PMZ treatment. However, neither striatal MPP+ concentrations nor MPTP-induced inhibition of mitochondrial complex I were affected by PMZ treatment. In isolated mouse brain mitochondria, PMZ partially prevented and reversed MPP+-induced depolarization of membrane potential and inhibited the Ca2+-induced PTP in brain mitochondria. The sum of data indicates that PMZ is a strong neuroprotective agent capable of protecting dopaminergic neurons against MPTP toxicity in vivo.
Collapse
Affiliation(s)
- Carine Cleren
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 East 68th Street, Room A-501, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Mitochondrial dysfunction has been well established to occur in Parkinson's disease (PD) and appears to play a role in the pathogenesis of the disorder. A key component of the mitochondrial electron transport chain (ETC) is coenzyme Q(10), which not only serves as the electron acceptor for complexes I and II of the ETC but is also an antioxidant. In addition to being crucial to the bioenergetics of the cell, mitochondria play a central role in apoptotic cell death through a number of mechanisms, and coenzyme Q(10) can affect certain of these processes. Levels of coenzyme Q(10) have been reported to be decreased in blood and platelet mitochondria from PD patients. A number of preclinical studies in in vitro and in vivo models of PD have demonstrated that coenzyme Q(10) can protect the nigrostriatal dopaminergic system. A phase II trial of coenzyme Q(10) in patients with early, untreated PD demonstrated a positive trend for coenzyme Q(10) to slow progressive disability that occurs in PD.
Collapse
Affiliation(s)
- Clifford W Shults
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Abstract
Reactive gliosis, the cellular manifestation of neuroinflammation, is a pathological hallmark of neurodegenerative diseases including Parkinson's disease. The persistent gliosis observed in the Parkinson's disease substantia nigra (SN) and in humans and animals exposed to the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) may represent a chronic inflammatory response that contributes to pathology. We have previously shown that in the absence of interleukin-6 (IL-6) dopaminergic neurons are more vulnerable to MPTP. Since IL-6 is both an autocrine and paracrine proliferation factor for CNS glia, we investigated reactive gliosis in MPTP-lesioned IL-6 (-/-) mice. While astrogliosis was similar in injured IL-6 (+/+) and IL-6 (-/-) SN pars compacta (pc), microgliosis was severely compromised in IL-6 (-/-) mice. In the absence of IL-6, an acute reactive microgliosis was transient with a complete absence of reactive microglia at day 7 post-lesion. Extensive reactive microgliosis was observed in the SNpc of MPTP-lesioned IL-6 (+/+) mice. Because glial derived inducible nitric oxide synthase (iNOS) has been implicated in dopaminergic cell death, we examined glial iNOS expression in the IL-6 genotypes to determine if it correlated with the greater vulnerability and reduced microgliosis observed in the MPTP-lesioned IL-6 (-/-) nigrostriatal system. Both reactive microglia and astrocytes expressed iNOS in the lesioned SNpc. In the IL-6 (-/-) mice, microglial iNOS expression diminished as reactive microgliosis declined. The data suggest IL-6 regulation of microglia activation, while iNOS expression appears to be secondary to cell activation.
Collapse
Affiliation(s)
- Hernan Cardenas
- The Parkinson's Institute, 1170 Morse Avenue, Sunnyvale, CA 94089, USA
| | | |
Collapse
|
27
|
Shang T, Uihlein AV, Van Asten J, Kalyanaraman B, Hillard CJ. 1-Methyl-4-phenylpyridinium accumulates in cerebellar granule neurons via organic cation transporter 3. J Neurochem 2003; 85:358-67. [PMID: 12675912 DOI: 10.1046/j.1471-4159.2003.01686.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1-Methyl-4-phenylpyridinium (MPP+), the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, induces apoptosis in cerebellar granule neurons (CGNs). We have tested the hypothesis that organic cation transporter (OCT) 3 mediates the accumulation and, hence, the toxicity of MPP+ in CGNs. CGNs in primary culture express OCT3 but do not express mRNA for OCT1, OCT2 or the dopamine transporter. Cerebellar astrocytes are negative for OCT3 protein by immunocytochemistry. [3H]MPP+ accumulation by CGNs exhibits first-order kinetics, and a Kt value of 5.3 +/- 1.2 micro m and a Tmax of 0.32 +/- 0.02 pmol per min per 106 cells. [3H]MPP+ accumulation is inhibited by corticosterone, beta-estradiol and decynium 22 with Ki values of 0.25 micro m, 0.17 micro m and 4.0 nm respectively. [3H]MPP+ accumulation is also inhibited by desipramine, dopamine, serotonin and norepinephrine, but is not affected by carnitine (10 mm), mazindol (9 micro m) or GBR 12909 (1 micro m). MPP+-induced caspase-3-like activation and cell death are prevented by pretreatment with 5 micro mbeta-estradiol. In contrast, the neurotoxic effects of rotenone are unaffected by beta-estradiol. Interestingly, GBR 12909 protects CGNs from both MPP+ and rotenone toxicity. In summary, CGNs accumulate MPP+ in manner that is consistent with uptake via OCT3 and the presence of this protein in CGNs explains their sensitivity to MPP+ toxicity.
Collapse
Affiliation(s)
- Tiesong Shang
- Biophysics Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
28
|
Muralikrishnan D, Ebadi M, Brown-Borg HM. Effect of MPTP on Dopamine metabolism in Ames dwarf mice. Neurochem Res 2002; 27:457-64. [PMID: 12199149 DOI: 10.1023/a:1019888300957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hypopituitary dwarf mice exhibit a heightened antioxidative capacity and live extensively longer than age-matched controls. Importantly, dwarf mice resist peripheral oxidative stress induced by paraquat, and behaviorally, they maintain cognitive function and locomotor activity at levels above those observed in old wild-type animals. We assessed monoaminergic neurotransmitters in nigrostriatal tract and cerebellum after the administration of the dopaminergic neurotoxin, MPTP. There was no significant change in mitochondrial monoamine oxidase (MAO)-B and total MAO activity in the substantia nigra and nucleus caudatus putamen of wild-type and dwarf mice. Coenzymes Q-9 and Q-10 were present in similar quantities, as were dopamine, norepinephrine, and serotonin levels in the cerebellum and nigrostriatal tract. MPTP set off tremor, hind limb abduction, and straub tail behavior and induced significant dopamine depletion in the striatum of both dwarf and normal mice. This study shows that the MAO activity and the coenzyme content of dwarf mice are similar to those of their wild-type controls and hence susceptible to MPTP-induced toxicity.
Collapse
Affiliation(s)
- Dhanasekaran Muralikrishnan
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | | | | |
Collapse
|
29
|
Morgan WW, Nelson JF. Chronic administration of pharmacological levels of melatonin does not ameliorate the MPTP-induced degeneration of the nigrostriatal pathway. Brain Res 2001; 921:115-21. [PMID: 11720717 DOI: 10.1016/s0006-8993(01)03106-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An extensive literature suggests that melatonin may protect from the degenerative effects of central neurotoxins by acting as a free radical scavenger. The purpose of this study was to determine if melatonin would protect male C57BL6 mice from the toxicity of methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to nigral dopamine (DA) neurons. Melatonin was initially dissolved in dimethyl sulfoxide (DMSO), diluted to 16 microg/ml and then provided in the drinking water for 4 weeks. Control mice drank the same final concentration of the DMSO diluent. One week before the termination of the experiment, randomly selected mice from the melatonin-treated and the DMSO-treated groups received two, three or four doses of 2.5 mg/kg MPTP free base administered subcutaneously at 2-h intervals. Additional DMSO-treated and melatonin-treated mice did not receive MPTP. Following tissue collection, melatonin concentration was measured in blood plasma collected from each animal and found to be 20-fold higher in melatonin-treated compared to DMSO-treated mice. Tyrosine hydroxylase (TH) activity and the levels of DA and dihydroxyphenylacetic acid (DOPAC) were not different in striata collected from melatonin-treated versus DMSO-treated mice which did not receive MPTP. Treatment with MPTP significantly reduced striatal TH activity, DA and DOPAC, but there were no significant differences in the reductions in any of these parameters observed in the melatonin-treated versus the DMSO-treated control mice that received the same total dosage of MPTP. These results show that the long-term administration of a high pharmacological dose of melatonin was ineffective in protecting nigral dopaminergic neurons from the neurotoxic effects of MPTP.
Collapse
Affiliation(s)
- W W Morgan
- Department of Cellular and Structural Biology, Mail Code 7762, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
30
|
Muralikrishnan D, Ebadi M. SKF-38393, a dopamine receptor agonist, attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Brain Res 2001; 892:241-7. [PMID: 11172770 DOI: 10.1016/s0006-8993(00)02994-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of nigrostriatal dopaminergic neurons. Several factors such as inhibition of the mitochondrial respiration, generation of hydroxyl radicals and reduced free radical defense mechanisms causing oxidative stress, have been postulated to contribute to the degeneration of dopaminergic neurons. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated animals is a useful experimental model of PD, exhibiting most of the clinical features, as well as the main biochemical and pathologic symptoms of the disease. In the present study, we have examined a dopaminergic (D1) receptor agonist, SKF-38393 HCl (SKF) for its possible neuroprotective action against MPTP-induced insults on dopaminergic neurons. MPTP is converted by monoamine oxidase-B (MAO-B) to its neurotoxic metabolite 1-methyl-4-phenyl-pyridinium (MPP+), which is then taken up into the dopaminergic neurons. SKF-38393 had no effects either on total or monoamine oxidase B in the striatum. SKF-38393 blocked the MPTP-induced depletion of glutathione and attenuated MPTP-induced depletion of dopamine. Furthermore, it enhanced the activity of superoxide dismutase and hence mimicked the action of selegiline. The results of these studies are interpreted to suggest that SKF-38393 may prove a valuable drug in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- D Muralikrishnan
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58203, USA
| | | |
Collapse
|
31
|
Zhigaltsev IV, Kaplun AP, Kucheryanu VG, Kryzhanovsky GN, Kolomeichuk SN, Shvets VI, Yurasov VV. LIPOSOMES CONTAINING DOPAMINE ENTRAPPED IN RESPONSE TO TRANSMEMBRANE AMMONIUM SULFATE GRADIENT AS CARRIER SYSTEM FOR DOPAMINE DELIVERY INTO THE BRAIN OF PARKINSONIAN MICE. J Liposome Res 2001; 11:55-71. [DOI: 10.1081/lpr-100103170] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
|
32
|
Abstract
Disruption of mitochondrial function has been proposed as an action of 1-methyl-4-phenylpyridinium (MPP(+)) that is responsible for its toxicity. In order to characterize effects of MPP(+) on energy metabolism in primary culture neurons, we monitored levels of several metabolites in cultured rat cerebellar granule cells exposed to MPP(+). The toxin produced a rapid concentration-dependent reduction in intracellular phosphocreatine (PCr), amounting to a 50-80% decrease within 30-60 min at 50 microM, that was maintained through the 1 week exposure interval examined. In contrast, ATP levels remained comparable to those of untreated neurons for approximately 4 days, at that time a 50% reduction in ATP was observed in association with a decrease in cell viability. Acute decreases in PCr were accompanied by increases in creatine such that the total creatine levels were maintained. Lactate levels in the culture medium were significantly increased (from 4.5 to 6.0 mM) within 6 hr after addition of MPP(+), with a concentration dependence similar to that observed for the reduction in PCr. Increased lactate production in the presence of MPP(+) coincided with a more rapid depletion of glucose in the culture medium. MPP(+) induced a rapid and sustained decrease in intracellular pH calculated from the creatine kinase equilibrium, and this acidification is considered primarily responsible for the observed decrease in PCr. These studies provide direct evidence that toxic concentrations of MPP(+) have acute effects on energy metabolism in primary culture neurons, consistent with an increased dependence on glycolysis to meet metabolic demand, but indicate that toxicity is not associated with overt, immediate failure to maintain cellular ATP.
Collapse
Affiliation(s)
- A M Marini
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
| | | |
Collapse
|
33
|
Rojas P, Ríos C. Metallothionein inducers protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in mice. Neurochem Res 1997; 22:17-22. [PMID: 9021756 DOI: 10.1023/a:1027312901477] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a drug that induces parkinsonism in human and non-human primates. Free radicals are thought to be involved in its mechanism of action. Recently, the participation of metallothionein as scavenger of free radicals has been proposed. In this work, we studied the effect of metallothionein inducers in MPTP neurotoxic action. Male swiss albino mice were pretreated either with cadmium (1 mg/kg) or dexamethasone (5 mg/kg), two well-known inducers of metallothionein synthesis, and 5 hours later with an MPTP administration (30 mg/kg). Treatment schedule was repeated daily for either 3 or 5 consecutive days. All animals were killed 7 days after the last administration, and striatal dopamine and homovanillic acid contents were analyzed as an end-point of MPTP neurotoxicity. Striatal dopamine content of cadmium plus MPTP-treated animals (3-days) increased by 32%, and 48% (5-days) vs MPTP-alone animals. Dexamethasone plus MPTP-treated group also showed increased dopamine levels 28% (3-days) and 43% (5-days). MPTP treatment reduced striatal metallothionein concentration (49% vs control animals). Dexamethasone and cadmium increased metallothionein concentrations in MPTP-treated groups, by 77% and 82% respectively. Results suggest that metallothionein induction provide a significant resistance factor against the deleterious effect of MPTP.
Collapse
Affiliation(s)
- P Rojas
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, México, D.F
| | | |
Collapse
|
34
|
Tsai YF, Tsai HW, Tai MY. Comparison of brain dopamine depletion induced by low-dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in young and aged rats. Neurosci Res 1994; 20:27-33. [PMID: 7984338 DOI: 10.1016/0168-0102(94)90019-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on dopamine levels in the striatum (ST), substantia nigra (SN), olfactory tubercle (OT), ventral tegmental area (VTA) and nucleus accumbens (NA) were studied in young (1 month) and old (21 months) male Long-Evans rats. Following repeated treatment with MPTP at low dose (3 mg/kg i.p. daily for 8 days) both young and old rats showed a marked depletion of dopamine (DA) concentrations in the ST compared to those of age-matched saline-treated controls. However, a significant reduction in DA levels was observed in the OT and NA of old but not young rats treated with MPTP. In contrast, no changes in 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels in these three regions were seen in either young or old MPTP-treated rats. However, the ratio of DOPAC/DA and HVA/DA in the ST and NA were significantly higher in old MPTP-treated rats than those in old controls. The concentrations of DA, DOPAC and HVA remained unchanged in the SN and VTA of both young and old rats after MPTP treatment. These results indicate that multiple treatment of low-dose MPTP selectively causes more widespread damage to dopaminergic neurons in old rats than in young ones, and further support the view that effects of MPTP on the dopaminergic system in rats may depend on age.
Collapse
Affiliation(s)
- Y F Tsai
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, ROC
| | | | | |
Collapse
|
35
|
Zang LY, Misra HP. Acetylcholinesterase inhibition by 1-methyl-4-phenylpyridinium ion, a bioactivated metabolite of MPTP. Mol Cell Biochem 1993; 126:93-100. [PMID: 8302294 DOI: 10.1007/bf00925686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of the neurotoxicant, 1-methyl-4-phenylpyridinium ion (MPP+) on acetylcholinesterase (AchE) activity was investigated. The MPP+ was found to inactivate the enzyme in a dose dependent manner. The kinetic parameter, Km for the substrate (acetylthiocholine), was found to be 0.216 mM and Ki for MPP+ for the inactivation of AChE was found to be 0.197 mM. It was found that MPP+ is neither a substrate of AChE nor the time-dependent inactivator. The studies of reaction kinetics indicate the inactivation of AChE to be a linear mixed-type inhibition. The inactivation of AChE by MPP+ was partially recovered by either dilution or gel exclusion chromatography. These data suggest that once MPP+ enters the basal ganglia of the brain, it can inactivate the AChE and thereby increase the acetylcholine level in the basal ganglia, leading to potential cell dysfunction. It appears likely that the nigrostriatal toxicity by MPP+ leading to Parkinson's disease-like syndrome may, in part, be mediated via the AChE inactivation.
Collapse
Affiliation(s)
- L Y Zang
- Department of Biomedical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg 24061-0442
| | | |
Collapse
|
36
|
Rojas P, Altagracia M, Kravzov J, Rios C. Amantadine increases striatal dopamine turnover in MPTP-treated mice. Drug Dev Res 1993. [DOI: 10.1002/ddr.430290309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Garcia E, Rios C, Sotelo J. Ventricular injection of nerve growth factor increases dopamine content in the striata of MPTP-treated mice. Neurochem Res 1992; 17:979-82. [PMID: 1508308 DOI: 10.1007/bf00966824] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Experimental depletion of dopaminergic striatal neurons was induced in mice with the neurotoxin MPTP. To investigate a possible effect of nerve growth factor on the damaged neurons, we injected 4 micrograms into the right cerebral ventricle of mice three days after the last administration of MPTP. We found a significant increase of dopamine and homovanillic acid in the striatum of MPTP treated mice after NGF administration when compared with dopamine and HVA levels in MPTP-treated control mice (p less than 0.001). The increase of dopamine and homovanillic acid seems to be related to a partial restorative effect of NGF on the damaged dopaminergic cells, since ventricular administration of NGF to normal mice did not increase dopamine or homovanillic acid contents above the levels measured in untreated controls. It appears that administration of nerve growth factor produces a beneficial effect on damaged dopaminergic neurons; this effect could be due to stimulation of neuron sprouting from neurons that survived the toxic effect of MPTP. The increase of dopamine levels was seen 8 days after injection of nerve growth factor and was maintained at least until day 25, showing a lasting persistence of the restorative effect.
Collapse
Affiliation(s)
- E Garcia
- Laboratory of Neuroimmunology, National Institute of Neurology and Neurosurgery, Mexico
| | | | | |
Collapse
|
38
|
Mitsuo K, Schwartz JP. Somatostatin Content Increases Following Norepinephrine Depletion in Frontal Cortex of l-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Treated Mice. J Neurochem 1992; 59:267-72. [PMID: 1351925 DOI: 10.1111/j.1471-4159.1992.tb08900.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on somatostatin (SS)-containing neurons were examined by measuring dopamine, norepinephrine (NE), SS, and SS mRNA in striatum and frontal cortex of C57/B16 mice at various times following treatment with MPTP-HCl (96 mg/kg i.p.). MPTP caused a 70% depletion of dopamine in striatum by 1 day and a 40% depletion of NE in frontal cortex within 3 days. SS content was increased in frontal cortex 4 days later, but not in striatum; there were no changes in SS mRNA. Maprotiline, a specific NE-uptake blocker, prevented both the depletion of NE and the increase of SS in frontal cortex due to MPTP administration. These results support the possibility that NE can regulate SS in frontal cortex and are discussed in terms of the decrease of SS seen in parkinsonian patients with dementia.
Collapse
Affiliation(s)
- K Mitsuo
- Clinical Neuroscience Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
39
|
Marini AM, Lipsky RH, Schwartz JP, Kopin IJ. Accumulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in cultured cerebellar astrocytes. J Neurochem 1992; 58:1250-8. [PMID: 1548462 DOI: 10.1111/j.1471-4159.1992.tb11336.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cultured cerebellar astrocytes rapidly accumulate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) from the incubation medium, reaching a plateau within 10 min, whereas within that time negligible amounts of 1-methyl-4-phenylpyridinium (MPP+) have entered the astrocytes. MPTP accumulation is essentially independent of temperature and is proportional to extracellular concentration at steady state: The steady-state concentration achieved within these cells is about 50-fold higher at relatively low extracellular concentrations. MPTP appears to accumulate intracellularly within lysosomes, because lysosomotropic agents such as ammonium chloride and chloroquine markedly diminish the accumulation. Moreover, a proton gradient is required, because MPTP accumulation is abolished by the hydrogen ion antiporter monensin. Over an interval of several days, MPTP is converted to MPP+ intracellularly, with a concomitant decrease in medium MPTP and increase in medium MPP+. A constant, small but significant amount of MPP+ is retained intracellularly over a 72-h interval. Increasing the medium MPTP concentrations results in increased conversion of MPTP and enhanced intracellular retention of MPTP and MPP+. Neither MPTP nor MPP+ is neurotoxic to cultured cerebellar astrocytes as determined by cell counts and rate of conversion of MPTP to MPP+.
Collapse
Affiliation(s)
- A M Marini
- Clinical Neuroscience Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
40
|
Greenwood CE, Tatton WG, Seniuk NA, Biddle FG. Increased dopamine synthesis in aging substantia nigra neurons. Neurobiol Aging 1991; 12:557-65. [PMID: 1685220 DOI: 10.1016/0197-4580(91)90087-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Striatal dopamine (DA) and metabolite (DOPAC) levels in 8-, 21-, 52- and 104-week-old C57BL mice were compared with those in 11-week-old mice, 20 days after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. DA and DOPAC concentrations expressed relative to striatal wet weight did not change with age. In contrast, DA and DOPAC levels increased almost linearly when values were expressed relative to the proportion of remaining tyrosine hydroxylase-positive (TH+) SNc neurons, reaching a 5-7-fold increase per average remaining TH+ neuron by 104 weeks of age (corresponding to neuronal loss of 70%) relative to that found per average neuron in 8-week-old mice. DA and DOPAC levels per average remaining TH+ SNc neuron following MPTP increased for low doses (neuronal losses less than 42%) but decreased for higher doses (55 and 70% losses) but the DOPAC/DA ratio per SNc neuron increased and was 9-fold higher in the 300 mg/kg MPTP-treated animals in comparison to saline controls. Cytoplasmic TH protein (estimated by somal TH immunodensity) was increased by 45% in SNc somata from mice treated with 150 mg/kg MPTP in comparison to saline controls, and by 63% in 104-week-old mice in comparison to 8-week-old animals. This study provides evidence that an average surviving TH+ SNc neuron compensates for the age-related loss of other SNc neurons by increasing dopamine synthesis similar to younger SNc neurons surviving low levels of toxically induced damage and that the compensation may be in part mediated by increased synthesis of TH.
Collapse
Affiliation(s)
- C E Greenwood
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
41
|
Santiago M, Rollema H, de Vries JB, Westerink BH. Acute effects of intranigral application of MPP+ on nigral and bilateral striatal release of dopamine simultaneously recorded by microdialysis. Brain Res 1991; 538:226-30. [PMID: 1707325 DOI: 10.1016/0006-8993(91)90434-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intracerebral microdialysis in freely moving rats was used to investigate the effects of perfusions with the 1-methyl-4-phenylpyridinium ion (MPP+) in the substantia nigra (SN) on the extracellular levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in the perfused SN and in the ipsi- and contralateral striata. Following MPP+ perfusion, the release of DA in the SN increased markedly from nondetectable basal levels to about 105 fmoles/min, whereas the output of DOPAC, HVA and 5-HIAA decreased below 25% of basal levels. The intranigral MPP+ application induced, at the same time, an almost immediate, long-lasting decrease in the release of DA in the ipsilateral striatum to less than 20% of basal levels and a moderate increase in the DOPAC and HVA levels, without affecting 5-HIAA output. In the contralateral striatum, the extracellular levels of DA, DOPAC, HVA and 5-HIAA remained unchanged during the entire perfusion experiment. These results suggest that infusion of 10 mM MPP+ into the SN produces an almost immediate blockade of neuronal impulse flow, as shown by the rapid decline in DA release from the ipsilateral striatal nerve terminals. The simultaneously occurring massive increase of the extracellular DA in the SN is, therefore, probably the result of destruction of the nigral cell bodies and/or dendrites following locally applied MPP+. This study clearly illustrates the possibilities of simultaneous microdialysis in various brain areas, allowing pharmacological manipulations on the levels of the cell bodies, while monitoring events in the terminal areas.
Collapse
Affiliation(s)
- M Santiago
- Department of Medicinal Chemistry, University Centre for Pharmacy, Groningen, The Netherlands
| | | | | | | |
Collapse
|
42
|
Rose S, Nomoto M, Jackson EA, Gibb WR, Jenner P, Marsden CD. 1-Methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-methyl-MPTP) is less neurotoxic than MPTP in the common marmoset. Eur J Pharmacol 1990; 181:97-103. [PMID: 2117541 DOI: 10.1016/0014-2999(90)90249-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Four adult marmosets were treated with increasing doses of 1-methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-methyl-MPTP) in the range 0.23-4.3 mg/kg i.p. to give a cumulative dose of 11.0-11.6 mg/kg over a 6-10 day period. After 4 days of treatment, and as the dosage was gradually increased, the animals exhibited mild motor deficits. These abnormalities slowly declined over the following 1-6 week period. In contrast, similar treatment of common marmosets with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (1-4 mg/kg i.p.) for 3-5 days in a cumulative dose of 6.9-9.2 mg/kg produced gross impairment of motor function which persisted throughout the 5 weeks period of observation. Administration of 2'-methyl-MPTP for 6-10 days caused some decrease in dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC), but not homovanillic acid (HVA) content in the caudate nucleus in animals 5-6 weeks after the start of treatment. There was a small decrease in [3H]dopamine uptake into putamen synaptosomes. This contrasted with the marked decreases in all these parameters observed after MPTP treatment of common marmosets. Histological examination of the substantia nigra from the four animals treated with 2'-methyl-MPTP did not show degeneration or loss of dopamine-containing cell bodies in the zona compacta. In contrast, MPTP caused severe destruction of these pigmented nigral neurones. In the common marmoset 2'-methyl-MPTP does not appear to show the same neurotoxic action as MPTP itself. This contrasts with findings in the mouse where 2'-methyl-MPTP is more toxic to dopamine-containing cells of substantia nigra than MPTP.
Collapse
Affiliation(s)
- S Rose
- Parkinson's Disease Society Experimental Research Laboratories, Biomedical Sciences Division, King's College, London, U.K
| | | | | | | | | | | |
Collapse
|
43
|
Jarvis MF, Wagner GC. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in the rat: characterization and age-dependent effects. Synapse 1990; 5:104-12. [PMID: 2309157 DOI: 10.1002/syn.890050204] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a potent dopaminergic toxin that has been found to produce Parkinson's disease-like symptoms in humans and monkeys. The neurotoxic effects of MPTP appear to be reduced in rodents where multiple dosing procedures are required to demonstrate long-lasting neuronal deficits. In the present study, the neurotoxic effects of MPTP were further characterized in the rat. Following the repeated administration of MPTP, pronounced (60-80%) and dose-dependent depletions of striatal dopamine and serotonin concentrations were found in the rat brain. Time-course studies revealed that while striatal dopamine concentrations remained consistently reduced for at least 8 weeks following MPTP treatment, striatal serotonin depletions as well as MPTP-induced monoamine depletions in other brain regions were transient in nature. Pretreatment with the MAO-B inhibitor pargyline afforded a selective and complete protection of striatal dopamine levels without significantly affecting MPTP-induced striatal serotonin depletions. Similarly, treatment with ascorbic acid was found to selectively attenuate MPTP-induced dopamine depletions in rats. The neurotoxic effects of MPTP were also found to increase in the developing rat. No significant brain monoamine depletions were observed in neonatal rats following the repeated administration of MPTP. However, MPTP-induced neurotoxicity progressively increased in older rats. The present results indicate that when appropriate treatment procedures are used, a pronounced, selective, age-dependent, and long-lasting MPTP-induced reduction in striatal dopamine concentrations can be observed in the rat brain. The present results are discussed in reference to the putative mechanisms and species differences of MPTP-induced neurotoxicity.
Collapse
Affiliation(s)
- M F Jarvis
- Department of Psychology, Rutgers State University, New Brunswick, New Jersey 08903
| | | |
Collapse
|
44
|
Furune S, Miura K, Watanabe K, Nagao S, Takahashi H, Sakai M, Spatz M, Nagatsu I. Transplacental effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on brain dopaminergic neurons in the mouse. An immunohistochemical study. Acta Neuropathol 1989; 79:279-85. [PMID: 2575340 DOI: 10.1007/bf00294662] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immunohistochemical studies of monoamine neurons were performed to evaluate toxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on young adult mice and compare them with those of their offspring. Mice, 9-11 weeks old (C57BL/6J), injected subcutaneously with a large dose of MPTP (17 mg/kg per day) during pregnancy on Day 9 and 12 of gestation (G9 and G12) miscarried and were examined at 13 weeks of age. Conversely, mice treated during pregnancy with sequential low dose of MPTP (2.8 mg/kg per day at G9-G17 for 8 days) successfully delivered their babies and were examined at the age of 15 weeks. Baby mice were examined at 1 and 6 weeks of age. The tyrosine hydroxylase-, aromatic L-amino acid decarboxylase- and dopamine (DA)-immunoreactive density of caudoputamen was reduced in 13-week-old mice treated with high dose of MPTP but not in the 15-week-old mothers exposed to a low dose of MPTP as compared to their respective controls. The DA-immunoreactive density of the caudoputamen was the only staining that was reduced in both 1- and 6-week-old baby mice. In conclusion, these results demonstrate that MPTP injected to pregnant mice causes a DA depletion in the striatum of their offspring indicating a transplacental effect of MPTP. The findings also indicate that fetal brain is more susceptible to MPTP toxicity than the brain of young pregnant mice.
Collapse
Affiliation(s)
- S Furune
- Department of Pediatrics, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ambrosio S, Blesa R, Mintenig GM, Palacios-Araus L, Mahy N, Gual A. Acute effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on catecholamines in heart, adrenal gland, retina and caudate nucleus of the cat. Toxicol Lett 1988; 44:1-6. [PMID: 3263717 DOI: 10.1016/0378-4274(88)90122-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The short-term (24 h) effects of 10 mg/kg of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on cat catecholamine levels of heart, adrenal gland, retina, and caudate nucleus were studied. Significant differences in catecholamines, including adrenomedullar adrenaline, heart noradrenaline, and retinal dopamine, were observed. No differences were found in caudate nucleus dopamine. In this organ, the levels of dopamine metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were significantly lower after MPTP treatment. Biochemical changes caused by MPTP with respect to its effects on the peripheral catecholaminergic organs are discussed.
Collapse
Affiliation(s)
- S Ambrosio
- Departament de Ciències Fisiològiques Humanes i de la Nutrició, Universitat de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Mihatsch W, Russ H, Przuntek H. Intracerebroventricular administration of 1-methyl-4-phenylpyridinium ion in mice: effects of simultaneously administered nomifensine, deprenyl, and 1-t-butyl-4,4-diphenylpiperidine. J Neural Transm (Vienna) 1988; 71:177-88. [PMID: 3128644 DOI: 10.1007/bf01245711] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) destroys nigrostriatal dopaminergic pathways and thereby produces a syndrome similar to Parkinson's disease. MPTP is oxidized by monoamine oxidase B (MAO B) to the 1-methyl-4-phenylpyridinium ion (MPP+), which is taken up in dopaminergic neurons through the dopamine (DA) uptake system, where it develops its toxic effect. Our observations show a new aspect of the MPP+ mode of action, in which deprenyl in mice has a partially protective effect against MPP+. Furthermore budipine, a therapeutic agent for Parkinsonism, is also able to partially prevent MPP+ toxicity. A MAO B-inhibitory component of budipine, as shown in receptor binding studies previously, could contribute to this effect. Comparable experiments with nomifensine do not exclude the possibility of budipine as an effect as a DA uptake inhibitor. An unexplained after effect of budipine leads to a large increase in 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels five weeks after the last administration.
Collapse
Affiliation(s)
- W Mihatsch
- Department of Neurology, University of Würzburg, Federal Republic of Germany
| | | | | |
Collapse
|
47
|
Sanchez-Ramos JR, Michel P, Weiner WJ, Hefti F. Selective destruction of cultured dopaminergic neurons from fetal rat mesencephalon by 1-methyl-4-phenylpyridinium: cytochemical and morphological evidence. J Neurochem 1988; 50:1934-44. [PMID: 2897430 DOI: 10.1111/j.1471-4159.1988.tb02500.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dopaminergic neurons in cultures of dissociated cells from fetal rat mesencephalon were exposed to the principal metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-phenyl-pyridinium ion (MPP+), and several of its structural analogues. At concentrations between 0.01 and 0.1 microM, MPP+ inhibited catecholamine accumulation as visualized by cytofluorescence. Between 0.1 and 10.0 microM, MPP+ resulted in disappearance of tyrosine hydroxylase immunoreactivity without affecting other cells in the cultures. At concentrations higher than 10 microM, MPP+ was toxic to all cells present in the cultures. The effect of low concentrations of MPP+ on catecholamine cytofluorescence of the dopaminergic neurons was partially reversible. The intermediate concentrations produced irreversible structural changes of tyrosine hydroxylase-positive cells, resulting in complete disappearance of these neurons. The morphological changes were specific to the dopaminergic neurons and were not evident in other cells viewed with phase contrast microscopy. Of the structural analogues tested, the 1-ethyl analogue of MPP+ was effective in selectively destroying dopaminergic neurons in our culture system. The antioxidants L-acetyl-carnitine, beta-carotene, and alpha-tocopherol failed to protect against MPP+ neurotoxicity when co-incubated with the toxin.
Collapse
Affiliation(s)
- J R Sanchez-Ramos
- Department of Neurology, University of Miami School of Medicine, Florida
| | | | | | | |
Collapse
|
48
|
Sanchez-Ramos JR, Hollinden GE, Sick TJ, Rosenthal M. 1-Methyl-4-phenylpyridinium (MPP+) increases oxidation of cytochrome-b in rat striatal slices. Brain Res 1988; 443:183-9. [PMID: 3258785 DOI: 10.1016/0006-8993(88)91611-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Effects of 1-methyl-4-phenylpyridinium, (the active metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), on reduction/oxidation activity of mitochondrial cytochromes were studied in rat striatal slices using scanning spectrophotometry. The objective was to test the hypothesis that the neurotoxin alters electron transport in the mitochondrial respiratory chain. Incubation of rat striatal slices with MPP+ (1 microM) produced a time-dependent oxidation of Cytochrome-b in a manner consistent with the concept of a block in electron transport in the intramitochondrial respiratory chain between nicotinamide adenine dinucleotide (NAD) and Cytochrome-b. This effect of MPP+ was decreased by co-incubation with a potent dopamine uptake inhibitor (mazindol), or when studied in a tissue with low dopaminergic innervation (hippocampus). The amplitude of Cytochrome-b oxidation was greater than that expected from a selective effect of MPP+ on dopaminergic neurons suggesting that neighboring cells are influenced secondary to the MPP+ effect on dopaminergic terminals.
Collapse
Affiliation(s)
- J R Sanchez-Ramos
- Department of Neurology, University of Miami School of Medicine, FL 33136
| | | | | | | |
Collapse
|
49
|
Zimmer J, Geneser FA. Difference in monoamine oxidase B activity between C57 black and albino NMRI mouse strains may explain differential effects of the neurotoxin MPTP. Neurosci Lett 1987; 78:253-8. [PMID: 3498133 DOI: 10.1016/0304-3940(87)90369-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Monoamine oxidase B (MAO-B) is the key enzyme in the conversion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP) to N-methyl-4-phenyl-pyridinium ion (MPP+) which causes degeneration of dopaminergic nigral neurons. Using a histochemical tetrazolium method for MAO-B with tyramine as substrate and chlorgyline for the inhibition of MAO-A, black C57 mice were found to have a higher brain MAO-B activity than similar aged albino NMRI mice. The difference, which was in general density rather than distribution, included the basal ganglia and the substantia nigra. The higher activity in C57 mice may explain differences in the susceptibility to MPTP.
Collapse
|
50
|
Mizuno Y, Sone N, Saitoh T. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. J Neurochem 1987; 48:1787-93. [PMID: 3106573 DOI: 10.1111/j.1471-4159.1987.tb05737.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ion (MPP+) on activities of enzyme complexes in the electron transport system were studied using isolated mitochondrial preparations from C57BL/6J mouse brains. Both MPTP and MPP+ dose-dependently inhibited activity of NADH-ubiquinone oxidoreductase (EC 1.6.5.3). The inhibition was reversible. Preincubation of freeze-thawed mitochondria with MPTP or MPP+ had no effect on the inhibition; however, when nonfrozen mitochondria were used, NADH-ubiquinone oxidoreductase activity was reduced to 46% of that in the nonincubated sample after a 5-min preincubation with MPTP and to 77% of that in the nonincubated sample after a 5-min preincubation with MPP+. Kinetic analyses revealed that inhibition of MPTP was noncompetitive and that of MPP+ uncompetitive with respect to NADH. On the other hand, inhibition of MPTP was uncompetitive and that of MPP+ noncompetitive with respect to ubiquinone. Succinate-ubiquinone oxidoreductase (complex II), dihydroubiquinone-cytochrome c oxidoreductase (complex III), and ferrocytochrome c-oxygen oxidoreductase (EC 1.9.3.1) activities were either slightly inhibited or not inhibited by MPTP or MPP+. The significance of these findings is discussed in relation to the mechanism of MPTP-induced neuronal degeneration.
Collapse
|