1
|
Ni Bhraonain EP, Turner JA, Hannigan KI, Sanders KM, Cobine CA. Immunohistochemical characterization of interstitial cells and their spatial relationship to motor neurons within the mouse esophagus. Cell Tissue Res 2025; 399:61-84. [PMID: 39607495 DOI: 10.1007/s00441-024-03929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Interstitial cells of Cajal (ICC) and PDGFRα+ cells regulate smooth muscle motility in the gastrointestinal (GI) tract, yet their function in the esophagus remains unknown. The mouse esophagus has been described as primarily skeletal muscle; however, ICC have been identified in this region. This study characterizes the distribution of skeletal and smooth muscle cells (SMCs) and their spatial relationship to ICC, PDGFRα+ cells, and intramuscular motor neurons in the mouse esophagus. SMCs occupied approximately 30% of the distal esophagus, but their density declined in more proximal regions. Similarly, ANO1+ intramuscular ICC (ICC-IM) were distributed along the esophagus, with density decreasing proximally. While ICC-IM were closely associated with SMCs, they were also present in regions of skeletal muscle. Intramuscular, submucosal, and myenteric PDGFRα+ cells were densely distributed throughout the esophagus, yet only intramuscular PDGFRα+ cells in the lower esophageal sphincter (LES) and distal esophagus expressed SK3. ICC-IM and PDGFRα+ cells were closely associated with intramuscular nNOS+, VIP+, VAChT+, and TH+ neurons and GFAP+ cells resembling intramuscular enteric glia. These findings suggest that ICC-IM and PDGFRα+ cells may have roles in regulating esophageal motility due to their close proximity to each other and to skeletal muscle and SMCs, although further functional studies are needed to explore their role in this region. The mixed muscular composition and presence of interstitial cells in the mouse distal esophagus is anatomically similar to the transitional zone found in the human esophagus, and therefore, motility studies in the mouse may be translatable to humans.
Collapse
Affiliation(s)
- Emer P Ni Bhraonain
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Jack A Turner
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Karen I Hannigan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA.
| |
Collapse
|
2
|
Koh SD, Lee JY, Ryoo SB, Drumm BT, Kim HJ, Baker SA, Sanders KM. Integrated responses of the SIP syncytium generate a major motility pattern in the colon. J Physiol 2024; 602:6659-6682. [PMID: 39572771 DOI: 10.1113/jp287315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024] Open
Abstract
The peristaltic reflex has been a central concept in gastrointestinal motility; however, evidence was published recently suggesting that post-stimulus responses that follow inhibitory neural responses provide the main propulsive force in colonic motility. This new concept was based on experiments on proximal colon where enteric inhibitory neural inputs are mainly nitrergic. However, the nature of inhibitory neural inputs changes from proximal to distal colon where purinergic inhibitory regulation dominates. In spite of the transition from nitrergic to purinergic regulation, post-stimulus responses and propulsive contractions were both blocked by antagonists of a conductance (ANO1) exclusive to interstitial cells of Cajal (ICC). How purinergic neurotransmission, transduced by PDGFRα+ cells, can influence ANO1 in ICC is unknown. We compared neural responses in proximal and distal colon. Post-stimulus responses were blocked by inhibition of nitrergic neurotransmission in proximal colon, but P2Y1 receptor antagonists were more effective in distal colon. Ca2+ entry through voltage-dependent channels (CaV3) enhances Ca2+ release in ICC. Thus, we reasoned that hyperpolarization caused by purinergic responses in PDGFRα+ cells, which are electrically coupled to ICC, might decrease inactivation of CaV3 channels and activate Ca2+ entry into ICC via anode-break upon cessation of inhibitory responses. Post-stimulus responses in distal colon were blocked by MRS2500 (P2Y1 receptor antagonist), apamin (SK channel antagonist) and NNC55-0396 (CaV3 antagonist). These compounds also blocked propagating contractions in mid and distal colon. These data provide the first clear demonstration that integration of functions in the smooth muscle-ICC-PDGFRα+ cell (SIP) syncytium generates a major motility behaviour. KEY POINTS: Propagating propulsive contractions initiated by the enteric nervous system are a major motility behaviour in the colon. A major component of contractions, necessary for propulsive contractions, occurs at cessation of enteric inhibitory neurotransmission (post-stimulus response) and is generated by interstitial cells of Cajal (ICC), which are electrically coupled to smooth muscle cells. The nature of enteric inhibitory neurotransmission shifts from proximal colon, where it is predominantly due to nitric oxide, to distal colon, where it is predominantly due to purine neurotransmitters. Different cells transduce nitric oxide and purines in the colon. ICC transduce nitric oxide, but another type of interstitial cell, PDGFRα+ cells, transduces input from purinergic neurons. However, the post-stimulus responses in proximal and distal colon are still generated in ICC. This paper explores how integrated behaviours of ICC, PDGFRα+ cells and smooth muscle cells accomplish propulsive motility in the colon.
Collapse
Affiliation(s)
- Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ji Yeon Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Seung-Bum Ryoo
- Department of Surgery, Seoul National University Hospital, Seoul National University, Seoul, South Korea
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Hyun Jin Kim
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University, College of Medicine: Changwon, Gyeongnam-do, South Korea
| | - Sal A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
3
|
Kuil LE, Kakiailatu NJ, Windster JD, Bindels E, Zink JT, van der Zee G, Hofstra RM, Shepherd IT, Melotte V, Alves MM. Unbiased characterization of the larval zebrafish enteric nervous system at a single cell transcriptomic level. iScience 2023; 26:107070. [PMID: 37426341 PMCID: PMC10329177 DOI: 10.1016/j.isci.2023.107070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/15/2022] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
The enteric nervous system (ENS) regulates many gastrointestinal functions including peristalsis, immune regulation and uptake of nutrients. Defects in the ENS can lead to severe enteric neuropathies such as Hirschsprung disease (HSCR). Zebrafish have proven to be fruitful in the identification of genes involved in ENS development and HSCR pathogenesis. However, composition and specification of enteric neurons and glial subtypes at larval stages, remains mainly unexplored. Here, we performed single cell RNA sequencing of zebrafish ENS at 5 days post-fertilization. We identified vagal neural crest progenitors, Schwann cell precursors, and four clusters of differentiated neurons. In addition, a previously unrecognized elavl3+/phox2bb-population of neurons and cx43+/phox2bb-enteric glia was found. Pseudotime analysis supported binary neurogenic branching of ENS differentiation, driven by a notch-responsive state. Taken together, we provide new insights on ENS development and specification, proving that the zebrafish is a valuable model for the study of congenital enteric neuropathies.
Collapse
Affiliation(s)
- Laura E. Kuil
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Naomi J.M. Kakiailatu
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Jonathan D. Windster
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Pediatric Surgery, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Eric Bindels
- Department of Hematology, Erasmus MC, Rotterdam, the Netherlands
| | - Joke T.M. Zink
- Department of Hematology, Erasmus MC, Rotterdam, the Netherlands
| | - Gaby van der Zee
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Robert M.W. Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | | | - Veerle Melotte
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Maria M. Alves
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Herath M, Cho E, Marklund U, Franks AE, Bornstein JC, Hill-Yardin EL. Quantitative Spatial Analysis of Neuroligin-3 mRNA Expression in the Enteric Nervous System Reveals a Potential Role in Neuronal-Glial Synapses and Reduced Expression in Nlgn3R451C Mice. Biomolecules 2023; 13:1063. [PMID: 37509099 PMCID: PMC10377306 DOI: 10.3390/biom13071063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Mutations in the Neuroligin-3 (Nlgn3) gene are implicated in autism spectrum disorder (ASD) and gastrointestinal (GI) dysfunction, but cellular Nlgn3 expression in the enteric nervous system remains to be characterised. We combined RNAScope in situ hybridization and immunofluorescence to measure Nlgn3 mRNA expression in cholinergic and VIP-expressing submucosal neurons, nitrergic and calretinin-containing myenteric neurons and glial cells in both WT and Nlgn3R451C mutant mice. We measured Nlgn3 mRNA neuronal and glial expression via quantitative three-dimensional image analysis. To validate dual RNAScope/immunofluorescence data, we interrogated available single-cell RNA sequencing (scRNASeq) data to assess for Nlgn3, Nlgn1, Nlgn2 and their binding partners, Nrxn1-3, MGDA1 and MGDA2, in enteric neural subsets. Most submucosal and myenteric neurons expressed Nlgn3 mRNA. In contrast to other Nlgns and binding partners, Nlgn3 was strongly expressed in enteric glia, suggesting a role for neuroligin-3 in mediating enteric neuron-glia interactions. The autism-associated R451C mutation reduces Nlgn3 mRNA expression in cholinergic but not in VIPergic submucosal neurons. In the myenteric plexus, Nlgn3 mRNA levels are reduced in calretinin, nNOS-labelled neurons and S100 β -labelled glia. We provide a comprehensive cellular profile for neuroligin-3 expression in ileal neuronal subpopulations of mice expressing the R451C autism-associated mutation in Nlgn3, which may contribute to the understanding of the pathophysiology of GI dysfunction in ASD.
Collapse
Affiliation(s)
- Madushani Herath
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ellie Cho
- Biological Optical Microscopy Platform, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ulrika Marklund
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Ashley E Franks
- Department of Microbiology, Anatomy Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joel C Bornstein
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
5
|
Sanders KM, Baker SA, Drumm BT, Kurahashi M. Ca 2+ Signaling Is the Basis for Pacemaker Activity and Neurotransduction in Interstitial Cells of the GI Tract. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:229-241. [PMID: 36587162 DOI: 10.1007/978-3-031-05843-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Years ago gastrointestinal motility was thought to be due to interactions between enteric nerves and smooth muscle cells (SMCs) in the tunica muscularis. Thus, regulatory mechanisms controlling motility were either myogenic or neurogenic. Now we know that populations of interstitial cells, c-Kit+ (interstitial cells of Cajal or ICC), and PDGFRα+ cells (formerly "fibroblast-like" cells) are electrically coupled to SMCs, forming the SIP syncytium. Pacemaker and neurotransduction functions are provided by interstitial cells through Ca2+ release from the endoplasmic reticulum (ER) and activation of Ca2+-activated ion channels in the plasma membrane (PM). ICC express Ca2+-activated Cl- channels encoded by Ano1. When activated, Ano1 channels produce inward current and, therefore, depolarizing or excitatory effects in the SIP syncytium. PDGFRα+ cells express Ca2+-activated K+ channels encoded by Kcnn3. These channels generate outward current when activated and hyperpolarizing or membrane-stabilizing effects in the SIP syncytium. Inputs from enteric and sympathetic neurons regulate Ca2+ transients in ICC and PDGFRα+ cells, and currents activated in these cells conduct to SMCs and regulate contractile behaviors. ICC also serve as pacemakers, generating slow waves that are the electrophysiological basis for gastric peristalsis and intestinal segmentation. Pacemaker types of ICC express voltage-dependent Ca2+ conductances that organize Ca2+ transients, and therefore Ano1 channel openings, into clusters that define the amplitude and duration of slow waves. Ca2+ handling mechanisms are at the heart of interstitial cell function, yet little is known about what happens to Ca2+ dynamics in these cells in GI motility disorders.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA.
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa, Iowa, Iowa City, USA
| |
Collapse
|
6
|
Cairns BR, Jevans B, Chanpong A, Moulding D, McCann CJ. Automated computational analysis reveals structural changes in the enteric nervous system of nNOS deficient mice. Sci Rep 2021; 11:17189. [PMID: 34433854 PMCID: PMC8387485 DOI: 10.1038/s41598-021-96677-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
Neuronal nitric oxide synthase (nNOS) neurons play a fundamental role in inhibitory neurotransmission, within the enteric nervous system (ENS), and in the establishment of gut motility patterns. Clinically, loss or disruption of nNOS neurons has been shown in a range of enteric neuropathies. However, the effects of nNOS loss on the composition and structure of the ENS remain poorly understood. The aim of this study was to assess the structural and transcriptional consequences of loss of nNOS neurons within the murine ENS. Expression analysis demonstrated compensatory transcriptional upregulation of pan neuronal and inhibitory neuronal subtype targets within the Nos1-/- colon, compared to control C57BL/6J mice. Conventional confocal imaging; combined with novel machine learning approaches, and automated computational analysis, revealed increased interconnectivity within the Nos1-/- ENS, compared to age-matched control mice, with increases in network density, neural projections and neuronal branching. These findings provide the first direct evidence of structural and molecular remodelling of the ENS, upon loss of nNOS signalling. Further, we demonstrate the utility of machine learning approaches, and automated computational image analysis, in revealing previously undetected; yet potentially clinically relevant, changes in ENS structure which could provide improved understanding of pathological mechanisms across a host of enteric neuropathies.
Collapse
Affiliation(s)
- Ben R Cairns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Benjamin Jevans
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Atchariya Chanpong
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Dale Moulding
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK.
| |
Collapse
|
7
|
Jakob MO, Kofoed-Branzk M, Deshpande D, Murugan S, Klose CSN. An Integrated View on Neuronal Subsets in the Peripheral Nervous System and Their Role in Immunoregulation. Front Immunol 2021; 12:679055. [PMID: 34322118 PMCID: PMC8312561 DOI: 10.3389/fimmu.2021.679055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The peripheral nervous system consists of sensory circuits that respond to external and internal stimuli and effector circuits that adapt physiologic functions to environmental challenges. Identifying neurotransmitters and neuropeptides and the corresponding receptors on immune cells implies an essential role for the nervous system in regulating immune reactions. Vice versa, neurons express functional cytokine receptors to respond to inflammatory signals directly. Recent advances in single-cell and single-nuclei sequencing have provided an unprecedented depth in neuronal analysis and allowed to refine the classification of distinct neuronal subsets of the peripheral nervous system. Delineating the sensory and immunoregulatory capacity of different neuronal subsets could inform a better understanding of the response happening in tissues that coordinate physiologic functions, tissue homeostasis and immunity. Here, we summarize current subsets of peripheral neurons and discuss neuronal regulation of immune responses, focusing on neuro-immune interactions in the gastrointestinal tract. The nervous system as a central coordinator of immune reactions and tissue homeostasis may predispose for novel promising therapeutic approaches for a large variety of diseases including but not limited to chronic inflammation.
Collapse
Affiliation(s)
- Manuel O Jakob
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Kofoed-Branzk
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Divija Deshpande
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shaira Murugan
- Department of BioMedical Research, Group of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
8
|
Sanders KM, Mutafova-Yambolieva VN. Neurotransmitters responsible for purinergic motor neurotransmission and regulation of GI motility. Auton Neurosci 2021; 234:102829. [PMID: 34146957 DOI: 10.1016/j.autneu.2021.102829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Classical concepts of peripheral neurotransmission were insufficient to explain enteric inhibitory neurotransmission. Geoffrey Burnstock and colleagues developed the idea that ATP or a related purine satisfies the criteria for a neurotransmitter and serves as an enteric inhibitory neurotransmitter in GI muscles. Cloning of purinergic receptors and development of specific drugs and transgenic mice have shown that enteric inhibitory responses depend upon P2Y1 receptors in post-junctional cells. The post-junctional cells that transduce purinergic neurotransmitters in the GI tract are PDGFRα+ cells and not smooth muscle cells (SMCs). PDGFRα+ cells express P2Y1 receptors, are activated by enteric inhibitory nerve stimulation and generate Ca2+ oscillations, express small-conductance Ca2+-activated K+ channels (SK3), and generate outward currents when exposed to P2Y1 agonists. These properties are consistent with post-junctional purinergic responses, and similar responses and effectors are not functional in SMCs. Refinements in methodologies to measure purines in tissue superfusates, such as high-performance liquid chromatography (HPLC) coupled with etheno-derivatization of purines and fluorescence detection, revealed that multiple purines are released during stimulation of intrinsic nerves. β-NAD+ and other purines, better satisfy criteria for the purinergic neurotransmitter than ATP. HPLC has also allowed better detection of purine metabolites, and coupled with isolation of specific types of post-junctional cells, has provided new concepts about deactivation of purine neurotransmitters. In spite of steady progress, many unknowns about purinergic neurotransmission remain and require additional investigation to understand this important regulatory mechanism in GI motility.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Violeta N Mutafova-Yambolieva
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
9
|
Keef KD, Saxton SN, McDowall RA, Kaminski RE, Duffy AM, Cobine CA. Functional role of vasoactive intestinal polypeptide in inhibitory motor innervation in the mouse internal anal sphincter. J Physiol 2013; 591:1489-506. [PMID: 23339175 DOI: 10.1113/jphysiol.2012.247684] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is evidence that vasoactive intestinal polypeptide (VIP) participates in inhibitory neuromuscular transmission (NMT) in the internal anal sphincter (IAS). However, specific details concerning VIP-ergic NMT are limited, largely because of difficulties in selectively blocking other inhibitory neural pathways. The present study used the selective P2Y1 receptor antagonist MRS2500 (1 μm) and the nitric oxide synthase inhibitor N(G)-nitro-l-arginine (l-NNA; 100 μm) to block purinergic and nitrergic NMT to characterize non-purinergic, non-nitrergic (NNNP) inhibitory NMT and the role of VIP in this response. Nerves were stimulated with electrical field stimulation (0.1-20 Hz, 4-60 s) and the associated changes in contractile and electrical activity measured in non-adrenergic, non-cholinergic conditions in the IAS of wild-type and VIP(-/-) mice. Electrical field stimulation gave rise to frequency-dependent relaxation and hyperpolarization that was blocked by tetrodotoxin. Responses during brief trains of stimuli (4 s) were mediated by purinergic and nitrergic NMT. During longer stimulus trains, an NNNP relaxation and hyperpolarization developed slowly and persisted for several minutes beyond the end of the stimulus train. The NNNP NMT was abolished by VIP6-28 (30 μm), absent in the VIP(-/-) mouse and mimicked by exogenous VIP (1-100 nm). Immunoreactivity for VIP was co-localized with neuronal nitric oxide synthase in varicose intramuscular fibres but was not detected in the VIP(-/-) mouse IAS. In conclusion, this study identified an ultraslow component of inhibitory NMT in the IAS mediated by VIP. In vivo, this pathway may be activated with larger rectal distensions, leading to a more prolonged period of anal relaxation.
Collapse
Affiliation(s)
- K D Keef
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Jung EY, Suh HJ, Kim SY, Hong YS, Kim MJ, Chang UJ. Appetite suppressive effects of yeast hydrolysate on nitric oxide synthase (NOS) expression and vasoactive intestinal peptide (VIP) immunoreactivity in hypothalamus. Phytother Res 2008; 22:1417-1422. [PMID: 18972585 DOI: 10.1002/ptr.2264] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
To investigate the effects of yeast hydrolysate on appetite regulation mechanisms in the central nervous system, nitric oxide synthase (NOS) expression and vasoactive intestinal peptide (VIP) immunoreactivity in the paraventricular nucleus (PVN) and ventromedial hypothalamic nucleus (VMH) of the hypothalamus were examined. Male Sprague-Dawley (SD) rats were assigned to five groups: control (normal diet), BY-1 and BY-2 (normal diet with oral administration of 0.1 g and 1.0 g of yeast hydrolysate <10 kDa/kg body weight, respectively), AY-1 and AY-2 (normal diet with oral administration of 0.1 g and 1.0 g of yeast hydrolysate 10-30 kDa/kg body weight, respectively). The body weight gain in the BY groups was less than that in the control. In particular, the weight gain of the BY-2 group (133.0 +/- 5.1 g) was significantly lower (p < 0.05) than that of the control group (150.1 +/- 3.7 g). Among the test groups, the BY-2 group was shown to have significantly lower triacylglycerol (TG) levels (p < 0.05) than the other groups. The staining intensities and optical densities of NOS neurons in the PVN of the AY group were significantly higher (p < 0.05) than in the control and BY groups. The staining intensities and optical densities of VIP immunoreactivity in the PVN and VMH of the BY groups were higher than those of the AY groups and the control. In conclusion, these results indicated that yeast hydrolysate of <10 kDa reduced the body weight gain and body fat in normal diet-fed rats and increased the lipid energy metabolism by altering the expression of NOS and VIP in neurons.
Collapse
Affiliation(s)
- E Y Jung
- Department of Food and Nutrition, Korea University, Seoul 136-703, Korea
| | | | | | | | | | | |
Collapse
|
11
|
Shen GM, Zhou MQ, Xu GS, Xu Y, Yin G. Role of vasoactive intestinal peptide and nitric oxide in the modulation of electroacupucture on gastric motility in stressed rats. World J Gastroenterol 2006; 12:6156-60. [PMID: 17036387 PMCID: PMC4088109 DOI: 10.3748/wjg.v12.i38.6156] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects and mechanisms of vasoactive intestinal peptide (VIP) and nitric oxide (NO) in the modulation of electroacupucture (EA) on gastric motility in restrained-cold stressed rats.
METHODS: An animal model of gastric motility disorder was established by restrained-cold stress. Gastric myoelectric activities were recorded by electrogastroenterography (EGG). VIP and NO concentrations in plasma and gastric mucosal and bulb tissues were detected by radioimmunoassay (RIA). VIP expression in the gastric walls was assayed using avidin-biotin-peroxidase complex (ABC) and image analysis.
RESULTS: In cold restrained stressed rats, EGG was disordered and irregular. The frequency and amplitude of gastric motility were higher than that in control group (P < 0.01). VIP and NO contents of plasma, gastric mucosal and bulb tissues were obviously decreased (P < 0.01). Following EA at “Zusanli” (ST36), the frequency and amplitude of gastric motility were obviously lowered (P < 0.01), while the levels of VIP and NO in plasma, gastric mucosal and bulb tissues increased strikingly (P < 0.01, P < 0.05) and expression of VIP in antral smooth muscle was elevated significantly (P < 0.01) in comparison with those of model group.
CONCLUSION: VIP and NO participate in the modulatory effect of EA on gastric motility. EA at “Zusanli” acupoint (ST36) can improve gastric motility of the stressed rats by increasing the levels of VIP and NO.
Collapse
Affiliation(s)
- Guo-Ming Shen
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui TCM College, Hefei 230038, Anhui Province, China.
| | | | | | | | | |
Collapse
|
12
|
Hagen BM, Bayguinov O, Sanders KM. VIP and PACAP regulate localized Ca2+ transients via cAMP-dependent mechanism. Am J Physiol Cell Physiol 2006; 291:C375-85. [PMID: 16571863 DOI: 10.1152/ajpcell.00495.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) have been suggested as participants in enteric inhibitory neural regulation of gastrointestinal motility. These peptides cause a variety of postjunctional responses including membrane hyperpolarization and inhibition of contraction. Neuropeptides released from enteric motor neurons can elicit responses by direct stimulation of smooth muscle cells as opposed to other transmitters that rely on synapses between motor nerve terminals and interstitial cells of Cajal. Therefore, we studied the responses of murine colonic smooth muscle cells to VIP and PACAP(1-38) with confocal microscopy and patch-clamp technique. Localized Ca2+ transients (Ca2+ puffs) were observed in colonic myocytes, and these events coupled to spontaneous transient outward currents (STOCs). VIP and PACAP increased Ca2+ transients and STOC frequency and amplitude. Application of dibutyryl cAMP had similar effects. The adenylyl cyclase blocker MDL-12,330A alone did not affect spontaneous Ca2+ puffs and STOCs but prevented responses to VIP. Disruption of A-kinase-anchoring protein (AKAP) associations by application of AKAP St-Ht31 inhibitory peptide had effects similar to those of MDL-12,330A. Inhibition of ryanodine receptor channels did not block spontaneous Ca2+ puffs and STOCs but prevented the effects of dibutyryl cAMP. These findings suggest that regulation of Ca2+ transients (which couple to activation of STOCs) may contribute to the inhibitory effects of VIP and PACAP. Regulation of Ca2+ transients by VIP and PACAP occurs via adenylyl cyclase, increased synthesis of cAMP, and PKA-dependent regulation of ryanodine receptor channels.
Collapse
Affiliation(s)
- Brian M Hagen
- Dept. of Physiology and Cell Biology, Univ. of Nevada School of Medicine, Reno, NV 89557-0046, USA
| | | | | |
Collapse
|
13
|
Zhang M, Shimojo H, Ehara T, Shigematsu H. Decreased distribution of nitric oxide synthase and vasoactive intestinal polypeptide positive nerve cells in the sphincter of Oddi in humans with pancreatobiliary diseases. ACTA ACUST UNITED AC 2005; 68:121-31. [PMID: 16079458 DOI: 10.1679/aohc.68.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To better understand the relationship between innervation in the sphincter of Oddi and pancreatobiliary diseases, nerve cells which possess nitric oxide synthase (NOS) and/or vasoactive intestinal polypeptide (VIP) were studied immunohistochemically in the sphincter of Oddi and duodenum of humans. Specimens from autopsies included 11 cases with pancreatobiliary diseases and 7 cases without such diseases. An elaborate nerve network was revealed with an anti-S-100 antibody in the sphincter of Oddi and duodenum of all specimens. In the sphincter of Oddi of the control group, approximately 47% of the myenteric nerve cells were NOS positive, whereas 54% were VIP positive. Of the NOS positive nerve cells, 21% were also VIP positive. In contrast, 11% of the nerve cells in the sphincter of Oddi of the disease group were NOS positive while 32% were VIP positive. Within the duodenal myenteric plexus of the control group, 35% of all nerve cells were NOS positive while 40% was VIP positive; among them, 23% of the NOS positive cells were VIP positive. Similar results were observed in the duodenum of the disease group. These data indicate that abundant NOS and VIP positive innervation is present in the sphincter of Oddi and duodenum in humans. The lower proportion of NOS positive or VIP positive nerve cells of the disease group may suggest an inadequacy of the sphincter of Oddi to relax.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | |
Collapse
|
14
|
Toda N, Herman AG. Gastrointestinal Function Regulation by Nitrergic Efferent Nerves. Pharmacol Rev 2005; 57:315-38. [PMID: 16109838 DOI: 10.1124/pr.57.3.4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) smooth muscle responses to stimulation of the nonadrenergic noncholinergic inhibitory nerves have been suggested to be mediated by polypeptides, ATP, or another unidentified neurotransmitter. The discovery of nitric-oxide (NO) synthase inhibitors greatly contributed to our understanding of mechanisms involved in these responses, leading to the novel hypothesis that NO, an inorganic, gaseous molecule, acts as an inhibitory neurotransmitter. The nerves whose transmitter function depends on the NO release are called "nitrergic", and such nerves are recognized to play major roles in the control of smooth muscle tone and motility and of fluid secretion in the GI tract. Endothelium-derived relaxing factor, discovered by Furchgott and Zawadzki, has been identified to be NO that is biosynthesized from l-arginine by the constitutive NO synthase in endothelial cells and neurons. NO as a mediator or transmitter activates soluble guanylyl cyclase and produces cyclic GMP in smooth muscle cells, resulting in relaxation of the vasculature. On the other hand, NO-induced GI smooth muscle relaxation is mediated, not only by cyclic GMP directly or indirectly via hyperpolarization, but also by cyclic GMP-independent mechanisms. Numerous cotransmitters and cross talk of autonomic efferent nerves make the neural control of GI functions complicated. However, the findingsrelated to the nitrergic innervation may provide us a new way of understanding GI tract physiology and pathophysiology and might result in the development of new therapies of GI diseases. This review article covers the discovery of nitrergic nerves, their functional roles, and pathological implications in the GI tract.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, Azuchi-machi, Chuo-ku, Osaka, Japan.
| | | |
Collapse
|
15
|
Lin Z, Sandgren K, Ekblad E. Increased expression of nitric oxide synthase in cultured neurons from adult rat colonic submucous ganglia. Auton Neurosci 2004; 114:29-38. [PMID: 15331042 DOI: 10.1016/j.autneu.2004.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 05/27/2004] [Accepted: 06/14/2004] [Indexed: 02/09/2023]
Abstract
Neuronal plasticity in the enteric nervous system (ENS) is probably a key step in intestinal adaptation during growth, maturation and ageing as well as in several pathophysiological situations. Studies on cultured myenteric neurons have revealed an increased vasoactive intestinal peptide (VIP) expression in neuronal nitric oxide synthase (NOS)-expressing neurons. In addition, both VIP and nitric oxide (NO) promote survival of cultured myenteric neurons. The aim of the present study was to investigate possible changes in the expression of VIP and NOS in cultured submucous neurons from adult rat large intestine. Submucous neurons were cultured as explants or as dissociated neurons for 3 and 8 days. Immunocytochemistry was used to determine the proportions of neurons containing VIP or NOS in preparations of uncultured controls (reflects the conditions in vivo) and in cultured explants of submucosa and dissociated submucous neurons. In situ hybridization was used to determine changes in the expressions of NOS and VIP mRNA. The relative number of NOS-expressing neurons increased significantly during culturing. The percentage of all neurons expressing NOS was 22% in controls, while approximately 50% of the cultured submucous neurons expressed NOS. VIP-expressing neurons constituted approximately 80% of all submucous neurons in controls as well as in cultured explants or dissociated neurons. Studies on coexistence revealed that the VIP-containing neurons were the ones that started to express NOS during culture. The induced expression of NOS in cultured adult submucous neurons indicates that nitric oxide, possibly in cooperation with VIP, is important for neuronal adaptation, maintenance and survival.
Collapse
Affiliation(s)
- Zhong Lin
- Department of Internal Medicine, The Affiliated Hospital of Guilin Medical College, People's Republic of China
| | | | | |
Collapse
|
16
|
Mulè F, Serio R. NANC inhibitory neurotransmission in mouse isolated stomach: involvement of nitric oxide, ATP and vasoactive intestinal polypeptide. Br J Pharmacol 2003; 140:431-7. [PMID: 12970100 PMCID: PMC1574027 DOI: 10.1038/sj.bjp.0705431] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
1. The neurotransmitters involved in NANC relaxation and their possible interactions were investigated in mouse isolated stomach, recording the motor responses as changes of endoluminal pressure from whole organ. 2. Field stimulation produced tetrodotoxin-sensitive, frequency-dependent, biphasic responses: rapid transient relaxation followed by a delayed inhibitory component. 3. The inhibitor of the synthesis of nitric oxide (NO), l-NAME, abolished the rapid relaxation and significantly reduced the slow relaxation. Apamin, blocker of Ca2+-dependent K+ channels, or ADPbetaS, which desensitises P2y purinoceptors, reduced the slow relaxation to 2-8 Hz, without affecting that to 16-32 Hz or the fast relaxation. alpha-Chymotrypsin or vasoactive intestinal polypeptide 6-28 (VIP6-28), antagonist of VIP receptors, failed to affect the fast component or the delayed relaxation to 2-4 Hz, but antagonised the slow component to 8-32 Hz. 4. Relaxation to sodium nitroprusside was not affected by l-NAME, apamin or ADPbetaS, but was reduced by alpha-chymotrypsin or VIP6-28. Relaxation to VIP was abolished by alpha-chymotrypsin, antagonised by VIP6-28, but was not affected by l-NAME, apamin or ADPbetaS. Relaxation to ATP was abolished by apamin, antagonised by ADPbetaS, but was not affected by l-NAME or alpha-chymotrypsin. 5. The present results suggest that NO is responsible for the rapid relaxation and partly for the slow relaxation. ATP is involved in the slow relaxation evoked by low frequencies of stimulation. VIP is responsible for the slow relaxation evoked by high frequencies of stimulation. The different neurotransmitters appear to work in parallel, although NO could serve also as a neuromodulator that facilitates release of VIP.
Collapse
Affiliation(s)
- Flavia Mulè
- Dipartimento di Biologia cellulare e dello Sviluppo, Università di Palermo - 90128, Palermo, Italia.
| | | |
Collapse
|
17
|
Mourad FH, Barada KA, Abdel-Malak N, Bou Rached NA, Khoury CI, Saade NE, Nassar CF. Interplay between nitric oxide and vasoactive intestinal polypeptide in inducing fluid secretion in rat jejunum. J Physiol 2003; 550:863-71. [PMID: 12794180 PMCID: PMC2343080 DOI: 10.1113/jphysiol.2003.043737] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) interact in the regulation of neuromuscular function in the gut. They are also potent intestinal secretogogues that coexist in the enteric nervous system. The aims of this study were: (1) to investigate the interaction between NO and VIP in inducing fluid secretion in the rat jejunum, and (2) to determine whether the NO effect on intestinal fluid movement is neurally mediated. The single pass perfusion technique was used to study fluid movement in a 25 cm segment of rat jejunum in vivo. A solution containing 20 mM L-arginine, a NO precursor, was perfused into the segment. The effect of the NO synthase inhibitors (L-NAME and L-nitroindazole (L-NI)) and the VIP antagonist ([4Cl-D-Phe6,Leu17]VIP (VIPa)) on L-arginine-induced changes in fluid movement, expressed as microl min(-1) (g dry intestinal weight)(-1), was determined. In addition, the effect of neuronal blockade by tetrodotoxin (TTX) and ablation of the myenteric plexus by benzalkonium chloride (BAC) was studied. In parallel groups of rats, the effect of L-NAME and L-NI on VIP-induced intestinal fluid secretion was also examined. Basal fluid absorption in control rats was (median (interquartile range)) 65 (45-78). L-Arginine induced a significant fluid secretion (-14 (-20 to -5); P<0.01). This effect was reversed completely by L-NAME (60 (36-65); P<0.01) and L-NI (46 (39-75); P<0.01) and partially by VIPa (37 (14-47); P<0.01). TTX and BAC partially inhibited the effect of L-arginine (22 (15-32) and 15 (10-26), respectively; P<0.05). The effect of VIP on fluid movement (-23 (-26 to -14)) was partially reversed by L-NAME (24 (8.4-35.5); P<0.01) and L-NI (29 (4-44); P<0.01). The inhibition of VIP or NO synthase prevented L-arginine- and VIP-induced intestinal fluid secretion through a neural mechanism. The data suggest that NO enhances the release of VIP from nerve terminals and vice versa. Subsequently, each potentiates the other's effect in inducing intestinal fluid secretion.
Collapse
Affiliation(s)
- F H Mourad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Lebanon.
| | | | | | | | | | | | | |
Collapse
|
18
|
Kim MJ, Joo KM, Chung YH, Lee YJ, Kim J, Lee BH, Shin DH, Lee KH, Cha CI. Vasoactive intestinal peptide (VIP) and VIP mRNA decrease in the cerebral cortex of nNOS knock-out(-/-) mice. Brain Res 2003; 978:233-40. [PMID: 12834919 DOI: 10.1016/s0006-8993(03)02950-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although there is much evidence showing that NO regulates the release of VIP in several areas, there is no report about the influence of NO on VIP in the cerebral cortex. We therefore examined changes in VIP expression in the cerebral cortex of nNOS knock-out(-/-) mice using immunohistochemistry and in situ hybridization. The nNOS((-/-)) mice had significantly fewer VIP-immunoreactive neurons than the control mice and the VIP mRNA as well as the VIP-immunoreactivity of the individual neuron was decreased in the nNOS((-/-)) mice. The first demonstration of decrease in VIP expression in the cerebral cortex of nNOS((-/-)) mice may provide useful data for investigating the relation between NO and VIP in the cerebral cortex and the mechanisms of many functions of these two neurotransmitters.
Collapse
Affiliation(s)
- Myeung Ju Kim
- Department of Anatomy, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-799, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2003; 11:1059-1063. [DOI: 10.11569/wcjd.v11.i7.1059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
20
|
Chino Y, Fujimura M, Kitahama K, Fujimiya M. Colocalization of NO and VIP in neurons of the submucous plexus in the rat intestine. Peptides 2002; 23:2245-50. [PMID: 12535705 DOI: 10.1016/s0196-9781(02)00264-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since very few previous studies have carried out the quantitative analysis for the colocalization of nitric oxide (NO) and vasoactive intestinal peptide (VIP) in the submucous neurons in the rat digestive tract, we applied in vivo treatment of colchicine to enhance the immunoreactivity and examined the colocalization of NO synthase (nNOS) and VIP in neurons of the submucous plexus throughout the rat digestive tract. The density of nNOS-containing neurons in the submucous plexus in the stomach corpus (103+/-25 cells/cm(2), n=3) and that in the antrum (157+/-9 cells/cm(2), n=3) were significantly lower than those in small and large intestine. However no difference was detected in the cell density among duodenum (1967+/-188 cells/cm(2), n=3), jejunum (2640+/-140 cells/cm(2), n=3), ileum (2070+/-42 cells/cm(2), n=3), proximal colon (2243+/-138 cells/cm(2), n=3) and distal colon (2633+/-376 cells/cm(2), n=3). The proportion of nNOS-immunoreactive (IR), nNOS/VIP-IR and VIP-IR neurons to the total number of submucous neurons was examined. nNOS/VIP-IR neurons comprised 45-55% of total number of submucous neurons from the duodenum to the proximal colon, however those comprised 66.4+/-5.1% in the distal colon. The results showed that the dense distribution of nNOS-containing neurons was found in the submucous plexus throughout the small and large intestine, and large population of submucous neurons co-stored nNOS and VIP.
Collapse
Affiliation(s)
- Yoshihide Chino
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | | | | | | |
Collapse
|
21
|
Tichenor SD, Buxton ILO, Johnson P, O'Driscoll K, Keef KD. Excitatory motor innervation in the canine rectoanal region: role of changing receptor populations. Br J Pharmacol 2002; 137:1321-9. [PMID: 12466242 PMCID: PMC1573612 DOI: 10.1038/sj.bjp.0704987] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Motor innervation in the canine rectoanal region was examined in isolated strips of the circular muscle layer. Contractile responses to electrical field stimulation began at lower frequencies and were more persistent in the internal anal sphincter (IAS) than in the rectum. 2. Motor innervation to the IAS was almost exclusively sympathetic, since it was blocked by guanethidine (Guan 3 microM) while the response in the proximal rectum was approximately 50% muscarinic, and sensitive to the M(3) selective antagonist 4-diphenylacetoxy-N-methylpiperidine (4-DAMP, 0.1 microM) and 50% tachykinergic, and sensitive to the neurokinin 2 (NK(2)) receptor antagonist GR 94800 (1 microM). From IAS to rectum there was a gradual shift in the relative contribution of intrinsic and extrinsic neural innervation. 3. Responses to exogenously applied transmitters exhibited a similar pattern to that observed with motor innervation. Norepinephrine (NE) was most potent in the IAS and acetylcholine (ACh) and NK-A were most potent in the proximal rectum. The responses were inhibited by prazosin, 4-DAMP and GR 94800 respectively. 4. A gradient in the density of adrenergic alpha(1), muscarinic and NK(2) receptors also existed from IAS to rectum as determined by measuring the binding of [(3)H]-prazosin, [(3)H]-quinuclidinyl benzilate ([(3)H]-QNB and [(3)H]-SR-48968 to smooth muscle membranes. 5. In summary, these data suggest that the shift in motor innervation in the rectoanal region is achieved in part by changes in receptor populations available for activation by sympathetic and enteric motor neurons.
Collapse
Affiliation(s)
- Stephen D Tichenor
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, NV 89557, U.S.A
| | - Iain L O Buxton
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, NV 89557, U.S.A
| | - Paul Johnson
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada, NV 89557, U.S.A
| | - Kate O'Driscoll
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada, NV 89557, U.S.A
| | - Kathleen D Keef
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada, NV 89557, U.S.A
- Author for correspondence:
| |
Collapse
|
22
|
Smith VC, Dhatt N, Buchan AMJ. The innervation of the human antro-pyloric region: Organization and composition. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y01-075] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the composition of the gastric innervation has been determined in animal models, relatively little known about the innervation of the human antro-pyloric region. We used immunocytochemical techniques to establish the localization and co-expression of neuropeptides and nitric oxide in the human antrum and upper duodenum. Our results demonstrate the existence of a clearly defined submucosal plexus in the antral region that is absent in rats and guinea pigs. The abundant innervation of the lamina propria contains 3 major nerve populations: VIP- and NOS-, SP- and CGRP-, and GRP-immunoreactive. For the first time, NOS-containing nerve fibers were observed throughout the length of the antral glands. Within the antrum somatostatin was confined to endocrine cells, however, at the pyloric sphincter both enteric plexi contained immunoreactive neurons and nerve fibres. Within the pyloric sphincter CGRP- and SP-immunoreactive fibres were significantly increased, correlating with the presence of large ganglia in the submucosal plexus. In conclusion, the organization and composition of the innervation of human antro-pylorus differed substantially from that reported in other mammals. The presence of an abundant mucosal innervation paralled by a well-defined submucosal plexus indicates that the functional regulation of the gastricpyloric region will be distinct from that of smaller animal models.Key words: gastric innervation, pyloric sphincter, neuropeptides, nitric oxide, somatostatin.
Collapse
|
23
|
Dick JMC, Van Molle W, Libert C, Lefebvre RA. Antisense knockdown of inducible nitric oxide synthase inhibits the relaxant effect of VIP in isolated smooth muscle cells of the mouse gastric fundus. Br J Pharmacol 2001; 134:425-33. [PMID: 11564662 PMCID: PMC1572958 DOI: 10.1038/sj.bjp.0704262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
1. Our previous results showed that the non-selective nitric oxide synthase (NOS) inhibitor L-N(G)-nitroarginine (L-NOARG) and the selective inducible NOS (iNOS) inhibitor N-(3-(acetaminomethyl)-benzyl)acetamidine (1400W) inhibited the relaxant effect of vasoactive intestinal polypeptide (VIP) in isolated smooth muscle cells of the mouse gastric fundus, suggesting the involvement of iNOS. The identity of the NOS isoform involved in the VIP-induced relaxation in isolated smooth muscle cells of the mouse gastric fundus was now further investigated by use of antisense oligodeoxynucleotides (aODNs) to iNOS. 2. Incubation of isolated smooth muscle cells with fluorescein isothiocyanate (FITC)-labelled aODNs showed that nuclear accumulation occurs quickly and reaches saturation after 60 min. The in vivo intravenous administration of aODNs to iNOS, 24 and 12 h before murine tumour necrosis factor alpha (mTNFalpha) challenge, significantly reduced the nitrite levels induced by the mTNFalpha challenge. 3. Intravenous administration of aODNs to iNOS in mice, 24 and 12 h before isolation of the gastric smooth muscle cells, decreased the inhibitory effect of the NOS inhibitors L-NOARG and 1400W on the relaxant effect of VIP, whereas neither saline nor sODNs had any influence. 4. Preincubation of the isolated smooth muscle cells with aODNs almost abolished the inhibitory effect of L-NOARG and 1400W on the VIP-induced relaxation, whereas sODNs failed. 5. These results illustrate that the inhibitory effect of NOS inhibitors in isolated smooth muscle cells of the mouse gastric fundus is due to inactivation of iNOS. iNOS, probably induced by the isolation procedure of the smooth muscle cells, seems involved in the relaxant effect of VIP in isolated gastric smooth muscle cells.
Collapse
Affiliation(s)
- J M C Dick
- Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | - W Van Molle
- Department of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - C Libert
- Department of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - R A Lefebvre
- Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
- Author for correspondence:
| |
Collapse
|
24
|
Kurjak M, Fritsch R, Saur D, Schusdziarra V, Allescher HD. Functional coupling between nitric oxide synthesis and VIP release within enteric nerve terminals of the rat: involvement of protein kinase G and phosphodiesterase 5. J Physiol 2001; 534:827-36. [PMID: 11483712 PMCID: PMC2278726 DOI: 10.1111/j.1469-7793.2001.00827.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
1. The subcellular mechanisms involved in the effect of nitric oxide (NO) on the release of vasoactive intestinal polypeptide (VIP) were examined in synaptosomes isolated from rat small intestine. 2. VIP release was stimulated by the NO donor SNAP (10(-7)-10(-4) M) in an oxyhaemoglobin-sensitive manner. The presence of the guanylate cyclase inhibitor ODQ (10(-5) M), or inhibition of protein kinase G (PKG) by KT 5823 (3 x 10(-6) M) or Rp-8Br-PET-cGMPS (5 x 10(-7) M), antagonized the SNAP-induced VIP release, suggesting a regulatory role of PKG, confirming previously published data from enteric ganglia. This finding was further supported by the fact that direct PKG activation by the stable cGMP analogue 8-pCPT-cGMP stimulated VIP secretion to the same extent as SNAP. 3. Basal VIP secretion was enhanced in the presence of zaprinast, an inhibitor of cGMP-dependent phosphodiesterase 5 (PDE 5), suggesting a functional role of PDE 5 in NO-cGMP signalling. Supportive evidence for this finding was obtained by demonstration of the presence of PDE 5 using RT-PCR. 4. Stimulation of endogenous NO production by L-arginine was also effective in releasing VIP. The effect was abolished in the presence of KT 5823, but was insensitive to oxyhaemoglobin (10(-3) M), suggesting that an interaction between NO and VIP is likely to occur within the same nerve terminal rather than between terminals. 5. NO synthesis was not affected by VIP (10(-8)-10(-5) M), suggesting that there is no feedback regulation between the NO and the VIP pathways. 6. These findings support the notion that an anatomical and functional interrelationship exists between NO and VIP in enteric nerve terminals and that complex signalling mechanisms involving PKG and PDE 5 contribute to NO-induced VIP release.
Collapse
Affiliation(s)
- M Kurjak
- Department of Internal Medicine II, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | | | | | | | | |
Collapse
|
25
|
Koh SD, Monaghan K, Ro S, Mason HS, Kenyon JL, Sanders KM. Novel voltage-dependent non-selective cation conductance in murine colonic myocytes. J Physiol 2001; 533:341-55. [PMID: 11389196 PMCID: PMC2278626 DOI: 10.1111/j.1469-7793.2001.0341a.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Two components of voltage-gated, inward currents were observed from murine colonic myocytes. One component had properties of L-type Ca(2+) currents and was inhibited by nicardipine (5 x 10(-7) M). A second component did not 'run down' during dialysis and was resistant to nicardipine (up to 10(-6) M). The nicardipine-insensitive current was activated by small depolarizations above the holding potential and reversed near 0 mV. 2. This low-voltage-activated current (I(LVA)) was resolved with step depolarizations positive to -60 mV, and the current rapidly inactivated upon sustained depolarization. The voltage of half-inactivation was -65 mV. Inactivation and activation time constants at -45 mV were 86 and 15 ms, respectively. The half-recovery time from inactivation was 98 ms at -45 mV. I(LVA) peaked at -40 mV and the current reversed at 0 mV. 3. I(LVA) was inhibited by Ni(2+) (IC(50) = 1.4 x 10(-5) M), mibefradil (10(-6) to 10(-5) M), and extracellular Ba(2+). Replacement of extracellular Na(+) with N-methyl-D-glucamine inhibited I(LVA) and shifted the reversal potential to -7 mV. Increasing extracellular Ca(2+) (5 x 10(-3) M) increased the amplitude of I(LVA) and shifted the reversal potential to +22 mV. I(LVA) was also blocked by extracellular Cs(+) (10(-4) M) and Gd(3+) (10(-6) M). 4. Warming increased the rates of activation and deactivation without affecting the amplitude of the peak current. 5. We conclude that the second component of voltage-dependent inward current in murine colonic myocytes is not a 'T-type' Ca(2+) current but rather a novel, voltage-gated non-selective cation current. Activation of this current could be important in the recovery of membrane potential following inhibitory junction potentials in gastrointestinal smooth muscle or in mediating responses to agonists.
Collapse
Affiliation(s)
- S D Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Kumano K, Fujimura M, Oshima S, Yamamoto H, Hayashi N, Nakamura T, Fujimiya M. Effects of VIP and NO on the motor activity of vascularly perfused rat proximal colon. Peptides 2001; 22:91-8. [PMID: 11179602 DOI: 10.1016/s0196-9781(00)00360-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effects of vasoactive intestinal polypeptide (VIP) and nitric oxide (NO) on the motor activity of the rat proximal colon were examined in an ex vivo model of vascularly perfused rat proximal colon. VIP reduced motor activity and this inhibitory effect was not altered by either atropine, hexamethonium, tetrodotoxin (TTX) nor TTX plus acetylcholine (ACh), but was completely antagonized by NO synthase inhibitor N(G)-nitro-L-arginine (L-NA) and by VIP receptor antagonist, VIP(10-28). These results suggest that VIP may exert a direct inhibitory effect on the motor activity of the rat proximal colon via a VIP receptor located on the smooth muscle and this effect is mediated by NO but not by cholinergic pathways. Atropine and hexamethonium reduced but ACh stimulated motor activity and the effect of ACh was not changed by TTX, suggesting that the cholinergic pathway may exert a direct stimulatory effect on motor activity. Single injection of TTX, VIP(10-28) or L-NA induced a marked increase in motor activity, suggesting that the motor activity of rat proximal colon is tonically suppressed by VIP and NO generating pathways, and elimination of inhibitory neurotransmission by TTX may induce an abnormal increase of the motor activity. The interaction between VIP and NO in regulation of motor activity was further examined by a measurement of NO release from vascularly perfused rat proximal colon. Results showed that NO release was significantly increased during infusion of VIP and this response was reversed by L-NA. These results suggest that VIP generating neurons may inhibit colonic motility by stimulating endogenous NO production in either smooth muscle cells or nerve terminals.
Collapse
Affiliation(s)
- K Kumano
- Department of 2nd Surgery, Shiga University of Medical Science, Seta, Otsu, 520-2192, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Peptides involved in the endocrine and enteric nervous systems as well as in the central nervous system exert concerted action on gastrointestinal motility. Mechanical and chemical stimuli which induce peptide release from the epithelial endocrine cells are the earliest step in the initiation of peristaltic activities. Gut peptides exert hormonal effects, but peptide-containing stimulatory (Ach/substance P/tachykinin) and inhibitory (VIP/PACAP/NO) neurons are also involved in the induction of ascending contraction and descending relaxation, respectively. The dorsal vagal complex (DVC), located in the medulla of the brainstem, constitutes the basic neural circuitry of vago-vagal reflex control of gastrointestinal motility. Several gut peptides act on the DVC to modify vagal cholinergic reflexes directly (PYY and PP) or indirectly via afferent fibers in the periphery (CCK and GLP-1). The DVC is also a primary site of action of many neuropeptides (such as TRH and NPY) in mediating gastrointestinal motor activities. The identification over the last few years of a number of neuropeptide systems has greatly changed the field of feeding and body weight regulation. By exploring the brain and gut systems that employ recently identified peptidergic molecules, it will be possible to elaborate on the central and peripheral pathways involved in the regulation of gastrointestinal motility.
Collapse
Affiliation(s)
- M Fujimiya
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | |
Collapse
|
28
|
Dick JM, Lefebvre RA. Interplay between nitric oxide and vasoactive intestinal polypeptide in the pig gastric fundus smooth muscle. Eur J Pharmacol 2000; 397:389-97. [PMID: 10844139 DOI: 10.1016/s0014-2999(00)00299-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of this study was to investigate the exact mechanism of interaction between nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) as inhibitory non-adrenergic non-cholinergic (NANC) neurotransmitters in isolated smooth muscle cells and smooth muscle strips of the pig gastric fundus. In isolated smooth muscle cells, the maximal relaxant effect of VIP (10(-9) M) was inhibited by 94% by the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine (L-NA, 10(-4) M) and by 85% by the inducible NOS (iNOS)-selective inhibitor N-(3-(aminomethyl)-benzyl)acetamide (1400W; 10(-6) M). The relaxant effect of VIP was reduced by more than 70% by the guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ; 10(-6) M), the glucocorticoid dexamethasone (10(-5) M) and three protein kinase A inhibitors: (R)-p-cyclic adenosine-3', 5'-monophosphothioate ((R)-p-cAMPS; 10(-6) M), ¿(8R,9S, 11S)-(-)-9-hydroxy-9-n-hexylester-8-methyl-2,3,9,10-tetrahydro-8, 11-epoxy-1H,8H,11H-2,7b,11a-triazadibenzo[a, g]cycloocta[cde]-trin-den-1-one¿ (KT5720; 10(-6) M) and N-(2-(p-bromo-cinnamylamino)ethyl))-5-isoquinoline sulfonamide dihydrochloride (H-89; 10(-5) M). In contrast, no influence of the NOS inhibitors, ODQ, dexamethasone, nor the protein kinase A inhibitors could be observed on the relaxant effect of VIP in smooth muscle strips. These data demonstrate that the experimental method completely changes the influence of NOS inhibitors on the relaxant effect of VIP in the pig gastric fundus. The isolation procedure of the smooth muscle cells might induce iNOS that can be activated by VIP.
Collapse
Affiliation(s)
- J M Dick
- Heymans Institute of Pharmacology, Ghent University Medical School, De Pintelaan 185, B-9000, Ghent, Belgium
| | | |
Collapse
|
29
|
Dick JM, Van Geldre LA, Timmermans JP, Lefebvre RA. Investigation of the interaction between nitric oxide and vasoactive intestinal polypeptide in the guinea-pig gastric fundus. Br J Pharmacol 2000; 129:751-63. [PMID: 10683200 PMCID: PMC1571883 DOI: 10.1038/sj.bjp.0703089] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The interaction between nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) was investigated in isolated circular smooth muscle cells and strips of the guinea-pig gastric fundus. VIP induced a concentration-dependent inhibition of carbachol-induced contraction in smooth muscle cells with a maximum at 10(-6) M. The relaxation by 10(-6) M VIP was inhibited for 79.1+/-5.8% (mean+/-s.e. mean) by the NO-synthase (NOS) inhibitor L-N(G)-nitroarginine (L-NOARG; 10(-4) M) in a L-arginine reversible way. Also the inducible NOS (iNOS) selective inhibitor N-(3-(acetaminomethyl)-benzyl)acetamide (1400 W; 10(-6) M) inhibited the VIP-induced relaxation, but its inhibitory effect was not reversed by L-arginine. When cells were incubated with the guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ, 10(-6) M), the protein kinase A-inhibitor (R)-p-cyclic adenosine-3', 5'-monophosphothioate ((R)-p-cAMPS, 10(-6) M) and the glucocorticoid dexamethasone (10(-5) M), the relaxant effect of VIP was decreased by respectively 80.9+/-7.6, 77.0+/-11.6 and 87.1+/-4.5%. In circular smooth muscle strips of the guinea-pig gastric fundus, the VIP (10(-9) - 10(-7) M)-induced relaxations were not significantly influenced by 10(-4) M L-NOARG, 10(-6) M 1400 W, 10(-6) M ODQ and 10(-5) M dexamethasone. These results suggest that iNOS, possibly induced by the procedure to prepare the smooth muscle cells, is involved in the relaxant effect of VIP in isolated smooth muscle cells but not in smooth muscle strips of the guinea-pig gastric fundus. This study illustrates the importance of the experimental method when studying the influence of NOS inhibitors on the relaxation induced by VIP in gastrointestinal smooth muscle preparations.
Collapse
Affiliation(s)
- J M Dick
- Heymans Institute of Pharmacology, University of Gent, De Pintelaan 185, B-9000 Gent, Belgium
| | | | | | | |
Collapse
|
30
|
Olsson C, Holmgren S. PACAP and nitric oxide inhibit contractions in the proximal intestine of the atlantic cod, Gadus morhua. J Exp Biol 2000; 203:575-83. [PMID: 10637186 DOI: 10.1242/jeb.203.3.575] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The possible inhibitory roles of pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP) and nitric oxide in the control of intestinal motility were investigated in the Atlantic cod, Gadus morhua. Circular and longitudinal smooth muscle preparations developed spontaneous contractions that were inhibited by atropine (10(−)(5)mol l(−)(1)). PACAP 27 and PACAP 38 (10(−)(7)mol l(−)(1)) reduced the amplitude of the contractions but did not usually affect the resting tension. In the circular preparations, the mean active force developed (above resting level; +/− s.e.m.) was reduced from 0. 62+/−0.18 mN to 0.03+/−0.03 mN (N=10) by PACAP 27 and from 0.53+/−0. 20 mN to 0.31+/−0.13 mN (N=7) by PACAP 38, while neither cod nor mammalian VIP (10(−)(10)-10(−)(6)mol l(−)(1)) had any effect. In the longitudinal preparations, PACAP 27 reduced the force developed from 1.58+/−0.22 mN to 0.44+/−0.25 mN (N=8) and PACAP 38 reduced it from 1.61+/−0.47 mN to 0.75+/−0.28 mN (N=5). The nitric oxide donor sodium nitroprusside (NaNP) almost abolished the contractions in the circular preparations, reducing the mean force developed from 0. 47+/−0.05 mN to 0.02+/−0.06 mN (10(−)(6)mol l(−)(1); N=9) and 0+/−0. 07 mN (10(−)(5)mol l(−)(1); N=8). In the longitudinal preparations, NaNP reduced the force developed from 2.03+/−0.36 mN to 0.33+/−0.22 mN (10(−)(6)mol l(−)(1); N=8) and 0.19+/−0.30 mN (10(−)(5)mol l(−)(1); N=8). The L-arginine analogue N(G)-nitro-L-arginine methyl ester (L-NAME; 3×10(−)(4)mol l(−)(1)) enhanced the contractions in both circular and longitudinal preparations, increasing the mean force developed from 0.51+/−0.12 mN to 0.94+/−0.21 mN (N=8) and from 1.49+/−0.36 mN to 3.34+/−0.67 mN (N=7), respectively. However, preincubation with L-NAME before a second addition of PACAP 27 (10(−)(7)mol l(−)(1)) did not affect the response to PACAP, neither did preincubation with the guanylate cyclase inhibitor 6-anilinoquinoline-5,8-quinone (LY83583; 10(−)(5)mol l(−)(1)), while the inhibitory response to NaNP (3×10(−)(7)mol l(−)(1)) was abolished by LY83583. The PACAP analogue PACAP 6–27 (3×10(−)(7)mol l(−)(1)) had no effect on the response to either NaNP (3×10(−)(7)mol l(−)(1)) or PACAP 27 (10(−)(8)mol l(−)(1)) in the circular preparations. These findings indicate the presence of both a cholinergic and a nitrergic tonus in the smooth muscle preparations of the cod. Although PACAP and NaNP both inhibit contractions, there is no evidence of any interactions between the two substances. In addition, NaNP, but not PACAP, probably acts via stimulating the production of cyclic GMP. In conclusion, both PACAP and nitric oxide may act as inhibitory transmitters, using distinct signalling pathways, in the control of intestinal motility in the Atlantic cod.
Collapse
Affiliation(s)
- C Olsson
- Department of Zoophysiology, Göteborg University, Box 463, S-405 30 Göteborg, Sweden.
| | | |
Collapse
|
31
|
Okishio Y, Niioka S, Takeuchi T, Nishio H, Hata F, Takatsuji K. Differences in mediator of nonadrenergic, noncholinergic relaxation of the distal colon between Wistar-ST and Sprague-Dawley strains of rats. Eur J Pharmacol 2000; 388:97-105. [PMID: 10657552 DOI: 10.1016/s0014-2999(99)00856-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Participation of nitric oxide and vasoactive intestinal peptide (VIP) in electrical field stimulation-induced nonadrenergic, noncholinergic (NANC) relaxation of longitudinal muscle and in balloon distension-induced descending NANC relaxation of circular muscle were studied in the distal colon of Wistar-ST and Sprague-Dawley rats. The extent of the nitric oxide-mediated component was approximately 50% in longitudinal and circular muscle of Sprague-Dawley rats, whereas this component was absent in both muscles of Wistar-ST rats. The extent of the VIP-mediated component was approximately 40% in longitudinal muscle of Wistar-ST rats and circular muscle of Sprague-Dawley rats, whereas this component was absent in circular muscle of Wistar-ST rats and longitudinal muscle of Sprague-Dawley rats. In circular muscle of Sprague-Dawley rats, in which participation of both nitric oxide and VIP in the relaxation was suggested, inhibition of descending relaxation by N(G)-nitro-L-arginine (L-NOARG) together with VIP-(10-28) was similar to that by either of the antagonists, and exogenous VIP-induced relaxation was not affected by L-NOARG, but exogenous nitric oxide-induced relaxation was partly inhibited by VIP-(10-28). These results suggest a linkage of the pathways mediated by nitric oxide and VIP. In the immunohistochemical studies, nitric oxide synthase or VIP immunoreactive neurons were seen in the ganglia, primary internodal strands of the myenteric plexus and in the circular muscle layer. However, the overall appearance of immunoreactive cell bodies in the myenteric plexus and the numbers of immunoreactive fibers in the circular muscle layer appeared to be similar in Wistar-ST and Sprague-Dawley rats. These results suggest that mediators of NANC relaxation in the distal colon are different in different strains of rats, i.e., Wistar-ST and Sprague-Dawley, although no such difference was seen in immunohistochemical studies.
Collapse
Affiliation(s)
- Y Okishio
- Department of Veterinary Pharmacology, College of Agriculture, Sakai, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Ny L, Pfeifer A, Aszòdi A, Ahmad M, Alm P, Hedlund P, Fässler R, Andersson KE. Impaired relaxation of stomach smooth muscle in mice lacking cyclic GMP-dependent protein kinase I. Br J Pharmacol 2000; 129:395-401. [PMID: 10694248 PMCID: PMC1571845 DOI: 10.1038/sj.bjp.0703061] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Guanosine 3', 5'-cyclic monophosphate (cyclic GMP)-dependent kinase I (cGKI) is a major receptor for cyclic GMP in a variety of cells. Mice lacking cGKI exhibit multiple phenotypes, including severe defects in smooth muscle function. We have investigated the NO/cGMP- and vasoactive intestinal polypeptide (VIP)/adenosine 3', 5'-cyclic monophosphate (cyclic AMP)-signalling pathways in the gastric fundus of wild type and cGKI-deficient mice. 2. Using immunohistochemistry, similar staining patterns for NO-synthase, cyclic GMP- and VIP-immunoreactivities were found in wild type and cGKI-deficient mice. 3. In isolated, endothelin-1 (3 nM - 3 microM)-contracted, muscle strips from wild type mice, electrical field stimulation (1 - 16 Hz) caused a biphasic relaxation, one initial rapid, followed by a more slowly developing phase. In preparations from cGKI-deficient mice only the slowly developing relaxation was observed. 4. The responses to the NO donor, SIN-1 (10 nM - 100 microM), and to 8-Br-cyclic GMP (10 nM - 100 microM) were markedly impaired in strips from cGKI-deficient mice, whereas the responses to VIP (0.1 nM - 1 microM) and forskolin (0.1 nM - 1 microM) were similar to those in wild type mice. 5. These results suggest that cGKI plays a central role in the NO/cGMP signalling cascade producing relaxation of mouse gastric fundus smooth muscle. Relaxant agents acting via the cyclic AMP-pathway can exert their effects independently of cGKI.
Collapse
Affiliation(s)
- Lars Ny
- Department of Clinical Pharmacology, Lund University Hospital, Lund, Sweden
| | | | - Attila Aszòdi
- Department of Experimental Pathology, Lund University Hospital, Lund, Sweden
| | - Marianne Ahmad
- Department of Experimental Pathology, Lund University Hospital, Lund, Sweden
| | - Per Alm
- Department of Pathology, Lund University Hospital, Lund, Sweden
| | - Petter Hedlund
- Department of Clinical Pharmacology, Lund University Hospital, Lund, Sweden
| | - Reinhard Fässler
- Department of Experimental Pathology, Lund University Hospital, Lund, Sweden
| | - Karl-Erik Andersson
- Department of Clinical Pharmacology, Lund University Hospital, Lund, Sweden
- Author for correspondence:
| |
Collapse
|
33
|
Sneddon P, Westfall TD, Todorov LD, Mihaylova-Todorova S, Westfall DP, Kennedy C. Modulation of purinergic neurotransmission. PROGRESS IN BRAIN RESEARCH 1999; 120:11-20. [PMID: 10550984 DOI: 10.1016/s0079-6123(08)63542-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During the past 25 years ATP has become accepted as an important neurotransmitter at a wide variety of neuroeffector junctions, usually acting as a cotransmitter with NA, ACh, nitric oxide or a neuropeptide such as NPY or VIP. The details of the storage and release of ATP with its cotransmitters has yet to be resolved. However, recent studies indicate that there is more than one population of storage vesicles in the nerves, since the release of the various cotransmitters varies over time and can be differentially modulated by drugs. The subclassification of P2 receptors has advanced dramatically in the past few years due to the use of molecular biology methods allowing the cloning and expression of 14 different subclasses of P2 receptors, seven P2X and seven P2Y. Determination of the functional significance of the various receptor subtypes would be helped by the development of selective agonists and antagonists. The neurotransmitter action of ATP at visceral and vascular smooth muscle P2X receptors has been elucidated in considerable detail. ATP induces a transient inward current via ligand-gated channels, which produces EJPs, action potentials and a phasic contraction of the effector tissue. ATP's neurotransmitter actions appear to be curtailed by the action of ATPases. It has been assumed that this ATPase activity is due to membrane bound ecto-ATPases on the surface of the effector tissue, however, the recently identified soluble ATPase released during nerve stimulation could also be involved in inactivation of ATP. The relative importance of ecto-ATPase and the releasable ATPase is yet to be determined.
Collapse
Affiliation(s)
- P Sneddon
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow, UK.
| | | | | | | | | | | |
Collapse
|
34
|
Shuttleworth CW, Sweeney KM, Sanders KM. Evidence that nitric oxide acts as an inhibitory neurotransmitter supplying taenia from the guinea-pig caecum. Br J Pharmacol 1999; 127:1495-501. [PMID: 10455301 PMCID: PMC1760669 DOI: 10.1038/sj.bjp.0702674] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nitric oxide synthase-containing nerve fibres are abundant within taenia of the guinea-pig caecum, but there is little previous evidence supporting a direct role for nitric oxide (NO) in responses to enteric inhibitory nerve stimulation. In this study we have attempted to identify an NO-dependent component of inhibitory transmission in isolated taenia coli. Isometric tension was recorded in the presence of atropine and guanethidine (both 1 microM). Tone was raised with histamine (1 microM), and intrinsic inhibitory neurons stimulated using either a nicotinic agonist (1,1-dimethyl-4-phenylpiperazinium iodide; DMPP) or electrical field stimulation (EFS). DMPP (1-100 microM) produced concentration-dependent biphasic relaxations, comprising an initial peak relaxation followed by a sustained relaxation. Responses to DMPP were antagonized by tetrodotoxin (1 microM) or apamin (0.3 microM) and abolished by hexamethonium (300 microM). L-nitro-arginine (L-NOARG; 100 microM) and oxyhaemoglobin (2%) both significantly reduced sustained relaxations produced by DMPP. EFS (5 Hz, 30 s) also produced biphasic relaxations. Both L-NOARG and an inhibitor of soluble guanylate cyclase (ODQ, 1-10 microM) reduced the sustained component of EFS responses. Two NO donors, sodium nitroprusside (SNP) and diethylenetriamine-nitric oxide adduct (DENO), produced concentration-dependent relaxations. Responses to SNP and DENO were antagonized by ODQ (1 microM) and by apamin (0.3 mM). These results suggest that NO contributes directly to a component of inhibitory transmission in guinea-pig taenia coli. The actions of NO appear to be mediated via cyclic GMP synthesis, and may involve activation of small conductance calcium activated K+ channels. A role for NO is most evident during sustained relaxations evoked by longer stimulus trains or chemical stimulation of intrinsic neurons.
Collapse
Affiliation(s)
- C W Shuttleworth
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno 89557, USA.
| | | | | |
Collapse
|
35
|
Way KJ, Young HM, Reid JJ. Diabetes does not alter the activity and localisation of nitric oxide synthase in the rat anococcygeus muscle. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1999; 76:35-44. [PMID: 10323305 DOI: 10.1016/s0165-1838(99)00005-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Functional studies have revealed diabetes specifically impairs smooth muscle reactivity to nitric oxide in the rat anococcygeus muscle. The present study was conducted to examine whether concurrent prejunctional defects in nitrergic neurotransmission exist in anococcygeus muscles from diabetic rats. Nitric oxide synthase (NOS) activity was assessed by the conversion of 3H-L-arginine to 3H-L-citrulline in homogenates of anococcygeus muscles obtained from 8-week diabetic rats and control rats. NOS activity measured in all tissue samples was dependent on the presence of calcium (2 mM), NADPH (1 mM), tetrahydrobiopterin (100 microM) and flavin adenine dinucleotide (10 microM); however, removal of calmodulin (50 U/ml) did not reduce L-citrulline production. Both N(G)-nitro-L-arginine (100 microM) and N(G)-nitro-L-arginine methyl ester (100 microM) produced significant inhibition of enzyme activity. NOS activity measured in tissue samples from diabetic rats (369.6 +/- 75.9 fmol L-citrulline/mg protein) did not significantly differ from that measured in samples from control rats (423.9 +/- 110.6 fmol L-citrulline/mg protein). However, NOS activity measured after removal of the cofactor tetrahydrobiopterin, was significantly greater in samples from control rats than that from the diabetic group. NOS-immunoreactive and NADPH-diaphorase reactive nerve terminals were found to be sparsely distributed throughout longitudinal sections or whole mounts of anococcygeus muscles from both control and diabetic rats. Quantification of NADPH-diaphorase positive fibres intersecting transects of whole tissue mounts, revealed no significant difference in fibre number between the treatment groups. All NOS-immunoreactive fibres also showed vasoactive-intestinal-polypeptide immunoreactivity. In conclusion, the findings together provide no evidence to indicate that diabetes can induce prejunctional changes in NOS activity or localisation, concurrent with the reported postjunctional impairment in smooth muscle reactivity to nitric oxide, in the rat anococcygeus muscle.
Collapse
Affiliation(s)
- K J Way
- Department of Medical Laboratory Science, RMIT University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
36
|
Takeuchi T, Kishi M, Hirayama N, Yamaji M, Ishii T, Nishio H, Hata F, Takewaki T. Tyrosine kinase involvement in apamin-sensitive inhibitory responses of rat distal colon. J Physiol 1999; 514 ( Pt 1):177-88. [PMID: 9831725 PMCID: PMC2269060 DOI: 10.1111/j.1469-7793.1999.177af.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
1. It has been suggested that pituitary adenylate cyclase activating peptide (PACAP) may be involved in the non-adrenergic, non-cholinergic (NANC) inhibitory response of longitudinal muscle of rat distal colon. In this study, we have investigated the intracellular mechanism of PACAP-induced relaxation in this muscle. 2. PACAP induced an apamin-sensitive relaxation of the longitudinal muscle. The tyrosine kinase inhibitors genistein at 10 microM and tyrphostin 25 at 30 microM, but not the cyclic AMP-dependent protein kinase inhibitor Rp-8-bromoadenosine-3',5'-cyclic monophosphorothioate at 30 microM significantly inhibited the PACAP-induced relaxation to 60% and 25% of control values, respectively. PACAP did not increase the cyclic AMP content of the muscle. 3. Tyrphostin 25 at 10 microM significantly inhibited the relaxation of longitudinal muscle induced by electrical field stimulation (EFS), to 50% of control values. Apamin at 1 microM, an antagonist of small conductance Ca2+-activated K+ channels, also inhibited the relaxation, to 42 % of control values. The inhibitory effects of tyrphostin 25 and apamin were not additive (44 % of control values). 4. PACAP induced an apamin-sensitive, slow hyperpolarization of the cell membrane of the muscle. Tyrphostin 25 at 3 microM inhibited this PACAP-induced hyperpolarization. Tyrphostin 25 at 10 microM and genistein at 10 microM inhibited the apamin-sensitive inhibitory junction potentials induced by a single pulse of EFS. 5. The PACAP-induced relaxation of longitudinal muscle occurred with a concomitant decrease in intracellular Ca2+ levels ([Ca2+]i). Tyrphostin 25 at 10 microM and apamin at 1 microM abolished these PACAP-induced responses. 6. From these findings it is suggested that the activation of tyrosine kinase is involved in PACAP-induced relaxation of longitudinal muscle from rat distal colon, 'upstream of' the activation of apamin-sensitive K+ channels.
Collapse
Affiliation(s)
- T Takeuchi
- Department of Veterinary Pharmacology, College of Agriculture, Osaka Prefecture University, Sakai 599-8531,, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Rae MG, Khoyi MA, Keef KD. Modulation of cholinergic neuromuscular transmission by nitric oxide in canine colonic circular smooth muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G1324-32. [PMID: 9843769 DOI: 10.1152/ajpgi.1998.275.6.g1324] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
This study examines the effect of nitric oxide (NO) on cholinergic transmission in strips of canine colonic circular muscle in which neural plexus-pacemaker regions had been removed. Electrical field stimulation gave rise to atropine- and TTX-sensitive excitatory junction potentials (EJPs), the amplitude of which were frequency dependent. In 47% of control muscles, the EJP was followed by an inhibitory junction potential (IJP), whereas in the presence of atropine all preparations exhibited only IJPs. The NO synthase inhibitor Nomega-nitro-L-arginine (L-NNA), the guanylyl cyclase inhibitor 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxaline-1-one (ODQ), and the protein kinase G (PKG) antagonist Rp-8-bromo-PET-cGMPS all significantly increased EJP amplitude and reduced or abolished IJPs. The potentiation of EJPs by L-NNA was reversed by the NO donors sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine in a manner blocked by ODQ. [14C]ACh overflow was also measured to evaluate the possible prejunctional effects of NO. Both norepinephrine and TTX significantly decreased [14C]ACh overflow; however, L-NNA, ODQ, and SNP were without effect. These data suggest that both cholinergic and nitrergic motoneurons functionally innervate the interior of the circular muscle layer. The inhibitory actions of NO on cholinergic transmission appear to be post- rather than prejunctional and to involve guanylyl cyclase as well as possibly PKG.
Collapse
Affiliation(s)
- M G Rae
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
38
|
Werkström V, Alm P, Persson K, Andersson KE. Inhibitory innervation of the guinea-pig urethra; roles of CO, NO and VIP. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1998; 74:33-42. [PMID: 9858122 DOI: 10.1016/s0165-1838(98)00135-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The inhibitory innervation of guinea-pig urethral smooth muscle was investigated histochemically and functionally. The distribution of immunoreactivities to haem oxygenases (HO), neuronal NO synthase (nNOS), and vasoactive intestinal polypeptide (VIP) was studied, and the functional effects of the corresponding putative transmitters, CO, NO, and VIP, were assessed. HO-2 immunoreactivity was found in all nerve cell bodies of intramural ganglia, localized between smooth muscle bundles in the detrusor, bladder base and proximal urethra. About 70% of the ganglionic cell bodies were also NOS-immunoreactive (IR), whereas a minor part was VIP-IR. Some ganglion cells exhibiting tyrosine hydroxylase (TH) activity were demonstrated. Rich numbers of NOS-IR varicose nerve terminals could be found innervating the smooth muscle of the urethra, whereas VIP-IR terminals were less numerous. A rich number of TH-IR terminals were observed. The bladder showed a similar distribution of nerves, although only a few number of TH-IR nerves could be found. In bladder preparations exposed to sodium nitroprusside, cGMP-IR cells could be seen, forming an interconnecting network with long spindle-shaped processes. The cGMP-IR cells were especially abundant in the outer smooth muscle layers of the bladder, but less numerous in the urethra. In urethral strip preparations, electrical field stimulation evoked long-lasting frequency-dependent relaxations. The relaxations were not inhibited by the NO-synthesis inhibitor, L-NOARG, or enhanced by the NO-precursor, L-arginine. The haem precursor, 5-aminolevulinic acid (5-ALA), or the inhibitor of guanylate cyclase, ODQ, did not affect the urethral relaxations. Exogenously applied NO, SIN-1, and VIP relaxed the preparations by approximately 50%, whereas the relaxation evoked by exogenous CO was minor. These results suggest that CO probably is not involved in non-adrenergic, non-cholinergic inhibitory control of the guinea-pig urethra, where a non-NO/cGMP mediated relaxation seems to be predominant.
Collapse
Affiliation(s)
- V Werkström
- Department of Clinical Pharmacology, Lund University Hospital, Sweden
| | | | | | | |
Collapse
|
39
|
Okamura T, Tanobe Y, Fujioka H, Ayajiki K, Toda N. Mechanism of neurogenic relaxation and modification of the response by enteric substances in isolated dog colon. Eur J Pharmacol 1998; 358:245-52. [PMID: 9822891 DOI: 10.1016/s0014-2999(98)00624-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanisms of neurogenic relaxation in the longitudinal muscle of the isolated canine colon and its modification by enteric substances were investigated. Relaxations induced by transmural electrical stimulation with electrical pulses, nicotine or K+ in the muscle strips contracted with bradykinin and treated with atropine were attenuated but not abolished by NG-nitro-L-arginine (L-NA), and the inhibition was reversed by L-arginine. Oxyhemoglobin and ouabain inhibited the response, whereas K+ channel inhibitors, such as glibenclamide, tetraethylammonium, apamin and charybdotoxin, were without effect. In L-NA-treated strips, stimulation-induced relaxations were reduced by ouabain but not by oxyhemoglobin. Among substances tested, only norepinephrine, ATP, vasoactive intestinal peptide (VIP) and galanin produced relaxations. However, alpha- and beta-adrenoceptor antagonists and aminophylline did not alter the response to nerve stimulation. In the strips made unresponsive to VIP and galanin, stimulation-induced relaxations were not influenced. Indomethacin, calcitonin gene-related peptide, cholecystokinin, peptide YY, substance P and serotonin did not modulate the neurogenic response. It is concluded that the relaxation associated with nerve stimulation is mediated by nitric oxide (NO) synthesized from L-arginine and also by substance(s) activating the electrogenic Na+ pump but not that opening K+ channels. Norepinephrine, ATP, VIP and galanin can be excluded as candidate inhibitory neurotransmitters, and the substances used so far are unlikely to modulate inhibitory nerve function.
Collapse
Affiliation(s)
- T Okamura
- Department of Pharmacology, Shiga University of Medical Science, Ohtsu, Japan
| | | | | | | | | |
Collapse
|
40
|
Junquera C, Martínez-Ciriano C, Blasco J, Aisa J, Peg MT, Azanza MJ. Distribution of NADPH diaphorase-positive neurons in the enteric nervous system of the rabbit intestine. Neurochem Res 1998; 23:1233-40. [PMID: 9804278 DOI: 10.1023/a:1020783830811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nitric oxide (NO) has been proposed as an inhibitory transmitter in gastrointestinal muscle relaxation. We analyzed the distribution of nitric-oxide producing neurons in the rabbit intestine through nicotinamide-adenine-dinucleotide-phosphate-diaphorase histochemistry. By this reliable and convenient method, we visualized neuronal nitric-oxide-synthase, the enzyme responsible for nitric oxide generation, in the rabbit intestine. In the ileum and rectum, nitric-oxide-synthase-related diaphorase activity was present in the myenteric plexus ganglion cells, and in the nerve fibers in the internodal strand, secondary, and tertiary plexuses. These fibers were particularly abundant in the deep circular rather than in the outer longitudinal muscle layer. In the inner submucosal plexus, we found scarce labeled neurons. Labeled neural somata showed a range of sizes and shapes suggesting different functional roles. The present basic information is required to use the rabbit as an experimental animal in neurochemical NO enteric research.
Collapse
Affiliation(s)
- C Junquera
- Dpto. de Ciencias Morfológicas, Facultad de Medicine de Zaragoza, Spain.
| | | | | | | | | | | |
Collapse
|
41
|
Kuriyama H, Kitamura K, Itoh T, Inoue R. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol Rev 1998; 78:811-920. [PMID: 9674696 DOI: 10.1152/physrev.1998.78.3.811] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Visceral smooth muscle cells (VSMC) play an essential role, through changes in their contraction-relaxation cycle, in the maintenance of homeostasis in biological systems. The features of these cells differ markedly by tissue and by species; moreover, there are often regional differences within a given tissue. The biophysical features used to investigate ion channels in VSMC have progressed from the original extracellular recording methods (large electrode, single or double sucrose gap methods), to the intracellular (microelectrode) recording method, and then to methods for recording from membrane fractions (patch-clamp, including cell-attached patch-clamp, methods). Remarkable advances are now being made thanks to the application of these more modern biophysical procedures and to the development of techniques in molecular biology. Even so, we still have much to learn about the physiological features of these channels and about their contribution to the activity of both cell and tissue. In this review, we take a detailed look at ion channels in VSMC and at receptor-operated ion channels in particular; we look at their interaction with the contraction-relaxation cycle in individual VSMC and especially at the way in which their activity is related to Ca2+ movements and Ca2+ homeostasis in the cell. In sections II and III, we discuss research findings mainly derived from the use of the microelectrode, although we also introduce work done using the patch-clamp procedure. These sections cover work on the electrical activity of VSMC membranes (sect. II) and on neuromuscular transmission (sect. III). In sections IV and V, we discuss work done, using the patch-clamp procedure, on individual ion channels (Na+, Ca2+, K+, and Cl-; sect. IV) and on various types of receptor-operated ion channels (with or without coupled GTP-binding proteins and voltage dependent and independent; sect. V). In sect. VI, we look at work done on the role of Ca2+ in VSMC using the patch-clamp procedure, biochemical procedures, measurements of Ca2+ transients, and Ca2+ sensitivity of contractile proteins of VSMC. We discuss the way in which Ca2+ mobilization occurs after membrane activation (Ca2+ influx and efflux through the surface membrane, Ca2+ release from and uptake into the sarcoplasmic reticulum, and dynamic changes in Ca2+ within the cytosol). In this article, we make only limited reference to vascular smooth muscle research, since we reviewed the features of ion channels in vascular tissues only recently.
Collapse
Affiliation(s)
- H Kuriyama
- Seinan Jogakuin University, Kokura-Kita, Fukuoka, Japan
| | | | | | | |
Collapse
|
42
|
Wang YF, Mao YK, Fox-Threlkeld JE, McDonald TJ, Daniel EE. Colocalization of inhibitory mediators, NO, VIP and galanin, in canine enteric nerves. Peptides 1998; 19:99-112. [PMID: 9437742 DOI: 10.1016/s0196-9781(97)00262-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The colocalization of three putative inhibitory mediators of enteric nerves, vasoactive intestinal peptide (VIP), galanin (GAL) and nitric oxide synthase (nNOS), was examined in the myenteric plexus of canine antrum, intestine and colon. Many ileal and colonic neurons contained nNOS-immunoreactive (nNOS-IR) activity with some also containing VIP-IR; only a few neurons also contained GAL-IR. Ileal and colonic VIP-IR nerves often appeared to be interneurons innervating nNOS nerves. Many antral neurons contained VIP-IR with nearly all also containing GAL-IR. A few also contained nNOS-IR. The predominance of nNOS-IR neurons relative to VIP-IR and GAL-IR neurons in the ileal and colonic, but not the antral, myenteric plexus is consistent with NO being the primary inhibitory mediator in the intestine but not in the antrum.
Collapse
Affiliation(s)
- Y F Wang
- Department of Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, On., Canada
| | | | | | | | | |
Collapse
|
43
|
Boeckxstaens GE, Pelckmans PA. Nitric oxide and the non-adrenergic non-cholinergic neurotransmission. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 118:925-37. [PMID: 9505411 DOI: 10.1016/s0300-9629(97)00022-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the early 1960s, the first evidence was reported demonstrating neurally mediated responses in the presence of adrenergic and cholinergic antagonists, leading to the introduction of the concept of non-adrenergic non-cholinergic neurotransmission. The inhibitory component of this part of the autonomic nervous system has been illustrated in numerous organ systems mediating a wide range of physiological events. Since the discovery of these nerves, several substances have been proposed as putative neurotransmitter, with ATP and vasoactive intestinal polypeptide as main candidates. Finally, the ongoing research on the nature of the substance released by these nerves has generated the nitrergic theory proposing nitric oxide as putative neurotransmitter. By now, increasing evidence is reported to support the idea that inhibitory neurons release more neurotransmitters, interacting with each other at pre- and/or postsynaptic levels.
Collapse
Affiliation(s)
- G E Boeckxstaens
- Division of Gastroenterology, Academic Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
44
|
Franck H, Sweeney KM, Sanders KM, Shuttleworth CW. Effects of a novel guanylate cyclase inhibitor on nitric oxide-dependent inhibitory neurotransmission in canine proximal colon. Br J Pharmacol 1997; 122:1223-9. [PMID: 9401790 PMCID: PMC1565046 DOI: 10.1038/sj.bjp.0701487] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Previous studies suggested that nitric oxide (NO) may cause hyperpolarization and relaxation of canine colonic smooth muscle by both cGMP-dependent and cGMP-independent mechanisms. This hypothesis was tested using 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ), a novel inhibitor of NO-stimulated guanylate cyclase. 2. In the presence of histamine (30 microM), atropine and indomethacin (both at 1 microM), electrical field stimulation of intrinsic neurons (EFS; 5 Hz) produced inhibition of phasic contractile activity that is due to NO synthesis. ODQ caused a concentration-dependent block of this response (10 nM to 10 microM). 3. Inhibitory junction potentials (IJPs) due to NO synthesis were recorded from muscle cells located near the myenteric border of the circular muscle layer, using intracellular microelectrodes. IJPs were abolished by ODQ (1-10 microM). 4. EFS (10-20 Hz) produced frequency-dependent inhibition of electrical slow waves recorded from cells located near the submucosal surface of the circular muscle layer. This inhibition is due to NO synthesis, and it was abolished by ODQ (1-10 microM). 5. Hyperpolarization and relaxation produced by an NO donor, sodium nitroprusside, were abolished by ODQ pretreatment (1-10 microM). In contrast, inhibitory responses to 8-Br-cGMP (1 mM) were unaffected by ODQ. 6. ODQ alone (1-10 microM) had no significant effect on spontaneous electrical or phasic contractile activity. In tissues pre-treated with L-NAME (300 microM), ODQ decreased the amplitude of spontaneous or histamine-stimulated phasic contractile activity. 7. These results suggest that electrical and mechanical effects of endogenously released and exogenously applied NO in canine colon are largely due to cGMP synthesis by ODQ-sensitive soluble guanylate cyclase. No evidence to support a direct (cGMP-independent) mechanism of NO action was found. ODQ also appears to cause a non-specific inhibition of muscle contractile activity; however, this effect does not contribute to block of NO-dependent effects.
Collapse
Affiliation(s)
- H Franck
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno 89557-0046, USA
| | | | | | | |
Collapse
|
45
|
Abstract
In 1963, two substances were thought to mediate all transmission between neurons, as well as between nerve and muscle in the peripheral nervous system, namely acetylcholine and noradrenaline. This paradigm primarily was due to the research of Dale, Loewi and von Euler in the first half of the century [Dale, 1937 (Transmission of nervous effects by acetylcholine, Harvey Lect. 32, pp. 229-245)]. However, in 1963, a series of experiments were carried out using recently introduced electrophysiological techniques, which showed unequivocally for the first time that the classical paradigm was not correct. Both inhibitory and excitatory junctions between nerves and smooth muscle cells were shown to exist in which transmission was mediated by non-adrenergic, non-cholinergic (NANC) transmitters. In the succeeding 35 years, identification of these NANC transmitters has been a major task of neuropharmacology, with nitric oxide, neuropeptides, and purines being isolated. This review presents an historical account of the developments this century of the classical paradigm, of how it was displaced, and of the progress made in identifying the neuromuscular transmitters of the autonomic nervous system.
Collapse
Affiliation(s)
- M R Bennett
- Neurobiology Laboratory, University of Sydney, NSW, Australia
| |
Collapse
|
46
|
|
47
|
Sutherland RS, Kogan BA, Piechota HJ, Bredt DS. Vesicourethral Function in Mice With Genetic Disruption of Neuronal Nitric Oxide Synthase. J Urol 1997. [DOI: 10.1016/s0022-5347(01)65151-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ronald S. Sutherland
- Departments of Urology and Physiology, University of California School of Medicine, San Francisco, California
| | - Barry A. Kogan
- Departments of Urology and Physiology, University of California School of Medicine, San Francisco, California
| | - Hans J. Piechota
- Departments of Urology and Physiology, University of California School of Medicine, San Francisco, California
| | - David S. Bredt
- Departments of Urology and Physiology, University of California School of Medicine, San Francisco, California
| |
Collapse
|
48
|
Krowicki ZK, Hornby PJ. Contribution of acetylcholine, vasoactive intestinal polypeptide and nitric oxide to CNS-evoked vagal gastric relaxation in the rat. Neurogastroenterol Motil 1996; 8:307-17. [PMID: 8959735 DOI: 10.1111/j.1365-2982.1996.tb00269.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Several in vitro models of gastric relaxation have elucidated a role of nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) in non-adrenergic, non-cholinergic (NANC) vagally mediated gastric relaxation. However, these models do not necessarily mimic the events leading to gastric relaxation in the whole animal. We have recently described a vagally mediated gastric relaxation evoked by micro-injection of substance P (SP) into the nucleus raphe obscurus (NRO). The present study was performed to elucidate whether this CNS-stimulated in vivo gastric relaxation involved acetylcholine, NO and VIP. Atropine (1 mg kg-1 i.v.), reduces both the rapid nadir and sustained gastric relaxation evoked by SP in the NRO, and the residual responses are abolished by NG-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 10 mg kg-1 i.v.), an NO synthase inhibitor. Blockade of NO synthase alone is not sufficient to abolish the effect of SP into the NRO on intragastric pressure. A VIP antagonist, [p-chloro-D-Phe6, Leu17]VIP (32 micrograms i.v.) alone, or with the addition of L-NAME, does not affect the nadir of the gastric relaxation in response to SP microinjected into the NRO; however, both antagonists reduce the CNS-evoked sustained intragastric pressure relaxation. We conclude that, in CNS-evoked gastric relaxation, inhibition of cholinergic pathways is potentially important for both the rapid nadir and sustained gastric relaxation, and both NO and VIP contribute to sustained gastric relaxation.
Collapse
Affiliation(s)
- Z K Krowicki
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Medical Centre, New Orleans 70112, USA
| | | |
Collapse
|
49
|
Hellström PM, Ljung T. Nitrergic inhibition of migrating myoelectric complex in the rat is mediated by vasoactive intestinal peptide. Neurogastroenterol Motil 1996; 8:299-306. [PMID: 8959734 DOI: 10.1111/j.1365-2982.1996.tb00268.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The role of vasoactive intestinal peptide (VIP) for the action of nitric oxide (NO) as a nonadrenergic noncholinergic inhibitory mediator was investigated regarding effects on migrating myoelectric complex (MMC) in rat. Animals were supplied with implanted bipolar electrodes at 5, 15 and 25 cm distal to pylorus for electromyography of small intestine. First, basal recordings with saline were followed by intravenous infusions of glyceryl trinitrate or VIP at different infusion rates to achieve dose-response relationships. Second, effects of different doses of the nitric oxide synthase inhibitor, N omega-nitro-L-arginine (L-NNA) were studied. Third, the action of L-NNA (1 mg kg-1) on the effect of VIP (500 pmol kg-1 min-1), and of the VIP receptor antagonist (4-Cl-D-Phe6, Leu17), VIP (45 nmol 20 min-1), on the action of glyceryl trinitrate (44 nmol kg-1 min-1) was investigated. Glyceryl trinitrate prolonged the MMC cycle length from 16.3 +/- 1.3 to 44.9 +/- 8.0 min (P < 0.001), while VIP completely disrupted the MMC for the whole infusion period (P < 0.05). Higher doses of either compound induced quiescence. L-NNA shortened MMC cycle length from 14.7 +/- 1.2 to 8.6 +/- 1.4 min (P < 0.05), increased its propagation velocity from 2.0 +/- 0.4 to 18.3 +/- 8.4 cm min-1 (P < 0.01) and increased calculated length from 6.3 +/- 1.0 to 55.4 +/- 18.4 cm (P < 0.01). Pretreatment with (4-Cl-D-Phe6, Leu17) VIP blocked the inhibitory action of glyceryl trinitrate and preserved MMC pattern (P < 0.05). In contrast, L-NNA had no effect on the inhibition of MMC caused by VIP. Our results indicate that inhibition of MMC is related to production of NO, which may mediate its actions through VIP.
Collapse
Affiliation(s)
- P M Hellström
- Department of Internal Medicine, Karolinska Hospital, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
50
|
Ny L, Waldeck K, Carlemalm E, Andersson KE. Alpha-latrotoxin-induced transmitter release in feline oesophageal smooth muscle: focus on nitric oxide and vasoactive intestinal peptide. Br J Pharmacol 1996; 120:31-8. [PMID: 9117095 PMCID: PMC1564354 DOI: 10.1038/sj.bjp.0700882] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The effects of alpha-latrotoxin (alpha LTX) on muscle tone, resting membrane potential, cyclic nucleotide content, and ultrastructure were examined in feline oesophageal smooth muscle, including the lower oesophageal sphincter (LOS). 2. In circular smooth muscle strips from LOS developing active tone alpha LTX (1 nM) induced a 94 +/- 3% (n = 16) relaxation. Intermittent treatment with alpha LTX for 4 h abolished the response. Pretreatment with NG-nitro-L-arginine (L-NOARG; 0.1 mM) attenuated the relaxation. 3. In carbachol-contracted circular smooth muscle strips from the LOS and oesophageal body (OB), alpha LTX induced a 95 +/- 5% (n = 6) and 73 +/- 9% (n = 8) relaxation, respectively. The relaxations were attenuated by L-NOARG, and in LOS strips, the relaxation was abolished by the combination of L-NOARG and vasoactive intestinal peptide (VIP)-antiserum (1:25). At resting tension in circular smooth muscle strips from the OB, alpha LTX induced a scopolamine sensitive contraction in the presence of L-NOARG. 4. In circular LOS and OB preparations, alpha LTX changed the resting membrane potential from -49 +/- 2mV to -59 +/- 3 mV (n = 4), and -62 +/- 2 mV to -71 +/- 3 mV (n = 4), respectively. 5. The alpha LTX-induced relaxation of LOS and OB muscle was associated with a 138% and 72% increase in cyclic GMP levels, respectively. No changes in cyclic AMP levels were observed. 6. Ultrastructural analysis of LOS and OB revealed a rich supply of nerve profiles containing small synaptic and large dense core vesicles. alpha LTX treatment resulted in a loss of both types of vesicle. 7. These results suggest that alpha LTX induces relaxation of oesophageal circular smooth muscle associated with NO-generation and transmitter release from synaptic vesicles. Beside NO, VIP seems to be involved in the relaxant effects of alpha LTX on the LOS. In addition, alpha LTX may have contractile effects by release of acetylcholine.
Collapse
Affiliation(s)
- L Ny
- Department of Clinical Pharmacology, Lund University Hospital, Sweden
| | | | | | | |
Collapse
|