1
|
Ray STJ, Fuller CE, Boubour A, Tshimangani T, Kafoteka E, Muiruri-Liomba A, Malenga A, Tebulo A, Pensulo P, Gushu MB, Nielsen M, Raees M, Stockdale E, Langton J, Birbeck GL, Waithira N, Bonnett LJ, Henrion MY, Fink EL, Postels DG, O'Brien N, Page AL, Baron E, Gordon SB, Molyneux E, Dondorp A, George EC, Maitland K, Michael BD, Solomon T, Chimalizeni Y, Lalloo DG, Moxon CA, Taylor T, Mallewa M, Idro R, Seydel K, Griffiths MJ. The aetiologies, mortality, and disability of non-traumatic coma in African children: a systematic review and meta-analysis. Lancet Glob Health 2025:S2214-109X(25)00055-5. [PMID: 40280144 DOI: 10.1016/s2214-109x(25)00055-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/18/2024] [Accepted: 01/30/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Non-traumatic coma in African children is a common life-threatening presentation often leading to hospital attendance. We aimed to estimate the distribution of non-traumatic coma causes and outcomes, including disease-specific outcomes, for which evidence is scarce. METHODS We systematically reviewed MEDLINE, Embase, and Scopus databases from inception to Feb 6, 2024. We included studies recruiting children (aged 1 month to 16 years) with non-traumatic coma (Blantyre Coma Scale score ≤2, ie deep coma or comparable alternative) from any African country. Disease-specific studies were included if outcomes were reported. Primary data were requested where required. We used a DerSimonian-Laird random effects model to calculate pooled estimates for prevalence of causes, mortality, and morbidity (in-hospital and post-discharge), including analysis of mortality by temporality. This study was registered with PROSPERO (CRD4202014193). FINDINGS We screened 16 666 articles. 138 studies were eligible for analysis, reporting causes, outcome data, or both from 35 027 children with non-traumatic coma in 30 African countries. 114 (89%) of 128 studies were determined to be high quality. Among the causes, cerebral malaria had highest pooled prevalence at 58% (95% CI 48-69), encephalopathy of unknown cause was associated with 23% (9-36) of cases, and acute bacterial meningitis was the cause of 10% (8-12) of cases, with all other causes representing lower proportions of cases. Pooled overall case-fatality rates were 17% (16-19) for cerebral malaria, 37% (20-55) for unknown encephalopathy, and 45% (34-55) for acute bacterial meningitis. By meta-regression, there was no significant difference in cerebral malaria (p=0·98), acute bacterial meningitis (p=0·99), or all-cause coma (p=0·081) mortality by year of study. There was no substantial difference in deaths associated with cerebral malaria in-hospital compared with post-discharge (17% [16-19] vs (18% [16-20]). Mortality was higher post-discharge than in-hospital in most non-malarial comas, including acute bacterial meningitis (39% [26-52]) vs 53% [38-69]). Disability associated with cerebral malaria was 11% (9-12). Pooled disability outcomes associated with other non-malarial diseases were largely absent. INTERPRETATION The prevalence and outcomes of cerebral malaria and meningitis associated with non-traumatic coma were strikingly static across five decades. Enhanced molecular and radiological diagnostics, investment, policy making, community awareness, and health service provision are all required to facilitate earlier referral to specialist centres, to drive a step-change in diagnostic yield and treatment options to improve these outcomes. FUNDING Wellcome Trust. TRANSLATIONS For the Chichewa, French and Portuguese translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Stephen T J Ray
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; The Brain Infection and Inflammation Group, University of Liverpool, Liverpool, UK; Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi; Department of Paediatric Infectious Disease and Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Wilson Lab, Weil Institute for Neurosciences, University of San Francisco, San Francisco, CA, USA.
| | - Charlotte E Fuller
- The Brain Infection and Inflammation Group, University of Liverpool, Liverpool, UK; Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi; Department of Paediatric Immunology, Allergy and Infectious Diseases, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Alex Boubour
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi
| | - Taty Tshimangani
- Hôpital Pédiatrique de Kalembe Lembe, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Edith Kafoteka
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi
| | - Alice Muiruri-Liomba
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi
| | - Albert Malenga
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi
| | - Andrew Tebulo
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi
| | - Paul Pensulo
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi
| | - Monfort B Gushu
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi
| | - Maryke Nielsen
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi
| | - Madiha Raees
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Elisabeth Stockdale
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi
| | - Josephine Langton
- Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi
| | - Gretchen L Birbeck
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Naomi Waithira
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand
| | - Laura J Bonnett
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Marc Yr Henrion
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ericka L Fink
- Division of Critical Care Medicine, Department of Anaesthesiology and Critical Care, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, PA, USA
| | - Douglas G Postels
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Division of Neurology, George Washington University and Children's National Health System, Washington, DC, USA
| | - Nicole O'Brien
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Hôpital Pédiatrique de Kalembe Lembe, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of the Congo; Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children's Hospital and Ohio State University, Columbus, OH, USA
| | | | | | - Stephen B Gordon
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elizabeth Molyneux
- Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi
| | - Arjen Dondorp
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand
| | - Elizabeth C George
- Medical Research Council Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Kathryn Maitland
- Department of Infectious Disease and Institute of Global Health and Innovation, Faculty of Medicine, Imperial College, London, UK; Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Benedict D Michael
- The Brain Infection and Inflammation Group, University of Liverpool, Liverpool, UK; National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK; Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Tom Solomon
- The Brain Infection and Inflammation Group, University of Liverpool, Liverpool, UK; National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK; Walton Centre NHS Foundation Trust, Liverpool, UK; The Pandemic Institute, University of Liverpool, Liverpool, UK
| | - Yamikani Chimalizeni
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi; School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David G Lalloo
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christopher A Moxon
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi; School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Terrie Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi; College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Macpherson Mallewa
- Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi
| | - Richard Idro
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Karl Seydel
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Paediatrics and Child Health, Kamzu University of Health Sciences, Blantyre, Malawi; College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Michael J Griffiths
- The Brain Infection and Inflammation Group, University of Liverpool, Liverpool, UK; Centre for Child and Adolescent Health Research, Western Sydney (Baludarri) Precinct, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Imam R, Chastang KM, Olowojesiku R, Sherman MG, Mukadam AM, Barber JR, Liomba AM, Seydel KB, Postels DG. Enriching Clinical Trials Enrolling Children With Cerebral Malaria Using Admission Demographics, Physical Examination and Point-of-care Testing Results. Pediatr Infect Dis J 2025; 44:125-130. [PMID: 39383355 DOI: 10.1097/inf.0000000000004581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
BACKGROUND Multiple clinical trials evaluating therapies for cerebral malaria (CM) have failed to demonstrate improved outcomes. This may derive from inclusion of children at all risk levels, including those at low risk of mortality or neurologic morbidity, limiting power to detect significant differences between intervention arms. One solution is enrichment, enrolling clinical trial participants at higher risk of adverse outcomes. We assessed if demographic, physical examination and point-of-care laboratory testing results in combination could identify children with CM at higher risk of death or neurologic disability. METHODS Retrospective case-control study of 1674 children hospitalized with CM in Blantyre, Malawi. We used univariate and multivariate analyses of admission factors to find the most parsimonious model associated with death or neurologic disability. To assess the clinical utility of the models, we evaluated derived probability density curve separation. RESULTS Blantyre Coma Score (BCS), deep breathing and high blood lactate were independently associated with mortality. The derived receiver operating curve yielded an area under the curve of 0.7118. There was poor separation of derived probability density curves predicting death or survival, indicating limited clinical utility of this model. On multivariate modeling of neurologic sequelae in CM survivors, only BCS was associated with adverse outcomes (area-under-the-curve = 0.6151). Probability density curves again largely overlapped, demonstrating limited utility of BCS alone in outcome prediction. CONCLUSIONS Combinations of admission demographic, clinical and point-of-care laboratory factors are inadequate to predict prognosis in children with CM. Higher technology assessment methods are necessary for clinical trial enrichment.
Collapse
Affiliation(s)
- Rami Imam
- From the The George Washington University School of Medicine, Washington, District of Columbia
| | | | - Ronke Olowojesiku
- Department of Pediatrics, Children's National Medical Center, Washington, District of Columbia
| | - Meredith G Sherman
- Global Health Initiative, Children's National Hospital, Washington, District of Columbia
| | | | - John R Barber
- Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, District of Columbia
| | | | - Karl B Seydel
- Blantyre Malaria Project, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Douglas G Postels
- Blantyre Malaria Project, Blantyre, Malawi
- Division of Neurology, The George Washington University/Children's National Hospital, Washington, District of Columbia
| |
Collapse
|
3
|
Wichman D, Guenther G, Simango NM, Yu M, Small D, Findorff OD, Amoah NO, Dasan R, Seydel KB, Postels DG, O'Brien NF. Admission Point-of-Care Testing for the Clinical Care of Children with Cerebral Malaria. Trop Med Infect Dis 2024; 9:210. [PMID: 39330899 PMCID: PMC11435513 DOI: 10.3390/tropicalmed9090210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024] Open
Abstract
Point-of-care testing (PoCT), an alternative to laboratory-based testing, may be useful in the clinical care of critically ill children in resource-limited settings. We evaluated the clinical utility of PoCT in the care of 193 Malawian children treated for World Health Organization-defined cerebral malaria (CM) between March 2019 and May 2023. We assessed the frequency of abnormal PoCT results and the clinical interventions performed in response to these abnormalities. We determined the association between abnormal PoCT results and patient outcomes. Overall, 52.1% of all PoCT results were abnormal. Of the children with abnormal results, clinical interventions occurred in 16.9%. Interventions most commonly followed abnormal results for PoCT glucose (100.0% of the patients had treatment for hypoglycemia), potassium (32.1%), lactate (22.0%), and creatinine (16.3%). Patients with hypoglycemia, hyperlactatemia, and hypocalcemia had a higher mortality risk than children with normal values. Future studies are needed to determine whether obtaining laboratory values using PoCT and the clinical response to these interventions modify outcomes in critically ill African children with CM.
Collapse
Affiliation(s)
- David Wichman
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Geoffrey Guenther
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nthambose M Simango
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre 3, Malawi
| | - Mengxin Yu
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dylan Small
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Olivia D Findorff
- College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Nathaniel O Amoah
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Rohini Dasan
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Karl B Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre 3, Malawi
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Douglas G Postels
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre 3, Malawi
- Division of Neurology, The George Washington University, Children's National Hospital, Washington, DC 20010, USA
| | - Nicole F O'Brien
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre 3, Malawi
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
4
|
Bernardi JP, Nappi TJ, Butler NS. Itaconate as a potential target for antimalarial therapy. Trends Parasitol 2024; 40:275-277. [PMID: 38485579 PMCID: PMC10994723 DOI: 10.1016/j.pt.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
In a recent publication, Ramalho et al. investigated monocyte-derived dendritic cell (MODC) mobilization in response to Plasmodium infection. The authors showed that elevated levels of itaconate in MODCs results in reduced CD8 T cell activation and that the absence of itaconate is associated with enhanced parasite control.
Collapse
Affiliation(s)
- Jonathon P Bernardi
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Taylen J Nappi
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
5
|
Olowojesiku R, Sherman MG, Mukadam AM, Imam R, Chastang KM, Seydel KB, Liomba AM, Barber JR, O'Brien NF, Postels DG. Post hospital admission blood lactate measurements are associated with mortality but not neurologic morbidity in children with cerebral malaria. Malar J 2024; 23:28. [PMID: 38243243 PMCID: PMC10797711 DOI: 10.1186/s12936-024-04843-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND In children with cerebral malaria (CM) admission blood lactate has previously guided intravenous fluid therapy and been validated as a prognostic biomarker associated with death. The usefulness of post-admission measurements of blood lactate in children with CM is less clear. The strength of association between blood lactate and neurological sequelae in CM survivors, as well as the optimal duration of post-admission measurements of blood lactate to identify children at higher risk of adverse outcomes is unknown. METHODS A retrospective cohort study of 1674 Malawian children with CM hospitalized from 2000 to 2018 who had blood lactate measurements every 6 h for the first 24 h after admission was performed. The strength of association between admission lactate or values measured at any time point in the first 24 h post-admission and outcomes (mortality and neurological morbidity in survivors) was estimated. The duration of time after admission that lactate remained a valid prognostic biomarker was assessed. RESULTS When lactate is analysed as a continuous variable, children with CM who have higher values at admission have a 1.05-fold higher odds (95% CI 0.99-1.11) of death compared to those with lower lactate values. Children with higher blood lactate at 6 h have 1.16-fold higher odds (95% CI 1.09-1.23) of death, compared to those with lower values. If lactate levels are dichotomized into hyperlactataemic (lactate > 5.0 mmol/L) or not, the strength of association between admission lactate and mortality increases (OR = 2.49, 95% CI 1.47-4.22). Blood lactate levels obtained after 18 h post-admission are not associated with outcomes. Similarly, the change in lactate concentrations through time during the first 24 h of hospital admission is not associated with outcomes. Blood lactate during hospitalization is not associated with adverse neurologic outcomes in CM survivors. CONCLUSIONS In children with CM, blood lactate is associated with death but not neurologic morbidity in survivors. To comprehensively estimate prognosis, blood lactate in children with CM should be assessed at admission and for 18 h afterwards.
Collapse
Affiliation(s)
- Ronke Olowojesiku
- Department of Pediatrics, Children's National Hospital, Washington, DC, USA
| | - Meredith G Sherman
- Global Health Initiative, Children's National Hospital, Washington, DC, USA
| | | | - Rami Imam
- The George Washington University School of Medicine, Washington, DC, USA
| | | | - Karl B Seydel
- Michigan State University, East Lansing, MI, USA
- Kamuzu University of Health Sciences, Blantyre Malaria Project, Blantyre, Malawi
| | - Alice M Liomba
- Kamuzu University of Health Sciences, Blantyre Malaria Project, Blantyre, Malawi
| | - John R Barber
- Division of Biostatistics and Study Methodology, Children's National Research Institute, Washington, DC, USA
| | - Nicole F O'Brien
- Kamuzu University of Health Sciences, Blantyre Malaria Project, Blantyre, Malawi
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Douglas G Postels
- Kamuzu University of Health Sciences, Blantyre Malaria Project, Blantyre, Malawi.
- Division of Neurology, George Washington University/Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
6
|
Lufele E, Manning L, Lorry L, Warrel J, Aipit S, Robinson LJ, Laman M. The association of intraleucocytic malaria pigment and disease severity in Papua New Guinean children with severe P. falciparum malaria. Trans R Soc Trop Med Hyg 2023; 117:797-803. [PMID: 37334767 PMCID: PMC10629949 DOI: 10.1093/trstmh/trad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/10/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Plasmodium falciparum pigment-containing leucocytes (PCLs) are associated with adverse clinical manifestations of severe malaria in African children. However, limited data exist on the association of PCLs in settings outside of Africa. METHODS Thin films on peripheral blood slides obtained from children ages 6 months-10 y with severe malaria were examined for PCLs. The intraleucocytic pigment data were correlated with clinical phenotypic data such as severe anaemia, metabolic acidosis and coma to determine the association of PCLs with clinical phenotypes of severe malaria and outcome. RESULTS Of the 169 children with severe P. falciparum malaria confirmed by microscopy, 76% (129/169) had PCLs. Compared with children without PCLs, the presence (adjusted odds ratio [AOR] 3.2 [95% confidence interval {CI} 1.5 to 6.9], p≤0.01) and quantity (AOR 1.0 [95% CI 1.0 to 1.1], p=0.04) of pigment-containing monocytes (PCMs) was significantly associated with severe anaemia, while the quantity of both PCMs (AOR 1.0 [95% CI 1.0 to 1.1], p≤0.01) and pigment-containing neutrophils (AOR 1.0 [95% CI 1.0 to 1.1], p=0.01) was significantly associated with metabolic acidosis. Plasma P. falciparum histidine-rich protein-2 level negatively correlated with the platelet count (r=-0.5, p≤0.01) in patients with PCLs and no PCLs. CONCLUSIONS In Papua New Guinean children with severe P. falciparum malaria, the presence and quantity of PCLs are predictors of disease severity, severe anaemia and metabolic acidosis.
Collapse
Affiliation(s)
- Elvin Lufele
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Global Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Laurens Manning
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - Lina Lorry
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Jonathan Warrel
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Susan Aipit
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Paediatrics Division, Modilon Hospital, Madang, Papua New Guinea
| | - Leanne J Robinson
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Vector Borne Diseases and Tropical Public Health Division, Burnet Institute, Melbourne, VIC, Australia
| | - Moses Laman
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Paediatrics Division, Modilon Hospital, Madang, Papua New Guinea
| |
Collapse
|
7
|
Vetter L, Bajalan A, Ahamed MT, Scasso C, Shafeeq S, Andersson B, Ribacke U. Starvation induces changes in abundance and small RNA cargo of extracellular vesicles released from Plasmodium falciparum infected red blood cells. Sci Rep 2023; 13:18423. [PMID: 37891207 PMCID: PMC10611735 DOI: 10.1038/s41598-023-45590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
The lethal malaria parasite Plasmodium falciparum needs to constantly respond and adapt to changes within the human host in order to survive and transmit. One such change is composed of nutritional limitation, which is augmented with increased parasite loads and intimately linked to severe disease development. Extracellular vesicles released from infected red blood cells have been proposed as important mediators of disease pathogenesis and intercellular communication but whether important for the parasite response to nutritional availability is unknown. Therefore, we investigated the abundance and small RNA cargo of extracellular vesicles released upon short-term nutritional starvation of P. falciparum in vitro cultures. We show that primarily ring-stage parasite cultures respond to glucose and amino acid deprivation with an increased release of extracellular vesicles. Small RNA sequencing of these extracellular vesicles further revealed human miRNAs and parasitic tRNA fragments as the main constituent biotypes. Short-term starvations led to alterations in the transcriptomic profile, most notably in terms of the over-represented biotypes. These data suggest a potential role for extracellular vesicles released from P. falciparum infected red blood cells in the response to nutritional perturbations, their potential as prognostic biomarkers and point towards an evolutionary conserved role among protozoan parasites.
Collapse
Affiliation(s)
- Leonie Vetter
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-17165, Solna, Sweden
| | - Amanj Bajalan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-17165, Solna, Sweden
| | - Mohammad Tanvir Ahamed
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Tomtebodavägen 18, SE-17177, Solna, Sweden
| | - Caterina Scasso
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-17165, Solna, Sweden
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-17165, Solna, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-17165, Solna, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-17165, Solna, Sweden.
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-75237, Uppsala, Sweden.
| |
Collapse
|
8
|
van Niekerk DD, du Toit F, Green K, Palm D, Snoep JL. A detailed kinetic model of glycolysis in Plasmodium falciparum-infected red blood cells for antimalarial drug target identification. J Biol Chem 2023; 299:105111. [PMID: 37517694 PMCID: PMC10474083 DOI: 10.1016/j.jbc.2023.105111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
Upon infection by the malaria parasite Plasmodium falciparum, the glycolytic rate of a red blood cell increases up to 100-fold, possibly contributing to lactic acidosis and hypoglycemia in patients with severe malaria. This dramatic increase in glucose uptake and metabolism was correctly predicted by a newly constructed detailed enzyme kinetic model of glucose metabolism in the trophozoite-infected red blood cell. Subsequently, we expanded the model to simulate an infected red blood cell culture, including the different asexual blood-stage forms of the malaria parasite. The model simulations were in good agreement with experimental data, for which the measured parasitic volume was an important parameter. Upon further analysis of the model, we identified glucose transport as a drug target that would specifically affect infected red blood cells, which was confirmed experimentally with inhibitor titrations. This model can be a first step in constructing a whole-body model for glucose metabolism in malaria patients to evaluate the contribution of the parasite's metabolism to the disease state.
Collapse
Affiliation(s)
- David D van Niekerk
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Francois du Toit
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Kathleen Green
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Danie Palm
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Jacky L Snoep
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa; Molecular Cell Biology, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Conroy AL, Datta D, Opoka RO, Batte A, Bangirana P, Gopinadhan A, Mellencamp KA, Akcan-Arikan A, Idro R, John CC. Cerebrospinal fluid biomarkers provide evidence for kidney-brain axis involvement in cerebral malaria pathogenesis. Front Hum Neurosci 2023; 17:1177242. [PMID: 37200952 PMCID: PMC10185839 DOI: 10.3389/fnhum.2023.1177242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Cerebral malaria is one of the most severe manifestations of malaria and is a leading cause of acquired neurodisability in African children. Recent studies suggest acute kidney injury (AKI) is a risk factor for brain injury in cerebral malaria. The present study evaluates potential mechanisms of brain injury in cerebral malaria by evaluating changes in cerebrospinal fluid measures of brain injury with respect to severe malaria complications. Specifically, we attempt to delineate mechanisms of injury focusing on blood-brain-barrier integrity and acute metabolic changes that may underlie kidney-brain crosstalk in severe malaria. Methods We evaluated 30 cerebrospinal fluid (CSF) markers of inflammation, oxidative stress, and brain injury in 168 Ugandan children aged 18 months to 12 years hospitalized with cerebral malaria. Eligible children were infected with Plasmodium falciparum and had unexplained coma. Acute kidney injury (AKI) on admission was defined using the Kidney Disease: Improving Global Outcomes criteria. We further evaluated blood-brain-barrier integrity and malaria retinopathy, and electrolyte and metabolic complications in serum. Results The mean age of children was 3.8 years (SD, 1.9) and 40.5% were female. The prevalence of AKI was 46.3% and multi-organ dysfunction was common with 76.2% of children having at least one organ system affected in addition to coma. AKI and elevated blood urea nitrogen, but not other measures of disease severity (severe coma, seizures, jaundice, acidosis), were associated with increases in CSF markers of impaired blood-brain-barrier function, neuronal injury (neuron-specific enolase, tau), excitatory neurotransmission (kynurenine), as well as altered nitric oxide bioavailability and oxidative stress (p < 0.05 after adjustment for multiple testing). Further evaluation of potential mechanisms suggested that AKI may mediate or be associated with CSF changes through blood-brain-barrier disruption (p = 0.0014), ischemic injury seen by indirect ophthalmoscopy (p < 0.05), altered osmolality (p = 0.0006) and through alterations in the amino acids transported into the brain. Conclusion In children with cerebral malaria, there is evidence of kidney-brain injury with multiple potential pathways identified. These changes were specific to the kidney and not observed in the context of other clinical complications.
Collapse
Affiliation(s)
- Andrea L. Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert O. Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
- Undergraduate Medical Education, The Aga Khan University, Nairobi, Kenya
| | - Anthony Batte
- Global Health Uganda, Kampala, Uganda
- Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda
| | - Paul Bangirana
- Global Health Uganda, Kampala, Uganda
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Adnan Gopinadhan
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kagan A. Mellencamp
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ayse Akcan-Arikan
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, United States
- Division of Nephrology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, United States
| | - Richard Idro
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Chandy C. John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Mitran C, Opoka RO, Conroy AL, Namasopo S, Kain KC, Hawkes MT. Pediatric Malaria with Respiratory Distress: Prognostic Significance of Point-of-Care Lactate. Microorganisms 2023; 11:microorganisms11040923. [PMID: 37110346 PMCID: PMC10145304 DOI: 10.3390/microorganisms11040923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Respiratory distress (RD) in pediatric malaria portends a grave prognosis. Lactic acidosis is a biomarker of severe disease. We investigated whether lactate, measured at admission using a handheld device among children hospitalized with malaria and RD, was predictive of subsequent mortality. We performed a pooled analysis of Ugandan children under five years of age hospitalized with malaria and RD from three past studies. In total, 1324 children with malaria and RD (median age 1.4 years, 46% female) from 21 health facilities were included. Median lactate level at admission was 4.6 mmol/L (IQR 2.6–8.5) and 586 patients (44%) had hyperlactatemia (lactate > 5 mmol/L). The mortality was 84/1324 (6.3%). In a mixed-effects Cox proportional hazard model adjusting for age, sex, clinical severity score (fixed effects), study, and site (random effects), hyperlactatemia was associated with a 3-fold increased hazard of death (aHR 3.0, 95%CI 1.8–5.3, p < 0.0001). Delayed capillary refill time (τ = 0.14, p < 0.0001), hypotension (τ = −0.10, p = 0.00049), anemia (τ = −0.25, p < 0.0001), low tissue oxygen delivery (τ = −0.19, p < 0.0001), high parasite density (τ = 0.10, p < 0.0001), and acute kidney injury (p = 0.00047) were associated with higher lactate levels. In children with malaria and RD, bedside lactate may be a useful triage tool, predictive of mortality.
Collapse
Affiliation(s)
- Catherine Mitran
- Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Robert O. Opoka
- Department of Paediatrics and Child Health, Mulago Hospital and Makerere University, Kampala P.O. Box 7062, Uganda
| | - Andrea L. Conroy
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sophie Namasopo
- Department of Paediatrics, Kabale District Hospital, Kabale P.O. Box 1102, Uganda
| | - Kevin C. Kain
- Sandra Rotman Centre for Global Health, Department of Medicine, University Health Network-Toronto General Hospital, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Michael T. Hawkes
- Department of Paediatrics, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- School of Public Health, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Stollery Science Lab, Edmonton, AB T6G 1C9, Canada
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| |
Collapse
|
11
|
Kalkman LC, Hänscheid T, Krishna S, Grobusch MP. Fluid therapy for severe malaria. THE LANCET. INFECTIOUS DISEASES 2022; 22:e160-e170. [PMID: 35051406 DOI: 10.1016/s1473-3099(21)00471-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 06/14/2023]
Abstract
Fluid therapy is an important supportive measure for patients with severe malaria. Patients with severe malaria usually have normal cardiac index, vascular resistance, and blood pressure and a small degree of hypovolaemia due to dehydration. Cell hypoxia, reduced kidney function, and acidosis result from microcirculatory compromise and malarial anaemia, which reduce tissue oxygenation, not hypovolaemia. Hence, aggressive fluid loading does not correct acid-base status, enhance kidney function, or improve patient outcomes, and it risks complications such as pulmonary oedema. Individualised conservative fluid management is recommended in patients with severe malaria. Physical examination and physiological indices have limited reliability in guiding fluid therapy. Invasive measures can be more accurate than physical examination and physiological indices but are often unavailable in endemic areas, and non-invasive measures, such as ultrasound, are mostly unexplored. Research into reliable methods applicable in low-resource settings to measure fluid status and response is a priority. In this Review, we outline the current knowledge on fluid management in severe malaria and highlight research needed to optimise fluid therapy and improve survival in severe malaria.
Collapse
Affiliation(s)
- Laura C Kalkman
- Centre of Tropical Medicine and Travel Medicine, Amsterdam University Medical Centre, Department of Infectious Diseases, University of Amsterdam, Amsterdam, Netherlands; Centre de Recherches Médicales en Lambaréné, Lambaréné, Gabon
| | - Thomas Hänscheid
- Instituto de Microbiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sanjeev Krishna
- Centre de Recherches Médicales en Lambaréné, Lambaréné, Gabon; Clinical Academic Group, Institute for Infection and Immunity, and St George's University Hospitals NHS Foundation Trust, St George's University of London, London, UK; Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Martin P Grobusch
- Centre of Tropical Medicine and Travel Medicine, Amsterdam University Medical Centre, Department of Infectious Diseases, University of Amsterdam, Amsterdam, Netherlands; Centre de Recherches Médicales en Lambaréné, Lambaréné, Gabon; Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany; Masanga Medical Research Unit, Masanga, Sierra Leone; Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
12
|
Nguee SYT, Júnior JWBD, Epiphanio S, Rénia L, Claser C. Experimental Models to Study the Pathogenesis of Malaria-Associated Acute Respiratory Distress Syndrome. Front Cell Infect Microbiol 2022; 12:899581. [PMID: 35677654 PMCID: PMC9168995 DOI: 10.3389/fcimb.2022.899581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria-associated acute respiratory distress syndrome (MA-ARDS) is increasingly gaining recognition as a severe malaria complication because of poor prognostic outcomes, high lethality rate, and limited therapeutic interventions. Unfortunately, invasive clinical studies are challenging to conduct and yields insufficient mechanistic insights. These limitations have led to the development of suitable MA-ARDS experimental mouse models. In patients and mice, MA-ARDS is characterized by edematous lung, along with marked infiltration of inflammatory cells and damage of the alveolar-capillary barriers. Although, the pathogenic pathways have yet to be fully understood, the use of different experimental mouse models is fundamental in the identification of mediators of pulmonary vascular damage. In this review, we discuss the current knowledge on endothelial activation, leukocyte recruitment, leukocyte induced-endothelial dysfunction, and other important findings, to better understand the pathogenesis pathways leading to endothelial pulmonary barrier lesions and increased vascular permeability. We also discuss how the advances in imaging techniques can contribute to a better understanding of the lung lesions induced during MA-ARDS, and how it could aid to monitor MA-ARDS severity.
Collapse
Affiliation(s)
- Samantha Yee Teng Nguee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Sabrina Epiphanio
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carla Claser,
| |
Collapse
|
13
|
Borgstein A, Zhang B, Lam C, Gushu MB, Liomba AW, Malenga A, Pensulo P, Tebulo A, Small DS, Taylor T, Seydel K. Delayed presentation to hospital care is associated with sequelae but not mortality in children with cerebral malaria in Malawi. Malar J 2022; 21:60. [PMID: 35193585 PMCID: PMC8864854 DOI: 10.1186/s12936-022-04080-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cerebral malaria is still a major cause of death in children in sub-Saharan Africa. Among survivors, debilitating neurological sequelae can leave children with permanent cognitive impairments and societal stigma, resulting in taxing repercussions for their families. This study investigated the effect of delay in presentation to medical care on outcome in children with cerebral malaria in Malawi. Methods This retrospective study included participants enrolled in a longstanding study of cerebral malaria between 2001 and 2021 and considered coma duration prior to arrival at hospital (with or without anti-malarial treatment), HIV status, blood lactate levels at admission and age as factors that could affect clinical outcome. Outcomes were categorized as full recovery, sequelae at the time of discharge, or death. A multinomial regression was fit and run controlling for coma duration, HIV status, lactate levels and age, to determine the association between each explanatory variable and outcome. Results A total of 1663 children with cerebral malaria, aged 6 months to 14 years were included. Longer coma duration (in hours) was associated with greater odds of developing sequelae (OR = 1.023, 95% CI 1.007–1.039, p = 0.006) but not death (OR = 1.00, 95% CI 0.986–1.015, p = 0.961). Younger age (in months) was also correlated with higher rates of sequelae, (OR = 0.990, 95% CI 0.983–0.997, p = 0.004) but not with increased mortality (OR = 0.998, 95% CI 0.993–1.003, p = 0.335). Blood lactate levels on admission were correlated with mortality (OR = 1.125, 95% CI 1.090–1.161, p < 0.001) but not associated with increased rates of sequelae (OR = 1.016, 95% CI 0.973–1.060, p = 0.475). Positive HIV status and treatment with an anti-malarial (artemisinin or non-artemisinin-based) prior to arrival at the hospital were not significantly associated with either adverse outcome. Conclusions In Malawian children with cerebral malaria, higher rates of sequelae were significantly associated with extended coma duration prior to admission and younger age. Mortality rates were correlated with increased lactate levels on admission. The differential effects of variables on clinical outcomes suggest that there may be different pathogenic pathways leading to sequelae and death. Actions taken by parents and health care professionals are critical in defining when patients arrive at hospital and determining their ultimate outcome. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04080-2.
Collapse
Affiliation(s)
- Arabella Borgstein
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi.,St. George's University of London/University of Nicosia Medical School, Nicosia, Cyprus
| | - Bo Zhang
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, USA
| | - Colin Lam
- Bronx High School of Science, Bronx, NY, USA
| | - Montfort Bernard Gushu
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi
| | - Alice Wangui Liomba
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi
| | - Albert Malenga
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi
| | - Paul Pensulo
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi
| | - Andrew Tebulo
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi
| | - Dylan S Small
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, USA
| | - Terrie Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Karl Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi. .,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA. .,Malawi-Liverpool-Wellcome Trust Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.
| |
Collapse
|
14
|
Alteration of the expression of sirtuins and var genes by heat shock in the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2022; 248:111458. [PMID: 35031386 DOI: 10.1016/j.molbiopara.2022.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND In Plasmodium falciparum the monoallelic expression of var virulence genes is regulated through epigenetic mechanisms. A study in the Gambia showed that an increase in var gene expression is associated with fever, high blood lactate with commonly-expressed var genes expressed in patients with severe malaria. A strong association was demonstrated between the upregulation of PfSir2A and group B var genes. A subsequent study in Kenya extended this association to show a link between elevated expression of PfSir2A and overall var transcript levels. We investigate here the link between heat shock and/or lactate levels on sirtuin and var gene expression levels in vitro. METHODS In vitro experiments were conducted using laboratory and recently-laboratory-adapted Kenyan isolates of P. falciparum. To investigate a potential cause-and-effect relationship between host stress factors and parasite gene expression, qPCR was used to measure the expression of sirtuins and var genes after highly synchronous cultured parasites had been exposed to 2 h or 6 h of heat shock at 40 °C or elevated lactate. RESULTS Heat shock was shown to increase the expression ofPfSir2B in the trophozoites, whereas exposure to lactate was not. After the ring stages were exposed to heat shock and lactate, there was no alteration in the expression of sirtuins and severe-disease-associated upsA and upsB var genes. The association between high blood lactate and sirtuin/var gene expression that was previously observed in vivo appears to be coincidental rather than causative. CONCLUSIONS This study demonstrates that heat stress in a laboratory and recently-laboratory-adapted isolates of P. falciparum results in a small increase in PfSir2B transcripts in the trophozoite stages only. This finding adds to our understanding of how patient factors can influence the outcome of Plasmodium falciparum infections.
Collapse
|
15
|
Georgiadou A, Dunican C, Soro-Barrio P, Lee HJ, Kaforou M, Cunnington AJ. Comparative transcriptomic analysis reveals translationally relevant processes in mouse models of malaria. eLife 2022; 11:e70763. [PMID: 35006075 PMCID: PMC8747512 DOI: 10.7554/elife.70763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Recent initiatives to improve translation of findings from animal models to human disease have focussed on reproducibility but quantifying the relevance of animal models remains a challenge. Here, we use comparative transcriptomics of blood to evaluate the systemic host response and its concordance between humans with different clinical manifestations of malaria and five commonly used mouse models. Plasmodium yoelii 17XL infection of mice most closely reproduces the profile of gene expression changes seen in the major human severe malaria syndromes, accompanied by high parasite biomass, severe anemia, hyperlactatemia, and cerebral microvascular pathology. However, there is also considerable discordance of changes in gene expression between the different host species and across all models, indicating that the relevance of biological mechanisms of interest in each model should be assessed before conducting experiments. These data will aid the selection of appropriate models for translational malaria research, and the approach is generalizable to other disease models.
Collapse
Affiliation(s)
- Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Pablo Soro-Barrio
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
| | - Hyun Jae Lee
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
16
|
Alteration of Blood Lactate Levels in Severe Falciparum Malaria: A Systematic Review and Meta-Analysis. BIOLOGY 2021; 10:biology10111085. [PMID: 34827078 PMCID: PMC8614809 DOI: 10.3390/biology10111085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary Alteration of blood lactate levels in patients with severe falciparum malaria is well recognized. However, data on blood lactate in literatures were based on a limited number of participants. The present systematic review aimed to collate the blood lactate levels recorded in the literature and used a metaanalysis approach to pool the evidence in a larger sample size than that used in the individual studies to determine the trend. Results from this study will provide the pooled evidence of blood lactate levels in patients with severe malaria for further studies that identifying patients with a high risk of developing severe malaria or death. Abstract Metabolic acidosis in severe malaria usually occurs in the form of lactic acidosis. The present study aimed to collate articles from the literature that have reported blood lactate levels in patients with severe malaria and tested the hypothesis that blood lactate levels are elevated in patients with malaria compared to those with uncomplicated malaria. Moreover, the difference in lactate levels between patients who died and those who survived was estimated using a meta-analytic approach. Potentially relevant studies were searched for in PubMed, Web of Science, and Scopus. The quality of the included studies was assessed using the Jadad scale and strengthening the reporting of observational studies in epidemiology (STROBE). The pooled mean blood lactate in patients with severe malaria, the pooled weighted mean difference (WMD) of blood lactate between patients with severe malaria and those with uncomplicated malaria, and the pooled WMD and 95% CI of blood lactate between patients who died from and those who survived severe malaria were estimated using the random-effects model. Heterogeneity among the outcomes of the included studies was assessed using Cochran’s Q and I2 statistics. A meta-regression analysis was performed to identify the source(s) of heterogeneity of outcomes among the included studies. A subgroup analysis was further performed to separately analyze the outcomes stratified by the probable source(s) of heterogeneity. Publication bias was assessed by the visual inspection of the funnel plot asymmetry. Of 793 studies retrieved from the searches, 30 studies were included in qualitative and quantitative syntheses. The pooled mean lactate in patients with severe malaria was 5.04 mM (95% CI: 4.44–5.64; I2: 99.9%; n = 30,202 cases from 30 studies). The mean lactate in patients with severe malaria (1568 cases) was higher than in those with uncomplicated malaria (1693 cases) (p = 0.003; MD: 2.46; 95% CI: 0.85–4.07; I2: 100%; nine studies). The mean lactate in patients with severe malaria who died (272 cases) was higher than in those with severe malaria who survived (1370 cases) (p < 0.001; MD: 2.74; 95% CI: 1.74–3.75; I2: 95.8%; six studies). In conclusion, the present study showed a high mean difference in blood lactate level between patients with severe malaria and patients with uncomplicated malaria. In addition, there was a high mean difference in blood lactate level between patients with severe malaria who died compared to those with severe malaria who survived. Further studies are needed to investigate the prognostic value of blood lactate levels to identify patients who are at high risk of developing severe malaria or dying.
Collapse
|
17
|
Whole blood transfusion improves vascular integrity and increases survival in artemether-treated experimental cerebral malaria. Sci Rep 2021; 11:12077. [PMID: 34103601 PMCID: PMC8187502 DOI: 10.1038/s41598-021-91499-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023] Open
Abstract
Pathological features observed in both human and experimental cerebral malaria (ECM) are endothelial dysfunction and changes in blood components. Blood transfusion has been routinely used in patients with severe malarial anemia and can also benefit comatose and acidotic malaria patients. In the present study Plasmodium berghei-infected mice were transfused intraperitoneally with 200 μL of whole blood along with 20 mg/kg of artemether. ECM mice showed severe thrombocytopenia and decreases in hematocrit. Artemether treatment markedly aggravated anemia within 24 h. Whole blood administration significantly prevented further drop in hematocrit and partially restored the platelet count. Increased levels of plasma angiopoietin-2 (Ang-2) remained high 24 h after artemether treatment but returned to normal levels 24 h after blood transfusion, indicating reversal to quiescence. Ang-1 was depleted in ECM mice and levels were not restored by any treatment. Blood transfusion prevented the aggravation of the breakdown of blood brain barrier after artemether treatment and decreased spleen congestion without affecting splenic lymphocyte populations. Critically, blood transfusion resulted in markedly improved survival of mice with ECM (75.9% compared to 50.9% receiving artemether only). These findings indicate that whole blood transfusion can be an effective adjuvant therapy for cerebral malaria.
Collapse
|
18
|
Wolfsdorf JI, Stanley CA. Hypoglycemia in the Toddler and Child. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:904-938. [DOI: 10.1016/b978-0-323-62520-3.00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Kumar M, Skillman K, Duraisingh MT. Linking nutrient sensing and gene expression in Plasmodium falciparum blood-stage parasites. Mol Microbiol 2020; 115:891-900. [PMID: 33236377 DOI: 10.1111/mmi.14652] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
Malaria is one of the most life-threatening infectious diseases worldwide, caused by infection of humans with parasites of the genus Plasmodium. The complex life cycle of Plasmodium parasites is shared between two hosts, with infection of multiple cell types, and the parasite needs to adapt for survival and transmission through significantly different metabolic environments. Within the blood-stage alone, parasites encounter changing levels of key nutrients, including sugars, amino acids, and lipids, due to differences in host dietary nutrition, cellular tropism, and pathogenesis. In this review, we consider the mechanisms that the most lethal of malaria parasites, Plasmodium falciparum, uses to sense nutrient levels and elicit changes in gene expression during blood-stage infections. These changes are brought about by several metabolic intermediates and their corresponding sensor proteins. Sensing of distinct nutritional signals can drive P. falciparum to alter the key blood-stage processes of proliferation, antigenic variation, and transmission.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kristen Skillman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
20
|
Patel H, Dunican C, Cunnington AJ. Predictors of outcome in childhood Plasmodium falciparum malaria. Virulence 2020; 11:199-221. [PMID: 32063099 PMCID: PMC7051137 DOI: 10.1080/21505594.2020.1726570] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum malaria is classified as either uncomplicated or severe, determining clinical management and providing a framework for understanding pathogenesis. Severe malaria in children is defined by the presence of one or more features associated with adverse outcome, but there is wide variation in the predictive value of these features. Here we review the evidence for the usefulness of these features, alone and in combination, to predict death and other adverse outcomes, and we consider the role that molecular biomarkers may play in augmenting this prediction. We also examine whether a more personalized approach to predicting outcome for specific presenting syndromes of severe malaria, particularly cerebral malaria, has the potential to be more accurate. We note a general need for better external validation in studies of outcome predictors and for the demonstration that predictors can be used to guide clinical management in a way that improves survival and long-term health.
Collapse
Affiliation(s)
- Harsita Patel
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
21
|
Varo R, Erice C, Johnson S, Bassat Q, Kain KC. Clinical trials to assess adjuvant therapeutics for severe malaria. Malar J 2020; 19:268. [PMID: 32709257 PMCID: PMC7382078 DOI: 10.1186/s12936-020-03340-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/17/2020] [Indexed: 01/07/2023] Open
Abstract
Despite potent anti-malarial treatment, mortality rates associated with severe falciparum malaria remain high. To attempt to improve outcome, several trials have assessed a variety of potential adjunctive therapeutics, however none to date has been shown to be beneficial. This may be due, at least partly, to the therapeutics chosen and clinical trial design used. Here, we highlight three themes that could facilitate the choice and evaluation of putative adjuvant interventions for severe malaria, paving the way for their assessment in randomized controlled trials. Most clinical trials of adjunctive therapeutics to date have been underpowered due to the large number of participants required to reach mortality endpoints, rendering these study designs challenging and expensive to conduct. These limitations may be mitigated by the use of risk-stratification of participants and application of surrogate endpoints. Appropriate surrogate endpoints include direct measures of pathways causally involved in the pathobiology of severe and fatal malaria, including markers of host immune and endothelial activation and microcirculatory dysfunction. We propose using circulating markers of these pathways to identify high-risk participants that would be most likely to benefit from adjunctive therapy, and further by adopting these biomarkers as surrogate endpoints; moreover, choosing interventions that target deleterious host immune responses that directly contribute to microcirculatory dysfunction, multi-organ dysfunction and death; and, finally, prioritizing where possible, drugs that act on these pathways that are already approved by the FDA, or other regulators, for other indications, and are known to be safe in target populations, including children. An emerging understanding of the critical role of the host response in severe malaria pathogenesis may facilitate both clinical trial design and the search of effective adjunctive therapeutics.
Collapse
Affiliation(s)
- Rosauro Varo
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Manhiça, Mozambique
| | - Clara Erice
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | | | - Quique Bassat
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Manhiça, Mozambique.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kevin C Kain
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, ON, Canada. .,Department of Medicine, Division of Infectious Diseases, Tropical Disease Unit, University of Toronto, Toronto, Canada.
| |
Collapse
|
22
|
Varo R, Chaccour C, Bassat Q. Update on malaria. Med Clin (Barc) 2020; 155:395-402. [PMID: 32620355 DOI: 10.1016/j.medcli.2020.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/25/2023]
Abstract
Despite recent successful efforts to reduce the global malaria burden, this disease remains a significant global health problem. Only in 2018, malaria caused 228 million clinical episodes, 2-4 million of which were severe malaria cases, and 405,000 were fatal. Most of the malaria attributable mortality occurred among children in sub-Saharan Africa. Nowadays, rapid diagnostic tests and artemisinin derivatives are two of the main pillars for the management of malaria. However, considering the current situation, these strategies are not sufficient to maintain a reducing trend in malaria incidence and mortality. New insights into the pathophysiology of malaria have highlighted the importance of the host response to infection. Understanding this response would help to develop new diagnostic and therapeutic tools. Vector and parasite drug resistance are two major challenges for malaria control that require special attention. The most advanced malaria vaccine (RTS,S) is currently being piloted in 3 African countries.
Collapse
Affiliation(s)
- Rosauro Varo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Carlos Chaccour
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Ifakara Health Institute, Ifakara, United Republic of Tanzania; Facultad de Medicina, Universidad de Navarra, Pamplona, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Deu (University of Barcelona), Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Publica (CIBERESP), Madrid, Spain.
| |
Collapse
|
23
|
Severe malaria. Current concepts and practical overview: What every intensivist should know. Intensive Care Med 2020; 46:907-918. [PMID: 32347322 DOI: 10.1007/s00134-020-06019-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/19/2020] [Indexed: 10/24/2022]
|
24
|
Abstract
OBJECTIVE Malaria infection could result in severe disease with high mortality. Prognostic models and scores predicting severity of infection, complications and mortality could help clinicians prioritise patients. We conducted a systematic review to assess the various models that have been produced to predict disease severity and mortality in patients infected with malaria. DESIGN A systematic review. DATA SOURCES Medline, Global health and CINAHL were searched up to 4 September 2019. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Published articles on models which used at least two points (or variables) of patient data to predict disease severity; potential development of complications (including coma or cerebral malaria; shock; acidosis; severe anaemia; acute kidney injury; hypoglycaemia; respiratory failure and sepsis) and mortality in patients with malaria infection. DATA EXTRACTION AND SYNTHESIS Two independent reviewers extracted the data and assessed risk of bias using the Prediction model Risk Of Bias Assessment Tool. RESULTS A total of 564 articles were screened and 24 articles were retained which described 27 models/scores of interests. Two of the articles described models predicting complications of malaria (severe anaemia in children and development of sepsis); 15 articles described original models predicting mortality in severe malaria; 3 articles described models predicting mortality in different contexts but adapted and validated to predict mortality in malaria; and 4 articles described models predicting severity of the disease. For the models predicting mortality, all the models had neurological dysfunction as a predictor; in children, half of the models contained hypoglycaemia and respiratory failure as a predictor meanwhile, six out of the nine models in adults had respiratory failure as a clinical predictor. Acidosis, renal failure and shock were also common predictors of mortality. Eighteen of the articles described models that could be applicable in real-life settings and all the articles had a high risk of bias due to lack of use of consistent and up-to-date methods of internal validation. CONCLUSION Evidence is lacking on the generalisability of most of these models due lack of external validation. Emphasis should be placed on external validation of existing models and publication of the findings of their use in clinical settings to guide clinicians on management options depending on the priorities of their patients. PROSPERO REGISTRATION NUMBER CRD42019130673.
Collapse
Affiliation(s)
- Tsi Njim
- Surgical Department, Regional Hospital Bamenda, Buea, Cameroon
| | | |
Collapse
|
25
|
Vandermosten L, Vanhorebeek I, De Bosscher K, Opdenakker G, Van den Steen PE. Critical Roles of Endogenous Glucocorticoids for Disease Tolerance in Malaria. Trends Parasitol 2019; 35:918-930. [PMID: 31606404 DOI: 10.1016/j.pt.2019.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 10/25/2022]
Abstract
During malaria, the hypothalamic-pituitary-adrenal (HPA) axis is activated and glucocorticoid (GC) levels are increased, but their essential roles have been largely overlooked. GCs are decisive for systemic regulation of vital processes such as immune responses, vascular function, and metabolism, which are crucial in malaria. Here, we introduce GCs in general, followed by their versatile roles for disease tolerance in malaria. A complementary comparison is provided with their role in sepsis. Finally, potential translational implications are considered. The failed clinical trials of dexamethasone against cerebral malaria in the past have diminished the interest in GCs in malaria. However, the issue of relative corticosteroid insufficiency has barely been explored in malaria patients, but may hold promise for a better understanding and treatment of specific malaria complications.
Collapse
Affiliation(s)
- Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ilse Vanhorebeek
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research Laboratory, VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, UGent, Ghent, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
26
|
Laman M, Aipit S, Bona C, Aipit J, Davis TME, Manning L. Contribution of Malaria to Inhospital Mortality in Papua New Guinean Children from a Malaria-Endemic Area: A Prospective Observational Study. Am J Trop Med Hyg 2019; 100:835-841. [PMID: 30793683 DOI: 10.4269/ajtmh.18-0769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We aimed to identify clinical and laboratory predictors of mortality in children from a malaria-endemic area of Papua New Guinea hospitalized for severe illness. Children aged 0.5-10 years presenting with any WHO-defined feature of severe malarial illness were eligible for recruitment. Each child was assessed with a detailed clinical examination, blood film microscopy, malaria rapid diagnostic testing (RDT), a full blood examination, and blood glucose and lactate concentrations. Clinical care was coordinated by local medical staff in accordance with national guidelines. Daily study assessments were conducted until death or discharge. Other biochemical tests and malaria polymerase chain reaction (PCR) tests were performed subsequently. Logistic regression identified independent predictors of death. Of 787 evaluable children with severe illness, 336 had confirmed severe malaria (microscopy and PCR positive) and 58 (6.6%) died during hospitalization. The independent predictors of mortality were hyperlactatemia (adjusted odds ratio [95% CI]: 2.85 [1.24-6.41], P = 0.01), malnutrition (2.92 [1.36-6.23], P = 0.005), renal impairment (3.85 [1.53-9.24], P = 0.002), plasma albumin (0.93 [0.88-0.98] for a 1 g/L increase, P = 0.004), and Blantyre coma score (BCS) ≤ 2 (10.3 [4.77-23.0] versus a normal BCS, P < 0.0001). Confirmed severe malaria (0.11 [0.03-0.30] versus non-malarial severe illness, P < 0.0001) was independently associated with lower mortality. Although established risk factors were evident, malaria was inversely associated with mortality. This highlights the importance of accurate diagnosis through blood film microscopy, RDTs, and, if available, PCR to both guide management and provide valid epidemiological data.
Collapse
Affiliation(s)
- Moses Laman
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Susan Aipit
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Cathy Bona
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Jimmy Aipit
- Department of Pediatrics, Modilon Hospital, Madang, Madang Province, Papua New Guinea
| | - Timothy M E Davis
- Faculty of Health and Medical Sciences, University of Western Australia, Fremantle Hospital, Fremantle, Australia
| | - Laurens Manning
- Faculty of Health and Medical Sciences, Fiona Stanley Hospital, Harry Perkins Institute, University of Western Australia, Murdoch, Australia
| |
Collapse
|
27
|
Vandermosten L, Pham TT, Knoops S, De Geest C, Lays N, Van der Molen K, Kenyon CJ, Verma M, Chapman KE, Schuit F, De Bosscher K, Opdenakker G, Van den Steen PE. Adrenal hormones mediate disease tolerance in malaria. Nat Commun 2018; 9:4525. [PMID: 30375380 PMCID: PMC6207723 DOI: 10.1038/s41467-018-06986-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
Malaria reduces host fitness and survival by pathogen-mediated damage and inflammation. Disease tolerance mechanisms counter these negative effects without decreasing pathogen load. Here, we demonstrate that in four different mouse models of malaria, adrenal hormones confer disease tolerance and protect against early death, independently of parasitemia. Surprisingly, adrenalectomy differentially affects malaria-induced inflammation by increasing circulating cytokines and inflammation in the brain but not in the liver or lung. Furthermore, without affecting the transcription of hepatic gluconeogenic enzymes, adrenalectomy causes exhaustion of hepatic glycogen and insulin-independent lethal hypoglycemia upon infection. This hypoglycemia is not prevented by glucose administration or TNF-α neutralization. In contrast, treatment with a synthetic glucocorticoid (dexamethasone) prevents the hypoglycemia, lowers cerebral cytokine expression and increases survival rates. Overall, we conclude that in malaria, adrenal hormones do not protect against lung and liver inflammation. Instead, they prevent excessive systemic and brain inflammation and severe hypoglycemia, thereby contributing to tolerance. Disease tolerance mechanisms counter the negative effects of infection without decreasing the pathogen load. Here, the authors show that in mouse models of malaria, such disease tolerance can be conferred by adrenal hormones, by preventing excessive inflammation and hypoglycemia.
Collapse
Affiliation(s)
- Leen Vandermosten
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Sofie Knoops
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Charlotte De Geest
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Natacha Lays
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Kristof Van der Molen
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Christopher J Kenyon
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Manu Verma
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Karen E Chapman
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, 3000, Belgium
| | - Karolien De Bosscher
- Nuclear Receptor Lab, Receptor Research Laboratories, VIB Center for Medical Biotechnology, Ghent University, Gent, 9000, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
28
|
Ghosh S, Pathak S, Sonawat HM, Sharma S, Sengupta A. Metabolomic changes in vertebrate host during malaria disease progression. Cytokine 2018; 112:32-43. [PMID: 30057363 DOI: 10.1016/j.cyto.2018.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Metabolomics refers to top-down systems biological analysis of metabolites in biological specimens. Phenotypic proximity of metabolites makes them interesting candidates for studying biomarkers of environmental stressors such as parasitic infections. Moreover, the host-parasite interaction directly impinges upon metabolic pathways since the parasite uses the host metabolite pool as a biosynthetic resource. Malarial infection, although not recognized as a classic metabolic disorder, often leads to severe metabolic changes such as hypoglycemia and lactic acidosis. Thus, metabolomic analysis of the infection has become an invaluable tool for promoting a better understanding of the host-parasite interaction and for the development of novel therapeutics. In this review, we summarize the current knowledge obtained from metabolomic studies of malarial infection in rodent models and human patients. Metabolomic analysis of experimental rodent malaria has provided significant insights into the mechanisms of disease progression including utilization of host resources by the parasite, sexual dimorphism in metabolic phenotypes, and cellular changes in host metabolism. Moreover, these studies also provide proof of concept for prediction of cerebral malaria. On the other hand, metabolite analysis of patient biofluids generates extensive data that could be of use in identifying biomarkers of infection severity and in monitoring disease progression. Through the use of metabolomic datasets one hopes to assess crucial infection-specific issues such as clinical severity, drug resistance, therapeutic targets, and biomarkers. Also discussed are nascent or newly emerging areas of metabolomics such as pre-erythrocytic stages of the infection and the host immune response. This review is organized in four broad sections-methodologies for metabolomic analysis, rodent infection models, studies of human clinical specimens, and potential of immunometabolomics. Data summarized in this review should serve as a springboard for novel hypothesis testing and lead to a better understanding of malarial infection and parasite biology.
Collapse
Affiliation(s)
- Soumita Ghosh
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Mumbai 400005, India
| | - Haripalsingh M Sonawat
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Mumbai 400005, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Mumbai 400005, India
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Bila R, Varo R, Madrid L, Sitoe A, Bassat Q. Continuous Glucose Monitoring in Resource-Constrained Settings for Hypoglycaemia Detection: Looking at the Problem from the Other Side of the Coin. BIOSENSORS-BASEL 2018; 8:bios8020043. [PMID: 29693557 PMCID: PMC6023081 DOI: 10.3390/bios8020043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022]
Abstract
The appearance, over a decade ago, of continuous glucose monitoring (CGM) devices has triggered a patient-centred revolution in the control and management of diabetes mellitus and other metabolic conditions, improving the patient’s glycaemic control and quality of life. Such devices, the use of which remains typically restricted to high-income countries on account of their elevated costs, at present show very limited implantation in resource-constrained settings, where many other urgent health priorities beyond diabetes prevention and management still need to be resolved. In this commentary, we argue that such devices could have an additional utility in low-income settings, whereby they could be selectively used among severely ill children admitted to hospital for closer monitoring of paediatric hypoglycaemia, a life-threatening condition often complicating severe cases of malaria, malnutrition, and other common paediatric conditions.
Collapse
Affiliation(s)
- Rubao Bila
- Centro de Investigação em Saúde de Manhiça (CISM), CP1929 Maputo, Mozambique.
| | - Rosauro Varo
- Centro de Investigação em Saúde de Manhiça (CISM), CP1929 Maputo, Mozambique.
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Lola Madrid
- Centro de Investigação em Saúde de Manhiça (CISM), CP1929 Maputo, Mozambique.
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Antonio Sitoe
- Centro de Investigação em Saúde de Manhiça (CISM), CP1929 Maputo, Mozambique.
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), CP1929 Maputo, Mozambique.
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), 08950 Barcelona, Spain.
| |
Collapse
|
30
|
Gardinassi LG, Arévalo-Herrera M, Herrera S, Cordy RJ, Tran V, Smith MR, Johnson MS, Chacko B, Liu KH, Darley-Usmar VM, Go YM, Jones DP, Galinski MR, Li S. Integrative metabolomics and transcriptomics signatures of clinical tolerance to Plasmodium vivax reveal activation of innate cell immunity and T cell signaling. Redox Biol 2018; 17:158-170. [PMID: 29698924 PMCID: PMC6007173 DOI: 10.1016/j.redox.2018.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 02/08/2023] Open
Abstract
Almost invariably, humans become ill during primary infections with malaria parasites which is a pathology associated with oxidative stress and perturbations in metabolism. Importantly, repetitive exposure to Plasmodium results in asymptomatic infections, which is a condition defined as clinical tolerance. Integration of transcriptomics and metabolomics data provides a powerful way to investigate complex disease processes involving oxidative stress, energy metabolism and immune cell activation. We used metabolomics and transcriptomics to investigate the different clinical outcomes in a P. vivax controlled human malaria infection trial. At baseline, the naïve and semi-immune subjects differed in the expression of interferon related genes, neutrophil and B cell signatures that progressed with distinct kinetics after infection. Metabolomics data indicated differences in amino acid pathways and lipid metabolism between the two groups. Top pathways during the course of infection included methionine and cysteine metabolism, fatty acid metabolism and urea cycle. There is also evidence for the activation of lipoxygenase, cyclooxygenase and non-specific lipid peroxidation products in the semi-immune group. The integration of transcriptomics and metabolomics revealed concerted molecular events triggered by the infection, notably involving platelet activation, innate immunity and T cell signaling. Additional experiment confirmed that the metabolites associated with platelet activation genes were indeed enriched in the platelet metabolome. Plasmodium vivax infection induces significant change in blood metabolomics. Naïve and semi-immune subjects exhibit different molecular profiles. Network integration of metabolites/genes hinges on innate activation, chemokines and T cell signaling. Involvement of platelet activation is confirmed by platelet metabolomics.
Collapse
Affiliation(s)
- Luiz G Gardinassi
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA
| | - Myriam Arévalo-Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia; Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Sócrates Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia; Caucaseco Scientific Research Center, Cali, Colombia
| | - Regina J Cordy
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - ViLinh Tran
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA
| | - Matthew R Smith
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA
| | - Michelle S Johnson
- Department of Pathology and Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Balu Chacko
- Department of Pathology and Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ken H Liu
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA
| | - Victor M Darley-Usmar
- Department of Pathology and Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Young-Mi Go
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA
| | | | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA
| | - Mary R Galinski
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA; International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Shuzhao Li
- Department of Medicine, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322-1047, USA.
| |
Collapse
|
31
|
Aramburo A, Todd J, George EC, Kiguli S, Olupot-Olupot P, Opoka RO, Engoru C, Akech SO, Nyeko R, Mtove G, Gibb DM, Babiker AG, Maitland K. Lactate clearance as a prognostic marker of mortality in severely ill febrile children in East Africa. BMC Med 2018; 16:37. [PMID: 29519240 PMCID: PMC5844084 DOI: 10.1186/s12916-018-1014-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hyperlactataemia (HL) is a biomarker of disease severity that predicts mortality in patients with sepsis and malaria. Lactate clearance (LC) during resuscitation has been shown to be a prognostic factor of survival in critically ill adults, but little data exist for African children living in malaria-endemic areas. METHODS In a secondary data analysis of severely ill febrile children included in the Fluid Expansion as Supportive Therapy (FEAST) resuscitation trial, we assessed the association between lactate levels at admission and LC at 8 h with all-cause mortality at 72 h (d72). LC was defined as a relative lactate decline ≥ 40% and/or lactate normalisation (lactate < 2.5 mmol/L). RESULTS Of 3170 children in the FEAST trial, including 1719 children (57%) with Plasmodium falciparum malaria, 3008 (95%) had a baseline lactate measurement, 2127 (71%) had HL (lactate ≥ 2.5 mmol/L), and 1179 (39%) had severe HL (≥ 5 mmol/L). Within 72 h, 309 children (10.3%) died, of whom 284 (92%) had baseline HL. After adjustment for potential confounders, severe HL was strongly associated with mortality (Odds Ratio (OR) 6.96; 95% CI 3.52, 13.76, p < 0.001). This association was not modified by malaria status, despite children with malaria having a higher baseline lactate (median 4.6 mmol/L vs 3 mmol/L; p < 0.001) and a lower mortality rate (OR = 0.42; p < 0.001) compared to non-malarial cases. Sensitivity and specificity analysis identified a higher lactate on admission cut-off value predictive of d72 for children with malaria (5.2 mmol/L) than for those with other febrile illnesses (3.4 mmol/L). At 8 h, 2748/3008 survivors (91%) had a lactate measured, 1906 (63%) of whom had HL on admission, of whom 1014 (53%) fulfilled pre-defined LC criteria. After adjustment for confounders, LC independently predicted survival after 8 h (OR 0.24; 95% CI 0.14, 0.42; p < 0.001). Absence of LC (< 10%) at 8 h was strongly associated with death at 72 h (OR 4.62; 95% CI 2.7, 8.0; p < 0.001). CONCLUSIONS Independently of the underlying diagnosis, HL is a strong risk factor for death at 72 h in children admitted with severe febrile illnesses in Africa. Children able to clear lactate within 8 h had an improved chance of survival. These findings prompt the more widespread use of lactate and LC to identify children with severe disease and monitor response to treatment. TRIAL REGISTRATION ISRCTN69856593 Registered 21 January 2009.
Collapse
Affiliation(s)
- A Aramburo
- Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK
| | - Jim Todd
- London School of Hygiene and Tropical Medicine, 15-17, Tavistock Place WC1H 9SH, London, WC1H 9SH, UK
| | - Elizabeth C George
- Medical Research Council Clinical Trials Unit (MRC CTU) at UCL, 125 Aviation House, Kingsway, London, WC2B 6NH, UK
| | - Sarah Kiguli
- Department of Paediatrics, Mulago Hospital, Makerere College of Health Sciences, PO Box 7072, Kampala, Uganda
| | - Peter Olupot-Olupot
- Department of Paediatrics, Mbale Regional Referral Hospital, Pallisa Road, PO Box 291, Mbale, Uganda.,Mbale Clinical Research Institute (MCRI), Plot 29-33 Pallisa Rd, PO Box 1966, Mbale, Uganda
| | - Robert O Opoka
- Department of Paediatrics, Mulago Hospital, Makerere College of Health Sciences, PO Box 7072, Kampala, Uganda
| | - Charles Engoru
- Department of Paediatrics, Soroti Regional Referral Hospital, PO Box 289, Soroti, Uganda
| | - Samuel O Akech
- Kilifi Clinical Trials Facility, KEMRI-Wellcome Trust Research Programme, PO Box 203, Nairobi, Kenya
| | | | | | - Diana M Gibb
- Medical Research Council Clinical Trials Unit (MRC CTU) at UCL, 125 Aviation House, Kingsway, London, WC2B 6NH, UK
| | - Abdel G Babiker
- Medical Research Council Clinical Trials Unit (MRC CTU) at UCL, 125 Aviation House, Kingsway, London, WC2B 6NH, UK
| | - Kathryn Maitland
- Kilifi Clinical Trials Facility, KEMRI-Wellcome Trust Research Programme, PO Box 203, Nairobi, Kenya. .,Department of Paediatrics, Faculty of Medicine, Imperial College, W2 1PG, London, UK.
| |
Collapse
|
32
|
Assessment of Myocardial Function and Injury by Echocardiography and Cardiac Biomarkers in African Children With Severe Plasmodium falciparum Malaria. Pediatr Crit Care Med 2018; 19:179-185. [PMID: 29206727 PMCID: PMC5835359 DOI: 10.1097/pcc.0000000000001411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Perturbed hemodynamic function complicates severe malaria. The Fluid Expansion as Supportive Therapy trial demonstrated that fluid resuscitation, involving children with severe malaria, was associated with increased mortality, primarily due to cardiovascular collapse, suggesting that myocardial dysfunction may have a role. The aim of this study was to characterize cardiac function in children with severe malaria. DESIGN A prospective observational study with clinical, laboratory, and echocardiographic data collected at presentation (T0) and 24 hours (T1) in children with severe malaria. Cardiac index and ejection fraction were calculated at T0 and T1. Cardiac troponin I and brain natriuretic peptide were measured at T0. We compared clinical and echocardiographic variables in children with and without severe malarial anemia (hemoglobin < 5 mg/dL) at T0 and T1. SETTING Mbale Regional Referral Hospital. PATIENTS Children 3 months to 12 years old with severe falciparum malaria. INTERVENTIONS Usual care. MEASUREMENTS AND MAIN RESULTS We enrolled 104 children, median age 23.3 months, including 61 children with severe malarial anemia. Cardiac troponin I levels were elevated (> 0.1 ng/mL) in n equals to 50, (48%), and median brain natriuretic peptide was within normal range (69.1 pg/mL; interquartile range, 48.4-90.8). At T0, median Cardiac index was significantly higher in the severe malarial anemia versus nonsevere malarial anemia group (6.89 vs 5.28 L/min/m) (p = 0.001), which normalized in both groups at T1 (5.60 vs 5.13 L/min/m) (p = 0.452). Cardiac index negatively correlated with hemoglobin, r equals to -0.380 (p < 0.001). Four patients (3.8%) had evidence of depressed cardiac systolic function (ejection fraction < 45%). Overall, six children died, none developed pulmonary edema, biventricular failure, or required diuretic treatment. CONCLUSIONS Elevation of cardiac index, due to increased stroke volume, in severe malaria is a physiologic response to circulatory compromise and correlates with anemia. Following whole blood transfusion and antimalarial therapy, cardiac index in severe malarial anemia returns to normal. The majority (> 96%) of children with severe malaria have preserved myocardial systolic function. Although there is evidence for myocardial injury (elevated cardiac troponin I), this does not correlate with cardiac dysfunction.
Collapse
|
33
|
Hematologic Aspects of Parasitic Diseases. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
34
|
Boyce R, Reyes R, Matte M, Ntaro M, Mulogo E, Siedner MJ. Use of a Dual-Antigen Rapid Diagnostic Test to Screen Children for Severe Plasmodium falciparum Malaria in a High-Transmission, Resource-Limited Setting. Clin Infect Dis 2017; 65:1509-1515. [PMID: 29020298 PMCID: PMC5850632 DOI: 10.1093/cid/cix592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/30/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In rural areas, many patients with malaria seek care at peripheral health facilities or community case management programs. While this strategy is effective for the management of uncomplicated malaria, severe malaria necessitates prompt detection and referral to facilities with adequate resources. METHODS In this prospective, observational cohort study, we assessed the accuracy of a dual-band (histidine-rich protein-2/pan-lactate dehydrogenase [HRP2/pLDH]) rapid diagnostic test (RDT) to differentiate uncomplicated from severe malaria. We included children aged <12 years who presented to a rural clinic in western Uganda with a positive HRP2 or HRP2/pLDH RDT. We estimated the test characteristics of a dual-antigen (HRP2+/pLDH+) band positive RDT compared to World Health Organization-defined clinical and laboratory criteria to detect severe malaria. RESULTS A total of 2678 children underwent testing for malaria with an RDT, and 83 (9.0%) satisfied criteria for severe malaria. The sensitivity and specificity of a HRP2+/pLDH+ result for severe malaria was 97.6% (95% confidence interval [CI], 90.8%-99.6%) and 75.6% (95% CI, 73.8%-77.4%), respectively. An HRP2+/pLDH+ result was significantly more sensitive (97.6% vs 68.7%, P < .001) for the detection of severe malaria compared to algorithms that incorporate screening for danger signs. CONCLUSIONS A positive dual-antigen (HRP2/pLDH) RDT has higher sensitivity than the use of clinical manifestations to detect severe malaria, making it a promising tool in the triage of children with malaria in low-resource settings. Additional work is needed to operationalize diagnostic and treatment algorithms that include dual-antigen RDTs to avoid over referral.
Collapse
Affiliation(s)
| | - Raquel Reyes
- General Medicine & Clinical Epidemiology, University of North Carolina at Chapel Hill
| | - Michael Matte
- Department of Community Health, Mbarara University of Science & Technology, Uganda; and
| | - Moses Ntaro
- Department of Community Health, Mbarara University of Science & Technology, Uganda; and
| | - Edgar Mulogo
- Department of Community Health, Mbarara University of Science & Technology, Uganda; and
| | - Mark J Siedner
- Department of Medicine, Harvard Medical School, and Massachusetts General Hospital, Boston
| |
Collapse
|
35
|
Sypniewska P, Duda JF, Locatelli I, Althaus CR, Althaus F, Genton B. Clinical and laboratory predictors of death in African children with features of severe malaria: a systematic review and meta-analysis. BMC Med 2017; 15:147. [PMID: 28768513 PMCID: PMC5541406 DOI: 10.1186/s12916-017-0906-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/30/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The criteria for defining severe malaria have evolved over the last 20 years. We aimed to assess the strength of association of death with features currently characterizing severe malaria through a systematic review and meta-analysis. METHOD Electronic databases (Medline, Embase, Cochrane Database of Systematic Reviews, Thomson Reuters Web of Knowledge) were searched to identify publications including African children with severe malaria. PRISMA guidelines were followed. Selection was based on design (epidemiological, clinical and treatment studies), setting (Africa), participants (children < 15 years old with severe malaria), outcome (survival/death rate), and prognostic indicators (clinical and laboratory features). Quality assessment was performed following the criteria of the 2011 Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). Odds ratios (ORs) were calculated for each study and prognostic indicator, and, when a test was assessed in at least two studies, pooled estimates of ORs were computed using fixed- or random-effects meta-analysis. RESULTS A total of 601 articles were identified and screened and 30 publications were retained. Features with the highest pooled ORs were renal failure (5.96, 95% CI 2.93-12.11), coma score (4.83, 95% CI 3.11-7.5), hypoglycemia (4.59, 95% CI 2.68-7.89), shock (4.31, 95% CI 2.15-8.64), and deep breathing (3.8, 95% CI 3.29-4.39). Only half of the criteria had an OR > 2. Features with the lowest pooled ORs were impaired consciousness (0.58, 95% CI 0.25-1.37), severe anemia (0.76, 95% CI 0.5- 1.13), and prostration (1.12, 95% CI 0.45-2.82). CONCLUSION The findings of this meta-analysis show that the strength of association between the criteria defining severe malaria and death is quite variable for each clinical and/or laboratory feature (OR ranging from 0.58 to 5.96). This ranking allowed the identification of features weakly associated with death, such as impaired consciousness and prostration, which could assist to improve case definition, and thus optimize antimalarial treatment.
Collapse
Affiliation(s)
- Paulina Sypniewska
- Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland
- RWTH Aachen University, Aachen, Germany
| | - Jose F Duda
- International Committee of the Red Cross, Geneva, Switzerland
| | - Isabella Locatelli
- Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Fabrice Althaus
- International Committee of the Red Cross, Geneva, Switzerland
| | - Blaise Genton
- Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.
- Division of Infectious Diseases, University Hospital, Lausanne, Switzerland.
| |
Collapse
|
36
|
Jeeyapant A, Kingston HW, Plewes K, Maude RJ, Hanson J, Herdman MT, Leopold SJ, Ngernseng T, Charunwatthana P, Phu NH, Ghose A, Hasan MMU, Fanello CI, Faiz MA, Hien TT, Day NPJ, White NJ, Dondorp AM. Defining Surrogate Endpoints for Clinical Trials in Severe Falciparum Malaria. PLoS One 2017; 12:e0169307. [PMID: 28052109 PMCID: PMC5215574 DOI: 10.1371/journal.pone.0169307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Clinical trials in severe falciparum malaria require a large sample size to detect clinically meaningful differences in mortality. This means few interventions can be evaluated at any time. Using a validated surrogate endpoint for mortality would provide a useful alternative allowing a smaller sample size. Here we evaluate changes in coma score and plasma lactate as surrogate endpoints for mortality in severe falciparum malaria. METHODS Three datasets of clinical studies in severe malaria were re-evaluated: studies from Chittagong, Bangladesh (adults), the African 'AQUAMAT' trial comparing artesunate and quinine (children), and the Vietnamese 'AQ' study (adults) comparing artemether with quinine. The absolute change, relative change, slope of the normalization over time, and time to normalization were derived from sequential measurements of plasma lactate and coma score, and validated for their use as surrogate endpoint, including the proportion of treatment effect on mortality explained (PTE) by these surrogate measures. RESULTS Improvements in lactate concentration or coma scores over the first 24 hours of admission, were strongly prognostic for survival in all datasets. In hyperlactataemic patients in the AQ study (n = 173), lower mortality with artemether compared to quinine closely correlated with faster reduction in plasma lactate concentration, with a high PTE of the relative change in plasma lactate at 8 and 12 hours of 0.81 and 0.75, respectively. In paediatric patients enrolled in the 'AQUAMAT' study with cerebral malaria (n = 785), mortality was lower with artesunate compared to quinine, but this was not associated with faster coma recovery. CONCLUSIONS The relative changes in plasma lactate concentration assessed at 8 or 12 hours after admission are valid surrogate endpoints for severe malaria studies on antimalarial drugs or adjuvant treatments aiming at improving the microcirculation. Measures of coma recovery are not valid surrogate endpoints for mortality.
Collapse
Affiliation(s)
- Atthanee Jeeyapant
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Hugh W. Kingston
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Katherine Plewes
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard J. Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Josh Hanson
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Global Health Division, Menzies School of Health Research, Darwin, Australia
| | - M. Trent Herdman
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- University College, Oxford, United Kingdom
| | - Stije J. Leopold
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thatsanun Ngernseng
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prakaykaew Charunwatthana
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol Unversity,Bangkok,Thailand
| | - Nguyen Hoan Phu
- Oxford University Clinical Research Unit. Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Aniruddha Ghose
- Department of Medicine, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | | | - Caterina I. Fanello
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Md Abul Faiz
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Malaria Research Group, Dev Care Foundation, Dhaka, Bangladesh
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit. Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Kwiatkowski D, Bate CAW, Scragg IG, Beattie P, Udalova I, Knight JC. The malarial fever response—pathogenesis, polymorphism and prospects for intervention. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1997.11813171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Conroy AL, Hawkes M, Hayford K, Hermann L, McDonald CR, Sharma S, Namasopo S, Opoka RO, John CC, Liles WC, Miller C, Kain KC. Methemoglobin and nitric oxide therapy in Ugandan children hospitalized for febrile illness: results from a prospective cohort study and randomized double-blind placebo-controlled trial. BMC Pediatr 2016; 16:177. [PMID: 27814710 PMCID: PMC5097382 DOI: 10.1186/s12887-016-0719-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/25/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Exposure of red blood cells to oxidants increases production of methemoglobin (MHb) resulting in impaired oxygen delivery to tissues. There are no reliable estimates of methemoglobinemia in low resource clinical settings. Our objectives were to: i) evaluate risk factors for methemoglobinemia in Ugandan children hospitalized with fever (study 1); and ii) investigate MHb responses in critically ill Ugandan children with severe malaria treated with inhaled nitric oxide (iNO), an oxidant that induces MHb in a dose-dependent manner (study 2). METHODS Two prospective studies were conducted at Jinja Regional Referral Hospital in Uganda between 2011 and 2013. Study 1, a prospective cohort study of children admitted to hospital with fever (fever cohort, n = 2089 children 2 months to 5 years). Study 2, a randomized double-blind placebo-controlled parallel arm trial of room air placebo vs. 80 ppm iNO as an adjunctive therapy for children with severe malaria (RCT, n = 180 children 1-10 years receiving intravenous artesunate and 72 h of study gas). The primary outcomes were: i) masimo pulse co-oximetry elevated MHb levels at admission (>2 %, fever cohort); ii) four hourly MHb levels in the RCT. RESULTS In the fever cohort, 34 % of children admitted with fever had elevated MHb at admission. Children with a history of vomiting, delayed capillary refill, elevated lactate, severe anemia, malaria, or hemoglobinopathies had increased odds of methemoglobinemia (p < 0.05 in a multivariate model). MHb levels at admission were higher in children who died (n = 89) compared to those who survived (n = 1964), p = 0.008. Among children enrolled in the iNO RCT, MHb levels typically plateaued within 12-24 h of starting study gas. MHb levels were higher in children receiving iNO compared to placebo, and MHb > 10 % occurred in 5.7 % of children receiving iNO. There were no differences in rates of study gas discontinuation between trial arms. CONCLUSIONS Hospitalized children with evidence of impaired oxygen delivery, metabolic acidosis, anemia, or malaria were at risk of methemoglobinemia. However, we demonstrated high-dose iNO could be safely administered to critically ill children with severe malaria with appropriate MHb monitoring. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01255215 (Date registered: December 5, 2010).
Collapse
Affiliation(s)
- Andrea L Conroy
- Depatment of Medicine, University of Toronto, Toronto, Canada.,Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Michael Hawkes
- Division of Pediatric Infectious Diseases, University of Alberta, Edmonton, Canada
| | - Kyla Hayford
- Depatment of Medicine, University of Toronto, Toronto, Canada.,Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Laura Hermann
- Depatment of Medicine, University of Toronto, Toronto, Canada
| | - Chloe R McDonald
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Suparna Sharma
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Sophie Namasopo
- Department of Pediatrics, Jinja Regional Referral Hospital, Jinja, Uganda
| | - Robert O Opoka
- Department of Paediatrics and Child Health, Mulago Hospital, Makerere University, Kampala, Uganda
| | - Chandy C John
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - W Conrad Liles
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Christopher Miller
- Department of Respiratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Kevin C Kain
- Depatment of Medicine, University of Toronto, Toronto, Canada. .,Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, Canada. .,Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada. .,MaRS Centre, TMDT, 10th floor 10-351, Toronto, ON, M5G1L7, Canada.
| |
Collapse
|
39
|
Chaudhari KS, Uttarwar SP, Tambe NN, Sharma RS, Takalkar AA. Role of Serum Lactate and Malarial Retinopathy in Prognosis and Outcome of Falciparum and Vivax Cerebral Malaria: A Prospective Cohort Study in Adult Assamese Tribes. J Glob Infect Dis 2016; 8:61-7. [PMID: 27293360 PMCID: PMC4879792 DOI: 10.4103/0974-777x.177524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: There is no comprehensive data or studies relating to clinical presentation and prognosis of cerebral malaria (CM) in the tribal settlements of Assam. High rates of transmission and deaths from complicated malaria guided us to conduct a prospective observational cohort study to evaluate the factors associated with poor outcome and prognosis in patients of CM. Materials and Methods: We admitted 112 patients to the Bandarpara and Damodarpur Tribal Health Centers (THCs) between 2011 and 2013 with a strict diagnosis of CM. We assessed the role of clinical, fundoscopy and laboratory findings (mainly lactic acid) in the immediate outcome in terms of death and recovery, duration of hospitalization, neurocognitive impairment, cranial nerve palsies and focal neurological deficit. Results: The case fatality rate of CM was 33.03% and the prevalence of residual neurological sequelae at discharge was 16.07%. These are significantly higher than the previous studies. The mortality rate and neurological complications rate in patients with retinal whitening was 38.46% and 23.07%, with vessel changes was 25% and 18.75%, with retinal hemorrhage was 55.55% and 11.11% and with hyperlactatemia was 53.85% and 18.46%, respectively. Three patients of papilledema alone died. Conclusion: Our study suggests a strong correlation between hyperlactatemia, retinal changes (whitening, vessel changes and hemorrhage) and depth and duration of coma with longer duration of hospitalization, increased mortality, neurological sequelae and death. Plasmodium vivax mono-infection as a cause of CM has been confirmed. Prognostic evaluation of CM is useful for judicious allocation of resources in the THC.
Collapse
Affiliation(s)
- Kaustubh Suresh Chaudhari
- Department of Internal Medicine and Infectious Disease, Vanvasi Kalyan Ashram, Kokrajhar, Assam, India
| | | | | | - Rohan S Sharma
- Department of Internal Medicine, Dr. V. M. Government Medical College, Solapur, Maharashtra, India
| | - Anant Arunrao Takalkar
- Department of Preventive and Social Medicine, Navodaya Medical College, Raichur, Karnataka, India
| |
Collapse
|
40
|
O'Regan N, Moxon C, Gegenbauer K, O'Sullivan JM, Chion A, Smith OP, Preston RJS, Brophy TM, Craig AG, O'Donnell JS. Marked elevation in plasma osteoprotegerin constitutes an early and consistent feature of cerebral malaria. Thromb Haemost 2016; 115:773-80. [PMID: 26766771 PMCID: PMC4990170 DOI: 10.1160/th15-10-0796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/22/2015] [Indexed: 11/21/2022]
Abstract
Adherence of infected erythrocytes to vascular endothelium causes acute endothelial cell (EC) activation during Plasmodium falciparum infection. Consequently, proteins stored in Weibel-Palade (WP) bodies within EC are secreted into the plasma. Osteoprotegerin (OPG) binds to VWF and consequently is stored within WP bodies. Given the critical role of EC activation in the pathogenesis of severe malaria, we investigated plasma OPG levels in children with P. falciparum malaria. At presentation, plasma OPG levels were significantly elevated in children with cerebral malaria (CM) compared to healthy controls (means 16.0 vs 0.8 ng/ml; p<0.01). Importantly, OPG levels were also significantly higher in children with CM who had a fatal outcome, compared to children with CM who survived. Finally, in children with CM, plasma OPG levels correlated with other established prognostic indices (including plasma lactate levels and peripheral parasite density). To further investigate the relationship between severe malaria and OPG, we utilised a murine model of experimental CM in which C57BL/6J mice were infected with P. berghei ANKA. Interestingly, plasma OPG levels were increased 4.6 fold within 24 hours following P. berghei inoculation. This early marked elevation in OPG levels was observed before any objective clinical signs were apparent, and preceded the development of peripheral blood parasitaemia. As the mice became increasingly unwell, plasma OPG levels progressively increased. Collectively, these data suggest that OPG constitutes a novel biomarker with prognostic significance in patients with severe malaria. In addition, further studies are required to determine whether OPG plays a role in modulating malaria pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - James S O'Donnell
- Prof. James O'Donnell, Haemostasis Research Group, Institute of Molecular Medicine, Trinity College, Dublin, Ireland, Tel.: +353 1 416 2141, Fax: +353 1 410 3570, E-mail:
| |
Collapse
|
41
|
Deroost K, Pham TT, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS Microbiol Rev 2015; 40:208-57. [PMID: 26657789 DOI: 10.1093/femsre/fuv046] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.
Collapse
Affiliation(s)
- Katrien Deroost
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium The Francis Crick Institute, Mill Hill Laboratory, London, NW71AA, UK
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
42
|
Quantitative analysis of drug effects at the whole-body level: a case study for glucose metabolism in malaria patients. Biochem Soc Trans 2015; 43:1157-63. [PMID: 26614654 DOI: 10.1042/bst20150145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker.
Collapse
|
43
|
Ishioka H, Ghose A, Charunwatthana P, Maude R, Plewes K, Kingston H, Intharabut B, Woodrow C, Chotivanich K, Sayeed AA, Hasan MU, Day NP, Faiz A, White NJ, Hossain A, Dondorp AM. Sequestration and Red Cell Deformability as Determinants of Hyperlactatemia in Falciparum Malaria. J Infect Dis 2015; 213:788-93. [PMID: 26494775 PMCID: PMC4747623 DOI: 10.1093/infdis/jiv502] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/13/2015] [Indexed: 11/17/2022] Open
Abstract
Background. Hyperlactatemia is a strong predictor of mortality in severe falciparum malaria. Sequestered parasitized erythrocytes and reduced uninfected red blood cell deformability (RCD) compromise microcirculatory flow, leading to anaerobic glycolysis. Methods. In a cohort of patients with falciparum malaria hospitalized in Chittagong, Bangladesh, bulk RCD was measured using a laser diffraction technique, and parasite biomass was estimated from plasma concentrations of Plasmodium falciparum histidine-rich protein 2 (PfHRP2). A multiple linear regression model was constructed to examine their associations with plasma lactate concentrations. Results. A total of 286 patients with falciparum malaria were studied, of whom 224 had severe malaria, and 70 died. Hyperlactatemia (lactate level, ≥4 mmol/L) was present in 111 cases. RCD at shear stresses of 1.7 Pa and 30 Pa was reduced significantly in patients who died, compared with survivors, individuals with uncomplicated malaria, or healthy individuals (P < .05, for all comparisons). Multiple linear regression analysis showed that the plasma PfHRP2 level, parasitemia level, total bilirubin level, and RCD at a shear stress of 1.7 Pa were each independently correlated with plasma lactate concentrations (n = 278; R2 = 0.35). Conclusions. Sequestration of parasitized red blood cells and reduced RCD both contribute to decreased microcirculatory flow in severe disease.
Collapse
Affiliation(s)
- Haruhiko Ishioka
- Mahidol Oxford Tropical Medicine Research Unit Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Prakaykaew Charunwatthana
- Mahidol Oxford Tropical Medicine Research Unit Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Richard Maude
- Mahidol Oxford Tropical Medicine Research Unit Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | | | | | | | - Charlie Woodrow
- Mahidol Oxford Tropical Medicine Research Unit Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Kesinee Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Nicholas P Day
- Mahidol Oxford Tropical Medicine Research Unit Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Abul Faiz
- Mahidol Oxford Tropical Medicine Research Unit Malaria Research Group and Dev Care Foundation, Dhaka, Bangladesh
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | | | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| |
Collapse
|
44
|
Chertow JH, Alkaitis MS, Nardone G, Ikeda AK, Cunnington AJ, Okebe J, Ebonyi AO, Njie M, Correa S, Jayasooriya S, Casals-Pascual C, Billker O, Conway DJ, Walther M, Ackerman H. Plasmodium Infection Is Associated with Impaired Hepatic Dimethylarginine Dimethylaminohydrolase Activity and Disruption of Nitric Oxide Synthase Inhibitor/Substrate Homeostasis. PLoS Pathog 2015; 11:e1005119. [PMID: 26407009 PMCID: PMC4583463 DOI: 10.1371/journal.ppat.1005119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/29/2015] [Indexed: 12/04/2022] Open
Abstract
Inhibition of nitric oxide (NO) signaling may contribute to pathological activation of the vascular endothelium during severe malaria infection. Dimethylarginine dimethylaminohydrolase (DDAH) regulates endothelial NO synthesis by maintaining homeostasis between asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor, and arginine, the NOS substrate. We carried out a community-based case-control study of Gambian children to determine whether ADMA and arginine homeostasis is disrupted during severe or uncomplicated malaria infections. Circulating plasma levels of ADMA and arginine were determined at initial presentation and 28 days later. Plasma ADMA/arginine ratios were elevated in children with acute severe malaria compared to 28-day follow-up values and compared to children with uncomplicated malaria or healthy children (p<0.0001 for each comparison). To test the hypothesis that DDAH1 is inactivated during Plasmodium infection, we examined DDAH1 in a mouse model of severe malaria. Plasmodium berghei ANKA infection inactivated hepatic DDAH1 via a post-transcriptional mechanism as evidenced by stable mRNA transcript number, decreased DDAH1 protein concentration, decreased enzyme activity, elevated tissue ADMA, elevated ADMA/arginine ratio in plasma, and decreased whole blood nitrite concentration. Loss of hepatic DDAH1 activity and disruption of ADMA/arginine homeostasis may contribute to severe malaria pathogenesis by inhibiting NO synthesis. During a malaria infection, the vascular endothelium becomes more adhesive, permeable, and prone to trigger blood clotting. These changes help the parasite adhere to blood vessels, but endanger the host by obstructing blood flow through small vessels. Endothelial nitric oxide (NO) would normally counteract these pathological changes, but NO signalling is diminished malaria. NO synthesis is inhibited by asymmetric dimethylarginine (ADMA), a methylated derivative of arginine that is released during normal protein turnover. We found the ratio of ADMA to arginine to be elevated in Gambian children with severe malaria, a metabolic disturbance known to inhibit NO synthesis. ADMA was associated with markers of endothelial activation and impaired tissue perfusion. In parallel experiments using mice, the enzyme responsible for metabolizing ADMA, dimethylarginine dimethylaminohydrolase (DDAH), was inactivated after infection with a rodent malaria. Based on these studies, we propose that decreased metabolism of ADMA by DDAH might contribute to the elevated ADMA/arginine ratio observed during an acute episode of malaria. Strategies to preserve or increase DDAH activity might improve NO synthesis and help to prevent the vascular manifestations of severe malaria.
Collapse
Affiliation(s)
- Jessica H. Chertow
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Matthew S. Alkaitis
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington Oxford, United Kingdom
| | - Glenn Nardone
- Research Technology Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Allison K. Ikeda
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | | | | | | | | | | | | | | | - Oliver Billker
- Wellcome Trust Sanger Institute, Hinxton Cambridge, United Kingdom
| | - David J. Conway
- MRC Unit, Fajara, The Gambia
- London School of Hygiene and Tropical Medicine, Bloomsbury, London, United Kingdom
| | | | - Hans Ackerman
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Surowiec I, Orikiiriza J, Karlsson E, Nelson M, Bonde M, Kyamanwa P, Karenzi B, Bergström S, Trygg J, Normark J. Metabolic Signature Profiling as a Diagnostic and Prognostic Tool in Pediatric Plasmodium falciparum Malaria. Open Forum Infect Dis 2015; 2:ofv062. [PMID: 26110164 PMCID: PMC4473097 DOI: 10.1093/ofid/ofv062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/28/2015] [Indexed: 11/14/2022] Open
Abstract
Background. Accuracy in malaria diagnosis and staging is vital to reduce mortality and post infectious sequelae. In this study, we present a metabolomics approach to diagnostic staging of malaria infection, specifically Plasmodium falciparum infection in children. Methods. A group of 421 patients between 6 months and 6 years of age with mild and severe states of malaria with age-matched controls were included in the study, 107, 192, and 122, individuals, respectively. A multivariate design was used as basis for representative selection of 20 patients in each category. Patient plasma was subjected to gas chromatography-mass spectrometry analysis, and a full metabolite profile was produced from each patient. In addition, a proof-of-concept model was tested in a Plasmodium berghei in vivo model where metabolic profiles were discernible over time of infection. Results. A 2-component principal component analysis revealed that the patients could be separated into disease categories according to metabolite profiles, independently of any clinical information. Furthermore, 2 subgroups could be identified in the mild malaria cohort who we believe represent patients with divergent prognoses. Conclusions. Metabolite signature profiling could be used both for decision support in disease staging and prognostication.
Collapse
Affiliation(s)
| | - Judy Orikiiriza
- Infectious Diseases Institute, School of Medicine and Health Sciences, Makerere University, Uganda
- Department of Immunology, Trinity College, Dublin, Ireland
| | | | | | | | - Patrick Kyamanwa
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare
| | | | - Sven Bergström
- Department of Molecular Biology
- Laboratory forMolecular Infection Medicine Sweden, Umeå University
- Umeå Center for Microbial Research, Sweden
| | - Johan Trygg
- Computational Life Science Cluster, Department of Chemistry
| | - Johan Normark
- Division of Infectious Diseases, Department Clinical Microbiology, Umeå University, Sweden
- Infectious Diseases Institute, School of Medicine and Health Sciences, Makerere University, Uganda
- Laboratory forMolecular Infection Medicine Sweden, Umeå University
- Umeå Center for Microbial Research, Sweden
| |
Collapse
|
46
|
Penkler G, du Toit F, Adams W, Rautenbach M, Palm DC, van Niekerk DD, Snoep JL. Construction and validation of a detailed kinetic model of glycolysis in Plasmodium falciparum. FEBS J 2015; 282:1481-511. [PMID: 25693925 DOI: 10.1111/febs.13237] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/07/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
Abstract
UNLABELLED The enzymes in the Embden-Meyerhof-Parnas pathway of Plasmodium falciparum trophozoites were kinetically characterized and their integrated activities analyzed in a mathematical model. For validation of the model, we compared model predictions for steady-state fluxes and metabolite concentrations of the hexose phosphates with experimental values for intact parasites. The model, which is completely based on kinetic parameters that were measured for the individual enzymes, gives an accurate prediction of the steady-state fluxes and intermediate concentrations. This is the first detailed kinetic model for glucose metabolism in P. falciparum, one of the most prolific malaria-causing protozoa, and the high predictive power of the model makes it a strong tool for future drug target identification studies. The modelling workflow is transparent and reproducible, and completely documented in the SEEK platform, where all experimental data and model files are available for download. DATABASE The mathematical models described in the present study have been submitted to the JWS Online Cellular Systems Modelling Database (http://jjj.bio.vu.nl/database/penkler). The investigation and complete experimental data set is available on SEEK (10.15490/seek.1. INVESTIGATION 56).
Collapse
Affiliation(s)
- Gerald Penkler
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa; Molecular Cell Physiology, Vrije Universiteit Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Over 90% of the world's severe and fatal Plasmodium falciparum malaria is estimated to affect young children in sub-Sahara Africa, where it remains a common cause of hospital admission and inpatient mortality. Few children will ever be managed on high dependency or intensive care units and, therefore, rely on simple supportive treatments and parenteral anti-malarials. There has been some progress on defining best practice for antimalarial treatment with the publication of the AQUAMAT trial in 2010, involving 5,425 children at 11 centres across 9 African countries, showing that in artesunate-treated children, the relative risk of death was 22.5% (95% confidence interval (CI) 8.1 to 36.9) lower than in those receiving quinine. Human trials of supportive therapies carried out on the basis of pathophysiology studies, have so far made little progress on reducing mortality; despite appearing to reduce morbidity endpoints, more often than not they have led to an excess of adverse outcomes. This review highlights the spectrum of complications in African children with severe malaria, the therapeutic challenges of managing these in resource-poor settings and examines in-depth the results from clinical trials with a view to identifying the treatment priorities and a future research agenda.
Collapse
|
48
|
Madrid L, Lanaspa M, Maculuve SA, Bassat Q. Malaria-associated hypoglycaemia in children. Expert Rev Anti Infect Ther 2014; 13:267-77. [DOI: 10.1586/14787210.2015.995632] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
|
50
|
Oldenbeuving G, McDonald JR, Goodwin ML, Sayilir R, Reijngoud DJ, Gladden LB, Nijsten MWN. A patient with acute liver failure and extreme hypoglycaemia with lactic acidosis who was not in a coma: causes and consequences of lactate-protected hypoglycaemia. Anaesth Intensive Care 2014; 42:507-11. [PMID: 24967767 DOI: 10.1177/0310057x1404200413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lactate can substitute for glucose as a metabolic substrate. We report a patient with acute liver failure who was awake despite a glucose level of 0.7 mmol/l with very high lactate level of 25 mmol/l. The hypoglycaemia+hyperlactataemia combination may be considered paradoxical since glucose is the main precursor of lactate and lactate is reconverted into glucose by the Cori cycle. Literature relevant to the underlying mechanism of combined deep hypoglycaemia and severe hyperlactataemia was assessed. We also assessed the literature for evidence of protection against deep hypoglycaemia by hyperlactataemia. Four syndromes demonstrating hypoglycaemia+hyperlactataemia were found: 1) paracetamol-induced acute liver failure, 2) severe malaria, 3) lymphoma and 4) glucose-6-phosphatase deficiency. An impaired Cori cycle is a key component in all of these metabolic states. Apparently the liver, after exhausting its glycogen stores, loses the gluconeogenic pathway to generate glucose and thereby its ability to remove lactate as well. Several patients with lactic acidosis and glucose levels below 1.7 mmol/l who were not in a coma have been reported. These observations and other data coherently indicate that lactate-protected hypoglycaemia is, at least transiently, a viable state under experimental and clinical conditions. Severe hypoglycaemia+hyperlactataemia reflects failure of the gluconeogenic pathway of lactate metabolism. The existence of lactate-protected hypoglycaemia implies that patients who present with this metabolic state should not automatically be considered to have sustained irreversible brain damage. Moreover, therapies that aim to achieve hypoglycaemia might be feasible with concomitant hyperlactataemia.
Collapse
Affiliation(s)
- G Oldenbeuving
- University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|