1
|
Schäfer L, Croy I. An integrative review: Human chemosensory communication in the parent-child relationship. Neurosci Biobehav Rev 2023; 153:105336. [PMID: 37527693 DOI: 10.1016/j.neubiorev.2023.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Body odors serve as signals of kinship, with parents exhibiting a preference for the scent of their infants, and vice versa. The reciprocal perception of body odors can promote bonding through two mechanisms. Firstly, as an indirect pathway, through associative chemosensory learning, which leads to changes in proximity-seeking behaviors. Secondly, as a direct pathway, by eliciting the display of positive emotions, thereby reinforcing the mutual bond. Both mechanisms weaken as the child undergoes development due to changes in body odor expression and perception. This comprehensive review provides an overview of the current literature on chemosignals in the parent-child relationship, highlighting their significance in facilitating dyadic communication throughout the developmental span. Furthermore, future research perspectives are outlined to gain a better understanding of these benefits and, on the long run, derive potential interventions to strengthen parent child attachment.
Collapse
Affiliation(s)
- Laura Schäfer
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| | - Ilona Croy
- Department of Clinical Psychology, Institute of Psychology, Friedrich-Schiller-Universität Jena, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| |
Collapse
|
2
|
Malloul H, Bonzano S, Bennis M, De Marchis S, Ba-M'hamed S. Chronic thinner inhalation alters olfactory behaviors in adult mice. Behav Brain Res 2022; 417:113597. [PMID: 34563601 DOI: 10.1016/j.bbr.2021.113597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022]
Abstract
Volatile solvents exposure can result in various behavioral impairments that have been partly associated to altered adult hippocampal neurogenesis. Despite recent evidence supporting this association, few studies have been devoted to examine the impact on olfactory functioning and olfactory bulb (OB) neurogenesis, although olfactory system is directly in contact with volatile molecules. Thus, this study was designed to evaluate in adult mice the potential modifications of the olfactory functioning after acute (1 day), subchronic (6 weeks) and chronic (12 weeks) exposure to thinner vapor at both behavioral and cellular levels. Firstly, behavioral evaluations showed that chronic thinner exposure impacts on odor detection ability of treated mice but does not affect mice ability to efficiently discriminate between two different odors. Moreover, chronic thinner exposure produces impairment in the olfactory-mediated associative memory. Secondly, analysis of the effects of thinner exposure in the subventricular zone (SVZ) of the lateral ventricle and in the OB revealed that thinner treatments do not induce apoptosis nor glial activation. Thirdly, immunohistochemical quantification of different markers of adult olfactory neurogenesis showed that inhalant treatments do not change the number of proliferating progenitors in the SVZ and the rostral migratory stream (RMS), as well as the number of newborn cells reaching and integrating in the OB circuitry. Altogether, our data highlight that the impaired olfactory performances in chronically-exposed mice are not associated to an alteration of adult neurogenesis in the SVZ-OB system.
Collapse
Affiliation(s)
- Hanaa Malloul
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco; Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Mohammed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco.
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
3
|
Lakshmanan HG, Miller E, White-Canale A, McCluskey LP. Immune responses in the injured olfactory and gustatory systems: a role in olfactory receptor neuron and taste bud regeneration? Chem Senses 2022; 47:bjac024. [PMID: 36152297 PMCID: PMC9508897 DOI: 10.1093/chemse/bjac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sensory cells that specialize in transducing olfactory and gustatory stimuli are renewed throughout life and can regenerate after injury unlike their counterparts in the mammalian retina and auditory epithelium. This uncommon capacity for regeneration offers an opportunity to understand mechanisms that promote the recovery of sensory function after taste and smell loss. Immune responses appear to influence degeneration and later regeneration of olfactory sensory neurons and taste receptor cells. Here we review surgical, chemical, and inflammatory injury models and evidence that immune responses promote or deter chemosensory cell regeneration. Macrophage and neutrophil responses to chemosensory receptor injury have been the most widely studied without consensus on their net effects on regeneration. We discuss possible technical and biological reasons for the discrepancy, such as the difference between peripheral and central structures, and suggest directions for progress in understanding immune regulation of chemosensory regeneration. Our mechanistic understanding of immune-chemosensory cell interactions must be expanded before therapies can be developed for recovering the sensation of taste and smell after head injury from traumatic nerve damage and infection. Chemosensory loss leads to decreased quality of life, depression, nutritional challenges, and exposure to environmental dangers highlighting the need for further studies in this area.
Collapse
Affiliation(s)
- Hari G Lakshmanan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Elayna Miller
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - AnnElizabeth White-Canale
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lynnette P McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
4
|
Huang MC, Willson CJ, Jaligama S, Baker GL, Singer AW, Cao Y, Pierfelice J, Mutlu E, Burback B, Xie G, Malarkey DE, Sparrow B, Ryan K, Stout M, Roberts GK. Whole-body inhalation exposure to 2-ethyltoluene for two weeks produced nasal lesions in rats and mice. Inhal Toxicol 2021; 33:334-346. [PMID: 34890527 DOI: 10.1080/08958378.2021.2002480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Ethyltoluenes are isolated during crude oil refinement for use in gasoline and commercial products and are ubiquitous in the environment. However, minimal toxicity data are available. Previously, we identified 2-ethyltoluene (2-ET) as the most potent isomer via nose-only inhalation exposure in rodents. Here, we expanded the hazard characterization of 2-ET in two rodent models using whole-body inhalation exposure and evaluated the role of prenatal exposure. METHODS Time-mated Hsd:Sprague Dawley® SD® rats were exposed to 0, 150, 300, 600, 900, or 1200 ppm 2-ET via inhalation starting on gestation day 6 until parturition. Rat offspring (n = 8/exposure/sex) were exposed to the same concentrations as the respective dams for 2 weeks after weaning. Adult male and female B6C3F1/N mice (n = 5/exposure/sex) were exposed to the same concentrations for 2 weeks. RESULTS AND DISCUSSION Exposure to ≥600 ppm 2-ET produced acute toxicity in rats and mice characterized by large decreases in survival, body weight, adverse clinical observations, and diffuse nasal olfactory epithelium degeneration (rats) or necrosis (mice). Due to the early removal of groups ≥600 ppm, most endpoint evaluations focused on lower exposure groups. In 150 and 300 ppm exposure groups, reproductive performance and littering were not significantly changed and body weights in exposed rats and mice were 9-18% lower than controls. Atrophy of the olfactory epithelium and nerves was observed in all animals exposed to 150 and 300 ppm. These lesions were more severe in mice than in rats. CONCLUSION Nasal lesions were observed in all animals after whole-body exposure up to 600 ppm 2-ET for 2 weeks. Future studies should focus on 2-ET metabolism and distribution to better understand species differences and refine hazard characterization of this understudied environmental contaminant.
Collapse
Affiliation(s)
- Madelyn C Huang
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | | | - Yu Cao
- Battelle, Columbus, OH, USA
| | | | - Esra Mutlu
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Guanhua Xie
- Social and Scientific Services, Durham, NC, USA
| | - David E Malarkey
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Matthew Stout
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Georgia K Roberts
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
5
|
Mori E, Ueha R, Kondo K, Funada S, Shimmura H, Kanemoto K, Tanaka H, Nishijima H, Otori N, Yamasoba T, Kojima H. Squamous and Respiratory Metaplasia After Olfactory Mucosal Resection. Front Neurosci 2021; 15:695653. [PMID: 34354563 PMCID: PMC8329582 DOI: 10.3389/fnins.2021.695653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Resection of the olfactory mucosa (OM) is sometimes unavoidable during surgery; however, it is not known whether the OM can completely recover thereafter. The aim of this study was to uncover whether the OM fully recovers after mucosal resection and describe the process of OM regeneration. 8-week-old male Sprague–Dawley rats (n = 18) were subjected to OM resection at the nasal septum; six rats were euthanized for histological examination 0, 30, and 90 days after surgery. Immunohistochemistry was performed to identify olfactory receptor neuron (ORN) lineage cells [mature and immature ORNs and ORN progenitors, and olfactory ensheathing cells (OECs)], as well as dividing and apoptotic cells. Squamous and respiratory metaplasia and inflammatory cell infiltration were also assessed. On day 30 after resection, the mucosa had regenerated, and mainly contained thin nerve bundles, basal cells, and immature ORNs, with a few mature ORNs and OECs. On day 90, the repaired nasal mucosa had degenerated into stratified squamous or ciliated pseudostratified columnar epithelia, with reducing ORNs. The lamina propria contained numerous macrophages. Partial regeneration was observed within 1 month after OM resection, whereas subsequent degeneration into squamous and respiratory epithelia occurred within 3 months. Given the poor persistence of ORNs and OECs, OM resection is likely to result in olfactory impairment. Overall, surgeons should be cautious not to injure the OM during surgery.
Collapse
Affiliation(s)
- Eri Mori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Rumi Ueha
- Swallowing Center, The University of Tokyo Hospital, Tokyo, Japan.,Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Shotaro Funada
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hajime Shimmura
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kai Kanemoto
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hirotaka Tanaka
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hironobu Nishijima
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Nobuyoshi Otori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Håglin S, Bohm S, Berghard A. Single or Repeated Ablation of Mouse Olfactory Epithelium by Methimazole. Bio Protoc 2021; 11:e3983. [PMID: 34124287 DOI: 10.21769/bioprotoc.3983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 11/02/2022] Open
Abstract
Odor-detecting olfactory sensory neurons residing in the nasal olfactory epithelium (OE) are the only neurons in direct contact with the external environment. As a result, these neurons are subjected to chemical, physical, and infectious insults, which may be the underlying reason why neurogenesis occurs in the OE of adult mammals. This feature makes the OE a useful model for studying neurogenesis and neuronal differentiation, with the possibility for systemic as well as local administration of various compounds and infectious agents that may interfere with these cellular processes. Several different chemical compounds have been shown to cause toxic injury to the OE, which can be used for OE ablation. We, and others, have found that the systemic administration of the hyperthyroid drug, methimazole, reliably causes olfactotoxicity as a side effect. Here, we outline an OE lesioning protocol for single or repeated ablation by methimazole. A single methimazole administration can be used to study neuroepithelial regeneration and stem cell activation, while repeated ablation and regeneration of OE enable the study of tissue stem cell exhaustion and generation of tissue metaplasia.
Collapse
Affiliation(s)
- Sofia Håglin
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Staffan Bohm
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Anna Berghard
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Abstract
In this paper, a description of olfactory anatomy is presented, followed by a brief review of modern procedures for testing olfactory function. Information from the sole study which has quantitatively examined olfactory function in patients with apparent multiple chemical sensitivity (MCS) is presented. In essence, this study suggests that MCS is associated with increased nasal airflow resistance, respiration rate, heart rate, and scores on the Beck Depression Inventory, but not with significant changes in odor detection threshold sensitivity to phenyl ethyl alcohol and methyl ethyl ketone, the two target stimuli evaluated. Whether MCS patients evidence hypersensitivity to other chemicals is unknown.
Collapse
Affiliation(s)
- Richard L. Doty
- Smell and Taste Center University of Pennsylvania Medical Center Philadelphia,
Pennsylvania
| |
Collapse
|
8
|
Diving into the streams and waves of constitutive and regenerative olfactory neurogenesis: insights from zebrafish. Cell Tissue Res 2020; 383:227-253. [PMID: 33245413 DOI: 10.1007/s00441-020-03334-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
The olfactory system is renowned for its functional and structural plasticity, with both peripheral and central structures displaying persistent neurogenesis throughout life and exhibiting remarkable capacity for regenerative neurogenesis after damage. In general, fish are known for their extensive neurogenic ability, and the zebrafish in particular presents an attractive model to study plasticity and adult neurogenesis in the olfactory system because of its conserved structure, relative simplicity, rapid cell turnover, and preponderance of neurogenic niches. In this review, we present an overview of the anatomy of zebrafish olfactory structures, with a focus on the neurogenic niches in the olfactory epithelium, olfactory bulb, and ventral telencephalon. Constitutive and regenerative neurogenesis in both the peripheral olfactory organ and central olfactory bulb of zebrafish is reviewed in detail, and a summary of current knowledge about the cellular origin and molecular signals involved in regulating these processes is presented. While some features of physiologic and injury-induced neurogenic responses are similar, there are differences that indicate that regeneration is not simply a reiteration of the constitutive proliferation process. We provide comparisons to mammalian neurogenesis that reveal similarities and differences between species. Finally, we present a number of open questions that remain to be answered.
Collapse
|
9
|
Kondo K, Kikuta S, Ueha R, Suzukawa K, Yamasoba T. Age-Related Olfactory Dysfunction: Epidemiology, Pathophysiology, and Clinical Management. Front Aging Neurosci 2020; 12:208. [PMID: 32733233 PMCID: PMC7358644 DOI: 10.3389/fnagi.2020.00208] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Like other sensory systems, olfactory function deteriorates with age. Epidemiological studies have revealed that the incidence of olfactory dysfunction increases at the age of 60 and older and males are more affected than females. Moreover, smoking, heavy alcohol use, sinonasal diseases, and Down’s syndrome are associated with an increased incidence of olfactory dysfunction. Although the pathophysiology of olfactory dysfunction in humans remains largely unknown, studies in laboratory animals have demonstrated that both the peripheral and central olfactory nervous systems are affected by aging. Aged olfactory neuroepithelium in the nasal cavity shows the loss of mature olfactory neurons, replacement of olfactory neuroepithelium by respiratory epithelium, and a decrease in basal cell proliferation both in the normal state and after injury. In the central olfactory pathway, a decrease in the turnover of interneurons in the olfactory bulb (OB) and reduced activity in the olfactory cortex under olfactory stimulation is observed. Recently, the association between olfactory impairment and neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), has gained attention. Evidence-based pharmacotherapy to suppress or improve age-related olfactory dysfunction has not yet been established, but preliminary results suggest that olfactory training using odorants may be useful to improve some aspects of age-related olfactory impairment.
Collapse
Affiliation(s)
- Kenji Kondo
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rumi Ueha
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keigo Suzukawa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Gharibi H, Entwistle MR, Schweizer D, Tavallali P, Thao C, Cisneros R. Methyl-bromide and asthma emergency department visits in California, USA from 2005 to 2011. J Asthma 2019; 57:1227-1236. [PMID: 31311358 DOI: 10.1080/02770903.2019.1645167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Urban monitors of Methyl bromide (MBr), not typically near application sites, are used to investigate the impact of ambient concentrations on asthma Emergency Department (ED) visits.Methods: 4262 ED visits from August to February of 2005 to 2011 in Central and Southern California were selected from California's Office of Statewide Health Planning and Development (OSHPD). A bidirectional-symmetric case-crossover study design using conditional logistic regression model was used to obtain the odds ratio (OR) and 95% confidence interval associated with a 0.01 ppb (interquartile range) increase in MBr.Results: The population sample was comprised of 46.0% male and 53.9% females. Ethnic groups included 32.0% Non-Hispanic White, 23.5% Non-Hispanic Black, and 44.4% Hispanic. Age distribution was between 2 and 5 years old (11.6%), 6 and 18 years old (23.5%), 19 and 40 years old (29.3%), 41 and 64 years old (24.1%), and 65 or older (6.9%). There was a positive association between MBr and asthma ED visits among Non-Hispanic Blacks [OR: 1.065 (95% confidence intervals: 1.019, 1.108)] and Hispanics [OR: 1.107 (95% confidence intervals: 1.043, 1.173)], while Non-Hispanic Whites did not have an association with asthma ED visits. Positive association between MBr and asthma ED visits was found only among 6 to 18 [OR: 1.071 (95% confidence intervals: 1.016, 1.125)] years old.Conclusion: An increase in MBr concentration was found to be associated with an increase of the odds of having asthma ED visits in California among 6 to 18 years old and disproportionately affects Non-Hispanic Blacks and Hispanics over Non-Hispanic Whites.
Collapse
Affiliation(s)
- Hamed Gharibi
- Health Sciences Research Institute, University of California, Merced, Merced, CA, USA
| | - Marcela R Entwistle
- Health Sciences Research Institute, University of California, Merced, Merced, CA, USA
| | - Donald Schweizer
- Health Sciences Research Institute, University of California, Merced, Merced, CA, USA.,USDA Forest Service, Pacific Southwest Region, Clovis, CA, USA
| | - Pooya Tavallali
- Electrical Engineering and Computer Science, University of California, Merced, Merced, CA, USA
| | - Chia Thao
- Health Sciences Research Institute, University of California, Merced, Merced, CA, USA
| | - Ricardo Cisneros
- Health Sciences Research Institute, University of California, Merced, Merced, CA, USA.,Public Health, University of California, Merced, Merced, CA, USA
| |
Collapse
|
11
|
Abstract
Spinal cord injury (SCI) is a devastating condition with loss of motor and sensory functions below the injury level. Cell based therapies are experimented in pre-clinical studies around the world. Neural stem cells are located intra-cranially in subventricular zone and hippocampus which are highly invasive sources. The olfactory epithelium is a neurogenic tissue where neurogenesis takes place throughout the adult life by a population of stem/progenitor cells. Easily accessible olfactory neuroepithelial stem/progenitor cells are an attractive cell source for transplantation in SCI. Globose basal cells (GBCs) were isolated from rat olfactory epithelium, characterized by flow cytometry and immunohistochemically. These cells were further studied for neurosphere formation and neuronal induction. T10 laminectomy was done to create drop-weight SCI in rats. On the 9th day following SCI, 5 × 105 cells were transplanted into injured rat spinal cord. The outcome of transplantation was assessed by the Basso, Beattie and Bresnahan (BBB) locomotor rating scale, motor evoked potential and histological observation. GBCs expressed neural stem cell markers nestin, SOX2, NCAM and also mesenchymal stem cell markers (CD29, CD54, CD90, CD73, CD105). These cells formed neurosphere, a culture characteristics of NSCs and on induction, differentiated cells expressed neuronal markers βIII tubulin, microtubule-associated protein 2, neuronal nuclei, and neurofilament. GBCs transplanted rats exhibited hindlimb motor recovery as confirmed by BBB score and gastrocnemius muscle electromyography amplitude was increased compared to controls. Green fluorescent protein labelled GBCs survived around the injury epicenter and differentiated into βIII tubulin-immunoreactive neuron-like cells. GBCs could be an alternative to NSCs from an accessible source for autologous neurotransplantation after SCI without ethical issues.
Collapse
Affiliation(s)
- Durai Murugan Muniswami
- Department of Physical Medicine & Rehabilitation, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - George Tharion
- Department of Physical Medicine & Rehabilitation, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
12
|
Schwob JE, Jang W, Holbrook EH, Lin B, Herrick DB, Peterson JN, Hewitt Coleman J. Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license. J Comp Neurol 2016; 525:1034-1054. [PMID: 27560601 DOI: 10.1002/cne.24105] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022]
Abstract
The capacity of the olfactory epithelium (OE) for lifelong neurogenesis and regeneration depends on the persistence of neurocompetent stem cells, which self-renew as well as generating all of the cell types found within the nasal epithelium. This Review focuses on the types of stem and progenitor cells in the epithelium and their regulation. Both horizontal basal cells (HBCs) and some among the population of globose basal cells (GBCs) are stem cells, but the two types plays vastly different roles. The GBC population includes the basal cells that proliferate in the uninjured OE and is heterogeneous with respect to transcription factor expression. From upstream in the hierarchy to downstream, GBCs encompass 1) Sox2+ /Pax6+ stem-like cells that are totipotent and self-renew over the long term, 2) Ascl1+ transit-amplifying progenitors with a limited capacity for expansive proliferation, and 3) Neurog1+ /NeuroD1+ immediate precursor cells that make neurons directly. In contrast, the normally quiescent HBCs are activated to multipotency and proliferate when sustentacular cells are killed, but not when only OSNs die, indicating that HBCs are reserve stem cells that respond to severe epithelial injury. The master regulator of HBC activation is the ΔN isoform of the transcription factor p63; eliminating ΔNp63 unleashes HBC multipotency. Notch signaling, via Jagged1 ligand on Sus cells and Notch1 and Notch2 receptors on HBCs, is likely to play a major role in setting the level of p63 expression. Thus, ΔNp63 becomes a potential therapeutic target for reversing the neurogenic exhaustion characteristic of the aged OE. J. Comp. Neurol. 525:1034-1054, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James E Schwob
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Woochan Jang
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Eric H Holbrook
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Brian Lin
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Daniel B Herrick
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Jesse N Peterson
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Julie Hewitt Coleman
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| |
Collapse
|
13
|
Im S, Moon C. Transcriptional regulatory network during development in the olfactory epithelium. BMB Rep 2016; 48:599-608. [PMID: 26303973 PMCID: PMC4911201 DOI: 10.5483/bmbrep.2015.48.11.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 12/22/2022] Open
Abstract
Regeneration, a process of reconstitution of the entire tissue, occurs throughout life in the olfactory epithelium (OE). Regeneration of OE consists of several stages: proliferation of progenitors, cell fate determination between neuronal and non-neuronal lineages, their differentiation and maturation. How the differentiated cell types that comprise the OE are regenerated, is one of the central questions in olfactory developmental neurobiology. The past decade has witnessed considerable progress regarding the regulation of transcription factors (TFs) involved in the remarkable regenerative potential of OE. Here, we review current state of knowledge of the transcriptional regulatory networks that are powerful modulators of the acquisition and maintenance of developmental stages during regeneration in the OE. Advance in our understanding of regeneration will not only shed light on the basic principles of adult plasticity of cell identity, but may also lead to new approaches for using stem cells and reprogramming after injury or degenerative neurological diseases.
Collapse
Affiliation(s)
- SeungYeong Im
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu 42988, Korea
| |
Collapse
|
14
|
Engraftment and regenerative effects of bone marrow stromal cell transplantation on damaged rat olfactory mucosa. Eur Arch Otorhinolaryngol 2016; 273:2585-90. [PMID: 26940801 DOI: 10.1007/s00405-016-3957-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/29/2016] [Indexed: 12/14/2022]
Abstract
To develop a new therapeutic method to treat olfactory deficits, we investigated the engraftment and regenerative effects of transplanted bone marrow stromal cells (BMSCs) on damaged rat olfactory mucosa. To induce olfactory nerve degeneration, one side of the olfactory mucosa of Sprague-Dawley rats was damaged via Triton X-100 irrigation. Phosphate-buffered saline containing syngeneic BMSCs was injected into the olfactory mucosa for transplantation. PKH fluorescent cell dye labeling of BMSCs was used to monitor the transplanted cells. After transplantation of BMSCs, the thickness and regeneration of olfactory mucosa were analyzed using hematoxylin-eosin (H&E) staining. S100 immunohistochemical staining was used to measure nerve sheath regeneration. The increase in NGF (nerve growth factor) level in the olfactory mucosa was measured by Western blot analysis. Transplanted bone marrow stromal cells were engrafted to the lamia propria of damaged mucosa. The mean time for normalization of thickness and morphological recovery of the olfactory mucosa was 4 weeks in the therapeutic group and 9 weeks in the control group. S100 immunoreactivity was higher on the BMSC-treated side than on the control side. During regeneration, the expression of NGF increased in the olfactory mucosa of the experimental group. Based on these results, BMSC transplantation accelerated regeneration of olfactory mucosa damaged by Triton X-100, and NGF may be essential to this regenerative process.
Collapse
|
15
|
Silva Teixeira CS, Cerqueira NMFSA, Silva Ferreira AC. Unravelling the Olfactory Sense: From the Gene to Odor Perception. Chem Senses 2015; 41:105-21. [PMID: 26688501 DOI: 10.1093/chemse/bjv075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although neglected by science for a long time, the olfactory sense is now the focus of a panoply of studies that bring new insights and raises interesting questions regarding its functioning. The importance in the clarification of this process is of interest for science, but also motivated by the food and perfume industries boosted by a consumer society with increasingly demands for higher quality standards. In this review, a general overview of the state of art of science regarding the olfactory sense is presented with the main focus on the peripheral olfactory system. Special emphasis will be given to the deorphanization of the olfactory receptors (ORs), a critical issue because the specificity and functional properties of about 90% of human ORs remain unknown mainly due to the difficulties associated with the functional expression of ORs in high yields.
Collapse
Affiliation(s)
- Carla S Silva Teixeira
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Nuno M F S A Cerqueira
- UCIBIO@Requimte/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal and
| | - António C Silva Ferreira
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal, Department of Viticulture and Oenology, Institute for Wine Biotechnology, University of Stellenbosch, Private Bag XI, Matieland 7602, South Africa
| |
Collapse
|
16
|
Chamanza R, Wright JA. A Review of the Comparative Anatomy, Histology, Physiology and Pathology of the Nasal Cavity of Rats, Mice, Dogs and Non-human Primates. Relevance to Inhalation Toxicology and Human Health Risk Assessment. J Comp Pathol 2015; 153:287-314. [PMID: 26460093 DOI: 10.1016/j.jcpa.2015.08.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/02/2015] [Accepted: 08/26/2015] [Indexed: 11/18/2022]
Abstract
There are many significant differences in the structural and functional anatomy of the nasal cavity of man and laboratory animals. Some of the differences may be responsible for the species-specific nasal lesions that are often observed in response to inhaled toxicants. This paper reviews the comparative anatomy, physiology and pathology of the nasal cavity of the rat, mouse, dog, monkey and man, highlighting factors that may influence the distribution of nasal lesions. Gross anatomical variations such as turbinate structure, folds or grooves on nasal walls, or presence or absence of accessory structures, may influence nasal airflow and species-specific uptake and deposition of inhaled material. In addition, interspecies variations in the morphological and biochemical composition and distribution of the nasal epithelium may affect the local tissue susceptibility and play a role in the development of species-specific nasal lesions. It is concluded that, while the nasal cavity of the monkey might be more similar to that of man, each laboratory animal species provides a model that responds in a characteristic and species-specific manner. Therefore for human risk assessment, careful consideration must be given to the anatomical differences between a given animal model and man.
Collapse
Affiliation(s)
- R Chamanza
- Syngenta Limited, Jealott's Hill International Research Centre, Bracknell, Berkshire, UK.
| | - J A Wright
- Syngenta Limited, Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| |
Collapse
|
17
|
Brann JH, Ellis DP, Ku BS, Spinazzi EF, Firestein S. Injury in aged animals robustly activates quiescent olfactory neural stem cells. Front Neurosci 2015; 9:367. [PMID: 26500487 PMCID: PMC4596941 DOI: 10.3389/fnins.2015.00367] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022] Open
Abstract
While the capacity of the olfactory epithelium (OE) to generate sensory neurons continues into middle age in mice, it is presumed that this regenerative potential is present throughout all developmental stages. However, little experimental evidence exists to support the idea that this regenerative capacity remains in late adulthood, and questions about the functionality of neurons born at these late stages remain unanswered. Here, we extend our previous work in the VNO to investigate basal rates of proliferation in the OE, as well as after olfactory bulbectomy (OBX), a commonly used surgical lesion. In addition, we show that the neural stem cell retains its capacity to generate mature olfactory sensory neurons in aged animals. Finally, we demonstrate that regardless of age, a stem cell in the OE, the horizontal basal cell (HBC), exhibits a morphological switch from a flattened, quiescent phenotype to a pyramidal, proliferative phenotype following chemical lesion in aged animals. These findings provide new insights into determining whether an HBC is active or quiescent based on a structural feature as opposed to a biochemical one. More importantly, it suggests that neural stem cells in aged mice are responsive to the same signals triggering proliferation as those observed in young mice.
Collapse
Affiliation(s)
- Jessica H Brann
- Department of Biology, Loyola University Chicago Chicago, IL, USA
| | - Deandrea P Ellis
- Department of Biological Sciences, Columbia University New York, NY, USA
| | - Benson S Ku
- Department of Biological Sciences, Columbia University New York, NY, USA
| | | | - Stuart Firestein
- Department of Biological Sciences, Columbia University New York, NY, USA
| |
Collapse
|
18
|
Doty RL. Neurotoxic exposure and impairment of the chemical senses of taste and smell. HANDBOOK OF CLINICAL NEUROLOGY 2015; 131:299-324. [PMID: 26563795 DOI: 10.1016/b978-0-444-62627-1.00016-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The chemical senses of taste and smell determine the flavor of foods and beverages, guide appropriate food intake, and warn of such environmental hazards as spoiled or poisonous food, leaking natural gas, smoke, and airborne pollutants. This chapter addresses the influences of neurotoxic exposures on human chemoreception and provides basic information on the adverse influences of such exposures on rodent epithelia. The focus of the chapter is in olfaction, given dearth of empiric research on the effects of neurotoxic chemical exposures on the sense of taste, i.e., sweet, sour, bitter, salty, and savory sensations. As will be apparent from the chapter, numerous neurotoxins--many of which are encountered in industrial workplaces--alter the ability to smell, including solvents, metals, and particulate matter. The olfactory system is particularly vulnerable to such agents since its receptors are more or less directly exposed to the outside environment. Importantly, some such agents can enter the brain via the olfactory nerve or surrounding perineural spaces, bypassing the blood-brain barrier and damaging central nervous system structures and inducing pathologic processes that appear to be similar to those seen in neurodegenerative diseases such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Richard L Doty
- Smell and Taste Center, Department of Otorhinolaryngology; Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Brann JH, Firestein SJ. A lifetime of neurogenesis in the olfactory system. Front Neurosci 2014; 8:182. [PMID: 25018692 PMCID: PMC4071289 DOI: 10.3389/fnins.2014.00182] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/09/2014] [Indexed: 12/11/2022] Open
Abstract
Neurogenesis continues well beyond embryonic and early postnatal ages in three areas of the nervous system. The subgranular zone supplies new neurons to the dentate gyrus of the hippocampus. The subventricular zone supplies new interneurons to the olfactory bulb, and the olfactory neuroepithelia generate new excitatory sensory neurons that send their axons to the olfactory bulb. The latter two areas are of particular interest as they contribute new neurons to both ends of a first-level circuit governing olfactory perception. The vomeronasal organ and the main olfactory epithelium comprise the primary peripheral olfactory epithelia. These anatomically distinct areas share common features, as each exhibits extensive neurogenesis well beyond the juvenile phase of development. Here we will discuss the effect of age on the structural and functional significance of neurogenesis in the vomeronasal and olfactory epithelia, from juvenile to advanced adult ages, in several common model systems. We will next discuss how age affects the regenerative capacity of these neural stem cells in response to injury. Finally, we will consider the integration of newborn neurons into an existing circuit as it is modified by the age of the animal.
Collapse
Affiliation(s)
- Jessica H Brann
- Department of Biology, Loyola University Chicago Chicago, IL, USA
| | - Stuart J Firestein
- Department of Biological Sciences, Columbia University New York, NY, USA ; Department of Neuroscience, Columbia University New York, NY, USA
| |
Collapse
|
20
|
Kavoi BM, Plendl J, Makanya AN, Ochieng' S, Kiama SG. Effects of anticancer drug docetaxel on the structure and function of the rabbit olfactory mucosa. Tissue Cell 2014; 46:213-24. [PMID: 24846480 DOI: 10.1016/j.tice.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 11/16/2022]
Abstract
Docetaxel (DCT) is an anticancer drug which acts by disrupting microtubule dynamics in the highly mitotic cancer cells. Thus, this drug has a potential to affect function and organization of tissues exhibiting high cellular turnover. We investigated, in the rabbit, the effects of a single human equivalent dose (6.26 mg/kg, i.v.) of DCT on the olfactory mucosa (OM) through light and electron microscopy, morphometry, Ki-67 immunostaining, TUNEL assay and the buried food test for olfactory sensitivity. On post-exposure days (PED) 5 and 10, there was disarrangement of the normal cell layering in the olfactory epithelium (OE), apoptotic death of cells of the OE, Bowman's glands and axon bundles, and the presence (including on PED 3) of blood vessels in the bundle cores. A decrease in bundle diameters, olfactory cell densities and cilia numbers, which was most significant on PED 10 (49.3%, 63.4% and 50%, respectively), was also evident. Surprisingly by PED 15, the OM regained normal morphology. Furthermore, olfactory sensitivity decreased progressively until PED 10 when olfaction was markedly impaired, and with recovery from the impairment by PED 15. These observations show that DCT transiently alters the structure and function of the OM suggesting a high regenerative potential for this tissue.
Collapse
Affiliation(s)
- Boniface M Kavoi
- Department of Veterinary Anatomy and Physiology, Faculty of Veterinary Medicine, University of Nairobi, Riverside Drive, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Johanna Plendl
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Free University of Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Andrew N Makanya
- Department of Veterinary Anatomy and Physiology, Faculty of Veterinary Medicine, University of Nairobi, Riverside Drive, P.O. Box 30197-00100, Nairobi, Kenya; Institute of Anatomy, University of Bern, Balzerstrasse 2, CH-3000 Bern 9, Switzerland
| | - Shem Ochieng'
- International Centre for Insect Physiology and Ecology, P.O. Box 30772, Kasarani, Nairobi, Kenya
| | - Stephen G Kiama
- Department of Veterinary Anatomy and Physiology, Faculty of Veterinary Medicine, University of Nairobi, Riverside Drive, P.O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
21
|
Kanaya K, Kondo K, Suzukawa K, Sakamoto T, Kikuta S, Okada K, Yamasoba T. Innate immune responses and neuroepithelial degeneration and regeneration in the mouse olfactory mucosa induced by intranasal administration of Poly(I:C). Cell Tissue Res 2014; 357:279-99. [PMID: 24744264 PMCID: PMC4077259 DOI: 10.1007/s00441-014-1848-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 02/11/2014] [Indexed: 01/12/2023]
Abstract
The pathogenesis of postviral olfactory disorder (PVOD) has not been fully elucidated. We investigated morphological changes and innate immune responses in the mouse olfactory mucosa induced by intranasal administration of polyinosinic-polycytidylic acid [Poly(I:C)], a synthetic analog of viral double-stranded RNA. Mice received three administrations of saline with or without Poly(I:C), once every 24 h. The olfactory mucosa was harvested at various intervals after the first administration (8 h, 3, 9 and 24 days). In the Poly(I:C) group, the number of apoptotic cells in the olfactory neuroepithelium had increased at 8 h. At 9 days, the olfactory neuroepithelium had severely degenerated and behavioral tests demonstrated that the mice showed signs of olfactory deterioration. At 24 days, the structure of the neuroepithelium had regenerated almost completely. Regarding the innate immune responses, many neutrophils had infiltrated the olfactory neuroepithelium at 8 h and had exuded into the nasal cavity by 3 days. Macrophages had also infiltrated the olfactory neuroepithelium at 8 h although to a lesser extent, but they still remained in the neuroepithelium at 24 days. Poly(I:C)-induced neuroepithelial damage was significantly inhibited by a neutrophil elastase inhibitor and was suppressed in neutropenic model mice. These findings suggest that the secondary damage caused by the neutrophil-mediated innate immune response plays an important role in the pathogenesis of PVOD.
Collapse
Affiliation(s)
- Kaori Kanaya
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Gagnaire F, Boucard S. Olfactory mucosal necrosis in rats following acute intraperitoneal administration of 1,2-diethylbenzene, 1,2-diacetylbenzene and 2,5-hexanedione. Neurotoxicology 2014; 41:9-19. [DOI: 10.1016/j.neuro.2013.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
|
23
|
Olfactory functions scale with circuit restoration in a rapidly reversible Alzheimer's disease model. J Neurosci 2013; 33:12208-17. [PMID: 23884929 DOI: 10.1523/jneurosci.0291-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neural circuits maintain a precise organization that is vital for normal brain functions and behaviors, but become disrupted during neurological disease. Understanding the connection between wiring accuracy and function to measure disease progression or recovery has been difficult because of the complexity of behavioral circuits. The olfactory system maintains well-defined neural connections that regenerate throughout life. We previously established a reversible in vivo model of Alzheimer's disease by overexpressing a humanized mutated amyloid precursor protein (hAPP) in olfactory sensory neurons (OSNs). Using this model, we currently show that hAPP is present in the OSN axons of mutant mice, which exhibit strong caspase3 signal and reduced synaptic protein expression by 3 weeks of age. In the olfactory bulb, we show that glomerular structure is distorted and OSN axonal convergence is lost. In vivo functional imaging experiments further demonstrate disruption of the glomerular circuitry, and behavioral assays reveal that olfactory function is significantly impaired. Because OSNs regenerate, we also tested if the system could recover from hAPP-induced disruption. We found that after 1 or 3 weeks of shutting-off hAPP expression, the glomerular circuit was partially restored both anatomically and functionally, with behavioral deficits similarly reversed. Interestingly, the degree of functional recovery tracked directly with circuit restoration. Together, these data demonstrate that hAPP-induced circuit disruption and subsequent recovery can occur rapidly and that behavior can provide a measure of circuit organization. Thus, olfaction may serve as a useful biomarker to both follow disease progression and gauge potential recovery.
Collapse
|
24
|
Suzukawa K, Kondo K, Kanaya K, Sakamoto T, Watanabe K, Ushio M, Kaga K, Yamasoba T. Age-related changes of the regeneration mode in the mouse peripheral olfactory system following olfactotoxic drug methimazole-induced damage. J Comp Neurol 2011; 519:2154-74. [PMID: 21452219 DOI: 10.1002/cne.22611] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated age-related changes in the mode of regeneration in the mouse peripheral olfactory system after olfactotoxic drug-induced damage. Mice at postnatal ages of 10 days, 3 months, and 16 months were given an intraperitoneal injection of methimazole to produce damage in the olfactory neuroepithelium. The olfactory neuroepithelia were harvested and analyzed immunohistochemically at various postlesion timepoints, from 1 day through to 94 days, to investigate neuroepithelial cell proliferation, the time course of neuronal differentiation, the reconstitution of neuroepithelium, and the innervation of the olfactory bulb. Functional recovery was assessed using the vanillin avoidance behavioral test. The chronological pattern in the expression of Ki67, beta III tubulin, and olfactory marker protein, molecular markers for neuronal cell proliferation and differentiation, changed similarly among the different age groups. In contrast, the extent of neuroepithelial cell proliferation after injury decreased with age, and the final histological recovery of the olfactory neuroepithelium and the innervation of the olfactory bulb were significantly smaller in the 16-month-old group compared to the younger age groups. These results suggest that the age-related decline in the capacity of olfactory neuroepithelium to reconstitute neuroepithelium is associated with its age-related decrease in proliferative activity after the neuroepithelial injury rather than changes in the process of neuronal differentiation. In spite of these incomplete anatomical recoveries, 16-month-old mice regained the ability to avoid vanillin solution by 1 month postlesion, suggesting that the extent of anatomical epithelial damage is not necessarily proportional to the threshold of olfactory perception.
Collapse
Affiliation(s)
- Keigo Suzukawa
- Department of Otolaryngology-Head and Neck Surgery, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Smith WM, Davidson TM, Murphy C. Toxin-induced chemosensory dysfunction: a case series and review. Am J Rhinol Allergy 2010; 23:578-81. [PMID: 19958605 DOI: 10.2500/ajra.2009.23.3368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Toxic chemical exposures are estimated to account for 1-5% of all olfactory disorders. Both olfactory neurons and taste buds are in direct contact with environmental agents because of their relatively unprotected anatomic locations, thereby making them susceptible to damage from acute and chronic toxic exposures. The aim of this study was to illustrate different aspects of the diagnostic and therapeutic approach to this disorder using a series of case reports and review of the literature. METHODS Cases were selected for inclusion based on a retrospective chart review of patients who presented to a university-based nasal dysfunction clinic with toxin-induced olfactory or gustatory dysfunction between January 1985 and December 2008. Workup included complete history, otolaryngologic examination, psychophysical testing, and imaging. RESULTS Patient ages ranged from 31 to 67 years (mean, 49.3 years). Etiology of chemosensory impairment included exposure to ammonia, isodecanes, hairdressing chemicals, chemotherapy, gasoline, and intranasal zinc. Five of the seven patients (71%) presented with olfactory dysfunction alone, one patient (14%) presented with dysgeusia alone, and one patient (14%) presented with both smell and taste loss. Only one patient (14%) reported parosmias. Tests of olfaction revealed normosmia in one patient (14%), mild-to-moderate hyposmia in one patient (14%), and severe hyposmia to anosmia in five patients (72%). Both patients who reported taste disorders had hypogeusia on testing. CONCLUSION This case series illustrates the wide spectrum of this disorder and provides a framework for the workup and treatment of these patients.
Collapse
Affiliation(s)
- Wendy M Smith
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery and Continuing Medical Education, University of California, San Diego School of Medicine, San Diego, California 92103, USA.
| | | | | |
Collapse
|
26
|
Jia C, Roman C, Hegg CC. Nickel sulfate induces location-dependent atrophy of mouse olfactory epithelium: protective and proliferative role of purinergic receptor activation. Toxicol Sci 2010; 115:547-56. [PMID: 20200219 DOI: 10.1093/toxsci/kfq071] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Exposure to nickel sulfate (NiSO(4)) leads to impaired olfaction and anosmia through an unknown mechanism. We tested the hypothesis that ATP is released following NiSO4-induced injury and that ATP promotes regenerative cell proliferation in the olfactory epithelium (OE). Male Swiss Webster mice were intranasally instilled with NiSO(4) or saline followed by ATP, purinergic receptor antagonists, or saline. We assessed the olfactory epithelium for NiSO(4)-induced changes using histology and immunohistochemistry 1-7 days postinstillation and compared results to olfactory bulb ablation-induced toxicity. Intranasal instillation of NiSO(4) produced a dose- and time-dependent reduction in the thickness of turbinate OE. These reductions were due to sustentacular cell loss, measured by terminal dUTP nick-end labeling (TUNEL) staining at 1-day postinstillation and caspase-3-dependent apoptosis of olfactory sensory neurons at 3 days postinstillation. A significant increase in cell proliferation was observed at 5 and 7 days postinstillation of NiSO(4) evidenced by BrdU incorporation. Treatment with purinergic receptor antagonists significantly reduced NiSO(4)-induced cell proliferation and posttreatment with ATP significantly increased cell proliferation. Furthermore, posttreatment with ATP had no effect on sustentacular cell viability but significantly reduced caspase-3-dependent neuronal apoptosis. In a bulbectomy-induced model of apoptosis, exogenous ATP produced a significant increase in cell proliferation that was not affected by purinergic receptor antagonists, suggesting that ATP is not released during bulbectomy-induced apoptosis. ATP is released following NiSO(4)-induced apoptosis and has neuroproliferative and neuroprotective functions. These data provide therapeutic strategies to alleviate or cure the loss of olfactory function associated with exposure to nickel compounds.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
27
|
Loveless SE, Slezak B, Serex T, Lewis J, Mukerji P, O’Connor JC, Donner EM, Frame SR, Korzeniowski SH, Buck RC. Toxicological evaluation of sodium perfluorohexanoate. Toxicology 2009; 264:32-44. [DOI: 10.1016/j.tox.2009.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/10/2009] [Accepted: 07/16/2009] [Indexed: 11/27/2022]
|
28
|
Tang J, Tang J, Ling EA, Wu Y, Liang F. Juxtanodin in the rat olfactory epithelium: specific expression in sustentacular cells and preferential subcellular positioning at the apical junctional belt. Neuroscience 2009; 161:249-58. [PMID: 19332107 DOI: 10.1016/j.neuroscience.2009.03.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 03/16/2009] [Accepted: 03/16/2009] [Indexed: 10/21/2022]
Abstract
In the CNS, juxtanodin (JN) is an actin-binding oligodendroglial protein that functions to promote differentiation of the host cells during postnatal development. In other tissues, JN expression and function remain unknown. We surveyed rat peripheral nerve, skeletal muscle and various epithelial tissues using immunoblotting and light-microscopic immunohistochemistry, and found prominent JN expression only in the olfactory epithelium (OE). Confocal and immunoelectron microscopy further revealed specific JN expression in the glia-like sustentacular cells and in the ductal cells of Bowman's glands. JN immunoreactivity was especially prominent in sustentacular cell apices extending superficially from the zone of terminal webs and associated adherens junctions, through the zone of tight junctions, to the roots of sustentacular microvilli. Moderate JN was also found in the supranuclear regions of sustentacular cells, whereas distal parts of sustentacular microvilli were devoid of JN. Distribution of JN in the OE differed from that of class III beta-tubulin or nestin, but partially overlapped with a zone of intense F-actin staining near the OE mucous surface. Together these results identify JN as a marker protein for OE sustentacular cells, and support the glia-like nature of OE sustentacular cells. Functionally, JN in the OE might help in the molecular specialization of distinct compartments of olfactory receptor neurons (ORNs), in the interaction of sustentacular cells with ORNs, and/or in maturation/maintenance of sustentacular cells.
Collapse
Affiliation(s)
- J Tang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Block MD10, 4 Medical Drive, Singapore 117597
| | | | | | | | | |
Collapse
|
29
|
Stadler JC, Delker DA, Malley LA, Frame SR, Everds NE, Mylchreest E, Munley SM, Loveless SE, Buck RC. Subchronic, reproductive, and developmental toxicity of a fluorotelomer-based urethane polymeric product. Drug Chem Toxicol 2008; 31:317-37. [PMID: 18622868 DOI: 10.1080/01480540701873418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A commercial fluorotelomer-based urethane polymeric dispersion, consisting of polymer, surfactant, and water, was evaluated in subchronic, reproduction, and developmental toxicity studies. The dispersion was administered daily by gavage to rats at dosages of 0, 50, 250, or 1000 mg polymer/kg/day or with 70 mg/kg/day of the sulfonate surfactant. Dose levels of 0, 50, 250, or 1000 mg polymer/kg/day were also used for the reproductive and developmental studies. Nasal olfactory epithelial degeneration and necrosis occurred in all dose groups in the 90-day study. Nasal adhesions were observed only in rats administered surfactant alone. Liver-enzyme alterations at 250 and 1000 mg/kg were considered to be potentially adverse effects. The subchronic no-observed-adverse-effects level (NOAEL) was 50 mg/kg. For the reproduction study, rats were dosed for 10 weeks prior to cohabitation and throughout mating, gestation, and lactation. There were no effects on reproductive function in males or females at any dosage. Thyroid weight was decreased in the 250 and 1000 mg/kg day F(1) groups unaccompanied by microscopic effects. In the developmental toxicity study, female rats were dosed from gestation days 6-20; there was no test-substance-related embryolethality, nor was there any dose-related increase in either fetal malformations. Fetal weight was minimally decreased at 1000 mg/kg/day in the presence of slight maternal toxicity; the NOAEL for developmental parameters was 250 mg/kg/day. The polymeric product was not a specific developmental or reproductive toxin.
Collapse
Affiliation(s)
- Judith C Stadler
- DuPont Haskell Laboratory for Health and Environmental Sciences, Newark, Delaware 19714, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Franssen EHP, de Bree FM, Verhaagen J. Olfactory ensheathing glia: Their contribution to primary olfactory nervous system regeneration and their regenerative potential following transplantation into the injured spinal cord. ACTA ACUST UNITED AC 2007; 56:236-58. [PMID: 17884174 DOI: 10.1016/j.brainresrev.2007.07.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/25/2007] [Accepted: 07/30/2007] [Indexed: 11/26/2022]
Abstract
Olfactory ensheathing glia (OEG) are a specialized type of glia that guide primary olfactory axons from the neuroepithelium in the nasal cavity to the brain. The primary olfactory system is able to regenerate after a lesion and OEG contribute to this process by providing a growth-supportive environment for newly formed axons. In the spinal cord, axons are not able to restore connections after an injury. The effects of OEG transplants on the regeneration of the injured spinal cord have been studied for over a decade. To date, of all the studies using only OEG as a transplant, 41 showed positive effects, while 13 studies showed limited or no effects. There are several contradictory reports on the migratory and axon growth-supporting properties of transplanted OEG. Hence, the regenerative potential of OEG has become the subject of intense discussion. In this review, we first provide an overview of the molecular and cellular characteristics of OEG in their natural environment, the primary olfactory nervous system. Second, their potential to stimulate regeneration in the injured spinal cord is discussed. OEG influence scar formation by their ability to interact with astrocytes, they are able to remyelinate axons and promote angiogenesis. The ability of OEG to interact with scar tissue cells is an important difference with Schwann cells and may be a unique characteristic of OEG. Because of these effects after transplantation and because of their role in primary olfactory system regeneration, the OEG can be considered as a source of neuroregeneration-promoting molecules. To identify these molecules, more insight into the molecular biology of OEG is required. We believe that genome-wide gene expression studies of OEG in their native environment, in culture and after transplantation will ultimately reveal unique combinations of molecules involved in the regeneration-promoting potential of OEG.
Collapse
Affiliation(s)
- Elske H P Franssen
- Netherlands Insitute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | | | | |
Collapse
|
31
|
Stedeford T, Zhao QJ, Dourson ML, Banasik M, Hsu CH. The application of non-default uncertainty factors in the U.S. EPA's Integrated Risk Information System (IRIS). Part I: UF(L), UF(S), and "other uncertainty factors". JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2007; 25:245-79. [PMID: 17763048 DOI: 10.1080/10590500701569430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The United States Environmental Protection Agency's Integrated Risk Information System (IRIS) includes hazard identification and dose-response assessment values developed by Agency scientists. Uncertainty factors (UFs) are used in the development of IRIS values to address the lack of information in five main areas. The standard UFs account for interspecies uncertainty (UF(A)) and intraspecies variability (UF(H)). The UF(A) addresses uncertainty related to the extrapolation of data from animals to humans, whereas the UF(H) addresses variability amongst individuals (i.e., intrahuman). Additional UFs have been employed to account for database incompleteness, extrapolations from a lowest-observed-adverse-effect level in the absence of a no-observed-adverse-effect level (UF(L)), and subchronic-to-chronic extrapolation (UF(S)). A sixth UF designated as "other uncertainty factors" (UF(O)) has also been applied in place of the UF(L) to account for uncertainty with the adversity of points of departure obtained using benchmark dose modeling. This review will discuss how UF(L), UF(S), and UF(O) have been applied in IRIS assessments, along with the rationale used to describe the choice of UF values that deviate from the standard default of 10.
Collapse
Affiliation(s)
- Todd Stedeford
- Integrated Risk Information System, National Center for Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Washington, DC, USA
| | | | | | | | | |
Collapse
|
32
|
Harkema JR, Carey SA, Wagner JG. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol 2006; 34:252-69. [PMID: 16698724 DOI: 10.1080/01926230600713475] [Citation(s) in RCA: 326] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nose is a very complex organ with multiple functions that include not only olfaction, but also the conditioning (e.g., humidifying, warming, and filtering) of inhaled air. The nose is also a "scrubbing tower" that removes inhaled chemicals that may be harmful to the more sensitive tissues in the lower tracheobronchial airways and pulmonary parenchyma. Because the nasal airway may also be a prime target for many inhaled toxicants, it is important to understand the comparative aspects of nasal structure and function among laboratory animals commonly used in inhalation toxicology studies, and how nasal tissues and cells in these mammalian species may respond to inhaled toxicants. The surface epithelium lining the nasal passages is often the first tissue in the nose to be directly injured by inhaled toxicants. Five morphologically and functionally distinct epithelia line the mammalian nasal passages--olfactory, respiratory, squamous, transitional, and lymphoepithelial--and each nasal epithelium may be injured by an inhaled toxicant. Toxicant-induced epithelial lesions in the nasal passages of laboratory animals (and humans) are often site-specific and dependent on the intranasal regional dose of the inhaled chemical and the sensitivity of the nasal epithelial tissue to the specific chemical. In this brief review, we present examples of nonneoplastic epithelial lesions (e.g., cell death, hyperplasia, metaplasia) caused by single or repeated exposure to various inhaled chemical toxicants. In addition, we provide examples of how nasal maps may be used to record the character, magnitude and distribution of toxicant-induced epithelial injury in the nasal airways of laboratory animals. Intranasal mapping of nasal histopathology (or molecular and biochemical alterations to the nasal mucosa) may be used along with innovative dosimetric models to determine dose/response relationships and to understand if site-specific lesions are driven primarily by airflow, by tissue sensitivity, or by another mechanism of toxicity. The present review provides a brief overview of comparative nasal structure, function and toxicologic pathology of the mammalian nasal epithelium and a brief discussion on how data from animal toxicology studies have been used to estimate the risk of inhaled chemicals to human health.
Collapse
Affiliation(s)
- Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | |
Collapse
|
33
|
Jacquot L, Pourie G, Buron G, Monnin J, Brand G. Effects of toluene inhalation exposure on olfactory functioning: behavioral and histological assessment. Toxicol Lett 2006; 165:57-65. [PMID: 16567067 DOI: 10.1016/j.toxlet.2006.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 01/24/2006] [Accepted: 01/24/2006] [Indexed: 11/21/2022]
Abstract
Exposure to pollutant or toxic substances is known to induce adverse health effects but few studies have been devoted to study the impact on olfactory functioning although neuroreceptors in the nasal cavity are directly in contact with volatile molecules. Thus, this work was designed to evaluate in mice the potential modifications of the olfactory functioning during (1 month) and after (1 month) a prolonged toluene exposure at both sensitive/perceptive and cellular levels. Mice were exposed to 1000ppm of toluene for 5h/day, 5days/week for 4 weeks. Firstly, behavioral evaluation (T-maze test) to toluene sensitivity showed a constant decrease during all the 4 weeks of exposure (W1-W4) which continued during 2 weeks after the exposure (W5, W6). In contrast, during the last 2 weeks of the experiment (W7, W8), the sensitivity of mice to toluene went back to normal. Secondly, structural modifications, i.e. density of cells and thickness of olfactory epithelium were observed soon after the outset of exposure. The number of cells did not change at the beginning of exposure (W1, W2), decreased markedly later (W3, W4), increased significantly the first week of the recovery period (W5) and stayed stable during the following weeks (W6-W8). Concerning the thickness of neuroepithelium, the results at W1 showed a decrease followed by an increase suggesting an inflammatory process (W2, W3). In contrast, the results of W4 revealed an abrupt decrease of the thickness whereas the return to normal arose immediately at the outset of recovery period.
Collapse
Affiliation(s)
- L Jacquot
- Laboratoire de Neurosciences, Université de Franche-Comté-Place Leclerc, 25000 Besançon, France
| | | | | | | | | |
Collapse
|
34
|
Hudson R, Arriola A, Martínez-Gómez M, Distel H. Effect of Air Pollution on Olfactory Function in Residents of Mexico City. Chem Senses 2005; 31:79-85. [PMID: 16354742 DOI: 10.1093/chemse/bjj019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To our knowledge there has been no study of the effect of everyday air pollution on olfactory function. It was therefore the aim of this study to compare the olfactory performance of long-term residents of Mexico City, an environment with high air pollution, with the olfactory performance of residents of the Mexican state of Tlaxcala, a region geographically similar to Mexico City but with low air pollution. Healthy volunteers [82 Mexico City subjects (MEX), 86 Tlaxcala subjects (TLX)] 20-63 years of age and balanced for age and gender between the two localities were tested for the perception of the odors of everyday beverages presented in squeeze bottles. When tested with ascending concentrations of stimuli in a three-way oddball paradigm, residents of Tlaxcala detected the odors of instant coffee and of an orange drink at significantly lower concentrations than residents of Mexico City. They also performed significantly better in discriminating between the two similar-smelling Mexican beverages horchata and atole in an oddball test. Significant differences between the two populations in overall olfactory performance were apparent in three of the four age classes (20- to 29-, 30- to 39-, and 40- to 49-year-old subjects) but not in the 50-63 years age class. About 10% of MEX subjects compared to about 2% of TLX subjects were judged to have poor olfactory function; all were from the older age classes (mean age: 48.6 years). Thus, air pollution in Mexico City appears to have a substantial impact on olfactory function even in young and middle-aged residents.
Collapse
Affiliation(s)
- Robyn Hudson
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, CP 04510 México DF, Mexico.
| | | | | | | |
Collapse
|
35
|
Suzuki Y. Fine structural aspects of apoptosis in the olfactory epithelium. ACTA ACUST UNITED AC 2005; 33:693-702. [PMID: 16217624 DOI: 10.1007/s11068-005-3337-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2004] [Revised: 11/12/2004] [Accepted: 12/14/2004] [Indexed: 11/30/2022]
Abstract
Vertebrate olfactory receptor neurons are unique because they are continually replaced throughout life. They die by apoptosis under physiological conditions at all stages in their life cycle, and the dead olfactory neurons are replaced by the progeny of dividing basal cells. Thus, in the olfactory epithelium apoptosis is involved in tissue homeostasis and may be a direct or indirect trigger of neurogenesis. In this study, we focused on morphological changes occurring in the olfactory epithelium, i.e., degradation of DNA, condensation of nuclear chromatin, condensation of cytoplasm, blebbing of cytoplasmic fragments, and disposal of the dying and dead cells as the final phase of apoptosis. Moreover, we addressed other stages of apoptosis examining the nature of the stimulus that provokes the apoptotic response, the signal or metabolic state, and transduction of the signal that sends the message to the effector apparatus, and the effector or execution phase, which includes the activation of proteases.
Collapse
Affiliation(s)
- Yuko Suzuki
- Department of Oral Anatomy, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan.
| |
Collapse
|
36
|
Nathan BP, Nisar R, Short J, Randall S, Grissom E, Griffin G, Switzer PV, Struble RG. Delayed olfactory nerve regeneration in ApoE-deficient mice. Brain Res 2005; 1041:87-94. [PMID: 15804503 DOI: 10.1016/j.brainres.2005.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Revised: 02/03/2005] [Accepted: 02/04/2005] [Indexed: 11/23/2022]
Abstract
Apolipoprotein E (apoE), a lipid transporting protein, is extensively expressed in the primary olfactory pathway, but its function is unknown. We previously reported increased apoE levels in the olfactory bulb (OB) following olfactory epithelium (OE) lesion in mice, and hypothesized that apoE may play a vital role in olfactory nerve (ON) regeneration. To directly test this hypothesis, we examined the rate of ON regeneration following OE lesion in apoE deficient/knockout (KO) and wild-type (WT) mice. OE was lesioned in 2- to 3-month-old mice by intranasal irrigation with Triton X-100 (TX). OB were collected at 0, 3, 7, 21, 42, and 56 days post-lesion. OB recovery was measured by both immunoblotting and immunohistochemical analysis of growth cone associated protein (GAP) 43 and olfactory marker protein (OMP). The results revealed that (1) OMP recovery in the OB was significantly slower in apoE KO compared to WT mice; (2) recovery of glomerular area was similarly slower; and (3) GAP43 increases and return to prelesion levels in the OB were slower in KO mice. Together, these results show that olfactory nerve regeneration is significantly slower in KO mice as compared to WT mice, suggesting apoE facilitates olfactory nerve regeneration.
Collapse
Affiliation(s)
- Britto P Nathan
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Olfactory loss can occur through accidental exposure, poor industrial hygiene, or exposure to low levels of toxins in the ambient air over long periods. This loss can lead to transient olfactory disorders, irreversible anosmia, temporary olfactory fatigue, or industrial anosmia. Inevitably, a practicing otolaryngologist will encounter a patient with complaints of decreased smell and taste that initially may be difficult to diagnose and treat. Much of the challenge in evaluating a patient with disturbances of olfaction is in obtaining adequate quantitative measurements of sensory dysfunction and identifying a source for the olfactory loss. Although there is no particular test for environmental toxins as a source of olfactory loss, an accurate cause can be determined by obtaining a careful, detailed history. A significant exposure history and lack of more common causes of olfactory loss strengthens an argument for environmental toxins as an etiology. Unfortunately, no available treatments can reverse permanent damage caused by toxic exposure, but removal from the source of toxins may allow for repair of the olfactory system and return of normal function, especially in acute exposures. Despite the increasing number of studies investigating toxic exposure on olfactory function, these effects are understood poorly. With continued study of human exposure to these substances and the use of animal models, the mechanisms by which damage occurs will be understood better and new approaches for diagnosis and treatment will be developed. Furthermore, with increasing regulations of occupational environments and stricter policies on industrial air pollution, olfactory dysfunction secondary to toxicity should become less prevalent.
Collapse
Affiliation(s)
- Urmen D Upadhyay
- Tufts University School of Medicine, New England Medical Center, 750 Washington Street, NEMC 850, Boston, MA 02111, USA
| | | |
Collapse
|
38
|
Foy JWD, Schatz RA. Inhibition of rat respiratory-tract cytochrome P-450 activity after acute low-level m-xylene inhalation: role in 1-nitronaphthalene toxicity. Inhal Toxicol 2004; 16:125-32. [PMID: 15204773 DOI: 10.1080/08958370490270927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The xylenes are commonly used industrial solvents that have been shown to inhibit cytochrome P-450 (CYP450) activities in an organ- and isozyme-specific pattern. This study examined the dose-response and durational effects of m-xylene inhalation on cytochrome P-450 activities in the respiratory tract and liver as well as the effects of these CYP450 alterations on 1-nitronaphthalene (1-NN)-induced respiratory or hepatic toxicity. After m-xylene inhalation exposure there was a dose-related inhibition of all nasal mucosa CYPs examined. At 300 ppm, inhibition was sustained up to 2 days after exposure, but on day 5 all CYP activities were increased. There was also dose-related inhibition of lung CYPs 2B1, 2E1, and 4B1. The activities of these CYPs returned to those of control by day 2 but lung CYP 2B1 was increased 5 days following m-xylene exposure. Hepatic CYP 2E1 activity was increased immediately following m-xylene exposure (300 ppm). CYP 2B1 and CYP 1A2 activities were increased through day 2, all activities returning to control values 5 days postexposure. 1-NN treatment caused severe respiratory toxicity that was prevented by prior m-xylene exposure. Lactate dehydrogenase (LDH) and protein were increased in nasal lavage fluid (NLF) but gamma-glutamyl transferase (GGT) was unchanged. m-Xylene coexposure prevented or ameliorated the increases in LDH and protein but increased GGT. 1-NN-induced increases in bronchoalveolar lavage fluid (BALF) LDH and GGT were attenuated by m-xylene. 1-NN caused pronounced histopathological changes in both respiratory and olfactory regions of the nasal mucosa. Lesions in both regions were characterized by acute epithelial necrosis and exfoliation and suppurative exudate in the airways. These changes were prevented by m-xylene coexposure. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were not changed in animals exposed to 1-NN but were increased by m-xylene coexposure. Low-level m-xylene exposure organ-selectively altered CYP450 isozyme activities and subsequent 1-NN toxicity.
Collapse
Affiliation(s)
- Jeffrey W-D Foy
- Toxicology Program, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
39
|
Williams SK, Gilbey T, Barnett SC. Immunohistochemical studies of the cellular changes in the peripheral olfactory system after zinc sulfate nasal irrigation. Neurochem Res 2004; 29:891-901. [PMID: 15139288 DOI: 10.1023/b:nere.0000021234.46315.34] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The peripheral olfactory system has a remarkable capacity for repair. We have performed an immunohistochemical study of the cellular changes that occur after zinc sulfate irrigation of the nasal cavity. The rapid loss of epithelial cells was followed by the proliferation of basal cells and the restoration of the epithelium with olfactory tissue. Horizontal basal cell markers, anti-cytokeratin 5/6 (CK5/6), and the Bandeiraea simplicifolia (BS-1) lectin initially co-localized on day 1 after treatment but rapidly displayed a disparity in their staining profile, with CK5/6 immunoreactive cells having a profile more akin to cells expressing the sustentacular marker cytokeratin 18 (CK18). This suggests CK5/6 and BS-1 label a different subset of horizontal basal cells. Axonal degeneration and regeneration was studied with a panel of markers to olfactory receptor neurons, their terminals, and olfactory bulb dendrites. The glial cells of the peripheral olfactory system, olfactory ensheathing cells, remained in position, with little change in immunoreactivity to laminin, although an increase in the expression of glial fibrillary acidic protein was observed. The events and the extent of reconstitution of the olfactory system after degeneration serves as a foundation for future studies designed to understand the unique regenerative capacity of the olfactory system.
Collapse
Affiliation(s)
- Sarah K Williams
- Division of Clinical Neuroscience, University of Glasgow, Beatson Laboratories, Glasgow G61 1BD, UK
| | | | | |
Collapse
|
40
|
Iwema CL, Fang H, Kurtz DB, Youngentob SL, Schwob JE. Odorant receptor expression patterns are restored in lesion-recovered rat olfactory epithelium. J Neurosci 2004; 24:356-69. [PMID: 14724234 PMCID: PMC6729985 DOI: 10.1523/jneurosci.1219-03.2004] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Revised: 09/24/2003] [Accepted: 10/13/2003] [Indexed: 11/21/2022] Open
Abstract
Lesions of the olfactory periphery provide a means for examining the reconstitution of a diverse and highly regulated population of sensory neurons and the growth, en masse, of nascent axons to the bulb. The olfactory epithelium and its projection onto the bulb are reconstituted after ablation by methyl bromide gas, and some measure of olfactory function is restored. The extent to which the system regenerates the full repertoire of odorant receptor-expressing neurons, particularly their spatially restricted distribution across the epithelial sheet, is unknown, however, and altered odorant receptor expression might contribute to the persistent distortion of odorant quality that is observed in the lesioned-recovered animals. To address the question of receptor expression in the recovered epithelium, we performed in situ hybridization with digoxigenin-labeled riboprobes for eight odorant receptors on the olfactory epithelium from unilaterally methyl bromide-lesioned and control rats. The data demonstrate that the distribution of sensory neuron types, as identified and defined by odorant receptor expression, is restored to normal or nearly so by 3 months after lesion. Likewise, the numbers of probe-labeled neurons in the lesioned-recovered epithelium are nearly equivalent to the unlesioned side at this time. Finally, our evidence suggests that odorant receptors are distributed in multiple overlapping bands in the normal, unlesioned, and lesioned-recovered epithelium rather than in the conventionally accepted three or four zones. Thus, the primary sensory elements required for functional recovery of the olfactory system after damage are restored, and altered function implies the persistence of a more central failure in regeneration.
Collapse
Affiliation(s)
- Carrie L Iwema
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
41
|
Dalton P, Cowart B, Dilks D, Gould M, Lees PSJ, Stefaniak A, Emmett E. Olfactory function in workers exposed to styrene in the reinforced-plastics industry. Am J Ind Med 2003; 44:1-11. [PMID: 12822130 DOI: 10.1002/ajim.10102] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Impairment of olfactory function in humans has been associated with occupational exposure to volatile chemicals. To investigate whether exposure to styrene was associated with olfactory impairment, olfactory function was examined in workers with a minimum of 4 years exposure to styrene in the reinforced-plastics industry (current mean exposure: 26 ppm, range: 10-60 ppm; historic mean dose: 156 ppm-years, range: 13.8-328 ppm-years) and in a group of age- and gender-matched, unexposed controls. METHODS Olfactory function was assessed using a standardized battery that included tests of threshold sensitivity for phenylethyl alcohol (PEA), odor identification ability, and retronasal odor perception. Odor detection thresholds for styrene were also obtained as a measure of specific adaptation to the work environment. RESULTS No differences were observed between exposed workers and controls on tests of olfactory function. Elevation of styrene odor detection thresholds among exposed workers indicated exposure-induced adaptation. CONCLUSIONS The present study found no evidence among a cross-section of reinforced-plastics industry workers that current or historical exposure to styrene was associated with impairment of olfactory function. Taken together with anatomical differences between rodent and human airways and the lack of evidence for styrene metabolism in human nasal tissue, the results strongly suggest that at these concentrations, styrene is not an olfactory toxicant in humans.
Collapse
Affiliation(s)
- Pamela Dalton
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104-3308, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Jang W, Youngentob SL, Schwob JE. Globose basal cells are required for reconstitution of olfactory epithelium after methyl bromide lesion. J Comp Neurol 2003; 460:123-40. [PMID: 12687701 PMCID: PMC3871194 DOI: 10.1002/cne.10642] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite a remarkable regenerative capacity, recovery of the mammalian olfactory epithelium can fail in severely injured areas, which subsequently reconstitute as aneuronal respiratory epithelium (metaplasia). We contrasted the cellular response of areas of the rat epithelium that recover as olfactory after methyl bromide lesion with those undergoing respiratory metaplasia in order to identify stem cells that restore lesioned epithelium as olfactory. Ventral olfactory epithelium is at particular risk for metaplasia after lesion and patches of it are rendered acellular by methyl bromide exposure. In contrast, globose basal cells (GBCs, marked by staining with GBC-2) are preserved in surrounding ventral areas and uniformly throughout dorsal epithelium, which consistently and completely recovers as olfactory after lesion. Over the next few days, neurons reappear, but only in those areas in which GBCs are preserved and multiply. In contrast, parts of the epithelium in which GBCs are destroyed are repopulated in part by Bowman's gland cells, which pile up above the basal lamina. Electron microscopy confirms the reciprocity between gland cells and globose basal cells. By 14 days after lesion, the areas that are undergoing metaplasia are repopulated by typical respiratory epithelial cells. As horizontal basal cells are eliminated from all parts of the ventral epithelium, the data suggest that GBC-2(+) cells are ultimately responsible for regenerating olfactory neuroepithelium. In contrast, GLA-13(+) cells may give rise to respiratory metaplastic epithelium where GBCs are eliminated. Thus, we support the idea that a subpopulation of GBCs is the neural stem cell of the olfactory epithelium.
Collapse
Affiliation(s)
- Woochan Jang
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Steven L. Youngentob
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - James E. Schwob
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
- Correspondence to: James E. Schwob, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111.
| |
Collapse
|
43
|
Bogdanffy MS, Sarangapani R. Physiologically-based kinetic modeling of vapours toxic to the respiratory tract. Toxicol Lett 2003; 138:103-17. [PMID: 12559695 DOI: 10.1016/s0378-4274(02)00370-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The respiratory tract is frequently identified as a site of toxicity for inhaled xenobiotic chemicals. Usually, these observations come from controlled animal studies. For these studies to be of quantitative value to human health risk assessment, species-specific factors governing dosimetry of inhaled substances must be taken into account. Toxicokinetics of vapours in the respiratory tract are defined by absorption, distribution, metabolism, and excretion, as they are in other tissues; however, these concepts take on new dimensions when considering respiratory tract toxicants, especially those that elicit portal of entry effects by directly interacting with the tissue lining the respiratory tract. Species-specific factors related to anatomy, physiology and biochemistry govern inter-species extrapolation of toxicokinetics. This article discusses critical factors of respiratory tract kinetics that should be considered when developing physiological-based toxicokinetic (PBTK) models for inhaled vapours. Important considerations such as impact of regional airflow-delivery, water solubility, reactivity, and rates of local biotransformation on respiratory tract tissue dosimetry are highlighted. These factors can be accounted for only to a limited extent when using default approaches to extrapolate dosimetry of inhaled substances across species. On the other hand, PBTK modeling has the flexibility to accommodate many of the critical determinants of respiratory tract toxicity. PBTK models can also help identify the most critical toxicokinetic data necessary to replace defaults. PBTK approaches have led to more informed estimates of human target tissue dose, and therefore human health risk, especially where these risk assessments have been based on extrapolation of animal dosimetry studies. Experience derived from the development of more intensive case studies have, in turn, enabled simplified approaches to the use of PBTK modeling for respiratory tract toxicants. Whether simplified or highly complex, PBTK modeling approaches are proven to be of great utility to risk assesors interested in applying quantitative information to informed risk assessment evaluations.
Collapse
Affiliation(s)
- Matthew S Bogdanffy
- DuPont Haskell Laboratory for Health and Environmental Sciences, P.O. Box 50, Newark, DE 19714, USA.
| | | |
Collapse
|
44
|
Schwob JE. Neural regeneration and the peripheral olfactory system. THE ANATOMICAL RECORD 2002; 269:33-49. [PMID: 11891623 DOI: 10.1002/ar.10047] [Citation(s) in RCA: 372] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The peripheral olfactory system is able to recover after injury, i.e., the olfactory epithelium reconstitutes, the olfactory nerve regenerates, and the olfactory bulb is reinnervated, with a facility that is unique within the mammalian nervous system. Cell renewal in the epithelium is directed to replace neurons when they die in normal animals and does so at an accelerated pace after damage to the olfactory nerve. Neurogenesis persists because neuron-competent progenitor cells, including transit amplifying and immediate neuronal precursors, are maintained within the population of globose basal cells. Notwithstanding events in the neuron-depleted epithelium, the death of both non-neuronal cells and neurons directs multipotent globose basal cell progenitors, to give rise individually to sustentacular cells and horizontal basal cells as well as neurons. Multiple growth factors, including TGF-alpha, FGF2, BMPs, and TGF-betas, are likely to be central in regulating choice points in epitheliopoiesis. Reinnervation of the bulb is rapid and robust. When the nerve is left undisturbed, i.e., by lesioning the epithelium directly, the projection of the reconstituted epithelium onto the bulb is restored to near-normal with respect to rhinotopy and in the targeting of odorant receptor-defined neuronal classes to small clusters of glomeruli in the bulb. However, at its ultimate level, i.e., the convergence of axons expressing the same odorant receptor onto one or a few glomeruli, specificity is not restored unless a substantial number of fibers of the same type are spared. Rather, odorant receptor-defined subclasses of neurons innervate an excessive number of glomeruli in the rough vicinity of their original glomerular targets.
Collapse
Affiliation(s)
- James E Schwob
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
45
|
Youngentob SL, Schwob JE, Saha S, Manglapus G, Jubelt B. Functional consequences following infection of the olfactory system by intranasal infusion of the olfactory bulb line variant (OBLV) of mouse hepatitis strain JHM. Chem Senses 2001; 26:953-63. [PMID: 11595672 PMCID: PMC7110209 DOI: 10.1093/chemse/26.8.953] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The present study assessed the functional consequences of viral infection with a neurotropic coronavirus, designated MHV OBLV, that specifically targets central olfactory structures. Using standard operant techniques and a 'go, no-go' successive discrimination paradigm, six BALB/c mice were trained to discriminate between the presentation of an air or odor stimulus (three mice for each of the odorants propanol and propyl acetate). Two additional BALB/c mice were trained to discriminate between the presentation of air and the presentation of either vanillin or propionic acid. Following criterion performance, each mouse received an additional 2000 trials of overtraining. At completion of overtraining one mouse from the propanol and propyl acetate groups were allocated as untreated. The remaining six mice were inoculated with 300 microl of the OBLV stock per nostril for a total of 1.5 x 10(6) p.f.u. in 600 microl. Following a 1 month rest, untreated and inoculated animals were again tested on their respective air versus odor discrimination task. Untreated animals immediately performed at criterion levels. In contrast, inoculated animals varied in their capacity to discriminate between air and odorant. Five of the six inoculated mice showed massive disruption of the olfactory bulb, including death of mitral cells; the other was more modestly affected. In addition, the density of innervation of the olfactory mucosa by substance P-containing trigeminal fibers is also affected by inoculation. Those mice that remained anosmic to the training odorants had the most severe reduction in mitral cell number and substance P fiber density among the inoculated animals.
Collapse
Affiliation(s)
- S L Youngentob
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | | | | | |
Collapse
|
46
|
Valentine R, Himmelstein MW. Overview of the acute, subchronic, reproductive, developmental and genetic toxicology of beta-chloroprene. Chem Biol Interact 2001; 135-136:81-100. [PMID: 11397383 DOI: 10.1016/s0009-2797(01)00218-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
beta-Chloroprene (CD), the 2-chloro derivative of 1,3-butadiene, is used for the manufacture of the synthetic rubber, polychloroprene. Acute inhalation studies show that CD is lethal to Crl:CD rats at >2300 p.p.m. (4 h); the primary target organ effects were pulmonary hemorrhage and edema, and hepatic necrosis. In 2- and 4-week inhalation studies in Fischer 344 (F344) and Wistar rats, early deaths occurred at 500 and > or =161 p.p.m., respectively. Organ system injury was found in the nose (degeneration/metaplasia of olfactory epithelium), liver (centrilobular necrosis), and blood (decreased red blood cell count in F344 rats only). In a 90-day inhalation study with F344 rats, degeneration/metaplasia of the olfactory epithelium and reduced nonprotein sulfhydryl content of lungs and liver were found in animals exposed to 80 p.p.m., and anemia, hepatocellular necrosis, and forestomach inflammation were observed at 200 p.p.m. In a 90-day study with B6C3F1 mice, CD caused deaths at 200 p.p.m., the highest concentration tested, and epithelial hyperplasia of the forestomach at 80 p.p.m. Other than a slight (<10%) reduction in sperm motility in male rats at 200 p.p.m., all other reproductive parameters (sperm count or morphology in males, and estrous cyclicity or cycle length in females) were unaffected in these 90-day rat/mouse studies. There were no significant indications of neurological toxicity. The study No-Observable Adverse Effect Level was 32 p.p.m. based on nasal injury in rats. Despite some early reports of reproductive system abnormalities at levels <1 p.p.m., recent studies show no embryotoxic or developmental toxicity in female Wistar or Crl:CD rats, or in New Zealand White rabbits at CD exposure concentrations up to 25 or 175 p.p.m., respectively. In a one-generation reproduction study with Wistar rats, CD produced growth retardation in the F(0) generation exposed to 100 p.p.m., and in the F(1) offspring at 33 and 100 p.p.m.; no effects on reproductive parameters or histopathology were found. CD is nonmutagenic in standard plate incorporation bacterial reverse mutation assays (Ames assays) but positive using direct gas-phase incubation methods. Bacterial mutagenicity (primarily base pair substitution) was either negative or weakly positive when freshly prepared CD was tested. Mutagenicity increased markedly with time, presumably from CD dimer formation, and also by addition of liver S9 metabolic activation system. In vivo micronucleus, chromosome aberration and sister chromatid exchange studies in mice showed no structural chromosomal damage. Overall, the pathological effects in the liver and nose dominate the subchronic toxicity of CD. The genotoxicity of CD is inconsistent and requires further study.
Collapse
Affiliation(s)
- R Valentine
- E.I. du Pont de Nemours and Company, Haskell Laboratory for Toxicology and Industrial Medicine, Newark, DE 19711, USA.
| | | |
Collapse
|
47
|
Feron VJ, Arts JH, Kuper CF, Slootweg PJ, Woutersen RA. Health risks associated with inhaled nasal toxicants. Crit Rev Toxicol 2001; 31:313-47. [PMID: 11405443 DOI: 10.1080/20014091111712] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Health risks of inhaled nasal toxicants were reviewed with emphasis on chemically induced nasal lesions in humans, sensory irritation, olfactory and trigeminal nerve toxicity, nasal immunopathology and carcinogenesis, nasal responses to chemical mixtures, in vitro models, and nasal dosimetry- and metabolism-based extrapolation of nasal data in animals to humans. Conspicuous findings in humans are the effects of outdoor air pollution on the nasal mucosa, and tobacco smoking as a risk factor for sinonasal squamous cell carcinoma. Objective methods in humans to discriminate between sensory irritation and olfactory stimulation and between adaptation and habituation have been introduced successfully, providing more relevant information than sensory irritation studies in animals. Against the background of chemoperception as a dominant window of the brain on the outside world, nasal neurotoxicology is rapidly developing, focusing on olfactory and trigeminal nerve toxicity. Better insight in the processes underlying neurogenic inflammation may increase our knowledge of the causes of the various chemical sensitivity syndromes. Nasal immunotoxicology is extremely complex, which is mainly due to the pivotal role of nasal lymphoid tissue in the defense of the middle ear, eye, and oral cavity against antigenic substances, and the important function of the nasal passages in brain drainage in rats. The crucial role of tissue damage and reactive epithelial hyperproliferation in nasal carcinogenesis has become overwhelmingly clear as demonstrated by the recently developed biologically based model for predicting formaldehyde nasal cancer risk in humans. The evidence of carcinogenicity of inhaled complex mixtures in experimental animals is very limited, while there is ample evidence that occupational exposure to mixtures such as wood, leather, or textile dust or chromium- and nickel-containing materials is associated with increased risk of nasal cancer. It is remarkable that these mixtures are aerosols, suggesting that their "particulate nature" may be a major factor in their potential to induce nasal cancer. Studies in rats have been conducted with defined mixtures of nasal irritants such as aldehydes, using a model for competitive agonism to predict the outcome of such mixed exposures. When exposure levels in a mixture of nasal cytotoxicants were equal to or below the "No-Observed-Adverse-Effect-Levels" (NOAELs) of the individual chemicals, neither additivity nor potentiation was found, indicating that the NOAEL of the "most risky chemical" in the mixture would also be the NOAEL of the mixture. In vitro models are increasingly being used to study mechanisms of nasal toxicity. However, considering the complexity of the nasal cavity and the many factors that contribute to nasal toxicity, it is unlikely that in vitro experiments ever will be substitutes for in vivo inhalation studies. It is widely recognized that a strategic approach should be available for the interpretation of nasal effects in experimental animals with regard to potential human health risk. Mapping of nasal lesions combined with airflow-driven dosimetry and knowledge about local metabolism is a solid basis for extrapolation of animal data to humans. However, more research is needed to better understand factors that determine the susceptibility of human and animal tissues to nasal toxicants, in particular nasal carcinogens.
Collapse
Affiliation(s)
- V J Feron
- Toxicology Division, TNO Nutrition and Food Research, Zeist, The Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Abstract
The number of identified growth factors continues to increase rapidly with many being implicated in the development of the nervous system, although for most of them the autocrine and paracrine pathways of cellular regulation still remain to be elucidated. The primary olfactory pathway, consisting of the olfactory epithelium and olfactory bulb, is presented here as a very useful model for the analysis of growth factor function. Review of the available literature suggests that a large proportion of neuroactive growth factors and their receptors are present in the olfactory epithelium or olfactory bulb. Furthermore, the primary olfactory pathway is one of the most plastic in the nervous system with neurogenesis continuing to contribute new sensory neurones in the olfactory epithelium and new interneurones in the olfactory bulb throughout adult life. The rich diversity of growth factors and their receptors in the olfactory system indicates that it will be useful in elucidating how these molecules regulate the formation of the nervous system. The olfactory epithelium in particular is proving useful as a model for the actions of growth factors in directing the neuronal lineage from stem cell to mature neurone.
Collapse
Affiliation(s)
- A Mackay-Sima
- Centre for Molecular Neurobiology, School of Biomolecular and Biomedical Science, Griffith University, Brisbane, Australia.
| | | |
Collapse
|
49
|
Cummings DM, Emge DK, Small SL, Margolis FL. Pattern of olfactory bulb innervation returns after recovery from reversible peripheral deafferentation. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000605)421:3<362::aid-cne5>3.0.co;2-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Hardisty JF, Garman RH, Harkema JR, Lomax LG, Morgan KT. Histopathology of nasal olfactory mucosa from selected inhalation toxicity studies conducted with volatile chemicals. Toxicol Pathol 1999; 27:618-27. [PMID: 10588541 DOI: 10.1177/019262339902700602] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In recent years, histopathologic changes have been reported in the olfactory mucosa of rodents exposed, by inhalation, to a variety of volatile chemicals. In order to better characterize these lesions, a panel of experienced pathologists reviewed microscopic lesions of the olfactory epithelium of rats reported in 10 inhalation studies conducted with 8 different chemicals. The objectives were to determine if the olfactory epithelial lesions are morphologically similar or different for the chemicals of interest, to develop and recommend appropriate diagnostic criteria and nomenclature to characterize the morphology of these olfactory lesions, and to provide specific criteria for judging the degree of severity of the olfactory changes in these studies. The results indicated that the distribution and nature of the lesions were similar in all the examined studies in which olfactory changes were observed. Recommended standardized nomenclature and diagnostic criteria and a uniform method for scoring lesion severity based on the extent of distribution and severity of tissue damage are presented.
Collapse
Affiliation(s)
- J F Hardisty
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | |
Collapse
|