1
|
Mouse Adenovirus Type 1 Persistence Exacerbates Inflammation Induced by Allogeneic Bone Marrow Transplantation. J Virol 2022; 96:e0170621. [PMID: 35045262 DOI: 10.1128/jvi.01706-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bone marrow transplantation (BMT) recipients are at risk for substantial morbidity and mortality from human adenovirus infections, often in the setting of reactivation of persistent virus. Human adenovirus persistence in mucosal lymphocytes has been described, but specific cellular reservoirs of persistence and effects of persistence on host responses to unrelated stimuli are not completely understood. We used mouse adenovirus type 1 (MAV-1) to characterize persistence of an adenovirus in its natural host and test the hypothesis that persistence increases complications of bone marrow transplantation (BMT). Following intranasal infection of C57BL/6J mice, MAV-1 DNA was detected in lung, mediastinal lymph nodes, and liver during acute infection at 7 days post infection (dpi), and at lower levels at 28 dpi that remained stable through 150 dpi. Expression of early and late viral transcripts was detected in those organs at 7 dpi but not at later time points. MAV-1 persistence was not affected by deficiency of IFN-γ. We detected no evidence of MAV-1 reactivation in vivo following allogeneic BMT of persistently infected mice. Persistent infection did not substantially affect mortality, weight loss, or pulmonary inflammation following BMT. However, T cell infiltration and increased expression of pro-inflammatory cytokines consistent with graft-versus-host disease (GVHD) were more pronounced in livers of persistently infected BMT mice than in uninfected BMT mice. These results suggest that MAV-1 persists in multiple sites without detectable evidence of ongoing replication. Our results indicate that MAV-1 persistence alters host responses to an unrelated challenge, even in the absence of detectable reactivation. Importance Long-term persistence in an infected host is an essential step in the life cycle of DNA viruses. Adenoviruses persist in their host following acute infection, but the nature of adenovirus persistence remains incompletely understood. Following intranasal infection of mice, we found that MAV-1 persists for a prolonged period in multiple organs, although we did not detect evidence of ongoing replication. Because BMT recipients are at risk for substantial morbidity and mortality from human adenovirus infections, often in the setting of reactivation of persistent virus in the recipient, we extended our findings using MAV-1 infection in a mouse model of BMT. MAV-1 persistence exacerbated GVHD-like inflammation following allogeneic BMT, even in the absence of virus reactivation. This novel finding suggests that adenovirus persistence has consequences, and it highlights the potential for a persistent adenovirus to influence host responses to unrelated challenges.
Collapse
|
2
|
Augsburger N, Rachmadi AT, Zaouri N, Lee Y, Hong PY. Recent Update on UV Disinfection to Fulfill the Disinfection Credit Value for Enteric Viruses in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16283-16298. [PMID: 34881878 DOI: 10.1021/acs.est.1c03092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm2) is applied to combat enteric viruses in surface or treated water. There is a need for a cumulative review on the effectiveness of current and emerging UV technologies against various types of human enteric viruses. We extracted the kinetics data from 52 selected experimental studies on enteric virus inactivation using low pressure (LP-UV), medium pressure (MP-UV), UV-LED, and advanced oxidation processes (AOPs) and applied a simple linear regression analysis to calculate the range of UV fluence (mJ/cm2) needed for 4-log10 inactivation. The inactivation of adenoviruses with LP-UV, MP-UV, and UV/H2O2 (10 mg/L) required the highest fluence, which ranged from 159 to 337, 45, and 115 mJ/cm2, respectively. By contrast, when using LP-UV, the inactivation of other enteric viruses, such as the Caliciviridae and Picornaviridae family and rotavirus, required fluence that ranged from 19 to 69, 18 to 43, and 38 mJ/cm2, respectively. ssRNA viruses exhibit higher sensitivity to UV radiation than dsRNA and DNA viruses. In general, as an upgrade to LP-UV, MP-UV is a more promising strategy for eliminating enteric viruses compared to AOP involving LP-UV with added H2O2 or TiO2. The UV-LED technology showed potential because a lower UV fluence (at 260 and/or 280 nm wavelength) was required for 4-log10 inactivation compared to that of LP-UV for most strains examined in this critical review. However, more studies evaluating the inactivation of enteric viruses by means of UV-LEDs and UV-AOP are needed to ascertain these observations.
Collapse
Affiliation(s)
- Nicolas Augsburger
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Andri Taruna Rachmadi
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Noor Zaouri
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yunho Lee
- School of Earth Science and Environmental Engineering, Gwangju Institute and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Pei-Ying Hong
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Biological and Environmental Science Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Rachmadi AT, Kitajima M, Kato T, Kato H, Okabe S, Sano D. Required Chlorination Doses to Fulfill the Credit Value for Disinfection of Enteric Viruses in Water: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2068-2077. [PMID: 31927958 DOI: 10.1021/acs.est.9b01685] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A credit value of virus inactivation has been assigned to the disinfection step in international and domestic guidelines for wastewater reclamation and reuse. To fulfill the credit value for water disinfection, water engineers need to apply an appropriate disinfection strength, expressed as a CT value (mg × min/L), which is a product of disinfectant concentration and contact time, against enteric viruses in wastewater. In the present study, we extracted published experimental data on enteric virus inactivation using free chlorine and monochloramine and applied the Tobit analysis and simple linear regression analysis to calculate the range of CT values (mg × min/L) needed for 4-log10 inactivation. Data were selected from peer-reviewed papers containing kinetics data of virus infectivity and chlorine residual in water. Coxsackie B virus and echovirus require higher CT values (lower susceptibility) for 4-log10 inactivation than adenovirus and a human norovirus surrogate (murine norovirus) with free chlorine. On the other hand, adenovirus has lower susceptibility to monochloramine compared to murine norovirus, coxsackievirus, and echovirus. The factors that influence the required CT value are virus type, pH, water temperature, and water matrix. This systematic review demonstrates that enteroviruses and adenovirus are appropriate representative enteric viruses to evaluate water disinfection using free chlorine and monochloramine, respectively.
Collapse
Affiliation(s)
- Andri Taruna Rachmadi
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies , Tohoku University , Aoba 6-6-06, Aramaki, Aoba-ku , Sendai , Miyagi 980-8579 , Japan
- Division of Environmental Engineering , Hokkaido University , North 13, West 8, Kita-ku , Sapporo , Hokkaido 060-8628 , Japan
- Water Desalination and Reuse Center (WDRC) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Masaaki Kitajima
- Division of Environmental Engineering , Hokkaido University , North 13, West 8, Kita-ku , Sapporo , Hokkaido 060-8628 , Japan
| | - Tsuyoshi Kato
- Division of Electronics and Informatics, Faculty of Science and Technology , Gunma University , Tenjin-cho 1-5-1 , Kiryu , Gunma 376-8515 , Japan
- Center for Research on Adoption of NextGen Transportation Systems (CRANTS) , Gunma University , Aramaki-machi 4-2 , Maebashi , Gunma 371-8510 , Japan
- Integrated Institute for Regulatory Science , Waseda University , Tsurumaki-cho 513, Shinjuku-ku , Tokyo 162-0041 , Japan
| | - Hiroyuki Kato
- Japan Institute of Wastewater Engineering and Technology , 3-1 Suido-Cho, Shinjuku-ku , Tokyo 162-0811 , Japan
- New Industry Creation Hatchery Center , Tohoku University , Aoba 6-6-10, Aramaki, Aoba-ku , Sendai , Miyagi 980-8579 , Japan
| | - Satoshi Okabe
- Division of Environmental Engineering , Hokkaido University , North 13, West 8, Kita-ku , Sapporo , Hokkaido 060-8628 , Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies , Tohoku University , Aoba 6-6-06, Aramaki, Aoba-ku , Sendai , Miyagi 980-8579 , Japan
- Department of Civil and Environmental Engineering , Tohoku University , Aoba 6-6-06, Aramaki, Aoba-ku , Sendai , Miyagi 980-8579 , Japan
| |
Collapse
|
4
|
Adenovirus death protein (ADP) is required for lytic infection of human lymphocytes. J Virol 2013; 88:903-12. [PMID: 24198418 DOI: 10.1128/jvi.01675-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus death protein (ADP) is expressed at late times during a lytic infection of species C adenoviruses. ADP promotes the release of progeny virus by accelerating the lysis and death of the host cell. Since some human lymphocytes survive while maintaining a persistent infection with species C adenovirus, we compared ADP expression in these cells with ADP expression in lymphocytes that proceed with a lytic infection. Levels of ADP were low in KE37 and BJAB cells, which support a persistent infection. In contrast, levels of ADP mRNA and protein were higher in Jurkat cells, which proceed with a lytic infection. Epithelial cells infected with an ADP-overexpressing virus died more quickly than epithelial cells infected with an ADP-deleted virus. However, KE37, and BJAB cells remained viable after infection with the ADP-overexpressing virus. Although the levels of ADP mRNA increased in KE37 and BJAB cells infected with the ADP-overexpressing virus, the fraction of cells with detectable ADP was unchanged, suggesting that the control of ADP expression differs between epithelial and lymphocytic cells. When infected with an ADP-deleted adenovirus, Jurkat cells survived and maintained viral DNA for greater than 1 month. These findings are consistent with the notion that the level of ADP expression determines whether lymphocytic cells proceed with a lytic or a persistent adenovirus infection.
Collapse
|
5
|
Persistently adenovirus-infected lymphoid cells express microRNAs derived from the viral VAI and especially VAII RNA. Virology 2013; 447:140-5. [PMID: 24210108 DOI: 10.1016/j.virol.2013.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/23/2013] [Accepted: 08/21/2013] [Indexed: 01/13/2023]
Abstract
Human adenovirus can establish latent infections in lymphoid tissues in vivo and persistent, infections in cultured lymphoid cell lines. During lytic infection, adenovirus expresses microRNAs (miRNAs) derived from the viral non-coding RNAs VAI and, especially, VAII. Here, we demonstrate that persistently adenovirus-infected human BJAB cells also produce adenovirus-derived miRNAs primarily derived from the viral VAII RNA, which contributes ~2.7% of all RNA-induced silencing complex (RISC)-associated RNAs. However, our data indicate that the 5' end of the predominant VAII-derived viral RNA, and hence its seed sequence, differs from what has been previously reported. Our data demonstrate that adenovirus expresses viral miRNAs in chronically infected lymphoid cells and raise the possibility that these may contribute to the maintenance of the latently adenovirus-infected lymphoid cells previously observed in mucosal-associated lymphoid tissues in vivo.
Collapse
|
6
|
Markel D, Lam E, Harste G, Darr S, Ramke M, Heim A. Type dependent patterns of human adenovirus persistence in human T-lymphocyte cell lines. J Med Virol 2013; 86:785-94. [PMID: 24026974 DOI: 10.1002/jmv.23736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2013] [Indexed: 11/11/2022]
Abstract
Disseminated adenovirus infections cause significant mortality in stem cell transplanted patients and are suspected to originate from asymptomatic adenovirus persistence ("latency") in lymphocytes. The infection of three human T-lymphocyte lines (Jurkat, PM1, and CEM) with human adenovirus types of species A (HAdV-A31), B (HAdV-B3, -B11), and C (HAdV-C2, -C5) was investigated for 150 days in order to establish in vitro models for adenovirus persistence. HAdV-C5 persisted with continuous production of infectious virus progeny (about 10(7) TCID50 /ml) in PM1 cells. More than 100 copies of HAdV-C5-DNA per cell were detected by real-time PCR but hexon immunostaining showed that only 7.5% of the cells were infected ("carrier state infection"). Coxsackie and adenovirus receptor (CAR) expression was decreased in comparison to mock infected cultures suggesting selection of a semi-permissive subpopulation of PM-1 cells. By contrast, latency of HAdV-DNA (10(-3) -10(-4) copies/cell) without production of infectious virus progeny was observed in HAdV-C2 infection of PM1 and Jurkat, HAdV-A31 infection of PM1, and HAdV-B3 infection of Jurkat cells. In addition, transcription of E1A, DNA polymerase and hexon mRNA was not detected by RT-PCR suggesting an equivalent of clinical "HAdV latency." Persistence of HAdV-DNA was not observed in abortive infections of PM1 cells with HAdV-B3 and -B11 and in productive, lytical infections of Jurkat cells with HAdV-C5, HAdV-B11, and HAdV-A31. In conclusion, lytic and persistent infections with and without production of infectious virus were observed depending on the type of adenovirus. Genetic determinants for viral persistence may be investigated using these newly established infection models.
Collapse
Affiliation(s)
- Dominik Markel
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Roy S, Calcedo R, Medina-Jaszek A, Keough M, Peng H, Wilson JM. Adenoviruses in lymphocytes of the human gastro-intestinal tract. PLoS One 2011; 6:e24859. [PMID: 21980361 PMCID: PMC3184098 DOI: 10.1371/journal.pone.0024859] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/19/2011] [Indexed: 11/19/2022] Open
Abstract
Objective Persistent adenoviral shedding in stools is known to occur past convalescence following acute adenoviral infections. We wished to establish the frequency with which adenoviruses may colonize the gut in normal human subjects. Methods The presence of adenoviral DNA in intestinal specimens obtained at surgery or autopsy was tested using a nested PCR method. The amplified adenoviral DNA sequences were compared to each other and to known adenoviral species. Lamina propria lymphocytes (LPLs) were isolated from the specimens and the adenoviral copy numbers in the CD4+ and CD8+ fractions were determined by quantitative PCR. Adenoviral gene expression was tested by amplification of adenoviral mRNA. Results Intestinal tissue from 21 of 58 donors and LPLs from 21 of 24 donors were positive for the presence of adenoviral DNA. The majority of the sequences could be assigned to adenoviral species E, although species B and C sequences were also common. Multiple sequences were often present in the same sample. Forty-one non-identical sequences were identified from 39 different tissue donors. Quantitative PCR for adenoviral DNA in CD4+ and CD8+ fractions of LPLs showed adenoviral DNA to be present in both cell types and ranged from a few hundred to several million copies per million cells on average. Active adenoviral gene expression as evidenced by the presence of adenoviral messenger RNA in intestinal lymphocytes was demonstrated in 9 of the 11 donors tested. Conclusion Adenoviral DNA is highly prevalent in lymphocytes from the gastro-intestinal tract indicating that adenoviruses may be part of the normal gut flora.
Collapse
Affiliation(s)
- Soumitra Roy
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Roberto Calcedo
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Angelica Medina-Jaszek
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Martin Keough
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hui Peng
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James M. Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Heinemann L, Simpson GR, Annels NE, Vile R, Melcher A, Prestwich R, Harrington KJ, Pandha HS. The effect of cell cycle synchronization on tumor sensitivity to reovirus oncolysis. Mol Ther 2010; 18:2085-93. [PMID: 20842107 DOI: 10.1038/mt.2010.189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The potential for increased sensitivity of tumor cells to oncolytic reovirus by altering the normal cell cycle using clinically available pharmacological agents was investigated. B16.F10 mouse melanoma cells were partially synchronized with hydroxyurea, thymidine, or by mitotic shake-off. Cell survival was determined using MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)- 2-(4-sulfophenyl)-2H-tetrazolium)] survival assay and virus yield in tumors by plaque assay. An enhanced sensitivity to reovirus was observed following the removal of either hydroxyurea or thymidine from the culture medium (P < 0.0001). The greatest survival difference compared to normal cycling cells was noted when the majority of cells were in S and G2/M phases, and was associated with increased viral replication. Cells collected by mitotic shake-off were nearly devoid of cells in S phase and were less susceptible to reovirus-induced cell kill than their nonsynchronized counterparts (P < 0.0001). In vivo combination of hydroxyurea followed by intratumoral reovirus resulted in reduced tumor growth and increased survival compared to monotherapy (P = 0.0041) at 15 days. Increased amounts of virus were retrieved from tumors from mice treated with sequential hydroxyurea/reovirus compared to concomitant treatment or reovirus monotherapy. These data justify clinical evaluation of this approach supported by the extensive experience, low cost, simple administration, and availability of hydroxyurea.
Collapse
Affiliation(s)
- Lucy Heinemann
- Oncology, Postgraduate Medical School, University of Surrey, Guildford, UK
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Species C adenovirus establishes a latent infection in lymphocytes of the tonsils and adenoids. To understand how this lytic virus is maintained in these cells, four human lymphocytic cell lines that support the entire virus life cycle were examined. The T-cell line Jurkat ceased proliferation and died shortly after virus infection. BJAB, Ramos (B cells), and KE37 (T cells) continued to divide at nearly normal rates while replicating the virus genome. Viral genome numbers peaked and then declined in BJAB cells below one genome per cell at 130 to 150 days postinfection. Ramos and KE37 cells maintained the virus genome at over 100 copies per cell over a comparable period of time. BJAB cells maintained the viral DNA as a monomeric episome. All three persistently infected cells lost expression of the cell surface coxsackie and adenovirus receptor (CAR) within 24 h postinfection, and CAR expression remained low for at least 340 days postinfection. CAR loss proceeded via a two-stage process. First, an initial loss of cell surface staining for CAR required virus late gene expression and a CAR-binding fiber protein even while CAR protein and mRNA levels remained high. Second, CAR mRNA disappeared at around 30 days postinfection and remained low even after virus DNA was lost from the cells. At late times postinfection (day 180), BJAB cells could not be reinfected with adenovirus, even when CAR was reintroduced to the cells via retroviral transduction, suggesting that the expression of multiple genes had been stably altered in these cells following infection.
Collapse
|
10
|
Segerman A, Lindman K, Mei YF, Allard A, Wadell G. Adenovirus types 11p and 35 attach to and infect primary lymphocytes and monocytes, but hexon expression in T-cells requires prior activation. Virology 2006; 349:96-111. [PMID: 16483626 DOI: 10.1016/j.virol.2005.12.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/01/2005] [Accepted: 12/23/2005] [Indexed: 11/30/2022]
Abstract
Hematopoietic cells are attractive targets for gene therapy, but the conventional adenovirus (Ad) vectors, based on Ad5, transduce these cells inefficiently. One reason for low permissiveness of hematopoietic cells to infection by species C Ads appears to be inefficient attachment. Vectors pseudotyped with species B fibers are clearly more efficient at transducing hematopoietic cells than Ad5. To evaluate which Ad species B type(s) would be the most efficient vector(s) for primary T-cells, B-cells and monocytes, attachment to and entry of the species B1 serotypes 3p and 7p and the species B2 serotypes 11p and 35 into primary PBMCs was studied. Ad11p and Ad35 were the only serotypes to show efficient binding and for which uptake by PBMCs could be detected. Infection of PBMCs by Ad5, Ad11p and Ad35 was compared. Expression of Ad hexons was detected in stimulated PBMCs, most frequently in T-cells, and in unstimulated monocytes, although B-cells appear to be refractory to productive infection. Replication of Ad DNA was severely restricted in most PBMCs. Neither hexon expression nor genome replication could be detected in unstimulated lymphocytes, but FISH and a real-time PCR-based assay suggested that Ad11p and Ad35 DNA reach the nucleus. Activation thus appears to be required for T-cells to be permissive to Ad gene expression. In summary, there are substantial differences between Ad3p and Ad7p on the one hand and Ad11p and Ad35 on the other, in their ability to interact with PBMCs. Ad11p and Ad35 probably represent vectors of choice for these cell types.
Collapse
Affiliation(s)
- Anna Segerman
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
11
|
Medina DJ, Sheay W, Osman M, Goodell L, Martin J, Rabson AB, Strair RK. Adenovirus infection and cytotoxicity of primary mantle cell lymphoma cells. Exp Hematol 2005; 33:1337-47. [PMID: 16263418 DOI: 10.1016/j.exphem.2005.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 06/29/2005] [Accepted: 07/11/2005] [Indexed: 02/03/2023]
Abstract
Mantle cell lymphoma (MCL) is a distinct form of non-Hodgkin's lymphoma (NHL) derived from CD5+ B cells. MCL cells overexpress cyclin D1 as a consequence of translocation of the gene into the immunoglobulin heavy-chain gene locus. MCL is an aggressive form of NHL with frequent relapses after standard-dose chemotherapy. In this context, a variety of novel therapies for patients with MCL have been investigated. In this study, we use an expanded panel of attenuated adenoviruses to study adenovirus-mediated cytotoxicity of MCL cells. Our results demonstrate: 1) adenovirus infection of MCL cells despite the absence of receptor/coreceptor molecules known to be important for adenovirus infection of other cells types; 2) cytotoxicity of MCL cells after infection with specific adenovirus mutants; 3) a high degree of cytotoxicity after infection of some patient samples with viruses lacking the E1B 19k "antiapoptotic" gene; and 4) cytotoxicity after infection with viruses containing mutations in E1A pRb or p300 binding. The extent of cytotoxicity with the panel of viruses demonstrated interpatient variability, but 100% cytotoxicity, as determined by molecular analysis, was detected in some samples. These studies provide the foundation for: 1) the development of adenoviruses as cytotoxic agents for MCL and 2) analyses of key regulatory pathways operative in MCL cells.
Collapse
Affiliation(s)
- Daniel J Medina
- The Cancer Institute of New Jersey, Department of Medicine, Biomedical Center, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
12
|
Richardson C, Brennan P, Powell M, Prince S, Chen YH, Spiller OB, Rowe M. Susceptibility of B lymphocytes to adenovirus type 5 infection is dependent upon both coxsackie–adenovirus receptor and αvβ5 integrin expression. J Gen Virol 2005; 86:1669-1679. [PMID: 15914844 DOI: 10.1099/vir.0.80806-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human lymphocytes are resistant to genetic modification, particularly from recombinant adenoviruses, thus hampering the analysis of gene function using adenoviral vectors. This study engineered an Epstein–Barr virus-transformed B-lymphoblastoid cell line permissive to adenovirus infection and elucidated key roles for both the coxsackie–adenovirus receptor and αvβ5 integrin in mediating entry of adenoviruses into these cells. The work identified a strategy for engineering B cells to become susceptible to adenovirus infection and showed that such a strategy could be useful for the introduction of genes to alter lymphoblastoid-cell gene expression.
Collapse
Affiliation(s)
- Ciarán Richardson
- Infection and Immunity, Henry Wellcome Research Building, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Paul Brennan
- Infection and Immunity, Henry Wellcome Research Building, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Martin Powell
- Infection and Immunity, Henry Wellcome Research Building, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Stuart Prince
- Infection and Immunity, Henry Wellcome Research Building, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Yun-Hsiang Chen
- Biomolecular Sciences Building, School of Biology, University of St Andrews, St Andrews, UK
| | - O Brad Spiller
- Virus Receptor and Immune Evasion Group, Henry Wellcome Research Building, Wales College of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Martin Rowe
- Infection and Immunity, Henry Wellcome Research Building, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
13
|
McNees AL, Mahr JA, Ornelles D, Gooding LR. Postinternalization inhibition of adenovirus gene expression and infectious virus production in human T-cell lines. J Virol 2004; 78:6955-66. [PMID: 15194772 PMCID: PMC421642 DOI: 10.1128/jvi.78.13.6955-6966.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detection of adenovirus DNA in human tonsillar T cells in the absence of active virus replication suggests that T cells may be a site of latency or of attenuated virus replication in persistently infected individuals. The lytic replication cycle of Ad5 in permissive epithelial cells (A549) was compared to the behavior of Ad5 in four human T-cell lines, Jurkat, HuT78, CEM, and KE37. All four T-cell lines expressed the integrin coreceptors for Ad2 and Ad5, but only Jurkat and HuT78 express detectable surface levels of the coxsackie adenovirus receptor (CAR). Jurkat and HuT78 cells supported full lytic replication of Ad5, albeit at a level approximately 10% of that of A549, while CAR-transduced CEM and KE37 cells (CEM-CARhi and KE37-CARhi, respectively) produced no detectable virus following infection. All four T-cell lines bind and internalize fluorescently labeled virus. In A549, Jurkat, and HuT78 cells, viral proteins were detected in 95% of cells. In contrast, only a small subpopulation of CEM-CARhi and KE37-CARhi cells contained detectable viral proteins. Interestingly, Jurkat and HuT78 cells synthesize four to six times more copies of viral DNA per cell than did A549 cells, indicating that these cells produce infectious virions with much lower efficiency than A549. Similarly, CEM-CARhi and KE37-CARhi cells, which produce no detectable infectious virus, synthesize three times more viral genomes per cell than A549. The observed blocks to adenovirus gene expression and replication in all four human T-cell lines may contribute to the maintenance of naturally occurring persistent adenovirus infections in human T cells.
Collapse
Affiliation(s)
- Adrienne L McNees
- Department of Microbiology and Immunology, 3107 Rollins Research Center, Emory University School of Medicine, Atlanta, GA 30322.
| | | | | | | |
Collapse
|
14
|
Lichtenstein DL, Toth K, Doronin K, Tollefson AE, Wold WSM. Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol 2004; 23:75-111. [PMID: 14690856 DOI: 10.1080/08830180490265556] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the evolutionary battle between viruses and their hosts, viruses have armed themselves with weapons to defeat the host's attacks on infected cells. Various proteins encoded in the adenovirus (Ad) E3 transcription unit protect cells from killing mediated by cytotoxic T cells and death-inducing cytokines such as tumor necrosis factor (TNF), Fas ligand, and TNF-related apoptosis-inducing ligand (TRAIL). The viral protein E3-gp19 K blocks MHC class-I-restricted antigen presentation, which diminishes killing by cytotoxic T cells. The receptor internalization and degradation (RID) complex (formerly E3-10.4 K/14.5 K) stimulates the clearance from the cell surface and subsequent degradation of the receptors for Fas ligand and TRAIL, thereby preventing the action of these important immune mediators. RID also downmodulates the epidermal growth factor receptor (EGFR), although what role, if any, this function has in immune regulation is uncertain. In addition, RID antagonizes TNF-mediated apoptosis and inflammation through a mechanism that does not primarily involve receptor downregulation. E3-6.7 K functions together with RID in downregulating some TRAIL receptors and may block apoptosis independently of other E3 proteins. Furthermore, E3-14.7 K functions as a general inhibitor of TNF-mediated apoptosis and blocks TRAIL-induced apoptosis. Finally, after expending great effort to maintain cell viability during the early part of the virus replication cycle, Ads lyse the cell to allow efficient virus release and dissemination. To perform this task subgroup C Ads synthesize a protein late in infection named ADP (formerly E3-11.6 K) that is required for efficient virus release. This review focuses on recent experiments aimed at discovering the mechanism of action of these critically important viral proteins.
Collapse
Affiliation(s)
- Drew L Lichtenstein
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
15
|
Nagel H, Maag S, Tassis A, Nestlé FO, Greber UF, Hemmi S. The alphavbeta5 integrin of hematopoietic and nonhematopoietic cells is a transduction receptor of RGD-4C fiber-modified adenoviruses. Gene Ther 2003; 10:1643-53. [PMID: 12923563 DOI: 10.1038/sj.gt.3302058] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial and endothelial cells expressing the primary Coxsackie virus B adenovirus (Ad) receptor (CAR) and integrin coreceptors are natural targets of human Ad infections. The fiber knob of species A, C, D, E and F Ad serotypes binds CAR by mimicking the CAR-homodimer interface, and the penton base containing arginine-glycine-aspartate (RGD) motifs binds with low affinity to alphav integrins inducing cell activation. Here, we generated seven different genetically modified Ad vectors with RGD sequences inserted into the HI loop of fiber knob. All mutants bound and infected CAR and alphav integrin-positive epithelial cells with equal efficiencies. However, the Ads containing two additional cysteines, both N and C terminals of the RGD sequence (RGD-4C), were uniquely capable of transducing CAR-less hematopoietic and nonhematopoietic human tumor cell lines and primary melanoma cells. Both binding and transduction of RGD-4C Ad were blocked by soluble RGD peptides. Flow cytometry of cell surface integrins and virus binding to CAR-less cells in the presence of function-blocking anti-integrin antibodies indicated that the alphavbeta5 integrin, but not alphavbeta3, alphaIIbbeta3 or beta1,alpha5 or alpha6-containing integrins served as a functional transduction receptor of the RGD-4C Ads. However, in cells with low levels of alphavbeta5 integrin, the function-blocking anti-alphavbeta5 antibodies were not effective, unlike soluble RGD peptides. Collectively, our data demonstrate that the alphavbeta5 integrin is a functional transduction receptor of RGD-4C Ads in the absence of CAR, and that additional RGD receptors are targets of these viruses. The RGD-4C vectors further extend the tropism of Ads towards potential human therapies.
Collapse
Affiliation(s)
- H Nagel
- Institute of Molecular Biology, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Hösel M, Webb D, Schröer J, Doerfler W. The abortive infection of Syrian hamster cells with human adenovirus type 12. Curr Top Microbiol Immunol 2003; 272:415-40. [PMID: 12747558 DOI: 10.1007/978-3-662-05597-7_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Human adenovirus type 12 (Ad12) induces undifferentiated tumors in newborn Syrian hamsters, and this tumor model has been investigated in detail in our laboratory. One of the characteristics of the Ad12-hamster cell system is a strictly abortive infection cycle. In this chapter, we summarize previous and more recent results of studies on the interaction of Ad12 with the nonpermissive BHK21 hamster cell line. The block of Ad12 replication lies before viral DNA replication and late gene transcription which cannot be detected with the most sensitive techniques. Ad12 adsorption, cellular uptake and transport of the viral DNA to the nucleus are less efficient in the nonpermissive hamster cells than in permissive human cells. However, most of the early functions of the Ad12 genome are expressed in BHK21 cells, though at a low level. In the downstream region, the first exon, of the major late promoter (MLP) of Ad12 DNA, a mitigator element of 33 nucleotide pairs in length has been identified which contributes to the inactivity of the MLP in hamster cells and its markedly decreased activity in human cells. The E1 functions of Ad2 or Ad5 are capable of partly complementing the Ad12 deficiencies in hamster cells in that Ad12 viral DNA replication and late gene transcription can proceed, e.g. in a BHK hamster cell line, BHK297-C131,which carries in an integrated form and constitutively expresses the E1 region of Ad5 DNA. Nevertheless, the late Ad12 mRNAs, which are synthesized in this system with the authentic nucleotide sequence, fail to be translated to structural viral proteins. Hence, infectious virions are not produced in the partly complementing system. Probably there is also a translational block for late Ad12 mRNAs in hamster cells. We have recently shown that the overexpression of the Ad12 preterminal protein (pTP) gene or of the E1A gene facilitates the synthesis of full-length, authentic Ad12 DNA in BHK21 cells infected with Ad12. Apparently the pTP has a hitherto unknown function in eliciting full cycles of Ad12 DNA replication even in nonpermissive BHK21 cells when sufficient levels of Ad12 pTP are produced. We pursue the possibility that the completely abortive infection cycle of Ad12 in hamster cells ensures the survival of Ad12-induced hamster tumor cells which all carry, integrated in their genomes, multiple copies of Ad12 DNA. In this way, the viral genomes are immortalized and expanded in a huge number of tumor cells.
Collapse
Affiliation(s)
- M Hösel
- Institut für Genetik, Universität zu Köln, 50931 Köln, Germany.
| | | | | | | |
Collapse
|
17
|
Abstract
This article will provide an overview on the status of cancer gene therapy, focussed specifically on its potential application in nasopharyngeal carcinoma (NPC). The concepts and strategies behind the design of therapeutic targets such as p53, p16, and death genes will be described. One of the major challenges in cancer gene therapy is tumor-specific expression of therapeutic genes, and a transcriptional targeting approach will be reviewed, in reference to NPC. Specifically, the ability to exploit the presence of Epstein-Barr virus (EBV) will be emphasized. The currently available preclinical data on genetic therapeutic approaches for NPC will be reviewed, and an outline for its future role in management of NPC, in conjunction with existing cytotoxic modalities of ionizing radiation and chemotherapy will be provided.
Collapse
Affiliation(s)
- Fei-Fei Liu
- Department of Radiation Oncology, Princess Margaret Hospital/University Health Networks, University of Toronto, 610 University Avenue, Toronto, Ont, Canada M5G 2M9.
| |
Collapse
|
18
|
Garnett CT, Erdman D, Xu W, Gooding LR. Prevalence and quantitation of species C adenovirus DNA in human mucosal lymphocytes. J Virol 2002; 76:10608-16. [PMID: 12368303 PMCID: PMC136639 DOI: 10.1128/jvi.76.21.10608-10616.2002] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The common species C adenoviruses (serotypes Ad1, Ad2, Ad5, and Ad6) infect more than 80% of the human population early in life. Following primary infection, the virus can establish an asymptomatic persistent infection in which infectious virions are shed in feces for several years. The probable source of persistent virus is mucosa-associated lymphoid tissue, although the molecular details of persistence or latency of adenovirus are currently unknown. In this study, a sensitive real-time PCR assay was developed to quantitate species C adenovirus DNA in human tissues removed for routine tonsillectomy or adenoidectomy. Using this assay, species C DNA was detected in Ficoll-purified lymphocytes from 33 of 42 tissue specimens tested (79%). The levels varied from fewer than 10 to greater than 2 x 10(6) copies of the adenovirus genome/10(7) cells, depending on the donor. DNA from serotypes Ad1, Ad2, and Ad5 was detected, while the rarer serotype Ad6 was not. When analyzed as a function of donor age, the highest levels of adenovirus genomes were found among the youngest donors. Antibody-coated magnetic beads were used to purify lymphocytes into subpopulations and determine whether viral DNA could be enriched within any purified subpopulations. Separation of T cells (CD4/8- expressing and/or CD3-expressing cells) enriched viral DNA in each of nine donors tested. In contrast, B-cell purification (CD19-expressing cells) invariably depleted or eliminated viral DNA. Despite the frequent finding of significant quantities of adenovirus DNA in tonsil and adenoid tissues, infectious virus was rarely present, as measured by coculture with permissive cells. These findings suggest that human mucosal T lymphocytes may harbor species C adenoviruses in a quiescent, perhaps latent form.
Collapse
Affiliation(s)
- C T Garnett
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Adenoviruses (Ads) are endemic in the human population and the well-studied group C Ads typically cause an acute infection in the respiratory epithelium. A growing body of evidence suggests that these viruses also establish a persistent infection. The Ad genome encodes several proteins that counteract the host anti-viral mechanisms, which function to limit viral infections. This review describes the adenovirus immuno-regulatory proteins and how they function to block apoptosis of infected cells. In addition to facilitating the successful completion of the viral replication cycle and spread of progeny virus, these functions may help maintain the virus in a persistent state.
Collapse
Affiliation(s)
- Adrienne L McNees
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
20
|
Buttgereit P, Schmidt-Wolf IGH. Gene therapy of lymphoma. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:457-67. [PMID: 12183831 DOI: 10.1089/15258160260090924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gene therapy offers new and promising treatment for patients with hematological malignancies. Tumor cells--lymphoma cells, for example--are possible targets for gene therapy. In general, gene therapeutic approaches require efficient gene transfer into host cells and sufficient transgene expression. Although many methods of gene transfer into mammalian cells exist, most do not allow efficient DNA transfer into primary lymphocytes. In contrast to gene transfer into tumor cells and many other cell types, which can be successfully performed using a variety of methods, the efficient expression of foreign DNA in lymphoma cells presents unique problems and challenges, requiring a careful selection of the mode of gene transfer. In this review, we discuss the current strategies for gene therapy in the treatment of lymphoma. We also summarize the current gene transfer methods for lymphoma cells and efficiency of transgene expression.
Collapse
Affiliation(s)
- Peter Buttgereit
- Medizinische Klinik und Poliklinik I, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | | |
Collapse
|
21
|
Chen Z, Ahonen M, Hämäläinen H, Bergelson JM, Kähäri VM, Lahesmaa R. High-efficiency gene transfer to primary T lymphocytes by recombinant adenovirus vectors. J Immunol Methods 2002; 260:79-89. [PMID: 11792378 DOI: 10.1016/s0022-1759(01)00521-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recombinant, replication-deficient adenoviruses are efficient vectors for gene transfer to a wide range of cell types, with the exception of T lymphocytes. Here, we show that primary T lymphocytes from peripheral blood, cord blood, and the Jurkat T cell line are efficiently transduced by recombinant adenovirus. Nearly 100% infection efficiency of primary T cells is obtained with high multiplicity of infection (MOI) (5000) of recombinant adenovirus coding for lacZ. Similar infection efficiency by adenovirus-mediated gene transfer was obtained at lower MOI (3000) by activating primary T cells with PHA and PMA. Addition of cationic liposomes together with RAdlacZ markedly enhanced the infection efficiency at lower MOI (1000) resulting in over 90% infection efficiency. Primary T cells express low levels of coxsackievirus and adenovirus receptor (CAR), a cell surface receptor for adenovirus fiber attachment, as well as alpha(v)beta(3) and alpha(v)beta(5) integrins, cellular receptors for adenovirus internalization. This suggests that adenovirus entry to T cells at high MOI is mediated by other mechanisms. In conclusion, these results demonstrate that genes can be efficiently transferred to primary lymphocytes by adenovirus vectors at high MOI or in combination with cationic liposomes.
Collapse
Affiliation(s)
- Zhi Chen
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | | | | | | | | | | |
Collapse
|
22
|
Moise AR, Grant JR, Vitalis TZ, Jefferies WA. Adenovirus E3-6.7K maintains calcium homeostasis and prevents apoptosis and arachidonic acid release. J Virol 2002; 76:1578-87. [PMID: 11799152 PMCID: PMC135875 DOI: 10.1128/jvi.76.4.1578-1587.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
E3-6.7K is a small and hydrophobic membrane glycoprotein encoded by the E3 region of subgroup C adenovirus. Recently, E3-6.7K has been shown to be required for the downregulation of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors by the adenovirus E3/10.4K and E3/14.5K complex of proteins. We demonstrate here that E3-6.7K has additional protective roles, independent of other virus proteins. In transfected Jurkat T-cell lymphoma cells, E3-6.7K was found to maintain endoplasmic reticulum-Ca(2+) homeostasis and inhibit the induction of apoptosis by thapsigargin. The presence of E3-6.7K also lead to a reduction in the TNF-induced release of arachidonic acid from transfected U937 human histiocytic lymphoma cells. In addition, E3-6.7K protected cells against apoptosis induced through Fas, TNF receptor, and TRAIL receptors. Therefore, E3-6.7K confers a wide range of protective effects against both Ca(2+) flux-induced and death receptor-mediated apoptosis.
Collapse
Affiliation(s)
- Alexander R Moise
- Biotechnology Laboratory, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
23
|
Ebbinghaus C, Al-Jaibaji A, Operschall E, Schöffel A, Peter I, Greber UF, Hemmi S. Functional and selective targeting of adenovirus to high-affinity Fcgamma receptor I-positive cells by using a bispecific hybrid adapter. J Virol 2001; 75:480-9. [PMID: 11119616 PMCID: PMC113940 DOI: 10.1128/jvi.75.1.480-489.2001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus (Ad) efficiently delivers its DNA genome into a variety of cells and tissues, provided that these cells express appropriate receptors, including the coxsackie-adenovirus receptor (CAR), which binds to the terminal knob domain of the viral capsid protein fiber. To render CAR-negative cells susceptible to Ad infection, we have produced a bispecific hybrid adapter protein consisting of the amino-terminal extracellular domain of the human CAR protein (CARex) and the Fc region of the human immunoglobulin G1 protein, comprising the hinge and the CH2 and CH3 regions. CARex-Fc was purified from COS7 cell supernatants and mixed with Ad particles, thus blocking Ad infection of CAR-positive but Fc receptor-negative cells. The functionality of the CARex domain was further confirmed by successful immunization of mice with CARex-Fc followed by selection of a monoclonal anti-human CAR antibody (E1-1), which blocked Ad infection of CAR-positive cells. When mixed with Ad expressing eGFP, CARex-Fc mediated an up to 250-fold increase of transgene expression in CAR-negative human monocytic cell lines expressing the high-affinity Fcgamma receptor I (CD64) but not in cells expressing the low-affinity Fcgamma receptor II (CD32) or III (CD16). These results open new perspectives for Ad-mediated cancer cell vaccination, including the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- C Ebbinghaus
- Institute of Molecular Biology, University of Zürich, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
24
|
Hanazono Y, Brown KE, Dunbar CE. Primary T lymphocytes as targets for gene therapy. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2000; 9:611-20. [PMID: 11091484 DOI: 10.1089/15258160050196641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peripheral blood T lymphocytes have been considered an attractive target for gene therapy applications. They can be easily harvested and readily expanded ex vivo. The transduction efficiency of primary human lymphocytes with standard retroviral vectors approaches 50% or more using optimized methods of gene transfer. Other methods of gene transfer, including adenoviral, adeno-associated viral, and lentiviral vectors, or nonviral techniques, have also been used for gene transfer into primary lymphocytes. Despite encouraging results in vitro, human clinical trials using retroviral vectors to transduce primary lymphocytes have been hindered by low expression levels of transgenes and immune responses against transgene products. Strategies to overcome these problems need to be developed.
Collapse
Affiliation(s)
- Y Hanazono
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Tochigi, Japan
| | | | | |
Collapse
|
25
|
Steinwaerder DS, Carlson CA, Lieber A. DNA replication of first-generation adenovirus vectors in tumor cells. Hum Gene Ther 2000; 11:1933-48. [PMID: 10986565 DOI: 10.1089/10430340050129549] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A major role of the early gene 1A and 1B products (E1A and E1B) in adenovirus infection is to create a cellular environment appropriate for viral DNA replication. This is, in part, achieved by inactivation of tumor suppressor gene products such as pRb or p53. The functions of these same cellular proteins are also frequently lost in tumor cells. Therefore, we hypothesized that tumor cell lines with deregulated p53 and/or pRb pathways might support replication of E1A/E1B-deleted, first-generation adenovirus vectors (AdE1(-)). Here, we analyzed the impact of virus uptake, cell cycling, and the status of cell cycle regulators on AdE1(-) DNA synthesis. Cellular internalization of AdE1(-) vectors varied significantly among different tumor cell lines, whereas nuclear import of incoming viral DNA appeared to be less variable. Replication assays performed under equalized infection conditions demonstrated that all analyzed tumor cell lines supported AdE1(-) synthesis to varying degrees. There was no obvious correlation between the efficiency of viral DNA replication and the status of p53, pRb, and p16. However, the amount of virus attached and internalized changed with the cell cycle, affecting the intracellular concentration of viral DNA and thereby the replication efficacy. Furthermore, infection with AdE1 - vectors caused a partial G(2)/M arrest or delay in cell cycle progression, which became more pronounced in consecutive cell cycles. Correspondingly, vector DNA replication was found to be enhanced in cells artificially arrested in G(2)/M. Our findings suggest that cell cycling and thus passing through G(2)/M supports AdE1(-) DNA replication in the absence of E1A/E1B. This has potential implications for the use of first-generation adenovirus vectors in tumor gene therapy.
Collapse
Affiliation(s)
- D S Steinwaerder
- Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
26
|
Schaley J, O'Connor RJ, Taylor LJ, Bar-Sagi D, Hearing P. Induction of the cellular E2F-1 promoter by the adenovirus E4-6/7 protein. J Virol 2000; 74:2084-93. [PMID: 10666238 PMCID: PMC111689 DOI: 10.1128/jvi.74.5.2084-2093.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/1999] [Accepted: 11/30/1999] [Indexed: 01/01/2023] Open
Abstract
The adenovirus type 5 (Ad5) E4-6/7 protein interacts directly with different members of the E2F family and mediates the cooperative and stable binding of E2F to a unique pair of binding sites in the Ad5 E2a promoter region. This induction of E2F DNA binding activity strongly correlates with increased E2a transcription when analyzed using virus infection and transient expression assays. Here we show that while different adenovirus isolates express an E4-6/7 protein that is capable of induction of E2F dimerization and stable DNA binding to the Ad5 E2a promoter region, not all of these viruses carry the inverted E2F binding site targets in their E2a promoter regions. The Ad12 and Ad40 E2a promoter regions bind E2F via a single binding site. However, these promoters bind adenovirus-induced (dimerized) E2F very weakly. The Ad3 E2a promoter region binds E2F very poorly, even via a single binding site. A possible explanation of these results is that the Ad E4-6/7 protein evolved to induce cellular gene expression. Consistent with this notion, we show that infection with different adenovirus isolates induces the binding of E2F to an inverted configuration of binding sites present in the cellular E2F-1 promoter. Transient expression of the E4-6/7 protein alone in uninfected cells is sufficient to induce transactivation of the E2F-1 promoter linked to chloramphenicol acetyltransferase or green fluorescent protein reporter genes. Further, expression of the E4-6/7 protein in the context of adenovirus infection induces E2F-1 protein accumulation. Thus, the induction of E2F binding to the E2F-1 promoter by the E4-6/7 protein observed in vitro correlates with transactivation of E2F-1 promoter activity in vivo. These results suggest that adenovirus has evolved two distinct mechanisms to induce the expression of the E2F-1 gene. The E1A proteins displace repressors of E2F activity (the Rb family members) and thus relieve E2F-1 promoter repression; the E4-6/7 protein complements this function by stably recruiting active E2F to the E2F-1 promoter to transactivate expression.
Collapse
Affiliation(s)
- J Schaley
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
27
|
Segerman A, Mei YF, Wadell G. Adenovirus types 11p and 35p show high binding efficiencies for committed hematopoietic cell lines and are infective to these cell lines. J Virol 2000; 74:1457-67. [PMID: 10627557 PMCID: PMC111481 DOI: 10.1128/jvi.74.3.1457-1467.2000] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic cells are attractive targets for gene therapy. However, no satisfactory vectors are currently available. A major problem with the most commonly used adenovirus vectors, based on adenovirus type 2 (Ad2) or Ad5, is their low binding efficiency for hematopoietic cells. In this study we identify two adenovirus serotypes with high affinity for hematopoietic cells. The binding efficiency of prototype serotypes Ad4p, Ad11p, and Ad35p for different committed hematopoietic cell lines representing T cells (Jurkat), B cells (DG75), monocytes (U937-2), myeloblasts (K562), and granulocytes (HL-60) was evaluated and compared to that of Ad5v, the commonly used adenovirus vector, using flow cytometry. In contrast to Ad5v, which bound to less than 10% of the cells in all experiments, Ad11p and Ad35p showed high binding efficiency for all of the different hematopoietic cell lines. Ad4p bound to the lymphocytic cell lines to some extent but less well to the myelomonocytic cell lines. The abilities of the different serotypes to infect, replicate, and form complete infectious particles in the hematopoietic cell lines were also investigated by immunostaining, (35)S labeling of viral proteins, and titrations of cell lysates. Ad11p and Ad35p infected the highest proportion of cells, and Ad11p infected all of the cell lines investigated. The Ad11p hexon was expressed equally well in K562 and A549 cells. Jurkat cells also showed high levels of expression of Ad11p hexons, but the production of infectious particles was low. The binding properties of virions were correlated to their ability to infect and be expressed.
Collapse
Affiliation(s)
- A Segerman
- Department of Virology, Umeå University, 901 85 Umeå, Sweden.
| | | | | |
Collapse
|
28
|
Díaz PV, Calhoun WJ, Hinton KL, Avendaño LF, Gaggero A, Simon V, Arredondo SM, Pinto R, Díaz A. Differential effects of respiratory syncytial virus and adenovirus on mononuclear cell cytokine responses. Am J Respir Crit Care Med 1999; 160:1157-64. [PMID: 10508802 DOI: 10.1164/ajrccm.160.4.9804075] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Respiratory syncytial virus (RSV) and adenovirus (Advs) serotype 3 (Adv3) and 7h (Adv7h) are associated with mild to severe respiratory infection and are indistinguishable during the acute phases of the illnesses. However, outcome and long-term prognosis are different with both infections. RSV infection is associated with later development of asthma, and Adv, mainly Adv7h, with severe lung damage, bronchiectasis, and hyperlucent lung. We hypothesized that this difference could be partly due to different immune responses induced by these viruses. To test this hypothesis we quantified TCD4+, TCD8+, and BCD19+ expressing the interleukin-2 receptor-alpha chain (CD25) and interferon-gamma (IFN-gamma), interleukin (IL)-10, and IL-4 in the supernatant of peripheral blood mononuclear cells (PBMC) from school children infected in vitro with and without RSV, Adv7h, and Adv3 and after phytohemagglutinin (PHA) stimulation in the presence or absence of these viruses at a multiplicity of infection (MOI) of 1. PBMC from every child produced more IL-10 (p </= 0.05) when infected with RSV than with Advs and noninfected control, and Adv induced more (p </= 0.05) IFN-gamma than did RSV and control. The IL-10/IFN-gamma ratio was significantly higher (p </= 0.05) in RSV-infected and significantly lower (p </= 0.05) in Adv-infected PBMC, than in noninfected cells. PHA-stimulated BCD19+ RSV- infected cells expressed more (p </= 0.05) IL-2R than did Adv-infected cells. These results suggest that Advs induce a Th-1-type immune response that is not seen with RSV. These patterns persist despite intersubject variation in the absolute quantity of cytokine produced.
Collapse
Affiliation(s)
- P V Díaz
- Programas de Patología y Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kurata H, Liu CB, Valkova J, Koch AE, Yssel H, Hirabayashi Y, Inoue T, Yokota T, Arai K. Recombinant adenovirus vectors for cytokine gene therapy in mice. J Allergy Clin Immunol 1999; 103:S471-84. [PMID: 10329851 DOI: 10.1016/s0091-6749(99)70164-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Adenoviruses have several specific features useful for gene therapy. They infect various lineages of cells irrespective of cell cycle status. However, the exact mechanism of their infection and in vivo kinetics as a gene expression vector have not been elucidated. OBJECTIVE Using adenovirus vectors expressing marker genes, we examined the infectivity of these vectors (including cellular and tissue tropism), the duration and intensity of transgene expression, and the side effects. METHODS Various cells were infected with adenovirus expressing LacZ gene at various doses, and beta-galactosidase activity was measured and compared in relation with dose, time course, and cellular vitronectin receptor. Mice were injected with adenoviruses expressing LacZ, luciferase and GM-CSF, and in vivo gene expression was examined. RESULTS Adenovirus infection induced viral dose-dependent transgene expression that persisted for 2 weeks. Adherent cells were infected much more efficiently than nonadherent cells, probably because the former expressed much higher levels of the vitronectin receptor, one of the main receptors for adenovirus. Studies performed in mice with luciferase-expressing adenovirus revealed that the liver was the main target organ after intravenous injection and showed that the intravenous route was superior to other routes with regard to transgene expression. After intravenous injection of adenovirus expressing human GM-CSF, there was a transient and dose-dependent increase in the serum level of this cytokine. Administration of adenovirus expressing mouse GM-CSF enhanced hematopoiesis in the spleen and bone marrow. CONCLUSION These results indicated that adenoviruses can be used for in vivo cytokine gene therapy but suggested the necessity of taking into consideration the route of administration, the duration of transgene expression, the toxic dose, and host immune reactions.
Collapse
Affiliation(s)
- H Kurata
- Department of Molecular and Developmental Biology, the Institute of Medical Science, the University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Adenovirus is a human pathogen that infects mainly respiratory and gastrointestinal epithelia. While the pathology caused by this virus is generally not life threatening in immunocompetent individuals, there is a large literature describing its ability to establish a persistent infection. These persistent infections typically occur in apparently healthy individuals with no outward signs of disease. Such a long term and benign interaction between virus and immune system requires adenoviruses to dampen host antiviral effector mechanisms that would otherwise eliminate the virus and cause immune-mediated pathology to the host. Adenovirus devotes a significant portion of its genome to gene products whose sole function seems to be the modulation of host immune responses. This review focuses on what is currently understood about how these immunomodulatory mechanisms work and how they might play a role in maintaining the virus in a persistent state.
Collapse
Affiliation(s)
- J A Mahr
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
31
|
Hemmi S, Geertsen R, Mezzacasa A, Peter I, Dummer R. The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther 1998; 9:2363-73. [PMID: 9829535 DOI: 10.1089/hum.1998.9.16-2363] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Adenovirus (AdV)-mediated gene expression of immune stimulators represents a valuable in vivo approach for gene therapy of human cancer. The expression level of the therapeutic gene is of crucial importance for the efficacy of this type of treatment. Entry of AdV is dependent on the primary adenovirus receptor CAR and the secondary AdV receptor identified earlier to be a member of the integrin family of surface molecules. We have analyzed 14 different human melanoma cell cultures from different stages together with one melanoma cell line for their AdV-mediated transduction and expression efficiency. Recombinant viruses at various concentrations were used for expression of the B7-1 costimulatory molecule under the control of different promoters and the expression levels of B7-1 were analyzed by flow cytometry. AdV-mediated IL-12 expression was measured using a commercial ELISA. Levels of transgene expression were compared with the expression levels of HCAR, the alpha(v)beta3 and alpha(v)beta5 integrins, and HLA class I. In 4 of 14 cell cultures tested, the presence of the primary virus receptor CAR was associated with the high transduction efficiency phenotype when using the B7-1- and IL-12-expressing viruses at a relatively low multiplicity of infection (MOI) of 50. Immunohistochemistry on cryosections from the original biopsies yielded a strong signal specific for CAR. In contrast, cell cultures expressing low or undetectable levels of CAR needed a 20- to 40-fold higher viral input to show comparable expression level of B7-1 or IL-12. Expression levels of the transgenes hardly varied when using different promoters and no association was observed with the presence or absence of HLA class I molecules or with the expression levels of integrins.
Collapse
Affiliation(s)
- S Hemmi
- Institute of Molecular Biology I, University of Zürich, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Qiu C, De Young MB, Finn A, Dichek DA. Cationic liposomes enhance adenovirus entry via a pathway independent of the fiber receptor and alpha(v)-integrins. Hum Gene Ther 1998; 9:507-20. [PMID: 9525312 DOI: 10.1089/hum.1998.9.4-507] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability of adenoviral vectors to mediate efficient gene delivery both in vitro and in vivo is limited by the availability of specific cell surface receptors and alpha(v)-containing integrins. We tested whether this limitation could be overcome by enhancing viral entry with cationic liposomes. In cultured vascular smooth muscle cells, delivery of adenoviral vectors in the presence of cationic liposomes increased vector-encoded transgene expression up to 20-fold. The increase in transgene expression was associated with the formation of adenovirus-lipid aggregates and an increase in the amount of vector DNA in the cells, suggesting that enhanced viral entry was responsible for the increase in gene expression. Treatment of the cells with an RGD-containing peptide or adenovirus type 5 fiber protein did not diminish liposome enhancement of transgene expression, indicating that liposomes increase viral entry via a pathway independent of the fiber receptor and of alpha(v) integrin-assisted endocytosis. Liposomes also significantly enhanced transgene expression from adenoviral vectors delivered to cells deficient in alpha(v)-containing integrins. The magnitude of liposome enhancement of transgene expression in cultured smooth muscle cells was greatest during brief periods of virus-cell contact and at low concentrations of virus. Despite these promising in vitro results, addition of liposomes did not improve in vivo adenoviral gene delivery into injured rat carotid arteries. Liposomes can improve adenoviral gene delivery in vitro; however, application of this observation to accomplish improved in vivo gene delivery remains a challenge.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Antigens, CD/physiology
- COS Cells
- Capsid/pharmacology
- Capsid Proteins
- Carotid Arteries
- Cations
- Cells, Cultured
- Cytochalasin B/pharmacology
- DNA, Recombinant/analysis
- DNA, Viral/analysis
- Drug Carriers
- Gene Expression/drug effects
- Gene Transfer Techniques
- Genetic Vectors/genetics
- Genetic Vectors/ultrastructure
- Integrin alphaV
- Liposomes
- Male
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/virology
- Oligopeptides/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Virus/physiology
- Transgenes/genetics
- Virion/ultrastructure
Collapse
Affiliation(s)
- C Qiu
- Gladstone Institute of Cardiovascular Disease, Department of Medicine, University of California, San Francisco 94141-9100, USA
| | | | | | | |
Collapse
|
33
|
|
34
|
Wickham TJ, Lee GM, Titus JA, Sconocchia G, Bakács T, Kovesdi I, Segal DM. Targeted adenovirus-mediated gene delivery to T cells via CD3. J Virol 1997; 71:7663-9. [PMID: 9311849 PMCID: PMC192116 DOI: 10.1128/jvi.71.10.7663-7669.1997] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
T cells are primary targets in numerous gene therapy protocols. However, the use of subgroup C adenovirus serotype 2 or 5 (Ad2 or Ad5) as a vector to transduce T cells is limited by its poor transduction efficiency for these cells. In this report we show that poor T-cell transduction results from these cells lacking both the primary Ad2-Ad5 receptor, used in attachment, and the secondary Ad receptor, which mediates entry of most adenovirus serotypes. These deficiencies were overcome by using a bispecific antibody (bsAb) with specificities for human CD3 and for a FLAG epitope genetically introduced into Ad5 (Ad.FLAG) to redirect the virus to human T cells. The anti-FLAG x anti-CD3 bsAb increased Ad.FLAG binding 30-fold, induced the efficient uptake of Ad.FLAG into the cells, and led to a 100- to 500-fold increase in the transduction of resting T cells. Moreover, fluorescence-activated cell sorter analysis showed that 25 to 90% of the T cells were transduced by the bsAb-complexed Ad.FLAG at multiplicities of infection between 20 and 100 active particles per cell. These results demonstrate that bsAbs can target Ad to non-Ad receptors on cells that are normally resistant to Ad, resulting in their efficient and specific transduction.
Collapse
Affiliation(s)
- T J Wickham
- GenVec, Inc., Rockville, Maryland 20852-1709, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Hong SS, Karayan L, Tournier J, Curiel DT, Boulanger PA. Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 1997; 16:2294-306. [PMID: 9171344 PMCID: PMC1169831 DOI: 10.1093/emboj/16.9.2294] [Citation(s) in RCA: 266] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Adenovirus serotype 5 (Ad5) fiber receptor was investigated using reverse antibody biopanning of a phage-displayed hexapeptide library, and virus-neutralizing monoclonal antibodies (mAbs 1D6.3 and 7A2.7) raised against recombinant Ad5 fiber knob. Both mAbs inhibited attachment of Ad5 to HeLa cells. Mimotopes of 1D6.3 showed homology with the C-terminal segment of the alpha2 domain of the heavy chain of human MHC class I molecules (MHC-I alpha2), and mimotopes of 7A2.7 were consensus to human fibronectin type III (FNIII) modules. In vitro, GST-fused MHC-I alpha2- and FNIII-derived oligopeptides interacted with recombinant fibers in a subgroup-specific manner. In vivo, the MHC-I alpha2 synthetic icosapeptide RAIVGFRVQWLRRYFVNGSR showed a net neutralization effect on Ad5 in HeLa cells, whereas the FNIII icosapeptide RHILWTPANTPAMGYLARVS significantly increased Ad5 binding to HeLa cells. Daudi cells, which lack surface expression of HLA class I molecules, showed a weak capacity for Ad5 binding. In beta2-microglobulin-transfected Daudi cells, Ad5 attachment and permissivity were restored to HeLa cell levels, with 4000 receptors per cell and a binding constant of 1.4x10(10)/M. The results suggested that the conserved region of MHC-I alpha2-domain including Trp167 represents a high affinity receptor for Ad5 fiber knob, whereas ubiquitous FNIII modules would serve as auxiliary receptors.
Collapse
Affiliation(s)
- S S Hong
- Laboratoire de Virologie et Pathogénèse Moléculaires (CNRS URA 1487),Institut de Biologie, Faculté de Médecine, Montpellier, France
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Durepaire N, Rogez JP, Verdier M, Rogez S, Weinbreck P, Denis F. Detection of adenovirus DNA by polymerase chain reaction in peripheral blood lymphocytes from HIV-infected patients and a control group: preliminary results. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1997; 14:189-90. [PMID: 9052731 DOI: 10.1097/00042560-199702010-00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
38
|
Kim M, Wright M, Deshane J, Accavitti MA, Tilden A, Saleh M, Vaughan WP, Carabasi MH, Rogers MD, Hockett RD, Grizzle WE, Curiel DT. A novel gene therapy strategy for elimination of prostate carcinoma cells from human bone marrow. Hum Gene Ther 1997; 8:157-70. [PMID: 9017419 DOI: 10.1089/hum.1997.8.2-157] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report a novel means to purge bone marrow of a specific subset of prostate carcinoma cells based on transductional and genetic selectivity. Using both adenovirus-polylysine-DNA complexes and E1A/B-deleted replication-deficient adenoviruses, we have demonstrated a transductional preference of these vectors for the prostate carcinoma cell lines DU 145, LNCaP, and PC-3 over primary human bone marrow cells and the leukemia cell line KG-1. We have also shown a genetic selectivity of an anti-erbB-2 intracellular single-chain antibody (sFv) encoding adenovirus, Ad21, for the erbB-2-positive prostate carcinoma cell lines DU 145 and LNCaP. Delivery of Ad21 resulted in cytotoxicity to the DU 145 and LNCaP, but not PC-3, cell lines and reduced the clonogenic capacity of DU 145 cells cultured alone or mixed with various ratios of irradiated human bone marrow. Finally, quantitative, competitive reverse transcription polymerase chain reaction (QC-RT-PCR) analysis demonstrated that Ad21 could effectively reduce DU 145 and erbB-2-positive primary prostate tumor contamination in bone marrow cultures. Delivery of Ad21 had no effect on the ability of progenitor cells to form colonies. These results suggest that an anti-erbB-2 sFv-encoding adenoviral vector is efficacious for removal of erbB-2-positive prostate carcinoma cells from human bone marrow, and demonstrates a novel method for ex vivo genetic purge of malignant cells from bone marrow for autologous bone marrow transplantation (ABMT) therapy.
Collapse
Affiliation(s)
- M Kim
- Gene Therapy Program, University of Alabama at Birmingham 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Human adenoviruses have provided valuable insights into virus-host interactions at the clinical and experimental levels. In addition to the medical importance of adenoviruses in acute infections and the ability of the virus to persist in the host, adenovirus-based recombinants are being developed as potential vaccine vectors. It is now clear that adenoviruses employ various strategies to modulate the innate and the adaptive host immune defences. Adenovirus genome-coded products that interact with the immune response of the host have been identified, and to a large extent the molecular mechanisms of their functions have been revealed. Such knowledge will no doubt influence our approach to the areas of viral pathogenesis, vaccine development and immune modulation for disease management.
Collapse
Affiliation(s)
- H Hayder
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory
| | | |
Collapse
|
40
|
Merrick AF, Shewring LD, Sawyer GJ, Gustafsson KT, Fabre JW. Comparison of adenovirus gene transfer to vascular endothelial cells in cell culture, organ culture, and in vivo. Transplantation 1996; 62:1085-9. [PMID: 8900307 DOI: 10.1097/00007890-199610270-00011] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A replication-defective adenovirus 5 vector carrying the beta-galactosidase reporter gene was tested for its efficiency for gene delivery to vascular endothelial cells in various situations. Both porcine and human primary vascular endothelial cell cultures were very efficiently infected (>90%) at adenovirus concentrations of 10(10) pfu/ml or higher. Cultured rat fibroblasts and keratinocytes were even more readily infected, with >90% infection with adenovirus titers of 10(8) pfu/ml or higher. However, nondividing vascular endothelium in situ was very poorly transduced. Pieces of aorta from adult pigs, sheep, rabbit and rat, and pieces of human umbilical artery and vein were studied in organ culture. These showed only occasional positive vascular endothelial cells when exposed to the adenovirus vector at concentrations up to 5x10(11) pfu/ml. Kidney perfusion studies in rats and pigs gave similar results. The only exception to the above findings was in very young (3-4 day old) piglets, which showed excellent (>90%) infection of vascular endothelium with the adenovirus vector at titers of 10(10) pfu/ml. Our data suggest that adenovirus vectors will not be of value for gene delivery to uninjured vascular endothelium in situ, and are therefore unsuited for ex vivo genetic manipulation of vascular endothelium in organs for transplantation.
Collapse
Affiliation(s)
- A F Merrick
- Transplantation Biology Unit, Division of Cell and Molecular Biology, Institute of Child Health, University of London
| | | | | | | | | |
Collapse
|
41
|
Wickham TJ, Segal DM, Roelvink PW, Carrion ME, Lizonova A, Lee GM, Kovesdi I. Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies. J Virol 1996; 70:6831-8. [PMID: 8794324 PMCID: PMC190730 DOI: 10.1128/jvi.70.10.6831-6838.1996] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A major hurdle to adenovirus (Ad)-mediated gene transfer is that the target issue lacks sufficient levels of receptors to mediate vector attachment via its fiber coat protein. Endothelial and smooth muscle cells are primary targets in gene therapy approaches to prevent restenosis following angioplasty or to promote or inhibit angiogenesis. However, Ad poorly binds and transduces these cells because of their low or undetectable levels of functional Ad fiber receptor. The Ad-binding deficiency of these cells was overcome by targeting Ad binding to alpha v integrin receptors that are sufficiently expressed by these cells. In order to target alpha v integrins, a bispecific antibody (bsAb) that comprised a monoclonal Ab to the FLAG peptide epitope, DYKDDDDK, and a monoclonal Ab to alpha v integrins was constructed. In conjunction with the bsAb, a new vector, AdFLAG, which incorporated the FLAG peptide epitope into its penton base protein was constructed. Complexing AdFLAG with the bsAb increased the beta-glucuronidase transduction of human venule endothelial cells and human intestinal smooth muscle cells by seven- to ninefold compared with transduction by AdFLAG alone. The increased transduction efficiency was shown to occur through the specific interaction of the complex with alpha v integrins. These results demonstrate that bsAbs can be successfully used to target Ad to a specific cellular receptor and thereby increase the efficiency of gene transfer.
Collapse
Affiliation(s)
- T J Wickham
- GenVec, Inc., Rockville, Maryland 20852, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Freimuth P. A human cell line selected for resistance to adenovirus infection has reduced levels of the virus receptor. J Virol 1996; 70:4081-5. [PMID: 8648746 PMCID: PMC190289 DOI: 10.1128/jvi.70.6.4081-4085.1996] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To investigate determinants of host cell susceptibility to infection, cells partially resistant to infection were selected from the rare cells which remained adherent after infection of a culture of A549 cells with Ad2RAE, a mutant of adenovirus type 2 whose vertex capsomers lack an Arg-Gly-Asp (RGD) sequence which mediates binding of wild-type virus to integrins. Integrins promote the internalization of attached virions, whereas adsorption itself results from binding of the viral fibers to an unidentified cellular receptor. Following three rounds of selection, a persistently infected culture was established in which virus replication was detected in approximately 5% of the cells. Uninfected cells were readily cloned from the culture, indicating that at any particular time the majority of cells in the culture were uninfected. The resistance of one clone of uninfected cells to infection was correlated with a 10-fold reduction in the concentration of fiber receptors on these cells compared with the parental A549 cell line, indicating that efficiency of virus adsorption depends on the receptor concentration. Surprisingly, the rate at which host cells internalized RGD-negative virus also was strongly dependent on the fiber receptor concentration. While internalization of wild-type virus is promoted by the binding of integrins to the penton base RGD sequence, these results suggest that virus also can enter cells by an alternate pathway which requires binding of virions to multiple fiber receptors.
Collapse
Affiliation(s)
- P Freimuth
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
| |
Collapse
|
43
|
Abstract
An adenovirus culture-positive lymphoblastoid cell line was derived from a bone marrow transplant recipient with fatal B-cell lymphoproliferative disease and adenovirus pneumonia. At autopsy, focal areas of the lymphoma infiltrating the patient's lung were positive for adenovirus proteins by immunohistochemical staining. The Epstein-Barr virus-transformed B-cell line Mk, established from pleural fluid cells, contained adenovirus virions in both the nucleus and the cytoplasm by electron microscopy. The majority of Mk cells expressed adenovirus proteins and produced a high level of infectious adenovirus by plaque assay analysis. However, in contrast to the rapid cell death induced by adenovirus in other permissive cell lines, Mk was maintained stably in tissue culture for 6 months. These data indicate that adenoviral replication is not sufficient for cell lysis and confirm that adenovirus can cause persistent infection in human lymphoid cells in vivo.
Collapse
MESH Headings
- Adenoviridae Infections/complications
- Adenoviridae Infections/pathology
- Adenoviridae Infections/virology
- Adenoviruses, Human/isolation & purification
- Adenoviruses, Human/ultrastructure
- Bone Marrow/virology
- Bone Marrow Cells
- Bone Marrow Transplantation
- Capsid/immunology
- Capsid Proteins
- Child, Preschool
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Humans
- Lymphoma, B-Cell/complications
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/virology
- Male
- Pneumonia, Viral/complications
- Pneumonia, Viral/pathology
- Pneumonia, Viral/virology
- Tumor Cells, Cultured
- Virus Latency
Collapse
Affiliation(s)
- P Flomenberg
- Department of Medicine, Medical College of Wisconsin, John L. Doyne Hospital, Milwaukee, Wisconsin USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Adenoviruses have mechanisms that allow persistence in lymphoid cells and immunoevasion. They downregulate major histocompatibility complex (MHC) class I antigen expression and may trigger an autoimmune reaction against MHC class II antigens through mimicry. Adenoviral persistence could be facilitated by human leukocyte antigens A2 and DR53, thereby allowing a preleukemic clone to escape immune surveillance and progress to leukemia.
Collapse
Affiliation(s)
- M T Dorak
- Department of Haematology, University of Wales College of Medicine, Cardiff, UK
| |
Collapse
|
45
|
Merwin JR, Carmichael EP, Noell GS, DeRome ME, Thomas WL, Robert N, Spitalny G, Chiou HC. CD5-mediated specific delivery of DNA to T lymphocytes: compartmentalization augmented by adenovirus. J Immunol Methods 1995; 186:257-66. [PMID: 7594625 DOI: 10.1016/0022-1759(95)00150-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Specific DNA delivery has been achieved via interactions between an asialoorosomucoid-polylysine conjugate and the asialoglycoprotein receptor. We have now extended this technology to another cell type. In order to achieve DNA delivery uniquely to T cells, we have employed an antibody-polylysine conjugate which binds and is internalized via CD5. Binding analyses of the T101 monoclonal antibody to Jurkat cells and freshly isolated human peripheral T lymphocytes were performed and Scatchard plots revealed Kd values of 1.4 and 1.2 pM, respectively. To introduce DNA into the T cell, a complex of T101-polylysine and the luciferase plasmid was formed (T101-PL-DNA). 125I-labeled antibody alone or T101-PL-DNA complexes were both shown to internalize. Subcellular fractionation indicated that the complex remained in the endosomal compartment of the cell for up to 90 min. However, with the addition of adenovirus particles, there was a decrease of labeled complex in the endosomal fraction over time suggesting it was no longer 'tethered' to the endosome vesicle. In vitro transfections confirmed this result showing the addition of adenovirus particles during incubation resulted in increased expression of the luciferase protein. Without adenovirus, there was limited expression of the transduced gene. These data revealed that T101 can deliver DNA via an antibody-PL conjugate. The addition of adenovirus allowed the DNA to escape the endosome enabling expression of the reporter gene.
Collapse
|
46
|
Huang S, Endo RI, Nemerow GR. Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery. J Virol 1995; 69:2257-63. [PMID: 7533853 PMCID: PMC188895 DOI: 10.1128/jvi.69.4.2257-2263.1995] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Entry of human adenovirus into host cells involves interaction of virus particles with two distinct receptors. The initial binding event is mediated by the fiber protein, while subsequent interaction of the penton base protein with alpha v integrins promotes virus internalization and/or penetration. Although these interactions in epithelial and endothelial cells have been well characterized, relatively little is known as to whether these events occur during virus infection of human peripheral blood mononuclear cells. We demonstrate that freshly isolated peripheral blood monocytes and T lymphocytes express very small amounts of alpha v integrins and also are resistant to adenovirus infection. Exposure of monocytes to hematopoietic growth factors granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor induced expression of cell surface alpha v integrins, promoted the binding of penton base protein, and also rendered these cells susceptible to adenovirus-mediated gene delivery. Stimulation of T cells with a mitogen, phytohemagglutinin, or a cell-activating agent, phorbol myristate acetate, induced expression of alpha v integrins and also enhanced adenovirus-mediated gene delivery. These studies further indicate that alpha v integrins play a crucial role in adenovirus infection and also provide a useful strategy for enhancing adenovirus-mediated gene delivery into human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- S Huang
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037
| | | | | |
Collapse
|
47
|
Affiliation(s)
- L A Lucher
- Department of Biological Sciences, Illinois State, University, Normal 61761, USA
| |
Collapse
|
48
|
Cotten M. Adenovirus-augmented, receptor-mediated gene delivery and some solutions to the common toxicity problems. Curr Top Microbiol Immunol 1995; 199 ( Pt 3):283-95. [PMID: 7555081 DOI: 10.1007/978-3-642-79586-2_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M Cotten
- research Institute of Molecular Pathology, Vienna, Austria
| |
Collapse
|
49
|
Affiliation(s)
- J Chroboczek
- Institut de Biologie Structurale, Grenoble, France
| | | | | |
Collapse
|
50
|
Russell WC, Kemp GD. Role of adenovirus structural components in the regulation of adenovirus infection. Curr Top Microbiol Immunol 1995; 199 ( Pt 1):81-98. [PMID: 7555062 DOI: 10.1007/978-3-642-79496-4_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- W C Russell
- School of Biological and Medical Sciences, Division of Cell and Molecular Biology, University of St. Andrews, Fife, Scotland, UK
| | | |
Collapse
|