1
|
Ueno H, Takahashi Y, Mori S, Kitano E, Murakami S, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Postnatal expression of Cat-315-positive perineuronal nets in the SAMP10 mouse primary somatosensory cortex. IBRO Neurosci Rep 2025; 18:244-256. [PMID: 39935854 PMCID: PMC11810707 DOI: 10.1016/j.ibneur.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Perineuronal nets (PNNs) form at the end of the critical period of plasticity in the mouse primary somatosensory cortex. PNNs are said to have functions that control neuroplasticity and provide neuroprotection. However, it is not clear which molecules in PNNs have these functions. We have previously reported that Cat-315-positive molecules were not expressed in the PNNs of the senescence-accelerated model (SAM)P10 strain model mice at 12 months of age. To confirm whether the loss of Cat-315-positive molecules occurred early in life in SAMP10 mice, we examined Cat-315-positive PNNs in the primary somatosensory cortex during postnatal development. This research helps to elucidate the function of PNNs and the mechanism of cognitive decline associated with ageing. To confirm whether Cat-315-positive PNNs changed in an age-dependent manner in SAMP10 mice, we examined the primary somatosensory cortex at 21, 28, and 56 days after birth. We compared these results with those of senescence-accelerated mouse-resistant (SAMR) mice. In SAMP10 mice, Cat-315-positive PNNs were expressed in the primary somatosensory cortex early after birth, but their expression was significantly lower than that in SAMR1 mice. Many other molecules that calibrated the PNN were unchanged between SAMP10 and SAMR1 mice. This study revealed that the expression of the Cat-315 epitope was decreased in the primary somatosensory cortex of SAMP10 mice during postnatal development. SAMP10 mice have had histological abnormalities in their brains since early life. Furthermore, using SAMP10 will be useful in elucidating the mechanism of age-related abnormalities in brain function as well as in elucidating the function and structure of PNNs.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama 701-0193, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Sachiko Mori
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Eriko Kitano
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki 701-0192, Japan
| |
Collapse
|
2
|
Joshi A, Lehene S, Mishra A. Non-transgenic rodent models of Alzheimer's disease for preclinical research: a review. Mol Biol Rep 2025; 52:456. [PMID: 40366433 DOI: 10.1007/s11033-025-10549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive memory loss and cognitive decline. It involves the irreversible destruction of higher brain structures, leading to significant cognitive deficits, personality changes, and aberrant behavior. Key pathological features include the accumulation of amyloid-beta (Aβ) plaques and hyperphosphorylated tau protein neurofibrillary tangles, which disrupt cellular communication and neuron function. Chronic inflammation, vascular abnormalities, and genetic factors like the APOE (apolipoprotein E) ε4 allele also play crucial roles in AD progression. Epidemiological data indicate a substantial global impact, especially among older adults, with women disproportionately affected. Animal models, both transgenic and non-transgenic, are pivotal in researching AD pathophysiology and potential treatments. This review presents a full overview regarding a variety of non-transgenic rodent models of Alzheimer's disease utilized in the preclinical research for treatment approaches in Alzheimer's disease.
Collapse
Affiliation(s)
- Abhishek Joshi
- Department of Pharmacology, Dr. Chunibhai Vallabbhai Patel College of Pharmacy, Uka Tarsadia University, Maliba Campus, Bardoli, Gujarat, India.
| | | | - Ashish Mishra
- Department of Pharmaceutics, Dr. Chunibhai Vallabbhai Patel College of Pharmacy, Uka Tarsadia University, Maliba Campus, Bardoli, Gujarat, India
| |
Collapse
|
3
|
Katsuyama H, Tanda K, Terada K, Fushimi S, Yoda T, Katsuyama V, Nohno T. Intra-Bone Marrow Administration of miR-140-3p Improves Bone Metabolism in a Growing Senescence-Accelerated Mouse Prone 6 Strain. Biomedicines 2025; 13:883. [PMID: 40299493 PMCID: PMC12024782 DOI: 10.3390/biomedicines13040883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Our previous study demonstrated that miR-140-3p induced osteocalcin expression in osteoblastic MC3T3-E1 cells. In this study, we investigated the direct effects of miR-140-3p on bone turnover in senescence-accelerated mice. Methods: In order to evaluate the effects of miR-140-3p, we formulated lipid nanoparticles (LNPs) containing miR-140-3p (100 μg/mL), with or without flotillin-2 (Flo2), a microvesicle marker excreted by osteoblasts. LNP was administered into the right tibia of the P6 strain of senescence-accelerated mice (SAMP6). Four-week-old SAMP6 males were divided into three groups: control, LNP, and LNP + Flo2. LNPs were administered five times, once every three days. No gait abnormalities were observed in any group. Two days after the last administration of LNPs, blood and urine samples were collected to measure bone turnover markers and blood chemistry and to perform urinalysis. Bone histomorphometry was performed on the left femur, contralateral to the administration site. The pancreas was removed for insulin staining of the Langerhans islets. Results: The LNP + Flo2 group showed greater bone volume, trabecular thickness, and osteoid thickness in bone histomorphometry. Carboxylated osteocalcin, a bone formation marker, was also higher in the LNP + Flo2 group, indicating that LNP + Flo2 activated osteoblastic function. Insulin levels in the islets of Langerhans did not differ across the groups, consistent with under-carboxylated osteocalcin levels. Conclusions: LNP + Flo2 effectively improved bone metabolism.
Collapse
Affiliation(s)
- Hironobu Katsuyama
- Department of Public Health, Kawasaki Medical School, Kurashiki 701-0192, Japan (T.Y.); (T.N.)
| | - Kazue Tanda
- Department of Public Health, Kawasaki Medical School, Kurashiki 701-0192, Japan (T.Y.); (T.N.)
| | - Kumiko Terada
- Department of Natural Sciences, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Shigeko Fushimi
- Department of Public Health, Kawasaki Medical School, Kurashiki 701-0192, Japan (T.Y.); (T.N.)
| | - Takeshi Yoda
- Department of Public Health, Kawasaki Medical School, Kurashiki 701-0192, Japan (T.Y.); (T.N.)
| | - Vitalii Katsuyama
- Department of Medical Welfare, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan
| | - Tsutomu Nohno
- Department of Public Health, Kawasaki Medical School, Kurashiki 701-0192, Japan (T.Y.); (T.N.)
| |
Collapse
|
4
|
Jiang H, Inoue S, Hatakeyama J, Liu P, Zhao T, Zhang Y, Liu B, He C, Moriyama H. Effects of aging and resistance exercise on muscle strength, physiological properties, longevity proteins, and telomere length in SAMP8 mice. Biogerontology 2025; 26:88. [PMID: 40186023 DOI: 10.1007/s10522-025-10234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Skeletal muscle aging, characterized by progressive declines in muscle mass and strength, correlates with reduced quality of life and increased mortality. Resistance exercise is known to be critical for maintaining skeletal muscle health. This study investigated the effects of aging and resistance exercise on muscle strength, physiological properties, longevity proteins, and telomere length in mice. Twenty-eight-week-old senescence-accelerated mouse prone 8 (SAMP8) mice were used as a model for muscle aging, with senescence-accelerated mouse resistant 1 (SAMR1) mice serving as healthy controls. The mice underwent a 12-week regimen of ladder-climbing training, a form of resistance exercise, performed three days per week. After the training, muscle strength and muscle weight were measured. Levels of the longevity proteins adenosine monophosphate-activated kinase (AMPK), mammalian target of rapamycin (mTOR), and sirtuin 1 (SIRT1) were assessed via western blotting, and telomere length was evaluated by qPCR. SAMP8 mice exhibited significantly lower muscle mass and strength than SAMR1 mice, while resistance exercise attenuated these deficits in SAMP8 mice. SAMP8 mice showed elevated AMPK phosphorylation and SIRT1 levels compared to SAMR1 mice; resistance exercise normalized AMPK phosphorylation levels to approximate those of SAMR1 mice. mTOR activity was significantly reduced in SAMP8 mice but tended to be restored by resistance exercise. Telomere length remained unchanged in SAMP8 mice after resistance exercise compared to their sedentary controls. In conclusion, aging reduces muscle function and disrupts levels of longevity proteins. Resistance exercise mitigates these effects by improving muscle function and restoring molecular balance.
Collapse
Affiliation(s)
- Hanlin Jiang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Shota Inoue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Junpei Hatakeyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Peng Liu
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Tingrui Zhao
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Yifan Zhang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Bin Liu
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Chunxiao He
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Hideki Moriyama
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Tomogaoka 7-10-2, Suma-Ku, Kobe, Hyogo, 654-0142, Japan.
| |
Collapse
|
5
|
Erra A, Chen J, Miller CM, Chrysostomou E, Barret S, Kassim YM, Friedman RA, Lauer A, Ceriani F, Marcotti W, Carroll C, Manor U. An Open-Source Deep Learning-Based GUI Toolbox for Automated Auditory Brainstem Response Analyses (ABRA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.20.599815. [PMID: 38948763 PMCID: PMC11213013 DOI: 10.1101/2024.06.20.599815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Hearing loss is a pervasive global health challenge with profound impacts on communication, cognitive function, and quality of life. Recent studies have established age-related hearing loss as a significant risk factor for dementia, highlighting the importance of hearing loss research. Auditory brainstem responses (ABRs), which are electrophysiological recordings of synchronized neural activity from the auditory nerve and brainstem, serve as in vivo readouts for sensory hair cell, synaptic integrity, hearing sensitivity, and other key features of auditory pathway functionality, making them highly valuable for both basic neuroscience research and clinical diagnostics. Despite their utility, traditional ABR analyses rely heavily on subjective manual interpretation, leading to considerable variability and limiting reproducibility across studies. Here, we introduce Auditory Brainstem Response Analyzer (ABRA), a novel open-source graphical user interface powered by deep learning, which automates and standardizes ABR waveform analysis. ABRA employs convolutional neural networks trained on diverse datasets collected from multiple experimental settings, achieving rapid and unbiased extraction of key ABR metrics, including peak amplitude, latency, and auditory threshold estimates. We demonstrate that ABRA's deep learning models provide performance comparable to expert human annotators while dramatically reducing analysis time and enhancing reproducibility across datasets from different laboratories. By bridging hearing research, sensory neuroscience, and advanced computational techniques, ABRA facilitates broader interdisciplinary insights into auditory function. An online version of the tool is available for use at no cost at https://abra.ucsd.edu.
Collapse
Affiliation(s)
- Abhijeeth Erra
- Data Institute, University of San Francisco, San Francisco, CA
| | - Jeffrey Chen
- Data Institute, University of San Francisco, San Francisco, CA
| | - Cayla M. Miller
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA
| | - Elena Chrysostomou
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA
| | - Shannon Barret
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA
| | - Yasmin M. Kassim
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA
| | - Rick A. Friedman
- Dept. of Otolaryngology, University of California San Diego, La Jolla, CA
| | - Amanda Lauer
- Depts. of Otolaryngology-Head and Neck Surgery and Neuroscience and Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Federico Ceriani
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Cody Carroll
- Data Institute, University of San Francisco, San Francisco, CA
- Dept. of Mathematics and Statistics, University of San Francisco, San Francisco, CA
| | - Uri Manor
- Dept. of Cell & Developmental Biology, University of California San Diego, La Jolla, CA
- Dept. of Otolaryngology, University of California San Diego, La Jolla, CA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA
| |
Collapse
|
6
|
Yamamoto K, Yamamoto K. Prevention of Osteoporosis in SAMP6 Mice by Rikkunshi-To: Japanese Kampo Medicine. Life (Basel) 2025; 15:557. [PMID: 40283112 PMCID: PMC12028809 DOI: 10.3390/life15040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Osteoporosis can increase the risk of fracture in elderly patients, and insufficient control affects quality of life. Rikkunshi-To (RKT) has been prescribed for elderly patients to improve gastrointestinal function. We postulated that RKT has preventive potential for the development of osteoporosis. Thus, we developed a simple method to evaluate osteoporosis using a continuous series of X-ray images of femurs in mice, and investigated the effects of RKT on the development of osteoporosis in these mice. Male senescence-accelerated mouse strain P6 (SAMP6) mice, a model of senile osteoporosis in humans, were fed diets with or without RKT (1%). We collected X-ray images of the whole body of each mouse weekly and measured the ratio of cortical thickness of the femur (C/F index). The C/F index in SAMP6 mice fed the normal diet was increased between 50 and 80 days old, but it was significantly decreased after 120 days old. On the other hand, the C/F index in SAMP6 mice fed the RKT diet was increased between 50 and 80 days old; however, it remained unchanged throughout the experimental period. We also confirmed that the C/F index in SAMP6 mice fed the RKT diet suddenly decreased on the replacement of the RKT diet with a normal diet, suggesting that we can collect data related to a series of continuous changes in bone mass, and that RKT is useful for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Kouichi Yamamoto
- Department of Radiological Sciences, Faculty of Health Sciences, Morinomiya University of Medical Sciences, 1-26-16 Nanko-Kita, Suminoe-Ku, Osaka 559-8611, Japan
| | | |
Collapse
|
7
|
Ong J, Sasaki K, Ferdousi F, Suresh M, Isoda H, Szele FG. Senescence accelerated mouse-prone 8: a model of neuroinflammation and aging with features of sporadic Alzheimer's disease. Stem Cells 2025; 43:sxae091. [PMID: 39813151 PMCID: PMC11816274 DOI: 10.1093/stmcls/sxae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 01/18/2025]
Abstract
The large majority of Alzheimer's disease (AD) cases are sporadic with unknown genetic causes. In contrast, only a small percentage of AD cases are familial, with known genetic causes. Paradoxically, there are only few validated mouse models of sporadic AD but many of familial AD. Senescence accelerated mouse-prone 8 (SAMP8) mice are a model of accelerated aging with features of sporadic AD. They exhibit a more complete suite of human AD-relevant pathologies than most familial models. SAMP8 brains are characterized by inflammation, glial activation, b-amyloid deposits, and hyperphosphorylated Tau. The excess amyloid deposits congregate around blood vessels leading to vascular impairment and leaky BBBs in these mice. SAMP8 mice also exhibit neuronal cell death, a feature not typically seen in models of familial AD. Additionally, adult hippocampal neurogenesis is decreased in SAMP8 mice and correspondingly, they have reduced cognitive ability. In line with this, hippocampal LTP is significantly compromised in SAMP8 mice. No model is perfect and SAMP8 mice are limited by the lack of clarity about their genomic differences from control Senescence Accelerated Mouse-Resistant 1 (SAMR1) mice although their transcriptomics changes are being revealed. To further complicate matters, multiple substrains of SAMP8 mice have emerged over the years, sometimes making comparisons of studies difficult. Despite these challenges, we argue that SAMP8 mice can be useful for studying AD-relevant symptoms and propose important experiments to strengthen this already useful model.
Collapse
Affiliation(s)
- Jun Ong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, United Kingdom
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Megalakshmi Suresh
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, United Kingdom
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, United Kingdom
| |
Collapse
|
8
|
Palermo F, Marrocco N, Dacomo L, Grisafi E, Moresi V, Sanna A, Massimi L, Musella M, Maugeri L, Bukreeva I, Fiordaliso F, Corbelli A, Junemann O, Eckermann M, Cloetens P, Weitkamp T, Gigli G, de Rosbo NK, Balducci C, Cedola A. Investigating gut alterations in Alzheimer's disease: In-depth analysis with micro- and nano-3D X-ray phase contrast tomography. SCIENCE ADVANCES 2025; 11:eadr8511. [PMID: 39889000 PMCID: PMC11784835 DOI: 10.1126/sciadv.adr8511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/03/2025] [Indexed: 02/02/2025]
Abstract
Alzheimer's disease (AD), a debilitating neurodegenerative disorder, remains one of the foremost public health challenges affecting more than 30 million people worldwide with the etiology still largely enigmatic. The intricate gut-brain axis, serving as a vital communication network between the gut and the brain, appears to wield influence in the progression of AD. Our study showcases the remarkable precision of x-ray phase-contrast tomography (XPCT) in conducting an advanced three-dimensional examination of gut cellular composition and structure. The exploitation of micro- and nano-XPCT on various AD mouse models unveiled relevant alterations in villi and crypts, cellular transformations in Paneth and goblet cells, along with the detection of telocytes, neurons, erythrocytes, and mucus secretion by goblet cells within the gut cavity. The observed gut structural variations may elucidate the transition from dysbiosis to neurodegeneration and cognitive decline. Leveraging XPCT could prove pivotal in early detection and prognosis of the disease.
Collapse
Affiliation(s)
| | | | - Letizia Dacomo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elena Grisafi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | | | | | | | | | - Fabio Fiordaliso
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | | | | | | | - Giuseppe Gigli
- Institute of Nanotechnology – CNR, Lecce, Italy
- University of Salento, Lecce, Italy
| | | | - Claudia Balducci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | |
Collapse
|
9
|
Nakajima K, Idegami A, Oiso S. Preventive Effects of Hochuekkito on Decline in Brain-Derived Neurotrophic Factor Serum Levels in Senescence-Accelerated Mouse Prone 10. J Oleo Sci 2025; 74:429-434. [PMID: 40175123 DOI: 10.5650/jos.ess24328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
The reduction of brain-derived neurotrophic factor (BDNF) is associated with Alzheimer's disease and depression. Senescence-accelerated mouse prone 10 (SAMP10), a rapid aging animal model, exhibits age-related cognitive deficits and depression-like behavior; however, it is unclear the variation of serum BDNF levels. Here, we showed that serum BDNF levels in SAMP10 were lower than those in the normal aging characteristics mouse SAM-resistant 1 (SAMR1), and Hochuekkito suppressed the decline of serum BDNF levels in SAMP10. These results suggest that SAMP10 may be used as an animal model in decreasing serum BDNF levels and Hochuekkito could prevent the age-related BDNF decline.
Collapse
Affiliation(s)
- Kensuke Nakajima
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Aimi Idegami
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Shigeru Oiso
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
- Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
10
|
Lino-Alvarado A, Maia OAC, Oliveira MA, Takakura AC, Tavares-Lima W, Moriya HT, Moreira TS. Central and peripheral mechanisms underlying respiratory deficits in a mouse model of accelerated senescence. Pflugers Arch 2024; 476:1665-1676. [PMID: 39150501 DOI: 10.1007/s00424-024-03006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Aging invariably decreases sensory and motor stimuli and affects several neuronal systems and their connectivity to key brain regions, including those involved in breathing. Nevertheless, further investigation is needed to fully comprehend the link between senescence and respiratory function. Here, we investigate whether a mouse model of accelerated senescence could develop central and peripheral respiratory abnormalities. Adult male Senescence Accelerated Mouse Prone 8 (SAMP8) and the control SAMR1 mice (10 months old) were used. Ventilatory parameters were assessed by whole-body plethysmography, and measurements of respiratory input impedance were performed. SAMP8 mice exhibited a reduction in the density of neurokinin-1 receptor immunoreactivity in the entire ventral respiratory column. Physiological experiments showed that SAMP8 mice exhibited a decreased tachypneic response to hypoxia (FiO2 = 0.08; 10 min) or hypercapnia (FiCO2 = 0.07; 10 min). Additionally, the ventilatory response to hypercapnia increased further due to higher tidal volume. Measurements of respiratory mechanics in SAMP8 mice showed decreased static compliance (Cstat), inspiratory capacity (IC), resistance (Rn), and elastance (H) at different ages (3, 6, and 10 months old). SAMP8 mice also have a decrease in contractile response to methacholine compared to SAMR1. In conclusion, our findings indicate that SAMP8 mice display a loss of the NK1-expressing neurons in the respiratory brainstem centers, along with impairments in both central and peripheral respiratory mechanisms. These observations suggest a potential impact on breathing in a senescence animal model.
Collapse
Affiliation(s)
| | - Octavio A C Maia
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Aparecida Oliveira
- Deptartment of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Deptartment of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Wothan Tavares-Lima
- Deptartment of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
11
|
Griñán-Ferré C, Servin-Muñoz IV, Palomera-Ávalos V, Martínez-Fernández C, Companys-Alemany J, Muñoz-Villanova A, Ortuño-Sahagún D, Pallàs M, Bellver-Sanchis A. Changes in Gene Expression Profile with Age in SAMP8: Identifying Transcripts Involved in Cognitive Decline and Sporadic Alzheimer's Disease. Genes (Basel) 2024; 15:1411. [PMID: 39596610 PMCID: PMC11593728 DOI: 10.3390/genes15111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The senescence-accelerated mouse 8 (SAMP8) represents a model for Alzheimer's disease (AD) research because it exhibits age-related learning and memory impairments consistent with early onset and rapid progression of senescence. To identify transcriptional changes during AD progression, in this study, we analyzed and compared the gene expression profiles involved in molecular pathways of neurodegeneration and cognitive impairment in senescence-accelerated resistant 1 (SAMR1) and SAMP8 mice. Methods: In total, 48 female SAMR1 and SAMP8 mice were randomly divided into six groups (SAMR1 and SAMP8 at 3, 7, and 9 months of age). Microarray analysis of 22,000 genes was performed, followed by functional analysis using Gene Ontology (NCBI) and examination of altered molecular pathways using the KEGG (Kyoto Encyclopedia of Genes and Genomes). Results: SAMP8 mice had 2516 dysregulated transcripts at 3 months, 2549 transcripts at 7 months, and 2453 genes at 9 months compared to SAMR1 mice of the same age. These accounted for 11.3% of the total number. This showed that with age, the gene expression of downregulated transcripts increases, and that of over-expressed transcripts decreases. Most of these genes were involved in neurodegenerative metabolic pathways associated with Alzheimer's disease: apoptosis, inflammatory response, oxidative stress, and mitochondria. The qPCR results indicated that Ndufs4, TST/Rhodanese, Wnt3, and Sema6a expression was differentially expressed during aging. Conclusions: These results further revealed significant differences in gene expression profiles at different ages between SAMR1 and SAMP8 and showed alteration in genes involved in age-related cognitive decline and mitochondrial processes, demonstrating the relevance of the SAMP8 model as a model for sporadic AD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (C.G.-F.); (V.P.-Á.); (C.M.-F.); (J.C.-A.); (A.M.-V.); (M.P.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Iris Valeria Servin-Muñoz
- Laboratorio de Neuroinmunología Molecular, Instituto de Investigación de Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Jalisco 44340, Mexico; (I.V.S.-M.); (D.O.-S.)
| | - Verónica Palomera-Ávalos
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (C.G.-F.); (V.P.-Á.); (C.M.-F.); (J.C.-A.); (A.M.-V.); (M.P.)
| | - Carmen Martínez-Fernández
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (C.G.-F.); (V.P.-Á.); (C.M.-F.); (J.C.-A.); (A.M.-V.); (M.P.)
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (C.G.-F.); (V.P.-Á.); (C.M.-F.); (J.C.-A.); (A.M.-V.); (M.P.)
| | - Amalia Muñoz-Villanova
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (C.G.-F.); (V.P.-Á.); (C.M.-F.); (J.C.-A.); (A.M.-V.); (M.P.)
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunología Molecular, Instituto de Investigación de Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Jalisco 44340, Mexico; (I.V.S.-M.); (D.O.-S.)
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (C.G.-F.); (V.P.-Á.); (C.M.-F.); (J.C.-A.); (A.M.-V.); (M.P.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (C.G.-F.); (V.P.-Á.); (C.M.-F.); (J.C.-A.); (A.M.-V.); (M.P.)
| |
Collapse
|
12
|
Peng Y, Tao H, Wang G, Wu M, Xu T, Wen C, Zheng X, Dai Y. Exploring the Role of Extrachromosomal Circular DNA in Human Diseases. Cytogenet Genome Res 2024; 164:181-193. [PMID: 39348807 DOI: 10.1159/000541563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA) has emerged as a central focus in molecular biology, with various types being found across species through advanced techniques, including high-throughput sequencing. This dynamic molecule exerts a significant influence on aging and immune function and plays pivotal roles in autoimmune diseases, type 2 diabetes mellitus, cancer, and genetic disorders. SUMMARY This comprehensive review investigates the classification, characteristics, formation processes, and multifaceted functions of eccDNA, providing an in-depth exploration of its mechanisms in diverse diseases. KEY MESSAGES The goal of this review was to establish a robust theoretical foundation for a more comprehensive understanding of eccDNA, offering valuable insights for the development of clinical diagnostics and innovative therapeutic strategies in the context of related diseases.
Collapse
Affiliation(s)
- Yali Peng
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Huihui Tao
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China
| | - Guoying Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Mengyao Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Tinatin Xu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Chunmei Wen
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Xuejia Zheng
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| | - Yong Dai
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, China
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
13
|
Romera C, Riba M, Alsina R, Sartorio M, Vilaplana J, Pelegrí C, Del Valle J. Mouse brain contains age-dependent extraparenchymal granular structures and astrocytes, both reactive to natural IgM antibodies, linked to the fissura magna. Immun Ageing 2024; 21:56. [PMID: 39169358 PMCID: PMC11337560 DOI: 10.1186/s12979-024-00460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Mouse brains can contain specific polyglucosan aggregates known as Periodic Acid-Schiff (PAS)-granules. Generated in astrocytes, these granules increase with age and exhibit neo-epitopes of carbohydrate nature that are recognized by natural IgM antibodies (IgMs). The existence of neoepitopes on PAS granules suggests the presence of neoepitopes in other brain structures, and this is investigated here. To this end, brain sections from SAMP8 and ICR-CD1 mice were examined at different ages. RESULTS We have identified two novel structures that, apart from PAS granules, are recognized by natural IgMs. On one side, IgM reactive (IgM+) granular structures which are placed in the longitudinal fissure, the quadrigeminal cistern, and a region that extends from the quadrigeminal cistern to the interpeduncular cistern. This last region, located between the telencephalon and both the mesencephalon and diencephalon, is designated henceforth as the fissura magna, as it is indeed a fissure and the largest in the brain. As all these regions are extraparenchymal (EP), the IgM+ granules found in these zones have been named EP granules. These EP granules are mainly associated with fibroblasts and are not stained with PAS. On the other side, some IgM+ astrocytes have been found in the glia limitans, near the above-mentioned fissures. Remarkably, EP granules are more prevalent at younger ages, while the number of IgM+ astrocytes increases with age, similarly to the already described evolution of PAS granules. CONCLUSIONS The present work reports the presence of two brain-related structures that, apart from PAS granules, contain neo-epitopes of carbohydrate nature, namely EP granules and IgM+ astrocytes. We suggest that EP granules, associated to fibroblasts, may be part of a physiological function in brain clearance or brain-CSF immune surveillance, while both PAS granules and IgM+ astrocytes may be related to the increasing accumulation of harmful materials that occurs with age and linked to brain protective mechanisms. Moreover, the specific localisation of these EP granules and IgM+ astrocytes suggest the importance of the fissura magna in these brain-related cleaning and immune functions. The overall results reinforce the possible link between the fissura magna and the functioning of the glymphatic system.
Collapse
Affiliation(s)
- Clara Romera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Marta Riba
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Raquel Alsina
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Marina Sartorio
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain.
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain.
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain.
| | - Jaume Del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Barcelona, 08028, Spain.
- Institut de Neurociències, Universitat de Barcelona, Barcelona, 08035, Spain.
- Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain.
| |
Collapse
|
14
|
Carr LM, Mustafa S, Care A, Collins-Praino LE. More than a number: Incorporating the aged phenotype to improve in vitro and in vivo modeling of neurodegenerative disease. Brain Behav Immun 2024; 119:554-571. [PMID: 38663775 DOI: 10.1016/j.bbi.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Age is the number one risk factor for developing a neurodegenerative disease (ND), such as Alzheimer's disease (AD) or Parkinson's disease (PD). With our rapidly ageing world population, there will be an increased burden of ND and need for disease-modifying treatments. Currently, however, translation of research from bench to bedside in NDs is poor. This may be due, at least in part, to the failure to account for the potential effect of ageing in preclinical modelling of NDs. While ageing can impact upon physiological response in multiple ways, only a limited number of preclinical studies of ND have incorporated ageing as a factor of interest. Here, we evaluate the aged phenotype and highlight the critical, but unmet, need to incorporate aspects of this phenotype into both the in vitro and in vivo models used in ND research. Given technological advances in the field over the past several years, we discuss how these could be harnessed to create novel models of ND that more readily incorporate aspects of the aged phenotype. This includes a recently described in vitro panel of ageing markers, which could help lead to more standardised models and improve reproducibility across studies. Importantly, we cannot assume that young cells or animals yield the same responses as seen in the context of ageing; thus, an improved understanding of the biology of ageing, and how to appropriately incorporate this into the modelling of ND, will ensure the best chance for successful translation of new therapies to the aged patient.
Collapse
Affiliation(s)
- Laura M Carr
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Sanam Mustafa
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Lyndsey E Collins-Praino
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
15
|
Barros RDS, Queiroz LAD, de Assis JB, Pantoja KC, Bustia SX, de Sousa ESA, Rodrigues SF, Akamine EH, Sá-Nunes A, Martins JO. Effects of low-dose rapamycin on lymphoid organs of mice prone and resistant to accelerated senescence. Front Immunol 2024; 15:1310505. [PMID: 38515742 PMCID: PMC10954823 DOI: 10.3389/fimmu.2024.1310505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Aging is a complex, natural, and irreversible phenomenon that subjects the body to numerous changes in the physiological process, characterized by a gradual decline in the organism's homeostatic mechanisms, closely related to immunosenescence. Here, we evaluated the regulation of immunosenescence in lymphoid organs of senescence-accelerated prone 8 (SAM-P8) and senescence-accelerated resistant 1 (SAM-R1) mice treated with a low dose of rapamycin (RAPA). Mice were treated with a dose of 7.1 µg/kg RAPA for 2 months and had body mass and hematological parameters analyzed prior and during treatment. Cellular and humoral parameters of serum, bone marrow, thymus, and spleen samples were evaluated by ELISA, histology, and flow cytometry. Changes in body mass, hematological parameters, cell number, and in the secretion of IL-1β, IL-6, TNF-α, IL-7, and IL-15 cytokines were different between the 2 models used. In histological analyses, we observed that SAM-P8 mice showed faster thymic involution than SAM-R1 mice. Regarding the T lymphocyte subpopulations in the spleen, CD4+ and CD8+ T cell numbers were higher and lower, respectively, in SAM-P8 mice treated with RAPA, with the opposite observed in SAM-R1. Additionally, we found that the low dose of RAPA used did not trigger changes that could compromise the immune response of these mice and the administered dose may have contributed to changes in important lymphocyte populations in the adaptive immune response and the secretion of cytokines that directly collaborate with the maturation and proliferation of these cells.
Collapse
Affiliation(s)
- Rafael dos Santos Barros
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Luiz Adriano Damasceno Queiroz
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Josiane Betim de Assis
- Laboratory of Experimental Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kamilla Costa Pantoja
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Sofia Xavier Bustia
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Emanuella Sarmento Alho de Sousa
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Stephen Fernandes Rodrigues
- Laboratory of Vascular Nanopharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eliana Hiromi Akamine
- Laboratory of Vascular Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Laboratory of Experimental Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joilson O. Martins
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Zhao J, Han Z, Ding L, Wang P, He X, Lin L. The molecular mechanism of aging and the role in neurodegenerative diseases. Heliyon 2024; 10:e24751. [PMID: 38312598 PMCID: PMC10835255 DOI: 10.1016/j.heliyon.2024.e24751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
Aging is a complex and inevitable biological process affected by a combination of external environmental and genetic factors. Humans are currently living longer than ever before, accompanied with aging-related alterations such as diminished autophagy, decreased immunological function, mitochondrial malfunction, stem cell failure, accumulation of somatic and mitochondrial DNA mutations, loss of telomere, and altered nutrient metabolism. Aging leads to a decline in body functions and age-related diseases, for example, Alzheimer's disease, which adversely affects human health and longevity. The quality of life of the elderly is greatly diminished by the increase in their life expectancy rather than healthy life expectancy. With the rise in the age of the global population, aging and related diseases have become the focus of attention worldwide. In this review, we discuss several major mechanisms of aging, including DNA damage and repair, free radical oxidation, telomeres and telomerase, mitochondrial damage, inflammation, and their role in neurodegenerative diseases to provide a reference for the prevention of aging and its related diseases.
Collapse
Affiliation(s)
- Juanli Zhao
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhenjie Han
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Li Ding
- Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ping Wang
- Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiutang He
- Center for Monitoring and Evaluation of Teaching Quality, Jingchu University of Technology, Jingmen, 448000, China
| | - Li Lin
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| |
Collapse
|
17
|
Yılmaz D, Mathavan N, Wehrle E, Kuhn GA, Müller R. Mouse models of accelerated aging in musculoskeletal research for assessing frailty, sarcopenia, and osteoporosis - A review. Ageing Res Rev 2024; 93:102118. [PMID: 37935249 DOI: 10.1016/j.arr.2023.102118] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Musculoskeletal aging encompasses the decline in bone and muscle function, leading to conditions such as frailty, osteoporosis, and sarcopenia. Unraveling the underlying molecular mechanisms and developing effective treatments are crucial for improving the quality of life for those affected. In this context, accelerated aging models offer valuable insights into these conditions by displaying the hallmarks of human aging. Herein, this review focuses on relevant mouse models of musculoskeletal aging with particular emphasis on frailty, osteoporosis, and sarcopenia. Among the discussed models, PolgA mice in particular exhibit hallmarks of musculoskeletal aging, presenting early-onset frailty, as well as reduced bone and muscle mass that closely resemble human musculoskeletal aging. Ultimately, findings from these models hold promise for advancing interventions targeted at age-related musculoskeletal disorders, effectively addressing the challenges posed by musculoskeletal aging and associated conditions in humans.
Collapse
Affiliation(s)
- Dilara Yılmaz
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Esther Wehrle
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; AO Research Institute Davos, Davos Platz, Switzerland
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Koike T, Miura K, Hatta Y, Nakamura H, Hirabayashi Y, Yuda M, Harada T, Hirai S, Tsuboi I, Aizawa S. Macrophage depletion using clodronate liposomes reveals latent dysfunction of the hematopoietic microenvironment associated with persistently imbalanced M1/M2 macrophage polarization in a mouse model of hemophagocytic lymphohistiocytosis. Ann Hematol 2023; 102:3311-3323. [PMID: 37656190 DOI: 10.1007/s00277-023-05425-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Hemophagocytic lymphohistiocytosis (HLH), a hyperinflammatory syndrome, is caused by the incessant activation of lymphocytes and macrophages, resulting in damage to organs, including hematopoietic organs. Recently, we demonstrated that repeated lipopolysaccharide (LPS) treatment induces HLH-like features in senescence-accelerated (SAMP1/TA-1) mice but not in senescence-resistant control (SAMR1) mice. Hematopoietic failure in LPS-treated SAMP1/TA-1 mice was attributed to hematopoietic microenvironment dysfunction, concomitant with severely imbalanced M1 and M2 macrophage polarization. Macrophages are a major component of the bone marrow (BM) hematopoietic microenvironment. Clodronate liposomes are useful tools for in vivo macrophage depletion. In this study, we depleted macrophages using clodronate liposomes to determine their role in the hematopoietic microenvironment in SAMP1/TA-1 and SAMR1 mice. Under clodronate liposome treatment, the response between SAMR1 and SAMP1/TA-1 mice differed as follows: (1) increase in the number of activated M1 and M2 macrophages derived from newly generated macrophages and M2-dominant and imbalanced M1 and M2 macrophage polarization in the BM and spleen; (2) severe anemia and thrombocytopenia; (3) high mortality rate; (4) decrease in erythroid progenitors and B cell progenitors in the BM; and (5) decrease in the mRNA expression of erythroid-positive regulators such as erythropoietin and increase in that of erythroid- and B lymphoid-negative regulators such as interferon-γ in the BM. Depletion of residual macrophages in SAMP1/TA-1 mice impaired hematopoietic homeostasis, particularly erythropoiesis and B lymphopoiesis, owing to functional impairment of the hematopoietic microenvironment accompanied by persistently imbalanced M1/M2 polarization. Thus, macrophages play a vital role in regulating the hematopoietic microenvironment to maintain homeostasis.
Collapse
Affiliation(s)
- Takashi Koike
- Division of Hematology and Oncology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Ohyaguchi-kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Katsuhiro Miura
- Division of Hematology and Oncology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Ohyaguchi-kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Yoshihiro Hatta
- Division of Hematology and Oncology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Ohyaguchi-kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Hideki Nakamura
- Division of Hematology and Oncology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Ohyaguchi-kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yoko Hirabayashi
- Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Miyuki Yuda
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Tomonori Harada
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Shuichi Hirai
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Isao Tsuboi
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Kikuchi K, Otsuka S, Takada S, Nakanishi K, Setoyama K, Sakakima H, Tanaka E, Maruyama I. 1,5-anhydro-D-fructose induces anti-aging effects on aging-associated brain diseases by increasing 5'-adenosine monophosphate-activated protein kinase activity via the peroxisome proliferator-activated receptor-γ co-activator-1α/brain-derived neurotrophic factor pathway. Aging (Albany NY) 2023; 15:11740-11763. [PMID: 37950725 PMCID: PMC10683599 DOI: 10.18632/aging.205228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 10/11/2023] [Indexed: 11/13/2023]
Abstract
5'-Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor that serves as a cellular housekeeper; it also controls energy homeostasis and stress resistance. Thus, correct regulation of this factor can enhance health and survival. AMPK signaling may have a critical role in aging-associated brain diseases. Some in vitro studies have shown that 1,5-anhydro-D-fructose (1,5-AF) induces AMPK activation. In the present study, we experimentally evaluated the effects of 1,5-AF on aging-associated brain diseases in vivo using an animal model of acute ischemic stroke (AIS), stroke-prone spontaneously hypertensive rats (SHRSPs), and the spontaneous senescence-accelerated mouse-prone 8 (SAMP8) model. In the AIS model, intraperitoneal injection of 1,5-AF reduced cerebral infarct volume, neurological deficits, and mortality. In SHRSPs, oral administration of 1,5-AF reduced blood pressure and prolonged survival. In the SAMP8 model, oral administration of 1,5-AF alleviated aging-related decline in motor cognitive function. Although aging reduced the expression levels of peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) and brain-derived neurotrophic factor (BDNF), we found that 1,5-AF activated AMPK, which led to upregulation of the PGC-1α/BDNF pathway. Our results suggest that 1,5-AF can induce endogenous neurovascular protection, potentially preventing aging-associated brain diseases. Clinical studies are needed to determine whether 1,5-AF can prevent aging-associated brain diseases.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Fukuoka 830-0011, Japan
- Department of Neurosurgery, Kurume University School of Medicine, Fukuoka 830-0011, Japan
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Shotaro Otsuka
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Seiya Takada
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Kazuki Nakanishi
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima 890-8544, Japan
| | - Kentaro Setoyama
- Division of Laboratory Animal Resources and Research, Center for Advanced Science Research and Promotion, Kagoshima University, Kagoshima 890-8520, Japan
| | - Harutoshi Sakakima
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima 890-8544, Japan
| | - Eiichiro Tanaka
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| |
Collapse
|
20
|
Borowiec BG, McDonald AE, Wilkie MP. Upstream migrant sea lamprey (Petromyzon marinus) show signs of increasing oxidative stress but maintain aerobic capacity with age. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111503. [PMID: 37586606 DOI: 10.1016/j.cbpa.2023.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Following the parasitic juvenile phase of their life cycle, sea lamprey (Petromyzon marinus) mature into a reproductive but rapidly aging and deteriorating adult, and typically die shortly after spawning in May or June. However, pre-spawning upstream migrant sea lamprey can be maintained for several months beyond their natural lifespan when held in cold water (∼4-8 °C) under laboratory conditions. We exploited this feature to investigate the interactions between senescence, oxidative stress, and metabolic function in this phylogenetically ancient fish. We investigated how life history traits and mitochondria condition, as indicated by markers of oxidative stress (catalase activity, lipid peroxidation) and aerobic capacity (citrate synthase activity), changed in adult sea lamprey from June to December after capture during their upstream spawning migration. Body mass but not liver mass declined with age, resulting in an increase in hepatosomatic index. Both effects were most pronounced in males, which also tended to have larger livers than females. Lamprey experienced greater oxidative stress with age, as reflected by increasing activity of the antioxidant enzyme catalase and increasing levels of lipid peroxidation in liver mitochondrial isolates over time. Surprisingly, the activity of citrate synthase also increased with age in both sexes. These observations implicate mitochondrial dysfunction and oxidative stress in the senescence of sea lamprey. Due to their unique evolutionary position and the technical advantage of easily delaying the onset of senescence in lampreys using cold water, these animals could represent an evolutionary unique and tractable model to investigate senescence in vertebrates.
Collapse
Affiliation(s)
| | - Allison E McDonald
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada. https://twitter.com/AEMcDonaldWLU
| | - Michael P Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|
21
|
Castelli V, d'Angelo M, Zazzeroni F, Vecchiotti D, Alesse E, Capece D, Brandolini L, Cattani F, Aramini A, Allegretti M, Cimini A. Intranasal delivery of NGF rescues hearing impairment in aged SAMP8 mice. Cell Death Dis 2023; 14:605. [PMID: 37704645 PMCID: PMC10499813 DOI: 10.1038/s41419-023-06100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
Hearing loss impacts the quality of life and affects communication resulting in social isolation and reduced well-being. Despite its impact on society and economy, no therapies for age-related hearing loss are available so far. Loss of mechanosensory hair cells of the cochlea is a common event of hearing loss in humans. Studies performed in birds demonstrating that they can be replaced following the proliferation and transdifferentiation of supporting cells, strongly pointed out on HCs regeneration as the main focus of research aimed at hearing regeneration. Neurotrophins are growth factors involved in neuronal survival, development, differentiation, and plasticity. NGF has been involved in the interplay between auditory receptors and efferent innervation in the cochlea during development. During embryo development, both NGF and its receptors are highly expressed in the inner ears. It has been reported that NGF is implicated in the differentiation of auditory gangliar and hair cells. Thus, it has been proposed that NGF administration can decrease neuronal damage and prevent hearing loss. The main obstacle to the development of hearing impairment therapy is that efficient means of delivery for selected drugs to the cochlea are missing. Herein, in this study NGF was administered by the intranasal route. The first part of the study was focused on a biodistribution study, which showed the effective delivery in the cochlea; while the second part was focused on analyzing the potential therapeutic effect of NGF in senescence-accelerated prone strain 8 mice. Interestingly, intranasal administration of NGF resulted protective in counteracting hearing impairment in SAMP8 mice, ameliorating hearing performances (analyzed by auditory brainstem responses and distortion product otoacoustic emission) and hair cells morphology (analyzed by microscopy analysis). The results obtained were encouraging indicating that the neurotrophin NGF was efficiently delivered to the inner ear and that it was effective in counteracting hearing loss.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Franca Cattani
- Dompé Farmaceutici Spa, Via Campo di Pile 1, L'Aquila, Italy
| | - Andrea Aramini
- Dompé Farmaceutici Spa, Via Campo di Pile 1, L'Aquila, Italy
| | | | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Taniguchi C, Watanabe T, Hirata M, Hatae A, Kubota K, Katsurabayashi S, Iwasaki K. Ninjinyoeito Prevents Onset of Depression-Like Behavior and Reduces Hippocampal iNOS Expression in Senescence-Accelerated Mouse Prone 8 Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2151004. [PMID: 37593014 PMCID: PMC10432024 DOI: 10.1155/2023/2151004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Late-life depression is a globally prevalent disorder. Ninjinyoeito (NYT), a traditional Japanese herbal medicine, attenuates depressive symptoms in older patients. However, the mechanisms underlying the antidepressive effect of NYT are unknown. In this study, we investigated the mechanism of the action of NYT using senescence-accelerated mouse prone 8 (SAMP8) mice, which exhibit accelerated aging. SAMP8 mice were treated with NYT starting at 12 weeks of age. Twelve-week-old SAMP8 mice did not show prolonged immobility time in the tail suspension test compared with age-matched SAMR1 mice (normal aging control). At 34 weeks of age, vehicle-treated SAMP8 mice displayed prolonged immobility time compared with SAMR1 mice. NYT-treated SAMP8 mice showed a shorter immobility time than that of vehicle-treated SAMP8 mice. Notably, NYT decreased hippocampal inducible nitric oxide synthase (iNOS) expression in SAMP8 mice. There was no difference in iNOS expression between SAMR1 and vehicle-treated SAMP8 mice. Subchronic (5 days) administration of an iNOS inhibitor, 1400 W, shortened the immobility time in SAMP8 mice. These results suggest that NYT prevents an increase in immobility time of SAMP8 mice by decreasing iNOS levels in the hippocampus. Therefore, the antidepressive effect of NYT in older patients might be mediated, at least in part, by the downregulation of iNOS in the brain. Our data suggest that NYT is useful to prevent the onset of depression with aging.
Collapse
Affiliation(s)
- Chise Taniguchi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Marika Hirata
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Akinobu Hatae
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
23
|
Chou MY, Wong YC, Wang SY, Chi CH, Wang TH, Huang MJ, Huang PH, Li PH, Wang MF. Potential antidepressant effects of a dietary supplement from Huáng qí and its complex in aged senescence-accelerated mouse prone-8 mice. Front Nutr 2023; 10:1235780. [PMID: 37575325 PMCID: PMC10421658 DOI: 10.3389/fnut.2023.1235780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Healthcare is an emerging industry with significant market potential in the 21st century. Therefore, this study aimed to evaluate the benefits of tube feeding Huáng qí and its complexes for 8 weeks on 3-month-old senescence-accelerated mouse prone-8 (SAMP8) mice, 48 in total, randomly divided into 3 groups including control, Huáng qí extract [820 mg/kg Body weight (BW)/day], and Huáng qí complexes (6.2 mL /kg BW/day), where each group consisted of males (n = 8) and females (n = 8). Behavioral tests (locomotion test and aging score assessment on week 6, the single-trial passive avoidance test on week 7, and the active shuttle avoidance test on week 8) were conducted to evaluate the ability of the mice to learn and remember. In addition, after sacrificing the animals, the blood and organs were measured for antioxidant and aging bioactivities, including malondialdehyde (MDA) content and superoxide dismutase (SOD) activity and catalase activities (CAT), and the effects on promoting aging in SAMP8 mice were investigated. The findings showed that Huáng qí enhanced locomotor performance and had anti-aging effects, with positive effects on health, learning, and memory in SAMP-8 mice (p < 0.05), whether applied as a single agent (820 mg/kg BW/day) or as a complex (6.2 mL/kg BW/day) (p < 0.05). Based on existing strengths, a more compelling platform for clinical validation of human clinical evidence will be established to enhance the development and value-added of astragalus-related products while meeting the diversified needs of the functional food market.
Collapse
Affiliation(s)
- Ming-Yu Chou
- School of Business, Qanzhou Vocational and Technical University, Jinjiang, China
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan (R.O.C.)
| | - Yue-Ching Wong
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan (R.O.C.)
| | - Shih-Yi Wang
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan (R.O.C.)
| | - Ching-Hsin Chi
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan (R.O.C.)
| | - Teng-Hsu Wang
- PhytoHealth Corporation, Taipei city, Taiwan (R.O.C.)
| | - Mao-Jung Huang
- School of General Education, Hsiuping University of Science and Technology, Taichung, Taiwan (R.O.C.)
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung, Taiwan (R.O.C.)
| | - Ming-Fu Wang
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan (R.O.C.)
- Department of Food and Nutrition, Providence University, Taichung, Taiwan (R.O.C.)
| |
Collapse
|
24
|
Keshavarz M, Xie K, Bano D, Ehninger D. Aging - what it is and how to measure it. Mech Ageing Dev 2023:111837. [PMID: 37302556 DOI: 10.1016/j.mad.2023.111837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/27/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
The current understanding of the biology of aging is largely based on research aimed at identifying factors that influence lifespan. However, lifespan as a sole proxy measure of aging has limitations because it can be influenced by specific pathologies (not generalized physiological deterioration in old age). Hence, there is a great need to discuss and design experimental approaches that are well-suited for studies targeting the biology of aging, rather than the biology of specific pathologies that restrict the lifespan of a given species. For this purpose, we here review various perspectives on aging, discuss agreement and disagreement among researchers on the definition of aging, and show that while slightly different aspects are emphasized, a widely accepted feature, shared across many definitions, is that aging is accompanied by phenotypic changes that occur in a population over the course of an average lifespan. We then discuss experimental approaches that are in line with these considerations, including multidimensional analytical frameworks as well as designs that facilitate the proper assessment of intervention effects on aging rate. The proposed framework can guide discovery approaches to aging mechanisms in all key model organisms (e.g., mouse, fish models, D. melanogaster, C. elegans) as well as in humans.
Collapse
Affiliation(s)
- Maryam Keshavarz
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
25
|
Pham TB, Boussaty EC, Currais A, Maher P, Schubert DR, Manor U, Friedman RA. Attenuation of Age-Related Hearing Impairment in Senescence-Accelerated Mouse Prone 8 (SAMP8) Mice Treated with Fatty Acid Synthase Inhibitor CMS121. J Mol Neurosci 2023; 73:307-315. [PMID: 37097512 PMCID: PMC10200781 DOI: 10.1007/s12031-023-02119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
In the senescence-accelerated mouse prone 8 (SAMP8) mouse model, oxidative stress leads to premature senescence and age-related hearing impairment (ARHI). CMS121 inhibits oxytosis/ferroptosis by targeting fatty acid synthase. The aim of our study was to determine whether CMS121 is protective against ARHI in SAMP8 mice. Auditory brainstem responses (ABRs) were used to assess baseline hearing in sixteen 4-week-old female SAMP8 mice, which were divided into two cohorts. The control group was fed a vehicle diet, while the experimental group was fed a diet containing CMS121. ABRs were measured until 13 weeks of age. Cochlear immunohistochemistry was performed to analyze the number of paired ribbon-receptor synapses per inner hair cell (IHC). Descriptive statistics are provided with mean ± SEM. Two-sample t-tests were performed to compare hearing thresholds and paired synapse count across the two groups, with alpha = 0.05. Baseline hearing thresholds in the control group were statistically similar to those of the CMS121 group. At 13 weeks of age, the control group had significantly worse hearing thresholds at 12 kHz (56.5 vs. 39.8, p = 0.044) and 16 kHz (64.8 vs. 43.8, p = 0.040) compared to the CMS121 group. Immunohistochemistry showed a significantly lower synapse count per IHC in the control group (15.7) compared to the CMS121 group (18.4), p = 0.014. Our study shows a significant reduction in ABR threshold shifts and increased preservation of IHC ribbon synapses in the mid-range frequencies among mice treated with CMS121 compared to untreated mice.
Collapse
Affiliation(s)
- Tammy B Pham
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, 92037, La Jolla, CA, USA
| | - Ely Cheikh Boussaty
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, 92037, La Jolla, CA, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 92037, La Jolla, CA, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 92037, La Jolla, CA, USA
| | - David R Schubert
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 92037, La Jolla, CA, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 92037, La Jolla, CA, USA
| | - Rick A Friedman
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, 92037, La Jolla, CA, USA.
| |
Collapse
|
26
|
Tan WJT, Song L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear Res 2023; 434:108783. [PMID: 37167889 DOI: 10.1016/j.heares.2023.108783] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Sensorineural hearing loss (SNHL) can either be genetically inherited or acquired as a result of aging, noise exposure, or ototoxic drugs. Although the precise pathophysiological mechanisms underlying SNHL remain unclear, an overwhelming body of evidence implicates mitochondrial dysfunction and oxidative stress playing a central etiological role. With its high metabolic demands, the cochlea, particularly the sensory hair cells, stria vascularis, and spiral ganglion neurons, is vulnerable to the damaging effects of mitochondrial reactive oxygen species (ROS). Mitochondrial dysfunction and consequent oxidative stress in cochlear cells can be caused by inherited mitochondrial DNA (mtDNA) mutations (hereditary hearing loss and aminoglycoside-induced ototoxicity), accumulation of acquired mtDNA mutations with age (age-related hearing loss), mitochondrial overdrive and calcium dysregulation (noise-induced hearing loss and cisplatin-induced ototoxicity), or accumulation of ototoxic drugs within hair cell mitochondria (drug-induced hearing loss). In this review, we provide an overview of our current knowledge on the role of mitochondrial dysfunction and oxidative stress in the development of SNHL caused by genetic mutations, aging, exposure to excessive noise, and ototoxic drugs. We also explore the advancements in antioxidant therapies for the different forms of acquired SNHL that are being evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand.
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Otolaryngology - Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
27
|
Unno K, Taguchi K, Takagi Y, Hase T, Meguro S, Nakamura Y. Mouse Models with SGLT2 Mutations: Toward Understanding the Role of SGLT2 beyond Glucose Reabsorption. Int J Mol Sci 2023; 24:ijms24076278. [PMID: 37047250 PMCID: PMC10094282 DOI: 10.3390/ijms24076278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The sodium–glucose cotransporter 2 (SGLT2) mainly carries out glucose reabsorption in the kidney. Familial renal glycosuria, which is a mutation of SGLT2, is known to excrete glucose in the urine, but blood glucose levels are almost normal. Therefore, SGLT2 inhibitors are attracting attention as a new therapeutic drug for diabetes, which is increasing worldwide. In fact, SGLT2 inhibitors not only suppress hyperglycemia but also reduce renal, heart, and cardiovascular diseases. However, whether long-term SGLT2 inhibition is completely harmless requires further investigation. In this context, mice with mutations in SGLT2 have been generated and detailed studies are being conducted, e.g., the SGLT2−/− mouse, Sweet Pee mouse, Jimbee mouse, and SAMP10-ΔSglt2 mouse. Biological changes associated with SGLT2 mutations have been reported in these model mice, suggesting that SGLT2 is not only responsible for sugar reabsorption but is also related to other functions, such as bone metabolism, longevity, and cognitive functions. In this review, we present the characteristics of these mutant mice. Moreover, because the relationship between diabetes and Alzheimer’s disease has been discussed, we examined the relationship between changes in glucose homeostasis and the amyloid precursor protein in SGLT2 mutant mice.
Collapse
|
28
|
Aging-Accelerated Mouse Prone 8 (SAMP8) Mice Experiment and Network Pharmacological Analysis of Aged Liupao Tea Aqueous Extract in Delaying the Decline Changes of the Body. Antioxidants (Basel) 2023; 12:antiox12030685. [PMID: 36978933 PMCID: PMC10045736 DOI: 10.3390/antiox12030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Aging and metabolic disorders feedback and promote each other and are closely related to the occurrence and development of cardiovascular disease, type 2 diabetes, neurodegeneration and other degenerative diseases. Liupao tea is a geographical indication product of Chinese dark tea, with a “red, concentrated, aged and mellow” flavor quality. In this study, the aqueous extract of aged Liupao tea (ALPT) administered by continuous gavage significantly inhibited the increase of visceral fat and damage to the intestinal–liver–microbial axis in high-fat modeling of SAMP8 (P8+HFD) mice. Its potential mechanism is that ALPT significantly inhibited the inflammation and aggregation formation pathway caused by P8+HFD, increased the abundance of short-chain fatty acid producing bacteria Alistipes, Alloprevotella and Bacteroides, and had a calorie restriction effect. The results of the whole target metabolome network pharmacological analysis showed that there were 139 potential active components in the ALPT aqueous extract, and the core targets of their actions were SRC, TP53, AKT1, MAPK3, VEGFA, EP300, EGFR, HSP90AA1, CASP3, etc. These target genes were mainly enriched in cancer, neurodegenerative diseases, glucose and lipid metabolism and other pathways of degenerative changes. Molecular docking further verified the reliability of network pharmacology. The above results indicate that Liupao tea can effectively delay the body’s degenerative changes through various mechanisms and multi-target effects. This study revealed that dark tea such as Liupao tea has significant drinking value in a modern and aging society.
Collapse
|
29
|
Garlic ( Allium sativum L.) as an Ally in the Treatment of Inflammatory Bowel Diseases. Curr Issues Mol Biol 2023; 45:685-698. [PMID: 36661532 PMCID: PMC9858111 DOI: 10.3390/cimb45010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
For centuries, garlic (Allium sativum) has been used both as a traditional remedy for most health-related ailments and for culinary purposes. Current preclinical investigations have suggested that dietary garlic intake has beneficial health effects, such as antioxidant, anti-inflammatory, antitumor, antiobesity, antidiabetic, antiallergic, cardioprotective, and hepatoprotective effects. Its therapeutic potential is influenced by the methods of use, preparation, and extraction. Of particular importance is the Aged Garlic Extract (AGE). During the aging process, the odorous, sour, and irritating compounds in fresh raw garlic, such as allicin, are naturally converted into stable and safe compounds that have significantly greater therapeutic effects than fresh garlic. In AGE, S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC) are the major water-soluble organosulfurized compounds (OSCs). SAC has been extensively studied, demonstrating remarkable antioxidant, anti-inflammatory, and immunomodulatory capacities. Recently, AGE has been suggested as a promising candidate for the maintenance of immune system homeostasis through modulation of cytokine secretion, promotion of phagocytosis, and activation of macrophages. Since immune dysfunction plays an important role in the development and progress of various diseases, given the therapeutic effects of AGE, it can be thought of exploiting its immunoregulatory capacity to contribute to the treatment and prevention of chronic inflammatory bowel diseases (IBD).
Collapse
|
30
|
Yuda M, Aizawa S, Tsuboi I, Hirabayashi Y, Harada T, Hino H, Hirai S. Imbalanced M1 and M2 Macrophage Polarization in Bone Marrow Provokes Impairment of the Hematopoietic Microenvironment in a Mouse Model of Hemophagocytic Lymphohistiocytosis. Biol Pharm Bull 2022; 45:1602-1608. [DOI: 10.1248/bpb.b22-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miyuki Yuda
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine
| | - Isao Tsuboi
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine
| | - Yoko Hirabayashi
- Center for Biological Safety and Research, National Institute of Health Sciences
| | - Tomonori Harada
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine
| | - Hirotsugu Hino
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine
| | - Shuichi Hirai
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine
| |
Collapse
|
31
|
Zhou R, Xiao L, Xiao W, Yi Y, Wen H, Wang H. Bibliometric review of 1992–2022 publications on acupuncture for cognitive impairment. Front Neurol 2022; 13:1006830. [PMID: 36226080 PMCID: PMC9549373 DOI: 10.3389/fneur.2022.1006830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the development context, research hotspots, and frontiers of acupuncture therapy for cognitive impairment (CI) from 1992 to 2022 by visualization analysis. Methods Articles about acupuncture therapy for cognitive impairment were retrieved from the Web of Science Core Collection (WoSCC) until 1 March 2022. Basic information was collected by Excel 2007, and VOSviewer 1.6.17 was used to analyze the co-occurrence of countries, institutes, and authors. Co-citation maps of authors and references were analyzed by CiteSpace V.5.8.R3. In addition, CiteSpace was used to analyze keyword clusters and forecast research frontiers. Results A total of 279 articles were retrieved, including articles from 19 countries, 334 research institutes, and 101 academic journals. The most published country and institutes were the People's Republic of China (217) and the Fujian University of Traditional Chinese Medicine (40). Ronald C Petersen owned the highest co-citations (56). Keywords and co-cited references cluster showed the main research directions in this area, including “ischemic stroke,” “cerebral ischemia/reperfusion,” “mild cognitive impairment,” “Alzheimer's disease,” “vascular dementia,” “vascular cognitive impairment with no dementia,” “multi-infarct dementia,” “synaptic injury,” “functional MRI,” “glucose metabolism,” “NMDA,” “nuclear factor-kappa b pathway,” “neurotrophic factor,” “matrix metalloproteinase-2 (MMP-2),” “tumor necrosis factor-alpha,” “Bax,” “Caspase-3,” and “Noxa”. Trending keywords may indicate frontier topics, such as “randomized controlled trial,” “rat model,” and “meta-analysis.” Conclusion This research provides valuable information for the study of acupuncture. Diseases focus on mild cognitive impairment (MCI), Alzheimer's disease (AD), and vascular dementia (VaD). Tauopathies with hyperphosphorylation of Tau protein as the main lesions also need to be paid attention to. The development of functional magnetic resonance imaging (fMRI) will better explain the therapeutic effect of acupuncture treatment. The effect of acupuncture on a single point is more convincing, and acupuncture on Baihui (GV20) may be needed in the future. Finally, the implementation of high-quality multicenter randomized controlled trials (RCTs) requires increased collaboration among experts from multiple fields and countries.
Collapse
Affiliation(s)
- Runjin Zhou
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Xiao
- Ganzhou Cancer Hospital, Ganzhou, China
- *Correspondence: Lu Xiao
| | - Wei Xiao
- Ganzhou Cancer Hospital, Ganzhou, China
| | - Yanfei Yi
- Ganzhou Cancer Hospital, Ganzhou, China
| | | | | |
Collapse
|
32
|
Pačesová A, Holubová M, Hrubá L, Strnadová V, Neprašová B, Pelantová H, Kuzma M, Železná B, Kuneš J, Maletínská L. Age-related metabolic and neurodegenerative changes in SAMP8 mice. Aging (Albany NY) 2022; 14:7300-7327. [PMID: 36126192 PMCID: PMC9550245 DOI: 10.18632/aging.204284] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
The most important risk factor for the development of sporadic Alzheimer's disease (AD) is ageing. Senescence accelerated mouse prone 8 (SAMP8) is a model of sporadic AD, with senescence accelerated resistant mouse (SAMR1) as a control. In this study, we aimed to determine the onset of senescence-induced neurodegeneration and the related potential therapeutic window using behavioral experiments, immunohistochemistry and western blotting in SAMP8 and SAMR1 mice at 3, 6 and 9 months of age. The Y-maze revealed significantly impaired working spatial memory of SAMP8 mice from the 6th month. With ageing, increasing plasma concentrations of proinflammatory cytokines in SAMP8 mice were detected as well as significantly increased astrocytosis in the cortex and microgliosis in the brainstem. Moreover, from the 3rd month, SAMP8 mice displayed a decreased number of neurons and neurogenesis in the hippocampus. From the 6th month, increased pathological phosphorylation of tau protein at Thr231 and Ser214 was observed in the hippocampi of SAMP8 mice. In conclusion, changes specific for neurodegenerative processes were observed between the 3rd and 6th month of age in SAMP8 mice; thus, potential neuroprotective interventions could be applied between these ages.
Collapse
Affiliation(s)
- Andrea Pačesová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Martina Holubová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Lucie Hrubá
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Veronika Strnadová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Barbora Neprašová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Prague 142 00, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology of the Czech Academy of Sciences, Prague 142 00, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Institute of Physiology of the Czech Academy of Sciences, Prague 142 00, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
33
|
Zhang XW, Feng N, Liu YC, Guo Q, Wang JK, Bai YZ, Ye XM, Yang Z, Yang H, Liu Y, Yang MM, Wang YH, Shi XM, Liu D, Tu PF, Zeng KW. Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease therapy. SCIENCE ADVANCES 2022; 8:eabo0789. [PMID: 35947662 PMCID: PMC9365288 DOI: 10.1126/sciadv.abo0789] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Neuroinflammation is a fundamental contributor to progressive neuronal damage, which arouses a heightened interest in neurodegenerative disease therapy. Ubiquitin-specific protease 7 (USP7) has a crucial role in regulating protein stability in multiple biological processes; however, the potential role of USP7 in neurodegenerative progression is poorly understood. Here, we discover the natural small molecule eupalinolide B (EB), which targets USP7 to inhibit microglia activation. Cocrystal structure reveals a previously undisclosed covalent allosteric site, Cys576, in a unique noncatalytic HUBL domain. By selectively modifying Cys576, EB allosterically inhibits USP7 to cause a ubiquitination-dependent degradation of Keap1. Keap1 function loss further results in an Nrf2-dependent transcription activation of anti-neuroinflammation genes in microglia. In vivo, pharmacological USP7 inhibition attenuates microglia activation and resultant neuron injury, thereby notably improving behavioral deficits in dementia and Parkinson's disease mouse models. Collectively, our findings provide an attractive future direction for neurodegenerative disease therapy by inhibiting microglia-mediated neuroinflammation by targeting USP7.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Na Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan-Chen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing-Kang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi-Zhen Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Ming Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Heng Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mi-Mi Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author. (P.-F.T.); (K.-W.Z.)
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author. (P.-F.T.); (K.-W.Z.)
| |
Collapse
|
34
|
Peixoto Pinheiro B, Müller M, Bös M, Guezguez J, Burnet M, Tornincasa M, Rizzetto R, Rolland JF, Liberati C, Lohmer S, Adel Y, Löwenheim H. A potassium channel agonist protects hearing function and promotes outer hair cell survival in a mouse model for age-related hearing loss. Cell Death Dis 2022; 13:595. [PMID: 35817766 PMCID: PMC9273644 DOI: 10.1038/s41419-022-04915-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/21/2023]
Abstract
Age-related hearing loss (ARHL) is the most common sensory impairment mainly caused by degeneration of sensory hair cells in the cochlea with no causal medical treatment available. Auditory function and sensory hair cell survival critically depend on the Kv7.4 (KCNQ4) channel, a voltage-gated potassium channel expressed in outer hair cells (OHCs), with its impaired function or reduced activity previously associated with ARHL. Here, we investigated the effect of a potent small-molecule Kv7.4 agonist on ARHL in the senescence-accelerated mouse prone 8 (SAMP8) model. For the first time in vivo, we show that Kv7.4 activation can significantly reduce age-related threshold shifts of auditory brainstem responses as well as OHC loss in the SAMP8 model. Pharmacological activation of Kv7.4 thus holds great potential as a therapeutic approach for ARHL as well as other hearing impairments related to Kv7.4 function.
Collapse
Affiliation(s)
- Barbara Peixoto Pinheiro
- grid.10392.390000 0001 2190 1447Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, 72076 Tübingen, Germany
| | - Marcus Müller
- grid.10392.390000 0001 2190 1447Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, 72076 Tübingen, Germany
| | - Michael Bös
- Acousia Therapeutics, 72070 Tübingen, Germany
| | | | | | - Mara Tornincasa
- grid.427692.c0000 0004 1794 5078Axxam, Bresso, 20091 Milan, Italy
| | | | | | - Chiara Liberati
- grid.427692.c0000 0004 1794 5078Axxam, Bresso, 20091 Milan, Italy
| | - Stefan Lohmer
- grid.427692.c0000 0004 1794 5078Axxam, Bresso, 20091 Milan, Italy
| | - Youssef Adel
- grid.10392.390000 0001 2190 1447Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, 72076 Tübingen, Germany
| | - Hubert Löwenheim
- grid.10392.390000 0001 2190 1447Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
35
|
Neuroprotective Effects of Resveratrol by Modifying Cholesterol Metabolism and Aβ Processing in SAMP8 Mice. Int J Mol Sci 2022; 23:ijms23147580. [PMID: 35886936 PMCID: PMC9324102 DOI: 10.3390/ijms23147580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol metabolism seems dysregulated and linked to amyloid-β (Aβ) formation in neurodegeneration, but the underlying mechanisms are poorly known. Resveratrol (RSV) is a polyphenol with antioxidant activity and neuroprotective properties. Here, we analyzed the effect of age and RSV supplementation on cholesterol metabolism in the brain and blood serum, and its potential link to Aβ processing, in SAMP8 mice—an animal model of aging and Alzheimer’s disease. In the brain, our results revealed an age-related increase in ApoE and unesterified cholesterol in the plasma membrane whereas LDL receptor, HMG-CoA reductase, HMG-CoA-C1 synthase, and ABCA1 transporter remained unaltered. Furthermore, BACE-1 and APP gene expression was decreased. This dysregulation could be involved in the amyloidogenic processing pathway of APP towards Aβ formation. In turn, RSV exhibited an age-dependent effect. While levels of unesterified cholesterol in the plasma membrane were not affected by RSV, several participants in cholesterol uptake, release, and de novo synthesis differed, depending on age. Thus, RSV supplementation exhibited a different neuroprotective effect acting on Aβ processing or cholesterol metabolism in the brain at earlier or later ages, respectively. In blood serum, HDL lipoprotein and free cholesterol were increased by age, whereas VLDL and LDL lipoproteins remained unaltered. Again, the protective effect of RSV by decreasing the LDL or increasing the HDL levels also seems to depend on the intervention’s moment. In conclusion, age is a prominent factor for cholesterol metabolism dysregulation in the brain of SAMP8 mice and influences the protective effects of RSV through cholesterol metabolism and Aβ processing.
Collapse
|
36
|
Wang YC, Wu CC, Huang APH, Hsieh PC, Kung WM. Combination of Acupoints for Alzheimer's Disease: An Association Rule Analysis. Front Neurosci 2022; 16:872392. [PMID: 35757540 PMCID: PMC9213672 DOI: 10.3389/fnins.2022.872392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/06/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an ongoing neurological degeneration characterized by amnesia and a decline in cognitive abilities. Hippocampal neurogenesis is the leading cause of AD. Mild cognitive impairment (MCI), a prodromal state of AD, is mainly due to the degradation of neuropsychiatric manifestations. Previous systematic reviews demonstrated that treatment with acupuncture with Chinese herbs is tolerable and effective in improving cognitive function in patients with AD. Our investigation aimed to discover the main acupoint combination for AD management based on a preceding systematic review and meta-analysis of randomized control trials (RCTs). MATERIALS AND METHODS Our investigation was executed using association rule analysis, which is a common data mining technique accessible within R. Our study elucidated acupoint locations as binary data from 15 of the included studies using the Apriori algorithm. RESULTS Thirty-two acupoints were selected from 15 RCTs. The 10 most frequent acupoints were selected. We inspected 503 association rules using the interpreted acupuncture data. The obtained results showed that {SP6, BI10} ≥ {HT7} and {HT7, BI10} ≥ {SP6} were the most associated rules in 15 RCTs. CONCLUSION The combination of acupoints ({SP6, BI10} ≥ {HT7} and {HT7, BI10} ≥ {SP6}) can be acknowledged as a core combination for future acupuncture regimens of AD.
Collapse
Affiliation(s)
- Yao-Chin Wang
- Department of Emergency, Min-Sheng General Hospital, Taoyuan, Taiwan
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chieh-Chen Wu
- Department of Healthcare Information and Management, School of Health Technology, Ming Chuan University, Taipei, Taiwan
| | - Abel Po-Hao Huang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Woon-Man Kung
- Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
37
|
Wang YC, Wu CC, Huang APH, Hsieh PC, Kung WM. Combination of Acupoints for Alzheimer’s Disease: An Association Rule Analysis. Front Neurosci 2022. [DOI: https:/doi.org/10.3389/fnins.2022.872392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BackgroundAlzheimer’s disease (AD) is an ongoing neurological degeneration characterized by amnesia and a decline in cognitive abilities. Hippocampal neurogenesis is the leading cause of AD. Mild cognitive impairment (MCI), a prodromal state of AD, is mainly due to the degradation of neuropsychiatric manifestations. Previous systematic reviews demonstrated that treatment with acupuncture with Chinese herbs is tolerable and effective in improving cognitive function in patients with AD. Our investigation aimed to discover the main acupoint combination for AD management based on a preceding systematic review and meta-analysis of randomized control trials (RCTs).Materials and MethodsOur investigation was executed using association rule analysis, which is a common data mining technique accessible within R. Our study elucidated acupoint locations as binary data from 15 of the included studies using the Apriori algorithm.ResultsThirty-two acupoints were selected from 15 RCTs. The 10 most frequent acupoints were selected. We inspected 503 association rules using the interpreted acupuncture data. The obtained results showed that {SP6, BI10} ≥ {HT7} and {HT7, BI10} ≥ {SP6} were the most associated rules in 15 RCTs.ConclusionThe combination of acupoints ({SP6, BI10} ≥ {HT7} and {HT7, BI10} ≥ {SP6}) can be acknowledged as a core combination for future acupuncture regimens of AD.
Collapse
|
38
|
Wang YC, Wu CC, Huang APH, Hsieh PC, Kung WM. Combination of Acupoints for Alzheimer’s Disease: An Association Rule Analysis. Front Neurosci 2022. [DOI: https://doi.org/10.3389/fnins.2022.872392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BackgroundAlzheimer’s disease (AD) is an ongoing neurological degeneration characterized by amnesia and a decline in cognitive abilities. Hippocampal neurogenesis is the leading cause of AD. Mild cognitive impairment (MCI), a prodromal state of AD, is mainly due to the degradation of neuropsychiatric manifestations. Previous systematic reviews demonstrated that treatment with acupuncture with Chinese herbs is tolerable and effective in improving cognitive function in patients with AD. Our investigation aimed to discover the main acupoint combination for AD management based on a preceding systematic review and meta-analysis of randomized control trials (RCTs).Materials and MethodsOur investigation was executed using association rule analysis, which is a common data mining technique accessible within R. Our study elucidated acupoint locations as binary data from 15 of the included studies using the Apriori algorithm.ResultsThirty-two acupoints were selected from 15 RCTs. The 10 most frequent acupoints were selected. We inspected 503 association rules using the interpreted acupuncture data. The obtained results showed that {SP6, BI10} ≥ {HT7} and {HT7, BI10} ≥ {SP6} were the most associated rules in 15 RCTs.ConclusionThe combination of acupoints ({SP6, BI10} ≥ {HT7} and {HT7, BI10} ≥ {SP6}) can be acknowledged as a core combination for future acupuncture regimens of AD.
Collapse
|
39
|
Induction of Accelerated Aging in a Mouse Model. Cells 2022; 11:cells11091418. [PMID: 35563724 PMCID: PMC9102583 DOI: 10.3390/cells11091418] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
With the global increase of the elderly population, the improvement of the treatment for various aging-related diseases and the extension of a healthy lifespan have become some of the most important current medical issues. In order to understand the developmental mechanisms of aging and aging-related disorders, animal models are essential to conduct relevant studies. Among them, mice have become one of the most prevalently used model animals for aging-related studies due to their high similarity to humans in terms of genetic background and physiological structure, as well as their short lifespan and ease of reproduction. This review will discuss some of the common and emerging mouse models of accelerated aging and related chronic diseases in recent years, with the aim of serving as a reference for future application in fundamental and translational research.
Collapse
|
40
|
Davis JA, Paul JR, Mokashi MV, Yates SA, Mount DJ, Munir HA, Goode LK, Young ME, Allison DB, Gamble KL. Circadian disruption of hippocampus in an early senescence male mouse model. Pharmacol Biochem Behav 2022; 217:173388. [PMID: 35447158 DOI: 10.1016/j.pbb.2022.173388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Age-related cognitive decline and disruptions in circadian rhythms are growing problems as the average human life span increases. Multiple strains of the senescence-accelerated mouse (SAM) show reduced life span, and the SAMP8 strain in particular has been well documented to show cognitive deficits in behavior as well as a bimodal pattern of circadian locomotor activity. However, little is known about circadian regulation within the hippocampus of these strains of mice. Here we test the hypothesis that in this early senescence model, disruption of the molecular circadian clock in SAMP8 animals drives disrupted behavior and physiology. We found normal rhythms in PER2 protein expression in the SCN of SAMP8 animals at 4 months, despite the presence of disrupted wheel-running activity rhythms at this age. Interestingly, a significant rhythm in PER2 expression was not observed in the hippocampus of SAMP8 animals, despite a significant 24-h rhythm in SAMR1 controls. We also examined time-restricted feeding as a potential strategy to rescue disrupted hippocampal plasticity. Time-restricted feeding increased long-term potentiation at Schaffer collateral-CA1 synapses in SAMP8 mice (compared to SAMR1 controls). Overall, we confirm disrupted circadian locomotor rhythms in this early senescence model (as early as 4 months) and discovered that this disruption is not due to arrhythmic PER2 levels in the SCN; however, other extra-SCN circadian oscillators (i.e., hippocampus) are likely impaired with accelerated aging.
Collapse
Affiliation(s)
- Jennifer A Davis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mugdha V Mokashi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefani A Yates
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel J Mount
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hira A Munir
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lacy K Goode
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David B Allison
- School of Public Health, Indiana University, Bloomington, IN, USA.
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
41
|
Jiao YN, Zhang JS, Qiao WJ, Tian SY, Wang YB, Wang CY, Zhang YH, Zhang Q, Li W, Min DY, Wang ZY. Kai-Xin-San Inhibits Tau Pathology and Neuronal Apoptosis in Aged SAMP8 Mice. Mol Neurobiol 2022; 59:3294-3309. [PMID: 35303280 PMCID: PMC9016055 DOI: 10.1007/s12035-021-02626-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is an age-related neurological disorder. Currently, there is no effective cure for AD due to its complexity in pathogenesis. In light of the complex pathogenesis of AD, the traditional Chinese medicine (TCM) formula Kai-Xin-San (KXS), which was used for amnesia treatment, has been proved to improve cognitive function in AD animal models. However, the active ingredients and the mechanism of KXS have not yet been clearly elucidated. In this study, network pharmacology analysis predicts that KXS yields 168 candidate compounds acting on 863 potential targets, 30 of which are associated with AD. Enrichment analysis revealed that the therapeutic mechanisms of KXS for AD are associated with the inhibition of Tau protein hyperphosphorylation, inflammation, and apoptosis. Therefore, we chose 7-month-old senescence-accelerated mouse prone 8 (SAMP8) mice as AD mouse model, which harbors the behavioral and pathological hallmarks of AD. Subsequently, the potential underlying action mechanisms of KXS on AD predicted by the network pharmacology analyses were experimentally validated in SAMP8 mice after intragastric administration of KXS for 3 months. We observed that KXS upregulated AKT phosphorylation, suppressed GSK3β and CDK5 activation, and inhibited the TLR4/MyD88/NF-κB signaling pathway to attenuate Tau hyperphosphorylation and neuroinflammation, thus suppressing neuronal apoptosis and improving the cognitive impairment of aged SAMP8 mice. Taken together, our findings reveal a multi-component and multi-target therapeutic mechanism of KXS for attenuating the progression of AD, contributing to the future development of TCM modernization, including KXS, and broader clinical application.
Collapse
Affiliation(s)
- Ya-Nan Jiao
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jing-Sheng Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wen-Jun Qiao
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shu-Yu Tian
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yi-Bin Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Chun-Yan Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yan-Hui Zhang
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Qi Zhang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Dong-Yu Min
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Zhan-You Wang
- Health Sciences Institute, China Medical University, Shenyang, China.
| |
Collapse
|
42
|
Li Y, Liu J, Zhou H, Liu J, Xue X, Wang L, Ren S. Liquid chromatography-mass spectrometry method for discovering the metabolic markers to reveal the potential therapeutic effects of naringin on osteoporosis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1194:123170. [DOI: 10.1016/j.jchromb.2022.123170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
|
43
|
Foglio E, Pellegrini L, Russo MA, Limana F. HMGB1-Mediated Activation of the Inflammatory-Reparative Response Following Myocardial Infarction. Cells 2022; 11:cells11020216. [PMID: 35053332 PMCID: PMC8773872 DOI: 10.3390/cells11020216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Different cell types belonging to the innate and adaptive immune system play mutually non-exclusive roles during the different phases of the inflammatory-reparative response that occurs following myocardial infarction. A timely and finely regulation of their action is fundamental for the process to properly proceed. The high-mobility group box 1 (HMGB1), a highly conserved nuclear protein that in the extracellular space can act as a damage-associated molecular pattern (DAMP) involved in a large variety of different processes, such as inflammation, migration, invasion, proliferation, differentiation, and tissue regeneration, has recently emerged as a possible regulator of the activity of different immune cell types in the distinct phases of the inflammatory reparative process. Moreover, by activating endogenous stem cells, inducing endothelial cells, and by modulating cardiac fibroblast activity, HMGB1 could represent a master regulator of the inflammatory and reparative responses following MI. In this review, we will provide an overview of cellular effectors involved in these processes and how HMGB1 intervenes in regulating each of them. Moreover, we will summarize HMGB1 roles in regulating other cell types that are involved in the different phases of the inflammatory-reparative response, discussing how its redox status could affect its activity.
Collapse
Affiliation(s)
- Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, 04100 Latina, Italy;
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Laura Pellegrini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Matteo Antonio Russo
- IRCCS San Raffaele Roma and MEBIC Consortium, 00166 Rome, Italy;
- San Raffaele University of Rome, 00166 Rome, Italy
| | - Federica Limana
- San Raffaele University of Rome, 00166 Rome, Italy
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Correspondence:
| |
Collapse
|
44
|
Murao N, Yokoi N, Takahashi H, Hayami T, Minami Y, Seino S. Increased glycolysis affects β-cell function and identity in aging and diabetes. Mol Metab 2022; 55:101414. [PMID: 34871777 PMCID: PMC8732780 DOI: 10.1016/j.molmet.2021.101414] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Age is a risk factor for type 2 diabetes (T2D). We aimed to elucidate whether β-cell glucose metabolism is altered with aging and contributes to T2D. METHODS We used senescence-accelerated mice (SAM), C57BL/6J (B6) mice, and ob/ob mice as aging models. As a diabetes model, we used db/db mice. The glucose responsiveness of insulin secretion and the [U-13C]-glucose metabolic flux were examined in isolated islets. We analyzed the expression of β-cell-specific genes in isolated islets and pancreatic sections as molecular signatures of β-cell identity. β cells defective in the malate-aspartate (MA) shuttle were previously generated from MIN6-K8 cells by the knockout of Got1, a component of the shuttle. We analyzed Got1 KO β cells as a model of increased glycolysis. RESULTS We identified hyperresponsiveness to glucose and compromised cellular identity as dysfunctional phenotypes shared in common between aged and diabetic mouse β cells. We also observed a metabolic commonality between aged and diabetic β cells: hyperactive glycolysis through the increased expression of nicotinamide mononucleotide adenylyl transferase 2 (Nmnat2), a cytosolic nicotinamide adenine dinucleotide (NAD)-synthesizing enzyme. Got1 KO β cells showed increased glycolysis, β-cell dysfunction, and impaired cellular identity, phenocopying aging and diabetes. Using Got1 KO β cells, we show that attenuation of glycolysis or Nmnat2 activity can restore β-cell function and identity. CONCLUSIONS Our study demonstrates that hyperactive glycolysis is a metabolic signature of aged and diabetic β cells, which may underlie age-related β-cell dysfunction and loss of cellular identity. We suggest Nmnat2 suppression as an approach to counteract age-related T2D.
Collapse
Affiliation(s)
- Naoya Murao
- Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan; Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.
| | - Tomohide Hayami
- Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan; Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Graduate School of Medicine, Kobe University, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
45
|
An Update of Research Animal Models of Inflammatory Bowel Disease. ScientificWorldJournal 2021; 2021:7479540. [PMID: 34938152 PMCID: PMC8687830 DOI: 10.1155/2021/7479540] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic disorders that includes two main disease forms, Crohn's disease, and ulcerative colitis. The understanding of the intestinal inflammation occurring in IBD has been immeasurably advanced by the development of the now numerous murine models of intestinal inflammation. The usefulness of this research tool in IBD arises from a convergence of underlying genetic susceptibility, immune system dysfunction, environmental factors, and shifts in gut microbiota. Due to the multifactorial feature of these diseases, different animal models have been used to investigate the underlying mechanisms and develop potential therapeutic strategies. The results of preclinical efficacy studies often inform the progression of therapeutic strategies. This review describes the distinct feature and limitations of each murine IBD model and discusses the previous and current lessons from the IBD models.
Collapse
|
46
|
Kluever V, Fornasiero EF. Principles of brain aging: Status and challenges of modeling human molecular changes in mice. Ageing Res Rev 2021; 72:101465. [PMID: 34555542 DOI: 10.1016/j.arr.2021.101465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/22/2023]
Abstract
Due to the extension of human life expectancy, the prevalence of cognitive impairment is rising in the older portion of society. Developing new strategies to delay or attenuate cognitive decline is vital. For this purpose, it is imperative to understand the cellular and molecular events at the basis of brain aging. While several organs are directly accessible to molecular analysis through biopsies, the brain constitutes a notable exception. Most of the molecular studies are performed on postmortem tissues, where cell death and tissue damage have already occurred. Hence, the study of the molecular aspects of cognitive decline largely relies on animal models and in particular on small mammals such as mice. What have we learned from these models? Do these animals recapitulate the changes observed in humans? What should we expect from future mouse studies? In this review we answer these questions by summarizing the state of the research that has addressed cognitive decline in mice from several perspectives, including genetic manipulation and omics strategies. We conclude that, while extremely valuable, mouse models have limitations that can be addressed by the optimal design of future studies and by ensuring that results are cross-validated in the human context.
Collapse
|
47
|
Harada T, Tsuboi I, Hino H, Yuda M, Hirabayashi Y, Hirai S, Aizawa S. Age-related exacerbation of hematopoietic organ damage induced by systemic hyper-inflammation in senescence-accelerated mice. Sci Rep 2021; 11:23250. [PMID: 34853370 PMCID: PMC8636590 DOI: 10.1038/s41598-021-02621-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyper-inflammatory disorder. The mortality of HLH is higher in the elderly than in young adults. Senescence-accelerated mice (SAMP1/TA-1) exhibit characteristic accelerated aging after 30 weeks of age, and HLH-like features, including hematopoietic organ damage, are seen after lipopolysaccharide (LPS) treatment. Thus, SAMP1/TA-1 is a useful model of hematological pathophysiology in the elderly with HLH. In this study, dosing of SAMP1/TA-1 mice with LPS revealed that the suppression of myelopoiesis and B-lymphopoiesis was more severe in aged mice than in young mice. The bone marrow (BM) expression of genes encoding positive regulators of myelopoiesis (G-CSF, GM-CSF, and IL-6) and of those encoding negative regulators of B cell lymphopoiesis (TNF-α) increased in both groups, while the expression of genes encoding positive-regulators of B cell lymphopoiesis (IL-7, SDF-1, and SCF) decreased. The expression of the GM-CSF-encoding transcript was lower in aged mice than in young animals. The production of GM-CSF by cultured stromal cells after LPS treatment was also lower in aged mice than in young mice. The accumulation of the TNF-α-encoding transcript and the depletion of the IL-7-encoding transcript were prolonged in aged mice compared to young animals. LPS dosing led to a prolonged increase in the proportion of BM M1 macrophages in aged mice compared to young animals. The expression of the gene encoding p16INK4a and the proportion of β-galactosidase- and phosphorylated ribosomal protein S6-positive cells were increased in cultured stromal cells from aged mice compared to those from young animals, while the proportion of Ki67-positive cells was decreased in stromal cells from aged mice. Thus, age-related deterioration of stromal cells probably causes the suppression of hematopoiesis in aged mice. This age-related latent organ dysfunction may be exacerbated in elderly people with HLH, resulting in poor prognosis.
Collapse
Affiliation(s)
- Tomonori Harada
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Isao Tsuboi
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Hirotsugu Hino
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Miyuki Yuda
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yoko Hirabayashi
- Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, 210-9501, Japan
| | - Shuichi Hirai
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
48
|
Microbiota Targeted Interventions of Probiotic Lactobacillus as an Anti-Ageing Approach: A Review. Antioxidants (Basel) 2021; 10:antiox10121930. [PMID: 34943033 PMCID: PMC8750034 DOI: 10.3390/antiox10121930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
With the implementation of modern scientific protocols, the average human lifespan has significantly improved, but age-related problems remain a challenge. With the advent of ageing, there are alterations in gut microbiota and gut barrier functions, weak immune responses, increased oxidative stress, and other age-related disorders. This review has highlighted and discussed the current understanding on the significance of gut microbiota dysbiosis and ageing and its inherent effects against age-related oxidative stress as well as on the gut health and gut-brain axis. Further, we have discussed the key mechanism of action of Lactobacillus strains in the longevity of life, alleviating gut dysbiosis, and improving oxidative stress and inflammation to provide an outline of the role of Lactobacillus strains in restoration of gut microbiota dysbiosis and alleviating certain conditions during ageing. Microbiota-targeted interventions of some characterized strains of probiotic Lactobacillus for the restoration of gut microbial community are considered as a potential approach to improve several neurological conditions. However, very limited human studies are available on this alarmed issue and recommend further studies to identify the unique Lactobacillus strains with potential anti-ageing properties and to discover its novel core microbiome-association, which will help to increase the therapeutic potential of probiotic Lactobacillus strains to ageing.
Collapse
|
49
|
Baek KW, Jung YK, Park JS, Kim JS, Hah YS, Kim SJ, Yoo JI. Two Types of Mouse Models for Sarcopenia Research: Senescence Acceleration and Genetic Modification Models. J Bone Metab 2021; 28:179-191. [PMID: 34520651 PMCID: PMC8441530 DOI: 10.11005/jbm.2021.28.3.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia leads to loss of skeletal muscle mass, quality, and strength due to aging; it was recently given a disease code (International Classification of Diseases, Tenth Revision, Clinical Modification, M62.84). As a result, in recent years, sarcopenia-related research has increased. In addition, various studies seeking to prevent and treat sarcopenia by identifying the various mechanisms related to the reduction of skeletal muscle properties have been conducted. Previous studies have identified muscle synthesis and breakdown; investigating them has generated evidence for preventing and treating sarcopenia. Mouse models are still the most useful ones for determining mechanisms underlying sarcopenia through correlations and interventions involving specific genes and their phenotypes. Mouse models used to study sarcopenia often induce muscle atrophy by hindlimb unloading, denervation, or immobilization. Though it is less frequently used, the senescence-accelerated mouse can also be useful for sarcopenia research. Herein, we discuss cases where senescence-accelerated and genetically engineered mouse models were used in sarcopenia research and different perspectives to use them.
Collapse
Affiliation(s)
- Kyung-Wan Baek
- Department of Physical Education, Gyeongsang National University, Jinju, Korea.,Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Korea
| | - Youn-Kwan Jung
- Biomedical Research Institute, Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Korea
| | - Jin Sung Park
- Department of Orthopaedic Surgery and Institute of Health Sciences, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Ji-Seok Kim
- Department of Physical Education, Gyeongsang National University, Jinju, Korea
| | - Young-Sool Hah
- Biomedical Research Institute, Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Korea
| | - So-Jeong Kim
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, Korea
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
50
|
Barros PR, Costa TJ, Akamine EH, Tostes RC. Vascular Aging in Rodent Models: Contrasting Mechanisms Driving the Female and Male Vascular Senescence. FRONTIERS IN AGING 2021; 2:727604. [PMID: 35821995 PMCID: PMC9261394 DOI: 10.3389/fragi.2021.727604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Increasing scientific interest has been directed to sex as a biological and decisive factor on several diseases. Several different mechanisms orchestrate vascular function, as well as vascular dysfunction in cardiovascular and metabolic diseases in males and females. Certain vascular sex differences are present throughout life, while others are more evident before the menopause, suggesting two important and correlated drivers: genetic and hormonal factors. With the increasing life expectancy and aging population, studies on aging-related diseases and aging-related physiological changes have steeply grown and, with them, the use of aging animal models. Mouse and rat models of aging, the most studied laboratory animals in aging research, exhibit sex differences in many systems and physiological functions, as well as sex differences in the aging process and aging-associated cardiovascular changes. In the present review, we introduce the most common aging and senescence-accelerated animal models and emphasize that sex is a biological variable that should be considered in aging studies. Sex differences in the cardiovascular system, with a focus on sex differences in aging-associated vascular alterations (endothelial dysfunction, remodeling and oxidative and inflammatory processes) in these animal models are reviewed and discussed.
Collapse
Affiliation(s)
- Paula R. Barros
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Tiago J. Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eliana H. Akamine
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Rita C. Tostes, ; Eliana H. Akamine,
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Rita C. Tostes, ; Eliana H. Akamine,
| |
Collapse
|